KR101104390B1 - Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire - Google Patents

Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire Download PDF

Info

Publication number
KR101104390B1
KR101104390B1 KR1020110014383A KR20110014383A KR101104390B1 KR 101104390 B1 KR101104390 B1 KR 101104390B1 KR 1020110014383 A KR1020110014383 A KR 1020110014383A KR 20110014383 A KR20110014383 A KR 20110014383A KR 101104390 B1 KR101104390 B1 KR 101104390B1
Authority
KR
South Korea
Prior art keywords
organic
ceramic
silane
varnish
inorganic nano
Prior art date
Application number
KR1020110014383A
Other languages
Korean (ko)
Inventor
강동필
한세원
이주영
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020110014383A priority Critical patent/KR101104390B1/en
Application granted granted Critical
Publication of KR101104390B1 publication Critical patent/KR101104390B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE: A producing method of an organic-inorganic nanohybrid/nanocomposite varnish material is provided to offer excellent arc resistance, electric insulation property, dielectric property, heat-resistance, adhesion property, and mechanical property. CONSTITUTION: A producing method of an organic-inorganic nanohybrid/nanocomposite varnish material comprises the following steps: surface processing aqueous or alcoholic ceramic sol with organic silane, and adding an organic solvent for synthesizing the ceramic sol; mixing 0.5-30 parts of ceramic nanoparticles by weight to 100 parts of ceramic sol by weight dispersed in the organic solvent for surface-reforming the ceramic nanoparticles with reactive silane, and dispersing to obtain an organic reactive nanohybrid composite ceramic sol; and mixing the organic reactive nanohybrid composite ceramic sol with a heat-resistant resin.

Description

유무기 나노융복합 절연바니쉬의 제조방법 및 이에 의해 제조된 유무기 나노융복합 절연바니쉬가 코팅된 코일{Manufacturing Method of Organic Inorganic Nanohybrid/nanocomposite Varnish Materials and the Coated Electrical Wire}Manufacturing method of organic-inorganic nano fusion insulated varnish and coil coated with organic-inorganic nano fusion insulated varnish manufactured by the same {Manufacturing Method of Organic Inorganic Nanohybrid / nanocomposite Varnish Materials and the Coated Electrical Wire}

본 발명은 나노융복합 절연바니쉬의 제조방법 및 이를 적용한 코일에 관한 것으로, 특히 내열등급이 높은 폴리아미드이미드(polyamideimide, PAI) 또는 폴리에스테르이미드(polyesterimide, PEI), 폴리아믹에시드(PI 전구체) 등의 바니쉬 수지와 세라믹 나노입자를 하이브리드화시켜 저장안정성과 코팅성을 가지는 유무기 나노융복합 절연바니쉬의 제조방법 및 상기 유무기 나노융복합 절연바니쉬가 코팅되어 열적, 기계적, 전기적 특성이 크게 향상된 코일에 관한 것이다.The present invention relates to a method for manufacturing a nano-fusion insulating varnish and a coil using the same, in particular, polyamideimide (PAI) or polyesterimide (PEI), polyamic acid (PI precursor) having a high heat resistance grade, and the like. Method of manufacturing organic-inorganic nano fusion insulation varnish having storage stability and coating property by hybridizing varnish resin and ceramic nanoparticles of the varnish resin, and coating the organic-inorganic nano fusion insulation varnish with greatly improving thermal, mechanical and electrical characteristics It is about.

종래의 전기 전자용 코일은 구리선에 에나멜(경화성수지)로 절연피복(코팅처리)이 되어 있는데, 수지로 되어 있는 코팅소재는 내열성과 내마모성이 낮으며, 고온환경에서 내아크성 및 내서지성 등 전기절연성이 떨어지는 문제점이 있다. 또한 접착성과 내마모성이 약하여 와인딩작업시 코팅 피복이 벗겨지는 문제점이 있다.Conventional electric and electronic coils are insulated (coated) with enamels (curable resins) on copper wires.Coated materials made of resin have low heat and abrasion resistance, and are resistant to arc and surge resistance in high temperature environments. There is a problem of poor insulation. In addition, there is a problem that the coating coating is peeled off during the winding operation due to the weak adhesion and wear resistance.

최근 금속코일을 사용하는 전기기기(모터, 발전기, 변압기 등)가 고집적화되면서 고내열성 절연바니쉬의 요구가 증대되고 있지만 바니쉬 소재의 내열성, 열전도성, 내마모성 등에서 문제가 되고 있다.Recently, as electrical equipment (motors, generators, transformers, etc.) using metal coils are highly integrated, the demand for high heat resistance insulating varnish is increasing, but there are problems in heat resistance, heat conductivity, and wear resistance of varnish materials.

현재 바니쉬용 절연재료들 가운데 PI, PAI, PEI 등이 내열등급이 우수한 것으로 알려져 있지만 단일 수지로는 열전도성, 열내구성, 서지(방전)내구성, 내마모성을 만족하기에는 한계가 있다. 특히 바니쉬 소재는 유연성과 내마모성이 공히 요구되어 고분자들의 분자량 증대, 분자량 분포조절, 이종고분자들간의 브렌드화 등을 통해 고분자 도막의 연성과 인성의 향상이 시도되고 있다.Currently, varnish insulation materials such as PI, PAI, and PEI are known to have excellent heat resistance, but a single resin has limitations in satisfying thermal conductivity, thermal durability, surge (discharge) durability, and wear resistance. In particular, varnish materials are required for both flexibility and abrasion resistance, and thus, attempts to improve ductility and toughness of polymer coatings are performed by increasing molecular weight of polymers, controlling molecular weight distribution, and blending between heteropolymers.

전기자동차와 엘레배이트용 모터와 풍력발전기 등 전력반도체를 이용하여 급속정밀 구동제어를 하고 있는 전기기기는 내부적으로 발생하는 고주파에 노출되므로 고주파서지에 대한 코일의 절연열화가 문제점으로 부각되고 있다.Electric devices that use the power semiconductors such as electric vehicles, electric motors, and wind power generators for rapid precision control are exposed to high frequency generated internally. Therefore, the insulation deterioration of the coil to the high frequency surge is a problem.

최근 유기수지에 콜로이드상의 실리카를 포함하는 유무기 하이브리드 절연바니쉬를 적용한 코일의 서지내구성이 크게 향상된 것으로 보고되고 있다. 나노세라믹을 보강한 유무기 복합재료에서 세라믹의 공간적 집적성을 향상시켜 내마모성을 증대시키는 연구가 이루어지고 있으며 계면에너지가 전혀 다른 유무기간의 화학결합을 형성하기 위한 기술개발이 요구되고 있다.Recently, it has been reported that the surge durability of coils using organic-inorganic hybrid insulating varnish containing colloidal silica in organic resins has been greatly improved. In organic-inorganic composite materials reinforced with nanoceramic, research is being conducted to improve the spatial integration of ceramics to increase abrasion resistance, and technology development for forming chemical bonds with and without interfacial energy is required.

본 출원인이 출원(출원번호 10-2008-0037576, 10-2008-0088355)한 "전선 피복용 폴리아미드이미드 실리카 하이브리드 재료", "불소기 실란 처리된 고점적 코일용 코팅재의 제조방법"에서 폴리아미드이미드(PAI) 수지에 실리카졸을 용해시킨 하이브리드 절연바니쉬의 개발과 코일코팅기술이 확보되어 하이브리드 바니쉬가 상업적으로 활용단계에 있지만 유연성, 인성, 접착성, 신율, 내마모성 등 요구되는 기계적 물성들이 상호배반적이며 세라믹 입자의 첨가량 증가시 하이브리드 바니쉬의 점도상승이 수반되어 여전히 세라믹의 고함량화, 저장안정성, 접착성 및 점착성 등에서 물성개선이 요구되고 있다.In the "Applicant No. 10-2008-0037576, 10-2008-0088355" filed by the present applicant, "polyamideimide silica hybrid material for wire coating", "method of producing a coating material for high viscosity coils treated with fluorine silane", Development of hybrid insulation varnish with silica sol dissolved in PAI resin and coil coating technology secured, but hybrid varnish is in commercial use stage, but required mechanical properties such as flexibility, toughness, adhesiveness, elongation and wear resistance As the addition of ceramic particles increases, the viscosity of the hybrid varnish is accompanied by an increase in the ceramic content, which is still required to improve the properties of the ceramics in terms of high content, storage stability, adhesion and adhesion.

