KR101807019B1 - Process for preparing organic-inorganic hybrid porous insulation coating composition for enameled winding wires - Google Patents

Process for preparing organic-inorganic hybrid porous insulation coating composition for enameled winding wires Download PDF

Info

Publication number
KR101807019B1
KR101807019B1 KR1020150179500A KR20150179500A KR101807019B1 KR 101807019 B1 KR101807019 B1 KR 101807019B1 KR 1020150179500 A KR1020150179500 A KR 1020150179500A KR 20150179500 A KR20150179500 A KR 20150179500A KR 101807019 B1 KR101807019 B1 KR 101807019B1
Authority
KR
South Korea
Prior art keywords
coating
coating film
added
present
treated
Prior art date
Application number
KR1020150179500A
Other languages
Korean (ko)
Other versions
KR20170071306A (en
Inventor
권경춘
Original Assignee
현대자동차 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차 주식회사 filed Critical 현대자동차 주식회사
Priority to KR1020150179500A priority Critical patent/KR101807019B1/en
Priority to JP2016219568A priority patent/JP2017110184A/en
Priority to US15/350,454 priority patent/US9862838B2/en
Priority to DE102016222984.2A priority patent/DE102016222984B4/en
Priority to CN201611055200.2A priority patent/CN106916527B/en
Publication of KR20170071306A publication Critical patent/KR20170071306A/en
Application granted granted Critical
Publication of KR101807019B1 publication Critical patent/KR101807019B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D7/125
    • C09D7/1258
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds

Abstract

본 발명은 모터/알터네이터류 등에 사용하는 권선용 코팅막 제조 및 기술에 관한 것으로, 특히 실란 또는 다이메틸암모늄 클로라이드로 표면처리된 해포석 나노 입자를 폴리아미드이미드 등의 내열성 수지 용액에 첨가하여 고속 분산시켜 유무기 하이브리드 다공성 절연 코팅액을 제조하는 방법을 제공한다. 본 발명에 따르면, 소량의 해포석 나노 입자를 첨가하여도 절연파괴전압을 두배 이상 증가시킬 수 있고 도체와의 밀착력이 우수하여 최종 코팅막의 두께를 얇게 만들 수 있다는 우수한 효과가 있다.TECHNICAL FIELD The present invention relates to a method for manufacturing a coil coating film for use in motors / alternators and the like. More particularly, the present invention relates to a method for manufacturing a winding coating film for motor / A method for manufacturing a hybrid porous insulating coating solution is provided. According to the present invention, it is possible to increase the breakdown voltage by more than twice, even when a small amount of happosite nanoparticles are added, and to have an excellent adhesion with a conductor and to make the thickness of the final coating film thin.

Description

에나멜 권선용 유무기 하이브리드 다공성 절연 코팅액의 제조 방법 {PROCESS FOR PREPARING ORGANIC-INORGANIC HYBRID POROUS INSULATION COATING COMPOSITION FOR ENAMELED WINDING WIRES}TECHNICAL FIELD [0001] The present invention relates to a hybrid porous insulating coating solution for enamel winding, and more particularly, to a method for producing a hybrid organic porous insulating coating solution for enamel winding. BACKGROUND ART < RTI ID = 0.0 >

본 발명은 모터/알터네이터류 등에 사용하는 권선용 코팅막 제조 및 기술에 관한 것으로, 특히 나노 효과를 가지는 유무기 하이브리드 다공성 절연 코팅액의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] The present invention relates to a manufacturing method and a coating film for a coil for use in motors / alternators, and more particularly, to a method for manufacturing a hybrid organic /

에나멜 권선은 구리(Cu) 도체와 폴리머 코팅으로 이루어져 있다. 에나멜 권선 산업에서는 가공을 위해 구리와의 피막 밀착력, 유연성 및 내마모성이 높으면서도 고전류에서도 고절연성을 확보할 수 있는 고내구/고절연 코팅막 재료를 필요로 한다. 또한, 모터/알터네이터의 출력이 높아짐에 따라 고온에서도 손상없이 잘 견딜 수 있는 고내열성도 가져야 한다. 모터/알터네이터가 출력이 높아지고 경량화되는 추세에 따라 다양한 기능을 동시에 가질 수 있는 에나멜 권선 기술이 요구되고 있다. The enamel winding consists of a copper (Cu) conductor and a polymer coating. In the enamel winding industry, a high-durability / high-insulation coating material is required that can ensure high insulation even at high currents while having high film adhesion, flexibility and abrasion resistance to copper for processing. Also, as the output of the motor / alternator increases, it must also have high heat resistance that can withstand high temperatures without damage. As the output of the motor / alternator becomes higher and lighter, enamel winding technology is required to have various functions at the same time.

따라서, 구리 도체와의 밀착력을 위해 1차 코팅층을 내열도가 낮지만 밀착력 및 유연성이 우수한 폴리에스터(polyester) 또는 폴리에스터이미드(polyester-imide)을 먼저 코팅을 하고, 2차 코팅층으로 고절연성 및 내열성이 우수한 폴리아마이드이미드(polyamide-imide)을 코팅한다. 응용분야에서 쓰이는 부품의 요구사항에 따라 추가적으로 3차 코팅을 통해 내마모성 및 내화학성을 높이거나 저마찰 특성을 부여하기도 한다. 주요 특성인 절연파괴전압은 두께가 증가될수록 우수하지만 다층구조로 코팅을 할 수록 코팅막의 두께는 증가되기 때문에 한정된 코일의 슬롯에 감을 수 있는 전선의 양이 줄어들게 된다. 이는 점적률(%)이라 표현되며 점적률이 높을수록 전류의 고밀도화가 가능하여 모터/알터네이터의 소형화 및 고출력화가 구현 가능하다. 모터/알터네이터의 소형화 및 고출력화를 위한 요구성능은 지속적으로 증가하는 반면에 코팅막의 두께가 증가되고 단계별 공정이 복잡화됨에 따라 비용 또한 증가된다는 점이 해결해야 할 문제점이다.Therefore, for the adhesion with the copper conductor, the first coating layer is first coated with a polyester or imide polyester which has a low heat resistance but is excellent in adhesion and flexibility, and the second coating layer is used as a high- It is coated with polyamide-imide which is excellent in heat resistance. Depending on the requirements of the parts used in the application, additional coatings may be used to increase abrasion resistance and chemical resistance or to provide low friction properties. The dielectric breakdown voltage, which is a main characteristic, is better as the thickness is increased. However, since the thickness of the coating film increases as the coating is performed with a multilayer structure, the amount of wires that can be wound around the slot of the limited coil is reduced. This is expressed as a percentage (%). The higher the dot rate, the higher the current density can be realized, and the miniaturization and high output of the motor / alternator can be achieved. The required performance for miniaturization and high output of the motor / alternator is continuously increased while the thickness of the coating film is increased and the cost is also increased due to the complexity of the stepwise process.

특히, 환경차용 구동 모터의 경우 내서지성이 매우 중요한데 이를 해결하기 위해 에나멜 유기물 내에 실리콘 입자를 첨가하여 절연성 및 내서지성을 향상 시키고 있다. 문제는 이러한 유기물 내에 무기물을 첨가하는 것이 무기물의 분산성이 취약해지고 에나멜 피막과 구리 도체간의 밀착성 및 유연성을 저하시켜 권선 가공시에 코팅 피막 깨짐이 발생한다. 이를 해결하기 위해 결국 밀착력 향상을 위한 1차 코팅, 무기물이 포함된 2차 코팅, 3차 코팅까지 필요로 하게 된다. 또한, 절연파괴전압을 높이기 위해 코팅을 두껍게 할 수 밖에 없는 실정이다. Particularly, in the case of a driving motor for environmental vehicles, in order to solve this problem, silicon particles are added to the enamel organic material to improve the insulating property and the anti-seizing property. The problem is that addition of an inorganic material to such an organic material causes a weakening of the dispersibility of the inorganic material and deteriorates the adhesion and flexibility between the enamel coating and the copper conductor, resulting in the coating film cracking during the winding process. In order to solve this problem, it is necessary to have a primary coating for improving adhesion, a secondary coating containing an inorganic substance, and a tertiary coating. Further, in order to increase the dielectric breakdown voltage, it is inevitable to thicken the coating.