따라서, 본 발명은 상기 필요성에 의해 고안된 것으로서, 유기실란으로 표면처리된 세라믹졸에 반응성실란으로 표면개질된 세라믹 나노입자를 분산용해시킨 나노융복합 세라믹졸을 제조하고, 이를 폴리아미드이미드(polyamideimide, PAI) 또는 폴리에스테르이미드(polyesterimide, PEI), 폴리아믹에시드(PI 전구체) 등의 내열성 수지에 분산시켜 저장안정성과 코팅성을 갖는 유무기 나노융복합 절연바니쉬의 제조방법 및 상기 유무기 나노융복합 절연바니쉬가 코팅되어 열적, 기계적, 전기적 특성이 향상된 코일의 제공을 그 목적으로 한다.Accordingly, the present invention has been devised by the above necessity, to prepare a nano-fused ceramic sol by dissolving and dissolving the ceramic nanoparticles surface-modified with reactive silane in a ceramic sol surface-treated with an organosilane, polyamideimide (polyamideimide, Method for preparing organic-inorganic nano fusion insulation varnish having storage stability and coating property by dispersing in heat-resistant resin such as PAI) or polyesterimide (PEI), polyamic acid (PI precursor) and the organic-inorganic nano fusion It is an object of the present invention to provide a coil with an insulating varnish coated to improve thermal, mechanical and electrical properties.

상기 목적을 달성하기 위하여 본 발명은, 수계 또는 알콜계 세라믹졸을 유기실란으로 표면처리하고 유기용매를 첨가하여 용매를 교체하여 유기용매분산 세라믹졸을 합성하는 제1단계와; 상기 유기용매분산 세라믹졸 100중량부에 대해 세라믹 나노입자 0.5~30중량부를 첨가하여 반응성실란으로 세라믹 나노입자를 표면개질하면서 분산시켜 유기계 반응성 나노융복합 세라믹졸을 제조하는 제2단계와; 폴리아미드이미드, 폴리에스테르이미드, 폴리아믹에시드 중 어느 하나의 내열성 수지 또는 이들 중 둘 이상의 혼합수지에 상기 반응성 나노융복합 세라믹졸을 혼합하여 유무기 나노융복합 절연바니쉬를 제조하는 제3단계;를 포함하여 이루어지는 것을 특징으로 하는 유무기 나노융복합 절연바니쉬의 제조방법을 기술적 요지로 한다.In order to achieve the above object, the present invention includes a first step of synthesizing an organic solvent dispersion ceramic sol by surface-treating an aqueous or alcohol-based ceramic sol with an organic silane and adding an organic solvent to replace the solvent; Adding 0.5-30 parts by weight of ceramic nanoparticles to 100 parts by weight of the organic solvent-dispersed ceramic sol to disperse and disperse the ceramic nanoparticles with a reactive silane to prepare an organic-based reactive nano-fused ceramic sol; A third step of preparing the organic-inorganic nano fusion insulation varnish by mixing the reactive nano fusion ceramic sol with a heat-resistant resin of any one of polyamideimide, polyester imide, and polyamic acid or a mixture resin of two or more thereof; The manufacturing method of the organic-inorganic nano fusion insulation varnish characterized by including is made into a technical summary.

또한, 상기 제1단계의 수계 또는 알콜계 세라믹졸은, 수계 또는 알콜계 콜로이드상의 실리카 또는 알루미나, 그리고 단분자 전구체로부터 합성된 실리카, 알루미나 및 이들의 혼합체 중에 어느 하나를 사용하는 것이 바람직하다.In addition, the aqueous or alcohol-based ceramic sol of the first step, it is preferable to use any one of silica, alumina and mixtures thereof synthesized from the aqueous or alcoholic colloidal silica or alumina, and a monomolecular precursor.

또한, 상기 제1단계의 유기실란은, 메틸트리메톡시실란, 메틸트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, C2~C12까지의 알킬기, C2~C12까지의 플루오르알킬기를 가진 메톡시 실란 및 에톡시 실란 중의 어느 하나 또는 이들을 혼합한 실란인 것이 바람직하다.In addition, the organosilane of the first step, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-gly sidok when trimethoxysilane, 3-glycidoxypropyltrimethoxysilane to the silane, C 2 ~ C alkyl group of up to 12, any one of the silane and the silane having a fluoroalkyl group of up to C 2 ~ C 12 or It is preferable that it is silane which mixed these.

또한, 상기 제1단계의 유기용매로는, NMP, DMF, DMAc, cellusolve류, glycol류 및 ketone류 중의 어느 하나 또는 이들의 혼합용매가 사용되는 것이 바람직하다.In addition, it is preferable that any one or a mixed solvent of NMP, DMF, DMAc, cellusolves, glycols, and ketones is used as the organic solvent in the first step.

또한, 상기 제1단계의 유기용매분산 세라믹졸은, 세라믹의 함량이 1~50wt% 범위를 갖는 것이 바람직하다.In addition, the organic solvent dispersion ceramic sol of the first step, it is preferable that the content of the ceramic has a range of 1 ~ 50wt%.

또한, 상기 제2단계의 세라믹 나노입자는, 실리카, 알루미나, 산화마그네슘(MgO), 질화붕소(BN), 알루미늄실리케이트를 포함하는 화합물 세라믹 중의 어느 하나 또는 이들의 혼합물인 것이 바람직하다.In addition, the ceramic nanoparticles of the second step may be any one or a mixture of compound ceramics including silica, alumina, magnesium oxide (MgO), boron nitride (BN), and aluminum silicate.

또한, 상기 제2단계의 반응성실란은, 2가 또는 3가의 알콕시 또는 아세톡시 실란 중에서 반응성기로 아미노기, 에폭시기, 시아노기, 수산기, 티올기 중에 어느 하나를 가진 실란인 것이 바람직하다.In addition, the reactive silane in the second step is preferably a silane having any one of an amino group, an epoxy group, a cyano group, a hydroxyl group, and a thiol group as a reactive group in a divalent or trivalent alkoxy or acetoxy silane.

또한, 상기 제2단계의 세라믹 나노입자는, 구상, 침상 또는 판상이 혼합되어 사용되며, 침상 및 판상의 경우 크기가 50~1000nm인 것이 바람직하다.In addition, the ceramic nanoparticles of the second step, spherical, needle-like or plate-shaped is used is mixed, in the case of needle-like and plate-like it is preferable that the size is 50 ~ 1000nm.

또한, 본 발명은 상기에서 제조된 유무기 나노융복합 절연바니쉬를 금속 와이어에 코팅한 후 가열건조하여 상기 금속 와이어 표면에 절연피막이 형성되어 이루어진 코일을 기술적 요지로 한다.In addition, the present invention is a technical gist of the organic-inorganic nano fusion insulation varnish prepared above is coated with a metal wire and then heat-dried to form an insulating film on the surface of the metal wire.

상기 과제 해결 수단에 의해 본 발명은 폴리아미드이미드, 폴리에스테르이미드, 폴리이미드 등의 내열성 수지와 실리카졸을 포함하는 세라믹 나노입자를 균일하게 분산시켜 내아크성, 전기절연특성, 유전특성, 내열특성, 접착특성 및 기계적 특성이 우수한 유무기 나노융복합 절연바니쉬를 제공할 수 있고, 이를 금속 와이어 등에 코팅하여 고온환경에서 서지내구성이 우수한 코일을 제조할 수 있으며 이를 모터, 발전기, 변압기 등의 부품으로 사용하면 이들 전기기기의 장기신뢰성이 크게 향상되는 효과가 있다.According to the above problem solving means, the present invention uniformly disperses ceramic nanoparticles including heat-resistant resins such as polyamideimide, polyesterimide, polyimide, and silica sol, thereby providing arc resistance, electrical insulation characteristics, dielectric characteristics, and heat resistance characteristics. It can provide organic-inorganic nano fusion insulation varnish with excellent adhesion and mechanical properties, and it can be coated on metal wire to manufacture coils with excellent surge durability in high temperature environments. When used, the long-term reliability of these electrical devices is greatly improved.

특히, 전력반도체를 이용하여 정밀제어가 필요한 모터(전기자동차 모터, 고속 엘레배이터 모터, 고속 모터 등)나 풍력용 발전기 등은 고주파서지에 노출되어 코일의 절연재료가 급속히 열화되는데 이 경우 수명을 증가시키고 장기신뢰성을 향상시키는데 탁월한 효과가 있다.In particular, motors that require precise control using electric power semiconductors (electric vehicle motors, high-speed elevator motors, high-speed motors, etc.) or wind generators are exposed to high-frequency surges, which rapidly deteriorate the insulation material of the coil. It has an excellent effect on increasing and improving long-term reliability.