이러한 일례로, 대한민국등록특허 제10-1104390호에 기재된 구형, 판상형 등의 실리카를 폴리아마이드이미드(polyamideimide, PAI)에 첨가하여 분산시켜 구리에 코팅한 코팅막의 경우, 실리카 함량이 0 wt%로 들어가지 않은 것 대비하여 실리카 함량을 12.5 wt%로 첨가해야 절연파괴전압이 약 20% 정도 증가하는 것에 그친다. 또한, 코팅막 두께의 경우도 최대 53 ㎛로 매우 두껍다. 코팅막의 두께를 얇게 하면서도 절연파괴전압을 늘릴 수 없었다. 실리카 함량을 늘릴 경우 절연파괴전압이 오히려 감소하는 것을 볼 수 있다. 이는 구형 및 판형 세라믹의 크기가 나노미터 크기라 할지라도 표면적을 늘리는 것에 한계가 있기 때문에 유기물과의 결합력을 확보하기가 어렵기 때문이다. 절연효과를 증대하기 위해 코팅막의 두께를 증가시키거나 실리카 첨가 함량을 늘릴 수록 유기물의 점성 조절이 어렵고 제조 단가의 큰 상승을 가져온다. 실리카 첨가 함량을 늘린다해도 세라믹간 뭉침 현상이 심해지고 유기물 내 결합력이 떨어져서 절연파괴전압의 감소로 이어지는 문제가 있다. For example, in the case of coating films coated with copper by adding spherical or plate-like silica described in Korean Patent No. 10-1104390 to polyamideimide (PAI) dispersed therein, the content of silica is 0 wt% The addition of 12.5 wt% of silica in comparison to the non-existent results in a breakdown voltage increase of about 20%. In addition, the thickness of the coating film is also very thick up to 53 탆. The dielectric breakdown voltage could not be increased while the thickness of the coating film was made thin. It can be seen that the dielectric breakdown voltage is rather reduced when the silica content is increased. This is because even if the sizes of spherical and plate-shaped ceramics are nanometer-sized, it is difficult to secure bonding force with organic materials because there is a limitation in increasing the surface area. As the thickness of the coating film is increased or the amount of silica added is increased to increase the insulating effect, it is difficult to control the viscosity of the organic material and the manufacturing cost is increased. Even if the amount of silica added is increased, there is a problem that the agglomeration of the ceramic is increased and the bonding force in the organic material is lowered, leading to a decrease in the dielectric breakdown voltage.

따라서, 모터 및 알터네이터에 사용하는 에나멜 권선 제조시에 코팅막이 얇으면서도 향상된 절연파괴전압 성능을 확보할 수 있는 코팅재 개발에 대한 연구가 필요하다.Therefore, it is necessary to study the development of a coating material capable of securing an insulation breakdown voltage performance while thinning a coating film in the manufacture of enameled wires used for a motor and an alternator.

본 발명은 모터 및 알터네이터에 사용하는 유기물 코팅액에 표면 처리된 다공성 해포석을 고속 분산 처리하여 에나멜 권선 제조시에 두께가 얇으면서도 높은 절연파괴전압을 갖는 코팅막을 형성시킬 수 있는 유무기 하이브리드 다공성 절연 코팅액의 제조 방법을 제공하고자 한다.The present invention relates to an organic / inorganic composite coating liquid for forming a coating film having a small thickness and a high dielectric breakdown voltage at the time of manufacturing an enamel winding by rapidly dispersing the surface treated porous soapstone in an organic coating liquid used for a motor and an alternator And to provide a manufacturing method thereof.

본 발명은 폴리아미드이미드, 폴리에스테르, 폴리에스테르이미드, 및 폴리아믹에시드로 이루어진 군 중에서 선택된 1종 이상의 내열성 수지를 포함하는 용액에, 실란 또는 다이메틸암모늄 클로라이드로 표면처리된 해포석 나노 입자를 첨가하여 3600 rpm 이상으로 30분 이상 고속 분산시키는 단계를 포함하는 유무기 하이브리드 다공성 절연 코팅액의 제조 방법을 제공한다. The present invention relates to a method for preparing a happosite nanoparticle by adding a happosite nanoparticle surface-treated with silane or dimethylammonium chloride to a solution containing at least one heat resistant resin selected from the group consisting of polyamideimide, polyester, polyesterimide, and polyamic acid At a high speed of not less than 3600 rpm for 30 minutes or longer.

이하, 발명의 구체적인 구현예에 따라 나노 효과를 가지는 유무기 하이브리드 다공성 절연 코팅액의 제조 방법에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리 범위가 한정되는 것은 아니며, 발명의 권리 범위내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다. Hereinafter, a method for manufacturing a hybrid organic / inorganic hybrid coating liquid having nano effect according to a specific embodiment of the present invention will be described in detail. It is to be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유"라 함은 어떤 구성요소(또는 구성 성분)를 별다른 제한없이 포함함을 지칭하며, 다른 구성요소(또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.In addition, throughout this specification, "comprising" or "containing ", unless specifically stated, refers to including any and all components (or components) Can not be interpreted as excluding.

일반적으로 모터에 쓰이는 에나멜 권선에 높은 절연파괴전압과 밀착력을 구현하기 위하여 1차 코팅층을 형성하고 2차로 구형 실리콘과 같은 무기계 입자가 첨가된 코팅층을 형성시킨다. 하지만, 유기물 내에서 무기계 실리콘 입자가 잘 분산되지 않거나 서로 뭉치는 현상으로 인해 입자의 사이즈가 커지게 되고 코팅막 표면으로 노출이 되는 현상이 발생한다. 이에 3차로 코팅을 추가적으로 실시하게 되고 코팅막의 두께는 증가하게 된다. 이를 해결하기 위해 실리콘 구형입자 표면에 실란과 같은 표면처리를 실시하시만 그 효과가 미미하여 유기물과의 호환성이 떨어져서 유기물 내 분산성이 좋지 않고, 구리 도체와의 밀착력 저하 및 절연파괴전압의 저하가 일어나게 된다. 결국 기존 기술로는 두께는 얇으면서도 절연파괴전압을 높일 수 있는 기술에 한계가 있다. Generally, in order to realize high dielectric breakdown voltage and adhesion to enamel windings used in motors, a first coating layer is formed, and a coating layer containing inorganic particles such as spherical silicon is formed secondarily. However, the inorganic silicon particles are not well dispersed in the organic material, or the aggregation of the inorganic particles results in a large particle size and exposure to the surface of the coating film. Therefore, the third coating is additionally performed, and the thickness of the coating film is increased. In order to solve this problem, the surface of silicon spherical particles is subjected to a surface treatment such as silane, but the effect is insignificant so that compatibility with organic materials is poor, so that the dispersibility in organic materials is not good and the adhesion with copper conductor and the breakdown voltage do. As a result, existing technologies have a limitation in the technology that can increase the breakdown voltage while being thin.

본 발명자들은 다공성 구조를 가지는 나노크기의 해포석(Sepiolite)을 표면처리하여 유기물 내에서 분산성이 우수하고 코팅 후 건조시에 유기물과의 결합력을 증가시켜, 코팅두께가 얇으면서도 절연파괴전압을 현저히 향상시킬 수 있는 유무기 하이브리드 다공성 절연 코팅재를 제조 할 수 있는 방법을 알게 되어 본 발명을 완성하였다.DISCLOSURE OF THE INVENTION The present inventors have found that when a nano-sized sepiolite having a porous structure is surface-treated, it has excellent dispersibility in an organic material and increases bonding force with an organic material upon drying after coating, thereby remarkably improving insulation breakdown voltage The present inventors have completed the present invention by knowing how to fabricate an organic / inorganic hybrid porous insulating coating material.