도 1 - 본 발명의 일실시예에서 사용되는 세라믹 나노입자로 산화마그네슘 입자의 형상을 나타낸 도.
도 2 - PAI와 반응성 실란으로 처리된 실리카(CS)의 화학적반응기구를 나타낸 도.
도 3 - 본 발명의 일실시예로 실리카졸과 PAI를 이용하여 제조된 유무기 나노융복합 절연바니쉬와 이를 구리선에 코팅하여 절연피막을 형성한 상태의 코일 단면에 대한 모식도.
도 4 - 본 발명의 코일 제조를 위한 바니쉬 수지 코팅장면 및 이에 의해 제조된 코일을 나타낸 도.
도 5 - 본 발명의 일실시예에 따라 실리카 함량별 열분해온도를 나타낸 도.
도 6 - 본 발명의 일실시예에 따라 실리카 함량별(7.5, 10, 12.5) 코일을 나타낸 도.
도 7 - 본 발명의 일실시예에 따라 실리카 함량별 내마모 특성을 나타낸 도.
도 8 - 본 발명의 일실시예에 따라 제작된 절연바니쉬의 내연화 특성을 나타낸 도.
도 9 - 본 발명의 일실시예에 따라 제작된 코일의 내전압 특성을 나타낸 도.
1 is a diagram showing the shape of the magnesium oxide particles as ceramic nanoparticles used in one embodiment of the present invention.
2 shows the chemical reaction mechanism of silica (CS) treated with PAI and reactive silane.
Figure 3-Schematic diagram of the cross-section of the organic-inorganic nano fusion insulation varnish prepared using silica sol and PAI in one embodiment of the present invention and a coil in a state in which an insulating coating is formed by coating it on a copper wire.
Figure 4-shows a varnish resin coating scene for producing a coil of the present invention and the coil produced thereby.
5 is a diagram showing the thermal decomposition temperature according to the silica content according to an embodiment of the present invention.
FIG. 6 is a diagram illustrating coils according to silica content (7.5, 10, 12.5) according to an embodiment of the present invention. FIG.
Figure 7-showing the wear resistance according to the silica content according to an embodiment of the present invention.
8-shows the softening resistance characteristics of the insulating varnish produced in accordance with an embodiment of the present invention.
9-shows the withstand voltage characteristics of a coil manufactured according to an embodiment of the present invention.

본 발명은, 유기실란으로 표면처리된 세라믹졸에 반응성실란으로 표면개질된 세라믹 나노입자를 분산용해시킨 나노융복합 세라믹졸을 제조하고, 이를 폴리아미드이미드(polyamideimide, PAI) 또는 폴리에스테르이미드(polyesterimide, PEI), 폴리아믹에시드[폴리이미드(PI) 전구체]와 같은 내열성 수지 또는 이들의 혼합수지에 분산시켜 저장안정성과 코팅성을 갖는 유무기 나노융복합 절연바니쉬를 제조하고, 상기 유무기 나노융복합 절연바니쉬를 금속 와이어에 코팅하여 열적, 기계적, 전기적 특성이 향상된 코일에 관한 것이다.The present invention provides a nano fusion ceramic sol by dissolving and dissolving ceramic nanoparticles surface-modified with reactive silane in a ceramic sol surface-treated with an organic silane, polyamideimide (PAI) or polyesterimide (polyesterimide) , PEI) and polyamic acid [polyimide (PI) precursor] to disperse in a heat-resistant resin or a mixed resin thereof to prepare an organic-inorganic nano fusion insulating varnish having storage stability and coating properties, the organic-inorganic nano fusion The present invention relates to a coil having a composite insulating varnish coated on a metal wire to improve thermal, mechanical, and electrical properties.

본 발명에 따른 유무기 나노융복합 절연바니쉬의 제조방법은, 수계 또는 알콜계 세라믹졸을 유기실란으로 표면처리하고 고비점 유기용매를 첨가하여 용매를 교체하여 유기용매분산 세라믹졸[고형분(세라믹 함량) 1~50wt%]을 합성하는 제1단계와, 상기 유기용매분산 세라믹졸 100중량부에 대해 다양한 형상(구상, 침상, 판상)과 입자의 크기가 50~1000nm인 세라믹 나노입자 0.5~30중량부를 첨가하여 반응성실란으로 세라믹 나노입자를 표면개질하면서 분산시켜 유기계 반응성 나노융복합 세라믹졸을 제조하는 제2단계와, 폴리아미드이미드(PAI), 폴리에스테르이미드(PEI) 및 폴리아믹에시드 중 어느 하나의 내열성 수지 또는 이들 중 둘 이상의 혼합수지 100중량부에 상기 반응성 나노융복합 세라믹졸 1~50중량부를 혼합하여 유무기 나노융복합 절연바니쉬를 제조하는 제3단계로 이루어진다.The organic-inorganic nano fusion insulation varnish according to the present invention, the surface treatment of an aqueous or alcohol-based ceramic sol with an organic silane and the addition of a high boiling point organic solvent to replace the solvent, the organic solvent dispersion ceramic sol [solid content (ceramic content 1 ~ 50wt%] and 0.5 ~ 30 weight of ceramic nanoparticles having various shapes (sphere, needle, plate) and particle size of 50 ~ 1000nm with respect to 100 parts by weight of the organic solvent dispersion ceramic sol The second step of preparing an organic reactive nano fusion ceramic sol by adding a portion and dispersing the surface of the ceramic nanoparticles with reactive silane, and any one of polyamideimide (PAI), polyesterimide (PEI) and polyamic acid 1 to 50 parts by weight of the reactive nano fusion ceramic sol is mixed with 100 parts by weight of a heat resistant resin or a mixture resin of two or more of them to prepare an organic-inorganic nano fusion insulation varnish. Claim is made in three stages.

또한, 본 발명은 상기의 제조방법에 의해 제조된 유무기 나노융복합 절연바니쉬를 금속 와이어에 코팅한 후 가열건조하여 세라믹 나노입자간 또는 세라믹 나노입자와 내열성 수지 간에 화학반응이 수반되어 상기 금속 와이어 표면에 절연피막이 형성된 코일에 관한 것이다. 이러한 금속와이어 표면에 절연피막이 형성되면, 유무기 나노융복합 절연바니쉬에서 고함량의 세라믹첨가 조성에서도 코일의 굴곡에 대한 파열저항성이 크게 증가되고 유연성과 밀착성이 향상되어 고품질의 코일을 제공할 수 있게 되는 것이다.
In addition, the present invention is coated with an organic-inorganic nano fusion insulation varnish prepared by the above manufacturing method on a metal wire and then heat-dried to be accompanied by a chemical reaction between the ceramic nanoparticles or between the ceramic nanoparticles and the heat-resistant resin the metal wire The present invention relates to a coil having an insulating coating formed on its surface. When the insulating film is formed on the surface of the metal wire, even in the high-concentration ceramic additive composition of the organic-inorganic nano fusion insulation varnish, the burst resistance to the bending of the coil is greatly increased, and flexibility and adhesion are improved to provide a high quality coil. Will be.

이하에서는 본 발명의 바람직한 실시예에 대해 상세히 설명하고자 한다.Hereinafter will be described in detail for the preferred embodiment of the present invention.

상기 제1단계의 세라믹졸 중에서 수계 또는 알콜계 분산된 실리카(입자크기 20nm, 고형분 30wt%) 100g에 유기실란(트리메톡시실란, MTMS) 3ml를 첨가하고 상온에서 24시간 반응시킨 후에 고비점의 유기용매인 NMP(또는 DMF, DMAc, cellusolve류, glycol류 및 ketone류 중의 어느 하나 또는 이들의 혼합용매) 70~95ml을 첨가한 뒤에 감압증류를 통해 물을 제거하면 유기용매분산 세라믹졸을 합성하게 된다.3 ml of organosilane (trimethoxysilane, MTMS) is added to 100 g of the aqueous or alcohol-based silica (particle size 20 nm, solid content 30 wt%) in the ceramic sol of the first step, and reacted at room temperature for 24 hours. 70-95 ml of organic solvent NMP (or any one of DMF, DMAc, cellusolves, glycols and ketones or mixed solvents thereof) is added and water is removed by distillation under reduced pressure to synthesize organic solvent dispersion ceramic sol. do.

여기에서, 상기 유기실란은, 메틸트리메톡시실란, 메틸트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, C2~C12까지의 알킬기, C2~C12까지의 플루오르알킬기를 가진 메톡시 실란 및 에톡시 실란 중의 어느 하나 또는 이들을 혼합한 실란을 사용할 수 있다.Here, the said organosilane is methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-glycidoxypropyl trimethoxy silane, 3-glycidoxypropyltrimethoxysilane to the silane, C 2 ~ C 12 alkyl group, C 2 ~ C to 12 any of a silane and a silane having a fluoroalkyl group of one or a mixture of these Silanes may be used.

또한, 상기 세라믹졸의 종류는 물이나 알콜에 분산된 실리카 또는 알루미나 졸(콜로이드상)을 구입하여 사용하거나, 단분자 전구체[precursor ; 실리카 전구체(TEOS), 알루미나 전구체(isopropyl aluminum)]들로부터 합성된 실리카 또는 알루미나 및 이들의 혼합체 중에 사용하는데, 본 실시예에서는 알루미나 전구체(precursor)들로부터 합성된 실리카졸을 사용한다. In addition, the type of the ceramic sol may be used by purchasing silica or alumina sol (colloidal phase) dispersed in water or alcohol, or using a single molecule precursor [precursor; Silica precursors (TEOS), alumina precursors (isopropyl aluminum)] or synthesized from silica or alumina and mixtures thereof. In this embodiment, a silica sol synthesized from alumina precursors (precursor) is used.

그리고, 상기 제2단계에서의 유기계 반응성 나노융복합 세라믹졸은 유기용매분산 세라믹졸에 세라믹 나노입자를 첨가한 뒤 반응성실란으로 세라믹 나노입자를 표면개질하면서 분산시키거나, 상기 세라믹 나노입자와 반응성실란을 유기용매에 분산한 후에 상기 유기용매분산 세라믹졸에 첨가하여 세라믹 나노입자를 표면개질하면서 분산시키는 방법으로 제조된다.In the second step, the organic reactive nano fusion ceramic sol is added with ceramic nanoparticles to the organic solvent dispersion ceramic sol and dispersed while surface-modifying the ceramic nanoparticles with reactive silane, or the reactive silane with the ceramic nanoparticles. Is dispersed in an organic solvent and then added to the organic solvent dispersed ceramic sol to prepare and disperse the ceramic nanoparticles with surface modification.

본 실시예에서는 첫번째 방법인 유기용매분산 세라믹졸(고형분 30wt%) 100g에 50~1,000nm급 크기의 세라믹 나노입자[실리카, 알루미나, 산화마그네슘(MgO), 질화붕소(BN), 알루미늄실리케이트]를 포함한 화합물 세라믹(mica, clay, 코디에라이트, 몬모릴로나이트 등) 0.5~30g을 첨가한 뒤, 2가 또는 3가의 알콕시 또는 아세톡시 실란 중에서 반응성기로 아미노기, 에폭시기, 시아노기, 수산기, 티올기 중에 어느 하나의 반응성실란(예로 APTES 또는 GPTES) 0.01~1g을 첨가하여 초음파나 고압호모겐나이즈로 분산하여 세라믹 나노입자를 표면개질하면서 분산시켜 유기계 반응성 나노융복합 세라믹졸을 제조한다.In this embodiment, ceramic nanoparticles [silica, alumina, magnesium oxide (MgO), boron nitride (BN), aluminum silicate] of 50 to 1,000 nm in size are applied to 100 g of an organic solvent-dispersed ceramic sol (solid content 30wt%). 0.5-30 g of compound ceramics (mica, clay, cordierite, montmorillonite, etc.) are added, and any one of an amino group, an epoxy group, a cyano group, a hydroxyl group and a thiol group is used as a reactive group in a divalent or trivalent alkoxy or acetoxy silane. The reactive silane (eg APTES or GPTES) of 0.01 ~ 1g is added and dispersed by ultrasonic or high pressure homogenized to disperse the ceramic nanoparticles while surface modification to prepare an organic reactive nano fusion ceramic sol.

도 1은 상기 세라믹 나노입자로 사용한 산화마그네슘 입자의 형상을 나타낸 것으로서, 판상 입자의 형상을 띄고 있다.Figure 1 shows the shape of the magnesium oxide particles used as the ceramic nanoparticles, showing the shape of the plate-shaped particles.

여기에서, 세라믹 나노입자의 입자크기가 분포를 갖거나 세라믹 나노입자의 형상이 구상, 판상이나 침상, 섬유상 등을 갖게 하는 이유는 절연바니쉬가 겔화되어 고체절연막을 형성할 때 세라믹 나노입자들의 공간집적성을 좋게 하고 기계적 물성(마모강도, 굴곡강도)을 향상시키기 위함이다. 상기 세라믹 나노입자의 형상이 침상 및 판상의 경우에는 크기가 50~1000nm인 세라믹을 유기매질에서 실란으로 표면처리하여 분산시킨 것을 사용한다.  The reason why the particle size of the ceramic nanoparticles has a distribution or the shape of the ceramic nanoparticles has a spherical shape, a plate shape, a needle shape, a fiber shape, and the like is due to the fact that the insulating varnish gels to form a solid insulating film. To improve aptitude and improve mechanical properties (wear strength, flexural strength). In the case where the shape of the ceramic nanoparticles is needle-like or plate-shaped, ceramics having a size of 50 to 1000 nm are surface-dispersed and dispersed with silane in an organic medium.

그리고 세라믹 나노입자의 표면과 고분자 간의 화학결합을 유도하면 신율이나 마모강도를 향상시키는데 크게 기여할 것이다. 유기와 무기간의 화학적 결합을 유도하는 물질로는 수지와 화학결합이 가능한 반응성기를 가진 실란을 이용하여 구현할 수가 있는데 이들의 화학반응기구는 도 2와 같다. 도 2는 PAI 수지와 반응성실란으로 처리된 실리카의 화학반응기구를 나타낸 것이다. Inducing a chemical bond between the surface of the ceramic nanoparticles and the polymer will greatly contribute to improving elongation and wear strength. As a material for inducing a chemical bond between organic and inorganic, it can be implemented by using a silane having a reactive group capable of chemically bonding with a resin, and their chemical reaction mechanism is shown in FIG. 2. Figure 2 shows the chemical reaction mechanism of silica treated with PAI resin and reactive silane.

상기 제3단계에서 유기계 반응성 나노융복합 세라믹졸과 내열성 수지(폴리아미드이미드(PAI), 폴리에스테르이미드(PEI), 폴리아믹에시드(PI 전구체) 또는 이들의 혼합수지(브렌드)를 이용하여 유무기 나노융복합 절연바니쉬를 제조하게 된다.In the third step, using an organic-based reactive nano-fused ceramic sol and a heat-resistant resin (polyamideimide (PAI), polyesterimide (PEI), polyamic acid (PI precursor) or a mixed resin (brand) thereof) Nano fusion insulation varnish will be prepared.

여기에서, 상기 내열성 수지는 평균분자량이 19,000, 36,000, 54,000, 92,000인 PAI 수지들을 혼합하여 넓은 분자량 분포를 갖게 하거나 PAI와 PI(또는 폴리아믹에시드)를 브렌드하여 절연바니쉬의 유연성, 인장강도, 내모성 등을 더욱 향상시킨다.Here, the heat resistant resin has a wide molecular weight distribution by mixing PAI resins having an average molecular weight of 19,000, 36,000, 54,000, 92,000, or blend PAI and PI (or polyamic acid) to insulate flexibility, tensile strength, and resistance of the varnish. Improves motherhood and more.

본 발명에서 다양한 나노급의 콜로이드 세라믹들을 사용하고 반응성실란으로 표면개질을 유도하여 세라믹을 고함량(20~30중량부)으로 첨가하여도 절연바니쉬가 상온저장성(2달 이상의 점도와 투명성 유지)과 코팅작업성이 우수하며 고체절연막에서 요구되는 내열성, 접착성, 신율, 내마모성 등이 만족되는 우수한 유무기 나노융복합 절연바니쉬를 제공할 수 있는 것이다(종래의 기술로는 분산성이 떨어져 5중량부 정도 첨가할 수 있음).In the present invention, using various nano-grade colloidal ceramics and inducing surface modification with reactive silane, even though the ceramic is added in a high content (20 to 30 parts by weight), the insulation varnish has room temperature storage (maintaining viscosity and transparency of 2 months or more) and It is possible to provide excellent organic-inorganic nano fusion insulation varnish with excellent coating workability and satisfying heat resistance, adhesion, elongation, and abrasion resistance required in a solid insulating film. Can be added).