특히, 본 발명에서는 유기물 내에 기존 구형 실리콘 입자가 아닌 다공성 구조를 가지는 해포석(Sepiolite) 입자 표면에 실란(Silane) 혹은 다이메틸암모늄클로라이드(Dimethyl Ammonium Chloride)로 표면 처리한 입자를 첨가하여 고속분산 처리하여 코팅액을 제조할 수 있다. 본 발명에 따른 코팅액을 구리 환선 도체에 코팅하여 밀착력을 필요로 하는 1차 코팅층이 없이도 기존 대비 밀착력이 향상되고 코팅막의 두께도 기존 대비 44%가 얇아지며, 절연파괴전압이 최대 2배 향상된 코팅막을 얻을 수 있다. 특히, 본 발명은 해포석을 표면 처리하고 유기물 내 고분산 처리하여 모터/알터네이터용 권선에 적용한 최초의 발명이며, 코팅막 두께를 줄이면서도 동시에 절연파괴전압을 현저히 향상시킬 수 있는 우수한 효과를 갖는다. Particularly, in the present invention, particles of surface treated with silane or dimethyl ammonium chloride are added to the surface of sepiolite particles having a porous structure instead of the existing spherical silicon particles in the organic material, A coating solution can be prepared. The coating solution according to the present invention is coated on the copper wire conductor to improve the adhesion compared to the conventional coating without the need of a primary coating layer requiring adhesion, the thickness of the coating film is reduced by 44% Can be obtained. Particularly, the present invention is the first invention applied to windings for motors / alternators by surface treatment of kaolinite and highly dispersed in organic matter, and has an excellent effect of remarkably improving insulation breakdown voltage while reducing the thickness of the coating film.

이에 발명의 일 구현예에 따르면, 나노 효과를 가지는 유무기 하이브리드 다공성 절연 코팅액을 제조하는 방법이 제공된다. 본 발명에 따른 유무기 하이브리드 다공성 절연 코팅액의 제조 방법은 폴리아미드이미드, 폴리에스테르, 폴리에스테르이미드, 및 폴리아믹에시드로 이루어진 군 중에서 선택된 1종 이상의 내열성 수지를 포함하는 용액에, 실란 또는 다이메틸암모늄 클로라이드로 표면처리된 해포석 나노 입자를 첨가하여 3600 rpm 이상으로 30분 이상 고속 분산시키는 단계를 포함한다.According to an embodiment of the present invention, there is provided a method of manufacturing a hybrid organic porous insulating coating having a nanofiber effect. The method for producing an organic / inorganic hybrid porous insulating coating solution according to the present invention is a method for preparing a porous organic insulation coating solution by adding silane or dimethylammonium chloride to a solution containing at least one heat resistant resin selected from the group consisting of polyamideimide, polyester, polyesterimide, and polyamic acid Chlorite-treated happosite nanoparticles and dispersing the nanoparticles at a speed of not less than 3600 rpm for 30 minutes or more.

본 발명은 절연바니쉬 및 이를 적용한 에나멜 권선 등에 관한 것으로, 다공성 구조를 가지는 나노 크기의 해포석(Sepiolite)에 실란(Silane) 혹은 다이메틸암모늄클로라이드(Dimethyl Ammonium Chloride)로 표면 처리한 후 건조된 분말을 N-메틸피롤리돈(N-methylpyrrolidone,NMP) 등의 용제에 혼합된 폴리아미드이미드(Polyamideimide, PAI) 혹은 폴리에스터이미드(Polyester, PEI) 혹은 폴리에스터(Polyster, PE) 등의 수지 용액에 첨가하여 고속 분산 처리를 통해 용액 내에 분산 시켜 만든 코팅액의 제조 방법 및 이를 구리와 알루미늄과 같은 금속 와이어에 코팅한 코팅막 제조 기술에 관한 것이다. The present invention relates to an insulating varnish and an enamel winding using the same. The present invention relates to an insulating varnish and a method for manufacturing the same, Is added to a resin solution such as polyamideimide (PAI) or polyester imide (PEI) or polyester (PE) mixed with a solvent such as N-methylpyrrolidone (NMP) To a process for producing a coating solution prepared by dispersing a solution in a solution through a high-speed dispersion treatment, and to a coating film production technique in which the coating solution is coated on metal wires such as copper and aluminum.

본 발명을 통해 만든 코팅막은 두께가 얇으면서도 전기절연성, 도체 밀착성, 내열특성이 우수하여 모터, 알터네이터, 변압기 등의 부품에 적용될 뿐만 아니라 박막 및 고절연 특징을 통해 에나멜 권선의 집적도를 증대시켜 전류밀도의 증가에 따라 부품을 소형화와 동시에 고출력화가 가능하다는 것에 특징을 갖는다. 기존 기술이 두께가 얇아질 수록 절연 파괴전압이 낮아지는 문제점이 있어서 지금까지 코팅막의 두께를 줄이면서도 절연파괴 전압을 높이는 기술의 한계가 있었는데, 본 발명은 이를 해결하는 데 주안점을 둔 기술이다.  The coating film made by the present invention is excellent in electric insulation, conductor adhesion, and heat resistance, and is applied not only to components such as motors, alternators, and transformers, but also increases the integration density of enamel windings through thin film and high- It is possible to miniaturize the component and to achieve high output at the same time. There is a problem in that the insulation breakdown voltage is lowered as the thickness of the existing technology becomes thinner. Hitherto, there has been a limit to the technique of increasing the breakdown voltage while decreasing the thickness of the coating film. The present invention is a technique focused on solving the above problem.

발명의 바람직한 일 구현예에 따르면, 고내열성을 가지는 폴리아미드이미드 수지 등에 표면 처리된 해포석을 고속 분산시켜 만든 코팅액을 구리 도체에 코팅하여 에나멜 권선을 제조할 수 있다. 도 1과 같은 구조를 가지는 에나멜 권선으로, 도체 직경 1 mm를 가지는 구리에 18 내지 22 ㎛ 두께를 가지는 단일층의 코팅막을 제조할 수 있다. 코팅막은 에나멜 폴리머인 폴라아미드이미드 등에 실란 혹은 다이메틸암모늄클로라이드로 표면처리된 해포석으로 구성된다. 이 때 사용되는 해포석은 활석 판형이 적층으로 구성된 마그네슘-실리케이트 결합을 가지는 선형의 그물 구조를 가지며 다공성으로 표면적이 매우 넓다. 이러한 해포석 입자는 비표면적이 230 내지 380 m2/g 가 될 수 있으며, 입자의 크기가 50 내지 500 nm일 수 있다. 표면을 실란 혹은 메틸암모늄클로라이드로 표면 처리 할 경우 유기 수지 내에 분산성이 증가하여 최종 코팅막의 전기절연성, 내마모성, 밀착력, 내열성이 현저히 향상된다. According to a preferred embodiment of the present invention, an enamel winding can be produced by coating a copper coating on a high-heat-resistant polyamide-imide resin or the like, which is prepared by rapidly dispersing kaolinite surface-treated. A single-layer coating film having a thickness of 18 to 22 mu m can be produced on copper having a conductor diameter of 1 mm with an enamel winding having the structure shown in Fig. The coating film is composed of an epoxide polymeric amorphous polymer such as polyamideimide and silicate or hemimanite surface-treated with dimethylammonium chloride. The kaolinite used in this case has a linear net structure having a magnesium-silicate bond composed of a laminate of talc plate type and is porous and has a very wide surface area. Such a sepiolite particle may have a specific surface area of 230 to 380 m 2 / g, and the particle size may be 50 to 500 nm. When the surface is treated with silane or methylammonium chloride, the dispersibility in the organic resin increases, and the electrical insulation, abrasion resistance, adhesion, and heat resistance of the final coating film are remarkably improved.

한편, 상기 에나멜 권선 제조시 코팅막의 바인더 수지가 되는 내열성 수지로는 폴리아미드이미드, 폴리에스테르, 폴리에스테르이미드, 및 폴리아믹에시드 중에서 어느 하나 또는 둘 이상을 혼합하여 사용할 수 있다. 이러한 내열성 수지는 코팅액 제조시에, N-메틸피롤리돈(NMP) 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 셀룰로브(cellusolve)류, 글리콜(glycol)류, 케톤(ketone)류 등의 1종 이상의 유기 용매에, 15 내지 45 wt%의 함량으로 혼합하여 수지 용액 형태로 사용할 수 있다. On the other hand, as the heat-resistant resin to be the binder resin of the coating film in the production of the enameled wire, any one or two or more of polyamideimide, polyester, polyesterimide and polyamic acid may be mixed and used. Such a heat-resistant resin can be used in the production of a coating liquid such as N-methylpyrrolidone (NMP) dimethylformamide (DMF), dimethylacetamide (DMAc), cellulolve, glycol, ketone May be mixed in an amount of 15 to 45 wt% and used in the form of a resin solution.