그리고, 상기 유무기 나노융복합 절연바니쉬를 금속 와이어 즉, 구리선이나 알루미늄선 등에 코팅한 후 가열건조하면 세라믹 나노입자와 상기 내열성 수지들 간의 화학반응에 의한 상기 금속 와이어 표면에 절연피막을 형성하게 되는데, 고함량의 세라믹 첨가 조성에서도 굴곡에 대한 파열저항성이 크게 증가되고 유연성과 밀착성이 향상되어 열적, 기계적, 전기적 특성이 탁월하게 향상된 유무기 나노융복합 절연바니쉬가 코팅된 코일을 제공할 수 있는 것이다. 도 3은 본 발명의 일실시예로 실리카졸과 PAI를 이용하여 제조된 유무기 나노융복합 절연바니쉬와 이를 구리선에 코팅하여 절연피막을 형성한 상태의 코일 단면에 대한 모식도를 나타낸 것이다.When the organic-inorganic nano fusion insulating varnish is coated on a metal wire, that is, a copper wire or an aluminum wire, and dried under heat, an insulating coating is formed on the surface of the metal wire by a chemical reaction between ceramic nanoparticles and the heat resistant resins. In addition, it is possible to provide a coil coated with an organic-inorganic nano fusion insulation varnish with excellent thermal, mechanical and electrical properties due to the increased bursting resistance to bending and improved flexibility and adhesion even in a high content of ceramics. . Figure 3 shows a schematic diagram of the cross-section of the organic-inorganic nano fusion insulation varnish prepared using silica sol and PAI and a coil in a state in which an insulating coating is formed by coating it on a copper wire as an embodiment of the present invention.

이러한 유무기 나노융복합 절연바니쉬는 세라믹 첨가로 인한 점도증가가 거의 없어 종래의 유기수지만으로 된 바니쉬와 코팅작업성은 거의 유사하며 동일한 설비를 이용하여 다중코팅이 가능하며, 도 4는 코팅장면 및 이에 의해 제조된 코일을 나타낸 것이다. 이와 같은 유무기 하이브리드 절연바니쉬로 절연처리하면 내열성과 절연특성이 우수하며, 고온환경에서 내아크성 및 전기절연성이 유지되는 코일(전선)을 얻을 수 있게 된다.The organic-inorganic nano fusion insulation varnish has almost no increase in viscosity due to the addition of ceramics, so the coating workability is almost similar to that of conventional organic resin varnishes, and multiple coatings are possible using the same equipment. It shows a coil manufactured by. Insulation treatment with such an organic-inorganic hybrid insulation varnish is excellent in heat resistance and insulation properties, it is possible to obtain a coil (wire) that maintains arc resistance and electrical insulation in a high temperature environment.

상기 유무기 나노융복합 절연바니쉬에서 세라믹 나노입자의 첨가량에 따라서 경화된 소재의 특성평가를 위하여 금속쉬트의 표면에 상기 유무기 나노융복합 절연바니쉬를 소정 두께로 코팅하여 90℃에서 1시간, 150℃에서 15분, 220℃에서 5분의 3단계를 거쳐 경화시켰다. 다음 표 1은 그에 따른 특성평가 결과를 나타내었고 세라믹 함량별 열분해온도를 도 5에 나타내었다.In order to evaluate the properties of the cured material according to the addition amount of the ceramic nanoparticles in the organic-inorganic nano fusion insulation varnish, the organic-inorganic nano fusion insulation varnish was coated with a predetermined thickness on the surface of the metal sheet for 1 hour, 150 ° C. Curing was carried out in three steps of 15 minutes at 5 ° C and 5 minutes at 220 ° C. Table 1 shows the results of the characteristic evaluation according to the above, and the thermal decomposition temperature for each ceramic content is shown in FIG. 5.

<PAI-실리카(9:1) 유무기 나노융복합 절연바니쉬의 물성><Physical Properties of PAI-Silica (9: 1) Organic-Inorganic Nano Fusion Insulation Varnish> 특성평가항목Characteristic 특성치Characteristic value 전기저항율(체적)Electric resistivity (volume) 2.015Ω㎝2.0 15 Ωcm 내아크성Arc resistance 240s240 s 절연파괴전압Breakdown voltage 13kV/30㎛13kV / 30㎛ 유전상수Dielectric constant 3.13.1 접착인장강도Adhesive Tensile Strength 113MPa113 MPa 유리전이온도Glass transition temperature 300℃300 ° C

표 1에 나타난 바와 같이 본 발명에 따른 유무기 나노융복합 절연바니쉬가 코팅된 코일은 절연피막 소재가 가져야 될 접착성, 밀착성, 굴곡성, 유연성, 내마모성 등의 기계적 특성이 우수하고 내열성, 고열전도성, 전기절연성, 내아크성, 서지내구성 등이 우수한 코일을 얻을 수 있었다.As shown in Table 1, the organic-inorganic nano fusion insulation varnish coated coil according to the present invention has excellent mechanical properties such as adhesion, adhesion, flexibility, flexibility, abrasion resistance, etc. Coils excellent in electrical insulation, arc resistance, and surge durability could be obtained.

도 5는 PAI 100중량부에 대해 실리카 0, 10, 20, 30 중량부가 첨가된 샘플에 대한 열분해온도(TGA)를 측정한 데이타로, 400℃까지는 전혀 중량감소가 없으며 500℃이상 600℃까지도 열열화속도가 크게 둔화되어 화재시 전기설비가 상당시간 성능을 유지하는 큰 장점이 있다.
FIG. 5 is a data obtained by measuring the thermal decomposition temperature (TGA) of the sample added 0, 10, 20, 30 parts by weight of silica to 100 parts by weight of PAI, there is no weight loss up to 400 ℃ and heat up to 500 ℃ to 600 ℃ The deterioration rate is greatly slowed, so there is a big advantage that the electrical equipment maintains its performance for a considerable time in case of fire.

이와 같이 본 발명은 다양한 크기와 종류의 세라믹 나노입자를 첨가할 수 있으며, 이들을 적절히 조합하면 유무기 나노융복합 절연바니쉬가 고화될 때 세라믹 입자들의 공간적 집적성이 향상되는데 반응성실란으로 표면처리하여 유기용매에의 분산성과 저장안정성을 확보하면 상기 내열성 수지에의 용해성과 저장안정성이 우수하게 된다. 그리고, 세라믹 나노입자의 첨가로 인하여 유무기 나노융복합 절연바니쉬 점도의 증가는 없으며 가열건조시 세라믹 나노입자간 또는 세라믹 나노입자와 내열성 수지 간에 화학적으로 결합이 일어나게 되어 세라믹 나노입자를 고함량(30중량부까지)으로 분산시킨 유무기 나노융복합 절연바니쉬를 얻을 수 있게 되는 것이다.
As described above, the present invention can add ceramic nanoparticles of various sizes and types, and when combined appropriately, spatial integration of ceramic particles is improved when organic-inorganic nano fusion insulation varnish is solidified. When dispersibility in the solvent and storage stability are ensured, the solubility in the heat-resistant resin and the storage stability are excellent. In addition, the addition of ceramic nanoparticles does not increase the viscosity of the organic-inorganic nano-fusion insulation varnish, and chemically bonds between the ceramic nanoparticles or between the ceramic nanoparticles and the heat-resistant resin during heating and drying, thereby causing a high content of the ceramic nanoparticles (30 It is possible to obtain an organic-inorganic nano fusion insulation varnish dispersed in parts by weight).

<실시예 2> <Example 2>

본 발명에 따른 코일용 내열성 절연바니쉬에서 세라믹 나노입자 첨가시 고려해야 할 점은 세라믹 나노입자의 첨가량에 따라 신율, 유연성, 접착성 등의 기계적 특성과 절연내력의 물성저하가 수반되는 것인데 상업적으로 최적의 세라믹 나노입자의 함량을 조사하기 위해서 세라믹 나노입자의 함량별 특성평가를 실시하였다.Considering the addition of ceramic nanoparticles in the heat-resistant insulating varnish for coils according to the present invention, mechanical properties such as elongation, flexibility, adhesion, etc., and physical properties of insulation strength are reduced depending on the amount of ceramic nanoparticles added. In order to investigate the content of the ceramic nanoparticles, the characteristics of the ceramic nanoparticles were evaluated.

상기 실시예 1과 같은 방법으로 제조하면서 내열성 수지(PAI) 100 중량부 대비 실리카 함량을 7.5, 10, 12.5, 20 중량부로 달리하여 유무기 나노융복합 절연바니쉬를 제조하고 이를 구리 와이어에 코팅하여 코일을 제조하여 실리카졸의 최적량을 평가하였다. 도 6은 실리카 함량별(7.5, 10, 12.5) 코일을 나타낸 것이다.The organic-inorganic nano fusion insulation varnish was manufactured by varying the silica content to 7.5, 10, 12.5, and 20 parts by weight with respect to 100 parts by weight of the heat-resistant resin (PAI) while manufacturing in the same manner as in Example 1, and coated it on a copper wire to coil Was prepared to evaluate the optimum amount of silica sol. Figure 6 shows the silica content (7.5, 10, 12.5) coil.