본 발명에서는 상기 내열성 수지 용액에 다공성 해포석 나노 입자를 고속 분산시키는 것을 특징으로 한다. 특히, 실란이나 다이메틸암모늄클로라이드 표면처리 된 해포석을 유기 용매에 직접 투입할 경우에 고속 교반을 적용한다고 하여도 해포석이 고르게 분산되지 않고 아래로 가라앉는 문제가 발생할 수 있다. 상기 다공성 해포석 나노 입자는 내열성 수지 용액에 고형분의 0.1 wt 내지 5 wt%의 함량으로 첨가한 후에 3600 rpm 이상 또는 3600 rpm 내지 15000 rpm으로 30분 이상 또는 30 분 내지 180 분 동안 고속 분산시켜 사용할 수 있다.In the present invention, the porous heat-treated beverage nanoparticles are rapidly dispersed in the heat resistant resin solution. Particularly, when kaolinite or dimethyl ammonium chloride surface treated kaolinite is directly added to an organic solvent, even if high-speed agitation is applied, there may arise a problem that the kaolinite does not disperse evenly and sinks downward. The porous beeswax nanoparticles may be added to the heat resistant resin solution in an amount of 0.1 wt% to 5 wt% of the solid content and then dispersed at a high rate of 3600 rpm or 3600 rpm to 15000 rpm for 30 minutes or 30 minutes to 180 minutes .

또한, 폴리아미드이미드(PAI) 수지 등에 실란 혹은 다이메틸암모늄클로라이드로 표면처리 된 해포석을 교반하는 방법에 따라 수지와의 혼합성에 차이가 있다. 예컨대, 실란 및 다이메틸암모늄클로라이드로 표면처리된 해포석을 폴리아마이드이미드 용액에 첨가한 후 3600 rpm 미만으로 일반 교반을 수행하거나 볼밀 분산기 사용후에 3600 rpm 미만의 조건으로 교반을 수행하는 합성교반의 경우에는 고르게 분산되지 않은 입자들이 육안으로 육안으로 관찰될 수 있다. 따라서, 실란 및 다이메틸암모늄클로라이드가 표면처리 된 해포석은 저점도의 폴리아미드이미드 등의 수지 용액에 직접 투입하여 High shear를 줄 수 있는 고속교반기에서 교반을 했을 때 용액 내에서 고르게 분산이 잘 되고 장시간 분산성을 유지할 수 있다. In addition, there is a difference in mixing property with a resin according to a method of stirring kaolinite surface-treated with silane or dimethylammonium chloride in a polyamideimide (PAI) resin. For example, in the case of synthetic agitation in which kaolinite and surface treated with dimethyl ammonium chloride are added to the polyamideimide solution and general agitation at less than 3600 rpm or agitation at less than 3600 rpm after use of a ball mill is carried out Unevenly dispersed particles can be observed with naked eyes. Therefore, when the silicate and dimethylammonium chloride surface treated haworth rocks are stirred in a high-speed stirrer, which can give high shear directly to a resin solution such as polyamideimide of low viscosity, it is well dispersed in the solution, The dispersibility can be maintained.

한편, 도 2에 나타낸 바와 같이, 폴리에스터 혹은 폴리에스터이미드 혹은 폴리아미드이미드를 가지고 세라믹 무기물을 첨가하여 제조한 기존 유무기 하이브리드의 경우 제조방법에 있어서 다층 구조를 만들기 위한 제조공정이 복잡하다(도 2의 a 공정). 기존 기술의 경우 무기물과 유기물과의 결합력 및 무기물의 유기물 내 분산성이 부족하여 도체 위에 바로 코팅을 했을 경우 도체와 코팅막간의 밀착력이 떨어진다. 따라서 고밀착 소재로 1차 코팅을 한 다음, 중간층에 무기물이 분산된 2차 코팅을 실시한다. 또한 3차 코팅이 필요한데, 이는 무기물의 분산성이 부족하여 표면 조도가 거칠거나 표면에 생긴 흠을 덮기 위함이다. 각 1차, 2차, 3차 코팅의 경우 1 pass 당 몇 ㎛로 코팅을 하느냐에 따라, 요구하는 특성에 따라 그 횟수가 결정된다. 결론적으로, 본 실리카 및 기타 판상, 구형을 가지는 세라믹을 활용한 제조 방법으로는 코팅막의 두께가 증가하고 또한 공정이 복잡하다. On the other hand, as shown in FIG. 2, in the case of a conventional organic or inorganic hybrid prepared by adding a ceramic inorganic material with polyester or polyester imide or polyamideimide, the manufacturing process for producing a multi-layer structure in the manufacturing method is complicated 2 a process). In the case of the existing technology, the adhesion between the inorganic material and the organic material and the dispersibility of the inorganic material in the organic material are insufficient, so that when the coating is directly applied on the conductor, the adhesion between the conductor and the coating film becomes poor. Therefore, the first coating is performed with the high-adhesion material, and then the second coating is performed with the inorganic material dispersed in the intermediate layer. Also, a tertiary coating is required, because the dispersibility of the inorganic material is insufficient to cover the roughness of the surface or cover the surface. For each primary, secondary, and tertiary coating, the number of coatings is determined according to the required properties depending on the coating thickness of several micrometers per pass. As a result, the manufacturing method using the present silica and other plate-shaped and spherical ceramics increases the thickness of the coating film and complicates the process.

반면에, 본 발명에 따른 코팅액 제조 방법의 경우(도 2의 b 공정) 폴리에스터 혹은 폴리에터이미드 혹은 폴리아미드이미드 용액(예컨대, 30 wt%) 내에 실란 혹은 다이메틸암모늄클로라이드가 표면 처리된 해포석(예컨대, 0.5 wt%)을 직접 넣어 고속 교반기(약 3600 rpm 이상, 30분 이상)를 통해 분산시킨다. 나노 크기의 다공성 구조를 가지는 해포석은 용액 내에서 고르게 분산 되고 코팅 후 건조시에 유기물과의 결합력이 우수하여 표면 조도가 고르고 흠이 없다. 또한, 도체와의 밀착력도 우수하다. 따라서, 고밀착을 목적으로하는 1차 코팅 공정 및 추가적인 3차 코팅 공정이 필요 없므로, 전체 공정 효율을 현저히 향상시킬 수 있다. 이렇게 한번의 코팅으로 외관, 밀착력, 전기절연성, 내열성, 내마모성을 모두 만족하는 코팅막을 제조할 수 있고 이는 코팅막을 얇게 만들 수 있는 큰 장점이자 기존의 에나멜 권선 코팅 기술과의 큰 차이를 갖는 특징이라 할 수 있다. On the other hand, in the case of the method for producing a coating liquid according to the present invention (step b of Fig. 2), a happosite having a surface treated with silane or dimethylammonium chloride in a polyester or polyetherimide or polyamideimide solution (e.g., 30 wt% (For example, 0.5 wt%) is directly added and dispersed through a high-speed stirrer (at least about 3600 rpm, more than 30 minutes). Naeosol with nano-sized porous structure is uniformly dispersed in solution and has good bonding force with organic matter when dried after coating, so that surface roughness is uniform and free from scratches. In addition, adhesion with a conductor is excellent. Therefore, since the primary coating process and the additional tertiary coating process for high adhesion are not necessary, the overall process efficiency can be remarkably improved. It is possible to produce a coating film which satisfies both appearance, adhesion, electrical insulation, heat resistance and abrasion resistance with a single coating. This is a great advantage of making the coating thin and it is a feature that is different from the existing enamel winding coating technology .

또한, 본 발명에서는 다공성 구조를 가지는 나노크기의 해포석(Sepiolite)을 표면처리하여 유기물 내에서 분산성이 우수하고 코팅 후 건조시에 유기물과의 결합력을 증가시킬 수 있다. 특히, 약 0.1 ~ 5 wt% 적은 양의 첨가만으로도 절연파괴전압을 두배 이상 증가시킬 수 있고 도체와의 밀착력이 우수하여 최종 코팅막의 두께를 얇게 만들 수 있다는 가장 큰 장점이 있다. 이처럼 나노 크기의 다공성 세라믹 물질인 해포석 입자를 이용하여 코팅두께가 얇으면서도 절연파괴전압이 현저히 증가시킬 수 있다. In addition, in the present invention, the nano-sized sepiolite having a porous structure is surface-treated to have excellent dispersibility in the organic material, and the binding force with the organic material can be increased upon drying after coating. In particular, it is possible to increase the dielectric breakdown voltage more than twice with only a small amount of addition of about 0.1 to 5 wt%, and it is most advantageous in that the thickness of the final coating film can be made thin because of excellent adhesion with the conductor. Using the nanoparticulate porous ceramic material, kaolinite, the dielectric breakdown voltage can be significantly increased while the coating thickness is small.

본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.In the present invention, matters other than those described above can be added or subtracted as required, and therefore, the present invention is not particularly limited thereto.

본 발명에 따르면, 나노 크기의 다공성 물질인 해포석을 실란 혹은 다이메틸암모늄클로라이드 표면처리를 한 후 폴리아미드이미드 등의 내열성 수지 용액에 첨가함으로써, 구리 혹은 알루미늄과 같은 도체에 코팅시 피막흠성이 우수하고 얇은 두께를 구현하면서도 현저히 향상된 절연파괴전압을 확보할 수 있으며, 전체 코팅 공정이 1단계로 완성될 수 있어 유무기하이브리드 에나멜 권선을 제조하는 전체 공정 단순화할 수 있는 우수한 효과가 있다.According to the present invention, it has been found that when kaolinite, which is a nano-sized porous material, is surface-treated with silane or dimethylammonium chloride and then added to a heat resistant resin solution such as polyamideimide, It is possible to achieve a significantly improved insulation breakdown voltage while realizing a thin thickness, and the entire coating process can be completed in one step, which is an excellent effect of simplifying the whole process of manufacturing an organic / inorganic hybrid enamel winding.

도 1은 나노 다공성 절연체를 포함하는 유/무기 하이브리드 코팅막의 구성을 나타낸 모식도이다.
도 2는 유무기 하이브리드 코팅막 제조 방법을 비교하여 나타낸 공정도이다(a. 기존의 종래기술에 따른 코팅막 제조 방법, b. 본 발명의 코팅막 제조 방법)
도 3은 본 발명의 실시예 4에 따라 제조된 혼합 수지의 외관 및 에나멜 권선을, 기존의 방식으로 PAI를 이용하여 제조된 혼합 수지의 외관 및 에나멜 권선과 비교하여 찍은 사진이다(기존: PAI, 실시예 4: PAI + Sepiolite 0.5 wt%).
1 is a schematic view showing the structure of an organic / inorganic hybrid coating film including a nanoporous insulator.
2 is a process diagram showing a comparison of a method for producing an organic-inorganic hybrid coating film (a) a conventional method of producing a coating film according to the prior art, and b) a method of producing a coating film of the present invention.
FIG. 3 is a photograph of the appearance and the enamel winding of the mixed resin prepared according to Example 4 of the present invention in comparison with the appearance and enameled winding of a mixed resin prepared using PAI in a conventional manner (conventional PAI, Example 4: PAI + Sepiolite 0.5 wt%).

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples.

대조예 1 내지 11Control Examples 1 to 11

하기 표 1에 나타낸 바와 같은 조건 하에서, 폴리아미드이미드(PAI) 수지 등에 실란 혹은 다이메틸암모늄클로라이드로 표면처리 된 해포석을 교반하는 방법에 따라 수지와의 혼합성에 대조 실험을 수행하였다. A test was conducted to check the miscibility with the resin according to the method of agitating the kaolinite surface-treated with silane or dimethylammonium chloride to a polyamideimide (PAI) resin under the conditions shown in Table 1 below.

이때, 고속 교반은 18 m/s이상에서 High shear 를 줄 수 있도록, RPM 4500 이 최대치인 블레이드가 달린 하기의 교속 교반기를 사용하여 수행하였다. At this time, the high-speed agitation was carried out using the following agitation stirrer with a blade having a maximum value of 4500 RPM so as to give a high shear at 18 m / s or higher.

고속 교반기: 1HP HOMOMIXER High speed stirrer: 1HP HOMOMIXER

- Motor: 방폭형 1HP, AC Motor, 1Phase, 220V, 60Hz- Motor: explosion proof 1HP, AC Motor, 1Phase, 220V, 60Hz

- Impeller: Rotor & Stator, SUS316L- Impeller: Rotor & Stator, SUS316L

Clearence 0.2 mm            Clearence 0.2 mm

또한, PAI 100 wt%을 기준으로 NMP 용제 사용의 경우 실란 혹은 다이메틸암모튬 클로라이드 표면처리된 Sepiolite를 를 NMP 용제에 1wt% 중량부로 섞어서 고속 교반 3600rpm 이상, 30분 이상으로 고속 교반 혹은 1000rpm의 일반교반(혼합량은 위와 동일), 볼밀 분산기 사용 후 일반 교반하는 합성 교만을 사용하였다(혼합량은 위와 동일).In case of using NMP solvent based on PAI 100 wt%, Sepiolite treated with silane or dimethylammonium chloride is mixed with 1 wt% of NMP solvent and stirred at a high speed of 3600 rpm or more for 30 minutes or more at a high speed of 1000 rpm (Mixing amount is the same as above), synthetic stirrer which is generally agitated after using a ball mill, and the mixture is the same as above.

NMP를 따로 사용하지 않을 경우 PAI 100 wt% 기준으로 실란 혹은 다이메틸암모튬 클로라이드 표면처리된 Sepiolite를 1 wt% 중량부 가루로 넣어 고속 분산을 수행하였다. When NMP was not used separately, 1 wt% of sepiolite surface-treated with silane or dimethylammonium chloride on the basis of 100 wt% of PAI was added to the powder to perform high-speed dispersion.

수지Suzy 용제solvent 해포석meerschaum 용해력/혼합성Solubility / Mixability 교반방법Stirring method 표면처리종류Surface treatment type 투입량input 대조예 1Control Example 1 PAIPAI -- -- -- 투명Transparency -- 대조예 2Control Example 2 -- NMPNMP 실란(silane)Silane 고형분의 1%1% of solids 층분리Layer separation 고속교반High-speed stirring 대조예 3Control Example 3 -- NMPNMP 다이메틸암모늄클로라이드
(Dimethyl Ammonium Chloride)
Dimethylammonium chloride
(Dimethyl Ammonium Chloride)
고형분의 1%1% of solids 층분리Layer separation 고속교반High-speed stirring
대조예 4Control Example 4 PAIPAI -- 실란(silane)Silane 고형분의 1%1% of solids 투명Transparency 고속교반High-speed stirring 대조예 5Control Example 5 PAIPAI -- 다이메틸암모늄클로라이드
(Dimethyl Ammonium Chloride)
Dimethylammonium chloride
(Dimethyl Ammonium Chloride)
고형분의 1%1% of solids 투명Transparency 고속교반High-speed stirring
대조예 6Control Example 6 PAIPAI -- 실란(silane)Silane 고형분의 1%1% of solids 시드보임Seed show 일반교반General stirring 대조예 7Control Example 7 PAIPAI -- 다이메틸암모늄클로라이드
(Dimethyl Ammonium Chloride)
Dimethylammonium chloride
(Dimethyl Ammonium Chloride)
고형분의 1%1% of solids 시드보임Seed show 일반교반General stirring
대조예 8Control Example 8 PAIPAI -- 실란(silane)Silane 고형분의 1%1% of solids 투명Transparency 합성교반Synthetic stirring 대조예 9Control Example 9 PAIPAI -- 다이메틸암모늄클로라이드
(Dimethyl Ammonium Chloride)
Dimethylammonium chloride
(Dimethyl Ammonium Chloride)
고형분의 1%1% of solids 시드보임Seed show 합성교반Synthetic stirring

상기 표 1에 나타낸 바와 같이, 폴리아미드이미드(PAI) 수지 등에 실란 혹은 다이메틸암모늄클로라이드로 표면처리 된 해포석을 교반하는 방법에 따라 수지와의 혼합성에 차이가 있다. 기존 폴리아미드이미드 수지의 경우 첨가된 물질이 없어 투명한 상태인 반면에, 먼저 실란 및 다이메틸암모늄클로라이드로 표면처리된 해포석을 폴리아마이드이미드 용액에 1 wt% 첨가한 후 약 1000 rpm으로 일반 교반을 한 경우에 고르게 분산되지 않은 입자들이 육안으로 관찰되었다. 또한, 볼밀 분산기 사용후에 약 1000 rpm으로 교반을 수행하는 합성 교반의 경우에도, 실란 표면 처리된 해포석의 경우 입자가 육안으로 관찰되지 않고 층분리도 없지만, 다이메틸암모늄클로라이드 표면처리된 해포석의 경우는 입자가 육안으로 관찰되었다. As shown in Table 1, there is a difference in the mixing property with the resin depending on the method of stirring the kaolinite surface-treated with silane or dimethylammonium chloride in a polyamideimide (PAI) resin. In the case of conventional polyamide-imide resin, there is no added substance and it is transparent. On the other hand, 1 wt% of hemihydrate surface treated with silane and dimethylammonium chloride is added to the polyamideimide solution and then general stirrer is performed at about 1000 rpm In the case of unevenly dispersed particles were observed with the naked eye. Further, even in the case of synthetic agitation in which agitation is performed at about 1000 rpm after using the ball mill, the particles are not visually observed and the layer separation is not observed in the case of the silt surface-treated meglumite, but in the case of the hemihydrate with the dimethyl ammonium chloride surface treatment Particles were observed with the naked eye.