표 2는 상기 실리카 함량별 유무기 나노융복합 절연바니쉬를 기존 코일 생산시설에서 코팅하여 제조한 코일 특성을 정리한 것이다. 사용도체는 구리 와어어로 직경 0.9mm를 기준으로 하여 절연피막의 두께는 약 0.025mm를 기준으로 제조하였다. 표 2에서 보듯이 본 발명에 따른 유무기 나노융복합 절연바니쉬의 제조방법으로 제작된 코일 제품의 경우 실리카 첨가함량이 20중량부인 절연바니쉬까지 피막두께의 정도와 피막 외관상에 문제는 전혀 발생하지 않음을 확인할 수 있었다.Table 2 summarizes the coil characteristics produced by coating the organic-inorganic nano fusion insulation varnish according to the silica content in an existing coil production facility. The conductor used was made of copper wire based on the diameter of 0.9mm and the thickness of the insulating film was prepared based on about 0.025mm. As shown in Table 2, in the case of the coil product manufactured by the method of manufacturing the organic-inorganic nano fusion insulation varnish according to the present invention, no problem occurs in the degree of film thickness and the appearance of the film up to the insulation varnish having a silica content of 20 parts by weight. Could confirm.

<PAI-실리카 함량별 코일특성>Coil Characteristics by PAI-Silica Content 검사항목Inspection items 단위unit 규격standard 실리카함량(중량)Silica Content (Weight) 00 7.57.5 1010 12.512.5 2020 1. 외관1. Appearance -- 흠 없을 것Flawless OKOK OKOK OKOK OKOK OKOK 2. 완성외관2. Completed appearance mmmm Max. 0.986Max. 0.986 0.9500.950 0.9520.952 0.9510.951 0.9520.952 0.9530.953 3. 도체경3. Conductor diameter mmmm 0.880-0.9200.880-0.920 0.9000.900 0.9000.900 0.9000.900 0.9000.900 0.9000.900 4. 피막두께4. Film thickness mmmm Min. 0.023Min. 0.023 0.02500.0250 0.02550.0255 0.02550.0255 0.02600.0260 0.02500.0250 5. 절연파괴5. Breakdown voltvolt Min. 3,400Min. 3,400 8,6008,600 9,5009,500 9,6779,677 11,00011,000 8,2348,234 6. 피막흠성6. Film scratch -- No CrackNo crack OKOK OKOK OKOK OKOK OKOK 7. 밀착성7. Adhesiveness -- No CrackNo crack OKOK OKOK OKOK OKOK CrackCrack 8. 내마모성8. Wear resistance NN Avg. 7.50Avg. 7.50 15.0015.00 15.2315.23 15.8415.84 17.3317.33 17.1617.16 9.내연화성9.softening resistance 300300 350350 367367 430430 437437 500500 10. peel test10. peel test EAEA Min. 84Min. 84 -- 172172 171171 172172 157157

표 2와 같이 코일에 대해서 KSC 3170 시험법에 따른 내마모특성(Scrape Resistance)을 비교 시험하였으며, 도 7은 그 측정결과를 나타낸 것으로, 도시된 바와 같이 실리카 첨가량이 늘어남에 따라 12.5중량부 조성까지는 내마모 강도가 점차 증가하지만, 20중량부에 이르면 내마모특성이 감소하는 것으로 나타났다. 순수 PAI(폴리아미드이미드) 절연코팅 제품과 비교하여 본 발명의 공정에 따라 실리카를 10~12.5중량부 혼합 처리된 제품의 경우 10%정도의 내마모 강도의 향상을 얻을 수 있었다. 하지만 20중량부로 증가하면 수지와 나노입자간의 결합력과 입자의 분산 등의 문제로 내마모특성의 저하를 초래하는 것으로 나타났다.As shown in Table 2, the wear resistance characteristics (Scrape Resistance) according to the KSC 3170 test method were compared with respect to the coils, and FIG. 7 shows the measurement results. As shown in FIG. The wear resistance gradually increased, but the wear resistance was found to decrease by 20 parts by weight. Compared with the pure PAI (polyamideimide) insulation coating product, it was possible to improve the wear resistance of about 10% in the case of 10 to 12.5 parts by weight of a mixture of silica according to the process of the present invention. However, the increase in the weight to 20 parts by weight caused a decrease in the wear resistance due to problems such as the bonding force between the resin and the nanoparticles and the dispersion of the particles.

그리고, 본 발명의 코일 절연피막의 내열성을 측정하기 위해 KSC 3170의 시험법에 따라 내연화특성(Heat Resistance)을 시험하여 측정결과를 도 8에 나타내었다. 순수 폴리아미드이미드 절연피막의 경우 내연화 온도가 350℃를 나타내지만 실리카의 혼합량이 늘어남에 따라 그 값이 증가하여 10중량부의 경우 430℃, 20중량부의 경우는 500℃까지 상승하는 것으로 나타났다. 이러한 내연화온도의 상승은 전력기기용 절연물의 내열, 내절연 등급이 F종 이상의 열적 내구성이 요구되는 경우에는 큰 장점이 되므로 주목할 필요가 있다.And, in order to measure the heat resistance of the coil insulation film of the present invention by testing the heat resistance according to the test method of KSC 3170, the measurement results are shown in FIG. In the case of the pure polyamide-imide insulating film, the softening temperature was 350 ° C., but the value increased as the amount of silica increased, resulting in an increase of 10 parts by weight to 430 ° C. and 20 parts by weight to 500 ° C. This increase in the softening temperature is of interest because it is a great advantage when the heat resistance of the insulation for the power equipment, the thermal resistance rating of class F or more is required.

본 발명의 절연피막의 내전압특성(Breakdown Voltage)을 KSC 3710 시험법에 따라 측정하여 도 9에 나타내었다. 일반적으로 유기수지에 무기입자를 혼합하는 경우 무기물 표면의 화학적 결점이나 불균일 분산으로 대부분 내전압특성의 저하가 나타난다. 본 발명의 유무기 나노융복합 절연바니쉬는 무기물 표면에서 분자준위 화학적 결합이 이루어지고 무결점 분산이 가능하여 어느 정도 첨가량까지는 절연내력이 상승하고 있다.Breakdown voltage of the insulating film of the present invention was measured in accordance with the KSC 3710 test method is shown in FIG. In general, when the inorganic particles are mixed with the organic resin, most of the withstand voltage characteristics are deteriorated due to chemical defects or heterogeneous dispersion of the inorganic surface. The organic-inorganic nano fusion insulation varnish of the present invention has a molecular level chemical bonding on the surface of the inorganic material and can be dispersed without defects, the insulation strength is increased up to a certain amount.

도 9에서 보듯이 비교 폴리아미드이미드 수지의 내전압은 10kV의 값을 나타내고 있으나 동일한 피막두께에서 실리카의 첨가량이 10중량부인 제품의 경우 그 값이 11kV로 다소 증가한 것으로 측정되었다. 이러한 결과는 물리적인 방법으로 혼합한 나노복합체와는 제품 특성돠는 차별화된 결과이다. 하지만 실리카의 혼합량이 12.5중량부 늘어나면서 그 값이 점차 감소하여 20중량부로 혼합량이 증가하면 10kV이하로 감소하였다. 이는 나노융복합 절연바니쉬에서 조성선택을 통하여 내전압특성의 조절이 가능함을 보여주고 있다.As shown in FIG. 9, the breakdown voltage of the comparative polyamide-imide resin showed a value of 10 kV, but the value increased slightly to 11 kV in the case of 10 parts by weight of silica added at the same coating thickness. These results are different from the nanocomposites mixed by physical methods. However, as the mixing amount of silica increased by 12.5 parts by weight, the value gradually decreased, and when the mixing amount increased to 20 parts by weight, it decreased below 10 kV. This shows that it is possible to control the breakdown voltage characteristics through the composition selection in the nano-fusion insulation varnish.

이와 같이, 본 발명에 따른 절연바니쉬의 저장안정성이나 코팅작업성은 20중량부까지 문제가 없지만 신율, 점착성 등에서 10중량부를 기점으로 다소 감소하는 특성을 보였으며 특별히 내마모성이나 내열성(내연화성)이 요구되는 경우에는 10중량부에서 수%의 추가첨가가 가능한 것으로 평가되었다.
As described above, the storage stability and coating workability of the insulating varnish according to the present invention have no problem up to 20 parts by weight, but showed a characteristic of slightly decreasing from 10 parts by weight in elongation, adhesion, and the like, and particularly wear resistance or heat resistance (softening resistance) are required. In the case, it was estimated that 10% by weight of additional additions were possible.