따라서, 본 발명에서와 같이 3600 rpm 이상으로 30분 이상으로 고속교반을 사용함으로써, 실란 및 다이메틸암모늄클로라이드 표면처리된 해포석 모두 폴리아미드이미드 용액 내에서 입자가 고르게 분산이 되는 것을 알 수 있다. Therefore, by using high-speed stirring at 3600 rpm or more for 30 minutes or more as in the present invention, it can be seen that the particles are evenly dispersed in the polyamideimide solution in both silane and dimethylammonium chloride surface treated sepiolite.

실시예 1Example 1

도 2의 b에 나타낸 바와 같은 방식으로, NMP용제에 폴리아미드이미드가 30 wt% 중합된 용액에 실란이 코팅된 해포석(Sepiolite, 세피올라이트)을 고형분의 0.5 wt% 함량으로 첨가하고 3600 rpm 이상으로 30분 이상 고속분산시켜 코팅액을 제조하였다. Sepiolite (sepiolite) coated with silane in a solution in which 30 wt% of polyamideimide was polymerized in an NMP solvent was added in an amount of 0.5 wt% of solid content in a manner as shown in Fig. 2B, At a high speed for 30 minutes or longer to prepare a coating solution.

이렇게 제조한 코팅액으로 실시예로 1 mm의 직경을 가지는 구리 도체에 18 ㎛ 두께로 코팅하여 코팅막이 형성된 에나멜 환동선을 제작하였다.As an example of the coating solution thus prepared, a copper conductor having a diameter of 1 mm was coated to a thickness of 18 탆 to prepare an enamel circular wire having a coating film.

실시예 2 및 3Examples 2 and 3

하기 표 1에 나타낸 바와 같이, 실란이 코팅된 해포석의 투입량을 각각 고형분의 1 wt% 및 2 wt%로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 코팅액을 제조하였다.As shown in the following Table 1, a coating solution was prepared in the same manner as in Example 1, except that the amounts of the silicate-coated meerschaum were added at 1 wt% and 2 wt%, respectively, of the solid content.

이렇게 제조한 코팅액으로 실시예로 1 mm의 직경을 가지는 구리 도체에 18 ㎛ 두께로 코팅하여 코팅막이 형성된 에나멜 환동선을 제작하였다.As an example of the coating solution thus prepared, a copper conductor having a diameter of 1 mm was coated to a thickness of 18 탆 to prepare an enamel circular wire having a coating film.

실시예 4Example 4

도 2의 b에 나타낸 바와 같은 방식으로, NMP용제에 폴리아미드이미드가 30 wt% 중합된 용액에 다이메틸암모늄클로라이드가 코팅된 해포석을 고형분의 0.5 wt% 함량으로 첨가하고 고속분산시켜 코팅액을 제조하였다. In a manner as shown in FIG. 2 (b), kaolinite coated with 30 wt% of polyamideimide in NMP solvent and containing dimethyl ammonium chloride was added in an amount of 0.5 wt% of solid content and dispersed at a high speed to prepare a coating solution .

이렇게 제조한 코팅액으로 실시예로 1 mm의 직경을 가지는 구리 도체에 18 ㎛ 두께로 코팅하여 코팅막이 형성된 에나멜 환동선을 제작하였다.As an example of the coating solution thus prepared, a copper conductor having a diameter of 1 mm was coated to a thickness of 18 탆 to prepare an enamel circular wire having a coating film.

실시예 5 및 6Examples 5 and 6

하기 표 1에 나타낸 바와 같이, 다이메틸암모늄클로라이드가 코팅된 해포석의 투입량을 각각 고형분의 1 wt% 및 2 wt%로 첨가한 것을 제외하고는, 실시예 4와 동일한 방법으로 코팅액을 제조하였다.As shown in the following Table 1, a coating solution was prepared in the same manner as in Example 4, except that the amount of hemihydrate coated with dimethyl ammonium chloride was 1 wt% and 2 wt%, respectively, of the solid content.

이렇게 제조한 코팅액으로 실시예로 1 mm의 직경을 가지는 구리 도체에 18 ㎛ 두께로 코팅하여 코팅막이 형성된 에나멜 환동선을 제작하였다.As an example of the coating solution thus prepared, a copper conductor having a diameter of 1 mm was coated to a thickness of 18 탆 to prepare an enamel circular wire having a coating film.

실험예Experimental Example

실시예 1 내지 6에 따라 제조된 에나멜 환동선에 대하여 다음과 같은 방법으로 밀착력 및 절연 파괴전압을 비교 평가하였다.The adhesion force and the breakdown voltage were compared and evaluated for the enamel circular wire prepared according to Examples 1 to 6 by the following method.

밀착성Adhesiveness

밀착력 테스트는 기존 KS C 3107 피막 흠성 및 밀착력 테스트 조건 보다 더욱 가혹한 조건에서 테스트를 실시하였다. 각각 20%, 25%, 30% 신장한 후 도체 지름의 두배의 직경을 가지는 맨드릴에 10회 감았을 때 생기는 표면의 흠의 수를 각각 시편 3개로 평가하였다. 이러한 가혹 테스트 조건은 무기물 첨가됨에도 불구하고 피막의 유연성 및 밀착성을 보다 확고히 보기 위함이다.Adhesion testing was conducted under more severe conditions than the existing KS C 3107 coating scratch and adhesion test conditions. The number of scratches on the surface of a mandrel having a diameter twice the diameter of the conductor after stretching 20%, 25% and 30%, respectively, was 10 wound on each of the three specimens. This severe test condition is intended to more firmly confirm the flexibility and adhesion of the film even though the inorganic material is added.

절연 파괴전압Dielectric breakdown voltage

KS C 3006 기준을 따라 절연파괴전압 평가를 실시하였다. Insulation breakdown voltage was evaluated according to KS C 3006 standard.

상기 실시예 1 내지 6에 따라 제조된 에나멜 환동선의 구성 및 이에 대한 물성 평가 결과를 하기 표 2에 나타내었다. The compositions of the enamel circulation wires prepared according to Examples 1 to 6 and the evaluation results of physical properties thereof are shown in Table 2 below.

구분division 실시예
1
Example
One
실시예
2
Example
2
실시예
3
Example
3
실시예
4
Example
4
실시예
5
Example
5
실시예
6
Example
6
도체Conductor 구리Copper 구리Copper 구리Copper 구리Copper 구리Copper 구리Copper Base 코팅액Base coating solution PAIPAI PAIPAI PAIPAI PAIPAI PAIPAI PAIPAI 혼합
무기물
mix
Minerals
종류Kinds 실란
표면 처리된 해포석
Silane
Surface treated hemp stone
실란
표면 처리된 해포석
Silane
Surface treated hemp stone
실란
표면 처리된 해포석
Silane
Surface treated hemp stone
다이메틸암모늄클로라이드표면 처리된 해포석Dimethylammonium chloride Surface treated Haemolite 다이메틸아모늄클로라이드표면 처리된 해포석Dimethylammonium chloride Surface treated green algae 다이메틸아모늄클로라이드표면 처리된 해포석Dimethylammonium chloride Surface treated green algae
투입량(%)input(%) 0.50.5 1One 22 0.50.5 1One 22 교반속도(rpm)Stirring speed (rpm) 3600 이상3600 or more 3600 이상3600 or more 3600 이상3600 or more 3600 이상3600 or more 3600 이상3600 or more 3600 이상3600 or more 코팅외관Coating Appearance 선속(14m/min)Line speed (14m / min) 양호Good 양호Good 양호Good 양호Good 양호Good 양호Good 피막두께(한측)(mm)Film Thickness (One side) (mm) 0.0180.018 0.0180.018 0.0180.018 0.0180.018 0.0180.018 0.0180.018 밀착성 TEST (10turn)Adhesion TEST (10turn) 20%,
2D(2mm),
10turn
20%,
2D (2 mm),
10turn
시편 1Psalm 1 1One 33 44 00 00 22
시편 2Psalm 2 1One 22 33 00 1One 1One 시편 3Psalm 3 00 00 44 00 00 00 25%,
2D(2mm),
10turn
25%,
2D (2 mm),
10turn
시편 1Psalm 1 00 33 33 1One 00 00
시편 2Psalm 2 00 1One 44 00 00 44 시편 3Psalm 3 1One 22 44 00 1One 44 30%,
2D(2mm),
10turn
30%
2D (2 mm),
10turn
시편 1Psalm 1 33 55 55 22 1One 55
시편 2Psalm 2 44 22 55 1One 22 44 시편 3Psalm 3 22 77 44 00 44 22 파괴전압(V)Breakdown voltage (V) 시편 1Psalm 1 15001500 35003500 10001000 20002000 15001500 10001000 시편 2Psalm 2 15001500 45004500 500500 30003000 10001000 15001500 시편 3Psalm 3 22502250 40004000 10001000 25002500 10001000 500500 PAI: 폴리아미드이미드
실시예 1~6은 무기물 고속 교반을 적용함
혼합무기물 투입량은 고형분에 포함된 함량 wt%를 나타냄
PAI: polyamideimide
Examples 1 to 6 apply inorganic high-speed agitation.
The amount of mixed inorganic material indicates the content wt% contained in the solid content

상기 표 2에 나타낸 바와 같이, 본 발명에 따라 유기물 코팅액에 표면 처리된 해포석을 고분산 처리하여 제조된 실시예 1 내지 6의 에나멜 환동선은 1차 코팅층이 없이 얇은 두께로도 매우 우수한 밀착력을 나타내며 절연파괴전압 역시도 현저히 향상시킬 수 있음을 알 수 있다. 특히, 본 발명에 따라 다이메틸암모늄클로라이드가 0.5 wt%을 분산시켜 만든 실시예 4의 폴라아미드이미드 에나멜 동선의 경우에, 외관이 깨끗하며 밀착성 테스트에서 신장 20% 및 25%에서 흠이 거의 없었고 신장 30%에서 흠이 최대 2회 관찰 되었다. 절연파괴 전압은 최대 3000 V가 측정되었다. As shown in Table 2, the enamel circulation lines of Examples 1 to 6 prepared by highly dispersing the hempolite surface-treated with the organic coating solution according to the present invention showed very good adhesion even at a thin thickness without the primary coating layer It can be seen that the breakdown voltage can also be significantly improved. Particularly, in the case of the polyamide-imide enamel copper wire of Example 4 in which 0.5 wt% of dimethylammonium chloride was dispersed in accordance with the present invention, the appearance was clean and the adhesion test showed little scratches at 20% and 25% The defect was observed up to 2 times in 30%. The breakdown voltage was measured up to 3000 V.

한편, 도 3에 상기 실시예 4에 따라 제조된 혼합 수지의 외관 및 에나멜 권선을, 기존의 방식으로 PAI를 이용하여 제조된 수지의 외관 및 에나멜 권선과 비교하여 찍은 사진을 나타내었다(기존: PAI, 실시예 4: PAI + Sepiolite 0.5 wt%). 도 3에서 실시예 4에 따른 에나멜 권선의 경우에, 에나멜 권선 표면이 거칠어지고 크랙이 발생하는 문제점 없이 기존의 수지 용액만을 처리한 에나멜 권선들과 동일한 외관 성능의 우수한 광택도, 표면조도 및 피막의 흠성을 나타냄을 알 수 있다. 특히, 실시예 4에 따라 폴리아미드이미드 30 wt% 용액에 다이메틸암모늄클로라이드로 표면처리 된 해포석 0.5 wt%를 첨가하여 고속분산한 후 혼합 수지의 외관을 보면, 기존의 폴리아미드이미드 수지와 같이 투명성을 유지하였고 해포석 입자가 눈에 보이지 않았다. 또한, 이러한 용액을 가지고 코팅을 실시하여 에나멜 권선을 제작할 때도, 기존의 폴리아미드이미드 코팅을 실시한 것과 비교시에도 광택도, 표면 조도 및 피막의 흠성 등 외관상의 평가 조건 모두 동일하게 만족함을 알 수 있다.Meanwhile, FIG. 3 shows photographs of the appearance and enamel winding of the mixed resin prepared according to Example 4, compared with the appearance and enameled winding of a resin made using PAI in a conventional manner (conventional PAI , Example 4: PAI + sepiolite 0.5 wt%). 3, in the case of the enamel winding according to the embodiment 4, the surface of the enamel winding is rough and cracks are generated, and the gloss, surface roughness, It can be seen that it shows an imperfection. Particularly, according to Example 4, when 0.5 wt% of hemihydrate surface-treated with dimethyl ammonium chloride was added to a 30 wt% solution of polyamide-imide at a high speed to disperse the resin, the appearance of the mixed resin showed transparency And happosite grains were not visible. In addition, when the enamel winding is produced by coating with such a solution, it can be seen that the evaluation conditions such as the gloss, the surface roughness and the scratches of the film are all satisfactory in comparison with the conventional polyamideimide coating .

따라서, 본 발명에 따라 유기물 내에 기존 구형 실리콘 입자가 아닌 다공성 구조를 가지는 해포석(Sepiolite) 입자 표면에 실란(Silane) 혹은 다이메틸암모늄클로라이드(Dimethyl Ammonium Chloride)로 표면 처리한 입자를 첨가하여 고분산 처리한 후 코팅액을 사용하여 코팅막을 형성시킨 실시예 1 내지 6의 에나멜 환동선의 경우에 기존 소재 사용하여 만든 통상의 에나멜 환동선 대비하여 밀착성이 우수하고 두께가 44% 수준으로 얇으면서도 동시에 절연파괴전압은 최대 2배가 향상되었음을 알 수 있다.Therefore, according to the present invention, particles of surface treated with silane or dimethyl ammonium chloride are added to the surface of sepiolite particles having a porous structure instead of the existing spherical silicon particles in the organic material, In the case of the enamel circulation lines of Examples 1 to 6 in which a coating film was formed using the coating liquid, the adhesion was excellent compared with the normal enamel circulation line made using the existing material, and the insulation breakdown voltage Is improved by up to 2 times.

Claims (6)