이와 같이 본 발명은 다양한 크기와 종류의 세라믹 나노입자를 첨가하면서, 반응성실란으로 세라믹입자의 표면을 처리하여 유기용매 및 수지에의 분산성과 저장안정성이 우수하고 수지대비 세라믹 나노입자가 20~30중량부까지 고함량으로 분산되어도 점도증가가 거의 없어 코팅성이 우수하며 나노입자들 크기와 형상의 최적 조합을 통하여 나노융복합 절연바니쉬가 겔화될 때 세라믹 나노입자의 공간적 집적성이 극대화되고 가열건조시 세라믹 나노입자간 또는 세라믹 나노입자와 내열성 수지 간에 화학적으로 결합이 일어나게 되어 탁월한 전기적, 기계적 물성을 갖는 유무기 나노융복합 절연바니쉬를 얻을 수 있게 된다. As described above, the present invention treats the surface of the ceramic particles with reactive silane while adding ceramic nanoparticles of various sizes and types, and is excellent in dispersibility and storage stability in organic solvents and resins, and ceramic nanoparticles are 20 to 30 wt. Even when dispersed to a high content, there is almost no increase in viscosity and coating property is excellent. When the nano fusion insulation varnish gels through the optimum combination of nanoparticle size and shape, the spatial integration of ceramic nanoparticles is maximized, and during drying The chemical bonding between the ceramic nanoparticles or between the ceramic nanoparticles and the heat-resistant resin occurs to obtain an organic-inorganic nano fusion insulating varnish having excellent electrical and mechanical properties.

Claims (9)

수계 또는 알콜계 세라믹졸을 유기실란으로 표면처리하고 유기용매를 첨가하여 물 또는 알콜계 용매를 유기용매로 교체하여 유기용매분산 세라믹졸을 합성하는 제1단계와;
상기 유기용매분산 세라믹졸 100중량부에 대해 상기 유기용매분산 세라믹졸에 포함된 세라믹과 동종 또는 이종의 세라믹을 포함하는 세라믹 나노입자 0.5~30중량부를 첨가하여 반응성실란으로 상기 세라믹 나노입자를 표면개질하면서 분산시켜 유기계 반응성 나노융복합 세라믹졸을 제조하는 제2단계와;
폴리아미드이미드, 폴리에스테르이미드, 폴리아믹에시드 중 어느 하나의 내열성 수지 또는 이들 중 둘 이상의 혼합수지에 상기 반응성 나노융복합 세라믹졸을 혼합하여 유무기 나노융복합 절연바니쉬를 제조하는 제3단계;를 포함하여 이루어지는 것을 특징으로 하는 유무기 나노융복합 절연바니쉬의 제조방법.
A first step of synthesizing an organic solvent-dispersed ceramic sol by surface-treating an aqueous or alcohol-based ceramic sol with an organic silane and adding an organic solvent to replace water or an alcohol-based solvent with an organic solvent;
Surface modification of the ceramic nanoparticles with reactive silanes by adding 0.5-30 parts by weight of ceramic nanoparticles containing the same or different types of ceramics contained in the organic solvent dispersion ceramic sol with respect to 100 parts by weight of the organic solvent dispersion ceramic sol. Dispersing while preparing the organic reactive nano fusion ceramic sol;
A third step of preparing the organic-inorganic nano fusion insulation varnish by mixing the reactive nano fusion ceramic sol with a heat-resistant resin of any one of polyamideimide, polyester imide, and polyamic acid or a mixture resin of two or more thereof; Method for producing an organic-inorganic nano fusion insulation varnish comprising a.
제 1항에 있어서, 상기 제1단계의 수계 또는 알콜계 세라믹졸은,
수계 또는 알콜계 콜로이드상의 실리카 또는 알루미나, 그리고 단분자 전구체로부터 합성된 실리카, 알루미나 및 이들의 혼합체 중에 어느 하나인 것을 특징으로 하는 유무기 나노융복합 절연바니쉬의 제조방법.
The method of claim 1, wherein the water-based or alcohol-based ceramic sol of the first step,
A method for producing an organic-inorganic nano-fusion insulating varnish, characterized in that any one of a silica or alumina of aqueous or alcoholic colloids, and a silica, alumina and a mixture thereof synthesized from a single molecule precursor.
제1항에 있어서, 상기 제1단계의 유기실란은,
메틸트리메톡시실란, 메틸트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, C2~C12까지의 알킬기, C2~C12까지의 플루오르알킬기를 가진 메톡시 실란 및 에톡시 실란 중의 어느 하나 또는 이들을 혼합한 실란인 것을 특징으로 하는 유무기 나노융복합 절연바니쉬의 제조방법.
The method of claim 1, wherein the organosilane of the first step,
Methyltrimethoxysilane, Methyltriethoxysilane, Vinyltrimethoxysilane, Vinyltriethoxysilane, Phenyltrimethoxysilane, Phenyltriethoxysilane, 3-Glycidoxypropyltrimethoxysilane, 3-Gly in sidok during propyl triethoxysilane, C 2 ~ C alkyl group of up to 12, the presence or absence of either or characterized in that a mixture of silane those of the silane and the silane having a fluoroalkyl group of C to 2 ~ C 12 group Method for producing nano fusion insulation varnish.
제 1항에 있어서, 상기 제1단계의 유기용매로는,
NMP, DMF, DMAc, cellusolve류, glycol류 및 ketone류 중의 어느 하나 또는 이들의 혼합용매가 사용되는 것을 특징으로 하는 유무기 나노융복합 절연바니쉬의 제조방법.
The method of claim 1, wherein the organic solvent of the first step,
NMP, DMF, DMAc, cellusolves, glycols and ketones any one or a mixed solvent thereof is used for producing an organic-inorganic nano fusion insulation varnish characterized in that used.
제 1항에 있어서, 상기 제1단계의 유기용매분산 세라믹졸은,
세라믹의 함량이 1~50wt% 범위를 갖는 것을 특징으로 하는 유무기 나노융복합 절연바니쉬의 제조방법.
The method of claim 1, wherein the organic solvent dispersion ceramic sol of the first step,
Method for producing an organic-inorganic nano fusion insulation varnish characterized in that the content of the ceramic has a range of 1 ~ 50wt%.
제 1항에 있어서, 상기 제2단계의 세라믹 나노입자는,
실리카, 알루미나, 산화마그네슘(MgO), 질화붕소(BN), 알루미늄실리케이트를 포함하는 화합물 세라믹 중의 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 유무기 나노융복합 절연바니쉬의 제조방법.
The method of claim 1, wherein the ceramic nanoparticles of the second step,
A method for producing an organic-inorganic nano fusion insulation varnish comprising silica, alumina, magnesium oxide (MgO), boron nitride (BN), and any one or a mixture of compound ceramics including aluminum silicate.
제 1항에 있어서, 상기 제2단계의 반응성실란은,
2가 또는 3가의 알콕시 또는 아세톡시 실란 중에서 반응성기로 아미노기, 에폭시기, 시아노기, 수산기, 티올기 중에 어느 하나를 가진 실란인 것을 특징으로 하는 유무기 나노융복합 절연바니쉬의 제조방법.
The method of claim 1, wherein the reactive silane of the second step,
A divalent or trivalent alkoxy or acetoxy silane is a silane having any one of an amino group, an epoxy group, a cyano group, a hydroxyl group, and a thiol group as a reactive group.
제 1항에 있어서, 상기 제2단계의 세라믹 나노입자는,
구상, 침상 또는 판상이 혼합되어 사용되며, 침상 및 판상의 경우 크기가 50~1000nm인 것을 특징으로 하는 유무기 나노융복합 절연바니쉬의 제조방법.
The method of claim 1, wherein the ceramic nanoparticles of the second step,
A spherical, needle-like or plate-like mixture is used, and in the case of needle-shaped and plate-like, the manufacturing method of the organic-inorganic nano fusion insulation varnish characterized in that the size 50 ~ 1000nm.
삭제delete
KR1020110014383A 2011-02-18 2011-02-18 Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire KR101104390B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110014383A KR101104390B1 (en) 2011-02-18 2011-02-18 Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110014383A KR101104390B1 (en) 2011-02-18 2011-02-18 Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire

Publications (1)

Publication Number Publication Date
KR101104390B1 true KR101104390B1 (en) 2012-01-16

Family

ID=45614063

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110014383A KR101104390B1 (en) 2011-02-18 2011-02-18 Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire

Country Status (1)

Country Link
KR (1) KR101104390B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160146250A (en) * 2015-06-12 2016-12-21 한국전기연구원 Ceramic sol nanohybrid materials using polydimethylsiloxane-polyamideimide copolymers and manufacturing method thereof
KR20170032726A (en) * 2015-09-15 2017-03-23 한국전기연구원 Micro/Nano hybrid materials using a Polydimethylsiloxane-Polyamideimide tri-block copolymer and method of manufacturing the same
KR20170033242A (en) * 2015-09-16 2017-03-24 한국전기연구원 Rectangular coil and a method of manufacturing the multi-layered structure coil coated by the modified PAI insulation varnishes with a high ceramic content
KR20170033974A (en) 2015-09-17 2017-03-28 한국세라믹기술원 Surface-modified crystalline metal oxide and method for preparing the same
DE102016222984A1 (en) 2015-12-15 2017-06-22 Hyundai Motor Company A method of making a composition for a porous, organic-inorganic hybrid material insulating coating
KR101790073B1 (en) * 2016-11-02 2017-10-25 한국세라믹기술원 Surface-modified crystalline metal oxide and hybrid material and method for preparing the same
KR20180071005A (en) * 2016-12-19 2018-06-27 (주)제일에치티에스 Detecting cable for leakage of alcohols
KR20210067644A (en) * 2019-11-29 2021-06-08 피아이첨단소재 주식회사 Polyamic Acid Composition, Method For Preparing The Same and Polyimide Coating Material Comprising The Same
CN116691097A (en) * 2023-07-07 2023-09-05 上海人民塑料印刷厂有限公司 High-barrier aluminum-plastic packaging film and preparation process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100004280A (en) * 2008-07-03 2010-01-13 한국전기연구원 Functional inorganic thick film and thick film manufacturing method using functional surface treatment of inorganic nano-particle sol
KR100945207B1 (en) * 2008-09-08 2010-03-03 한국전기연구원 Manufacturing method of high density winding coil treated with fluorosilane, the coating materials thereby and coil coated the coating material
KR100977411B1 (en) 2008-04-23 2010-08-24 한국전기연구원 Manufacturing Method of Polyamideimide/silica hybrid material for coating electrical wire and the material, electrical wire
KR20100124872A (en) * 2009-05-20 2010-11-30 김정하 Instlating inorganic painting composites with thermal conductivity, its manufacturing method using it and pcb using the same thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977411B1 (en) 2008-04-23 2010-08-24 한국전기연구원 Manufacturing Method of Polyamideimide/silica hybrid material for coating electrical wire and the material, electrical wire
KR20100004280A (en) * 2008-07-03 2010-01-13 한국전기연구원 Functional inorganic thick film and thick film manufacturing method using functional surface treatment of inorganic nano-particle sol
KR100945207B1 (en) * 2008-09-08 2010-03-03 한국전기연구원 Manufacturing method of high density winding coil treated with fluorosilane, the coating materials thereby and coil coated the coating material
KR20100124872A (en) * 2009-05-20 2010-11-30 김정하 Instlating inorganic painting composites with thermal conductivity, its manufacturing method using it and pcb using the same thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704593B1 (en) * 2015-06-12 2017-02-08 한국전기연구원 Ceramic sol nanohybrid materials using polydimethylsiloxane-polyamideimide copolymers and manufacturing method thereof
KR20160146250A (en) * 2015-06-12 2016-12-21 한국전기연구원 Ceramic sol nanohybrid materials using polydimethylsiloxane-polyamideimide copolymers and manufacturing method thereof
KR102265982B1 (en) * 2015-09-15 2021-06-16 한국전기연구원 Micro/Nano hybrid materials using a Polydimethylsiloxane-Polyamideimide tri-block copolymer and method of manufacturing the same
KR20170032726A (en) * 2015-09-15 2017-03-23 한국전기연구원 Micro/Nano hybrid materials using a Polydimethylsiloxane-Polyamideimide tri-block copolymer and method of manufacturing the same
KR20170033242A (en) * 2015-09-16 2017-03-24 한국전기연구원 Rectangular coil and a method of manufacturing the multi-layered structure coil coated by the modified PAI insulation varnishes with a high ceramic content
KR102518139B1 (en) * 2015-09-16 2023-04-05 한국전기연구원 Rectangular coil and a method of manufacturing the multi-layered structure coil coated by the modified PAI insulation varnishes with a high ceramic content
KR20170033974A (en) 2015-09-17 2017-03-28 한국세라믹기술원 Surface-modified crystalline metal oxide and method for preparing the same
DE102016222984B4 (en) 2015-12-15 2022-05-05 Hyundai Motor Company Process for preparing a composition for a porous, insulating coating of an organic-inorganic hybrid material
US9862838B2 (en) 2015-12-15 2018-01-09 Hyundai Motor Company Method for preparing organic-inorganic hybrid porous insulation coating composition
DE102016222984A1 (en) 2015-12-15 2017-06-22 Hyundai Motor Company A method of making a composition for a porous, organic-inorganic hybrid material insulating coating
KR101790073B1 (en) * 2016-11-02 2017-10-25 한국세라믹기술원 Surface-modified crystalline metal oxide and hybrid material and method for preparing the same
KR20180071005A (en) * 2016-12-19 2018-06-27 (주)제일에치티에스 Detecting cable for leakage of alcohols
KR20210067644A (en) * 2019-11-29 2021-06-08 피아이첨단소재 주식회사 Polyamic Acid Composition, Method For Preparing The Same and Polyimide Coating Material Comprising The Same
KR102302789B1 (en) * 2019-11-29 2021-09-16 피아이첨단소재 주식회사 Polyamic Acid Composition, Method For Preparing The Same and Polyimide Coating Material Comprising The Same
CN116691097A (en) * 2023-07-07 2023-09-05 上海人民塑料印刷厂有限公司 High-barrier aluminum-plastic packaging film and preparation process thereof
CN116691097B (en) * 2023-07-07 2024-04-09 上海人民塑料印刷厂有限公司 High-barrier aluminum-plastic packaging film and preparation process thereof

Similar Documents

Publication Publication Date Title
KR101104390B1 (en) Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire
KR102020066B1 (en) Insulating wire having partial discharge resistance and high partial discharge inception voltage
KR100656867B1 (en) Partial-discharge-resistant insulating varnish, insulated wire and method of making the same
KR101501492B1 (en) Nano-modified wire enamels and enamelled wires thereof
CN107993791A (en) Electronic unit and its manufacture method
US20120247806A1 (en) Corona discharge-resistant insulating varnish composition comprising surface-treated silica and insulated wire having insulated layer formed using the same
JP2002206060A (en) Varnish composition, method for manufacturing the composition, coated winding wire and resultant coil
KR100977411B1 (en) Manufacturing Method of Polyamideimide/silica hybrid material for coating electrical wire and the material, electrical wire
KR101391235B1 (en) Inorganic nanofiller, partial discharge resistant enameled wire comprising the same, and preparing method of the enameled wire
TWI795595B (en) Electrodeposition paint and insulating film
KR101807019B1 (en) Process for preparing organic-inorganic hybrid porous insulation coating composition for enameled winding wires
JP4131168B2 (en) Partially discharge resistant insulation paint and insulated wire
KR102262025B1 (en) Surface-modified boron nitride, composition having the same dispersed within, and wire coated with the composition
US20100009185A1 (en) Enameled wire containing a nano-filler
KR101708498B1 (en) Insulated Wire
CN111518468B (en) Polyamide-imide varnish, and preparation method and application thereof
US8927630B2 (en) Inorganic nanofiller, partial discharge resistant enameled wire including the same, and preparing method of the enameled wire
KR101790073B1 (en) Surface-modified crystalline metal oxide and hybrid material and method for preparing the same
WO2020240823A1 (en) Electrically-insulating resin composition and electrical insulator
CN110601409B (en) Coil for motor and motor containing same
TWI553070B (en) Preparation of Thermal Insulation Paint
KR20120111256A (en) Corona discharge-resistant insulating varnish composition comprising surface-treated silica and insulated wire containing insulated layer coated with the same
JP7338643B2 (en) Electrical insulating resin composition and electrical insulator
JP6567796B1 (en) Partial discharge resistant coating, partial discharge resistant insulation coating, electric wire, and rotating electrical machine
CN115820079A (en) Graphene magnetic ring powder coating and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161111

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 9