폴리아미드이미드, 폴리에스테르, 폴리에스테르이미드, 및 폴리아믹에시드로 이루어진 군 중에서 선택된 1종 이상의 내열성 수지를 포함하는 용액에, 실란 또는 다이메틸암모늄 클로라이드로 표면처리된 해포석 나노 입자를 첨가하여 3600 rpm 이상으로 30분 이상 고속 분산시키는 단계를 포함하고,
상기 해포석 나노 입자는 고형분의 0.1 내지 2 wt%의 함량으로 첨가하며, 상기 내열성 수지는 고형분의 잔량으로 첨가하는, 에나멜 권선용 유무기 하이브리드 다공성 절연 코팅액의 제조 방법.
A method in which happosite nanoparticles surface-treated with silane or dimethylammonium chloride are added to a solution containing at least one heat resistant resin selected from the group consisting of polyamideimide, polyester, polyesterimide, and polyamic acid, At least 30 minutes,
Wherein said hemihydrate nanoparticles are added in an amount of 0.1 to 2 wt% of solid content, and said heat resistant resin is added in a remaining amount of solid content.
삭제delete 제1항에 있어서,
상기 해포석 나노 입자는 비표면적이 230 내지 380 m2/g인, 에나멜 권선용 유무기 하이브리드 다공성 절연 코팅액의 제조 방법.
The method according to claim 1,
Wherein the hemihydrate nanoparticles have a specific surface area of 230 to 380 m 2 / g.
제1항에 있어서,
상기 해포석 나노 입자는 활석 판형이 적층된 방향의 길이가 50 내지 500 nm인, 에나멜 권선용 유무기 하이브리드 다공성 절연 코팅액의 제조 방법.
The method according to claim 1,
Wherein the NaP nanoparticles have a length of 50 to 500 nm in the direction in which the talc plate-shaped layers are laminated.
제1항에 있어서,
상기 내열성 수지 용액은 내열성 수지를 15 내지 45 wt%의 함량으로 포함하는 것인, 에나멜 권선용 유무기 하이브리드 다공성 절연 코팅액의 제조 방법.
The method according to claim 1,
Wherein the heat resistant resin solution contains a heat resistant resin in an amount of 15 to 45 wt%.
제1항에 있어서,
상기 내열성 수지 용액은 N-메틸피롤리돈(NMP) 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 셀룰로브(cellusolve)류, 글리콜(glycol)류, 및 케톤(ketone)류로 이루어진 군에서 선택된 1종 이상의 유기 용매를 포함하는 것인, 에나멜 권선용 유무기 하이브리드 다공성 절연 코팅액의 제조 방법.
The method according to claim 1,
The heat resistant resin solution is prepared by dissolving the resin in a solvent such as N-methylpyrrolidone (NMP) dimethylformamide (DMF), dimethylacetamide (DMAc), cellusolve, glycol, Wherein the organic solvent comprises at least one selected organic solvent.
KR1020150179500A 2015-12-15 2015-12-15 Process for preparing organic-inorganic hybrid porous insulation coating composition for enameled winding wires KR101807019B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020150179500A KR101807019B1 (en) 2015-12-15 2015-12-15 Process for preparing organic-inorganic hybrid porous insulation coating composition for enameled winding wires
JP2016219568A JP2017110184A (en) 2015-12-15 2016-11-10 Method for producing organic-inorganic hybrid porous insulation coating liquid
US15/350,454 US9862838B2 (en) 2015-12-15 2016-11-14 Method for preparing organic-inorganic hybrid porous insulation coating composition
DE102016222984.2A DE102016222984B4 (en) 2015-12-15 2016-11-22 Process for preparing a composition for a porous, insulating coating of an organic-inorganic hybrid material
CN201611055200.2A CN106916527B (en) 2015-12-15 2016-11-25 Preparation method of organic-inorganic hybrid porous insulating coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150179500A KR101807019B1 (en) 2015-12-15 2015-12-15 Process for preparing organic-inorganic hybrid porous insulation coating composition for enameled winding wires

Publications (2)

Publication Number Publication Date
KR20170071306A KR20170071306A (en) 2017-06-23
KR101807019B1 true KR101807019B1 (en) 2017-12-08

Family

ID=58994680

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150179500A KR101807019B1 (en) 2015-12-15 2015-12-15 Process for preparing organic-inorganic hybrid porous insulation coating composition for enameled winding wires

Country Status (5)

Country Link
US (1) US9862838B2 (en)
JP (1) JP2017110184A (en)
KR (1) KR101807019B1 (en)
CN (1) CN106916527B (en)
DE (1) DE102016222984B4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022536939A (en) * 2019-06-19 2022-08-22 アーケマ・インコーポレイテッド reticulated composite
GB2593886A (en) * 2020-04-03 2021-10-13 Versarien Plc High performance composites and coatings
CN115678226A (en) * 2022-11-04 2023-02-03 谢宜兴 Degradable polylactic acid plastic and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136168A (en) * 2004-11-09 2006-05-25 Sumitomo Electric Ind Ltd Manufacturing method of coil for motor, and the coil for motor
JP2008248042A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Hot-melt adhesive and flat cable using the same
JP2008257925A (en) 2007-04-02 2008-10-23 Furukawa Electric Co Ltd:The Insulation wire
JP2013532764A (en) * 2010-08-03 2013-08-19 フエロ コーポレーション Polymer composite foam

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809737B1 (en) 2000-05-31 2002-07-19 Cit Alcatel NANOCOMPOSITE BASED ON BRIDGE CLAY AND ORGANIC BRIDGE AND CABLE COMPRISING SUCH A NANOCOMPOSITE
ATE325155T1 (en) 2001-03-02 2006-06-15 Southern Clay Prod Inc PRODUCTION OF POLYMER NANOVER COMPOSITE MATERIALS BY DISPERSION DESTABILIZATION
US20060205856A1 (en) 2004-12-22 2006-09-14 Williamson David T Compositions of polyesters and sepiolite-type clays
CN101747630B (en) * 2008-12-01 2012-02-01 中国电力科学研究院 Tracking-proof corrosion-proof room temperature silicon disulfide rubber composition
KR101085858B1 (en) * 2009-08-05 2011-11-22 한국가스공사 combustion device of gas heater
KR100983559B1 (en) * 2010-04-09 2010-09-24 주식회사 유신건축종합건축사사무소 Adiabatic painting material for constructure and method of manufacturing thereof
KR101104390B1 (en) 2011-02-18 2012-01-16 한국전기연구원 Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire
CN102559040A (en) 2011-12-19 2012-07-11 广东精达里亚特种漆包线有限公司 Polyamide-imide insulating varnish and preparation method thereof
CN103725170A (en) 2013-11-25 2014-04-16 铜陵天河特种电磁线有限公司 Unsaturated polyester wire enamel and preparation method thereof
CN104804503B (en) * 2015-04-21 2017-12-19 铜陵精达里亚特种漆包线有限公司 Anti- corona enamel-covered wire and its manufacture method available for new-energy automobile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136168A (en) * 2004-11-09 2006-05-25 Sumitomo Electric Ind Ltd Manufacturing method of coil for motor, and the coil for motor
JP2008248042A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Hot-melt adhesive and flat cable using the same
JP2008257925A (en) 2007-04-02 2008-10-23 Furukawa Electric Co Ltd:The Insulation wire
JP2013532764A (en) * 2010-08-03 2013-08-19 フエロ コーポレーション Polymer composite foam

Also Published As

Publication number Publication date
US20170166758A1 (en) 2017-06-15
US9862838B2 (en) 2018-01-09
CN106916527A (en) 2017-07-04
JP2017110184A (en) 2017-06-22
CN106916527B (en) 2020-08-04
DE102016222984B4 (en) 2022-05-05
KR20170071306A (en) 2017-06-23
DE102016222984A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
CN1255820C (en) Enamel-covered wire
JP4542463B2 (en) Partially discharge-resistant insulating paint, insulated wire, and method for producing the same
KR102020066B1 (en) Insulating wire having partial discharge resistance and high partial discharge inception voltage
KR101104390B1 (en) Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire
JP7420202B2 (en) Insulated conductor and method for manufacturing insulated conductor
KR101807019B1 (en) Process for preparing organic-inorganic hybrid porous insulation coating composition for enameled winding wires
JP2009212034A (en) Varnish for partial discharge resistant enameled wire and partial discharge resistant enameled wire
KR20120111255A (en) Corona discharge resistant insulating varnish composition with reinforced flexibility and adhesion, and insulated wire containing insulated layer coated with the same
JP2008257925A (en) Insulation wire
CN110437714B (en) Self-adhesive varnish and application thereof
JP6567797B1 (en) Laminated body of conductor and insulating film, coil, rotating electric machine, insulating paint, and insulating film
KR102661175B1 (en) Laminates of conductors and insulating films, coils, rotating electrics, insulating paints, and insulating films
US20100009185A1 (en) Enameled wire containing a nano-filler
JP2005239765A (en) Inorganic filler-dispersed insulating paint and insulated wire
CN111518468B (en) Polyamide-imide varnish, and preparation method and application thereof
JP2017095547A (en) Partial discharge resistant coating and insulation wire
CN111690323B (en) Polyimide varnish, preparation method and application thereof
KR20110043330A (en) Nanofiller for enameled wire, nanocomposite including the same, and preparing method of the same
KR20110130179A (en) Insulated wire
JP4966257B2 (en) Enamel wire manufacturing method
CN101512678B (en) Composition for coating electric conductors, and method for the production of such a composition
WO2014091594A1 (en) Layered clay mineral, varnish and organic-inorganic composite material including same, and electrical device, semiconductor device, and rotary machine coil using said organic-inorganic composite material
JP2013151686A (en) Coating material for partial discharge resistant enameled wire and partial discharge resistant enameled wire
CN110601409B (en) Coil for motor and motor containing same
WO2020240823A1 (en) Electrically-insulating resin composition and electrical insulator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant