KR100778094B1 - Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal - Google Patents

Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal Download PDF

Info

Publication number
KR100778094B1
KR100778094B1 KR1020050018722A KR20050018722A KR100778094B1 KR 100778094 B1 KR100778094 B1 KR 100778094B1 KR 1020050018722 A KR1020050018722 A KR 1020050018722A KR 20050018722 A KR20050018722 A KR 20050018722A KR 100778094 B1 KR100778094 B1 KR 100778094B1
Authority
KR
South Korea
Prior art keywords
metal
carbon nanotubes
nanocomposite
powder
precursor
Prior art date
Application number
KR1020050018722A
Other languages
Korean (ko)
Other versions
KR20060098784A (en
Inventor
김경태
차승일
모찬빈
이경호
이강택
정용진
홍순형
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020050018722A priority Critical patent/KR100778094B1/en
Publication of KR20060098784A publication Critical patent/KR20060098784A/en
Application granted granted Critical
Publication of KR100778094B1 publication Critical patent/KR100778094B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination

Abstract

탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법에 관하여 개시한다. 본 발명의 방법은, 탄소나노튜브를 비극성 용매에 투입하고 분산시키는 단계와; 탄소나노튜브가 분산된 용매에 폴리올 환원제와 금속 전구체 분말을 투입하고 가열함으로써 금속 전구체를 금속입자로 환원시켜, 탄소나노튜브가 금속입자 분말 내에서 분산되도록 하는 단계를 포함하는 것을 특징으로 한다. 본 발명에 의하면, 탄소나노튜브를 금속기지 분말내에 균일하게 분산시킬 수 있고 탄소나노튜브와 금속으로 이루어진 나노복합분말의 형태 제어가 가능하며 제조공정의 간소화로 인한 경제성이 보장되어, 고전도성 페이스트 및 FED용 전계방출 팁재료, 수소저장매체로 사용가능하며 고밀도 고성능의 탄소나노튜브/금속 벌크나노복합재료를 제조할 수 있어 고강도 내마모 부품소재, 전자기 부품소재 등 탄소나노튜브 강화 나노복합재료의 응용분야의 확대에도 크게 기여할 수 있다.A method for preparing nanocomposite powder consisting of carbon nanotubes and a metal is disclosed. The method includes the steps of dispersing and dispersing carbon nanotubes in a nonpolar solvent; And reducing the metal precursor to metal particles by injecting and heating a polyol reducing agent and a metal precursor powder into a solvent in which the carbon nanotubes are dispersed, so that the carbon nanotubes are dispersed in the metal particle powder. According to the present invention, the carbon nanotubes can be uniformly dispersed in the metal base powder, the shape control of the nanocomposite powder composed of the carbon nanotubes and the metal can be controlled, and the economical efficiency is ensured due to the simplification of the manufacturing process. It can be used as field emission tip material for FED, hydrogen storage medium, and can manufacture carbon nanotube / metal bulk nanocomposite with high density and high performance, so that application of carbon nanotube-reinforced nanocomposite materials such as high-strength wear-resistant component material and electromagnetic component material It can also contribute greatly to the expansion of the field.

탄소나노튜브, 금속 전구체, 나노복합입자, 폴리올 환원제, 분산 Carbon nanotubes, metal precursors, nanocomposite particles, polyol reducing agents, dispersion

Description

탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법{Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal} Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal}

도 1은 본 발명의 실시예에 따른 탄소나노튜브와 금속으로 이루어진 나노 복합분말 제조방법을 설명하기 위한 순서도;1 is a flow chart illustrating a method for manufacturing nanocomposite powder consisting of carbon nanotubes and a metal according to an embodiment of the present invention;

도 2는 도 1에 따른 제조방법에 의하여 제조된 탄소나노튜브와 Co의 나노복합분말을 나타낸 주사전자현미경 사진 및 개념도;FIG. 2 is a scanning electron micrograph and a conceptual view showing nanocomposite powders of carbon nanotubes and Co prepared by the manufacturing method according to FIG. 1; FIG.

도 3은 도 1에 따른 제조방법에 의하여 제조된 탄소나노튜브와 Cu의 나노복합분말을 나타낸 주사전자현미경 사진 및 개념도이다.FIG. 3 is a scanning electron micrograph and a conceptual diagram showing a nanocomposite powder of carbon nanotubes and Cu prepared by the manufacturing method according to FIG. 1.

본 발명은 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법에 관한 것으로, 특히 미리 분산시킨 탄소나노튜브 콜로이드 용액에 금속 전구체와 폴리올 환원제를 투입하여 탄소나노튜브가 균일하게 혼합된 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법에 관한 것이다.The present invention relates to a method for producing nanocomposite powder consisting of carbon nanotubes and metals, in particular, carbon nanotubes and metals in which carbon nanotubes are uniformly mixed by injecting a metal precursor and a polyol reducing agent into a previously dispersed carbon nanotube colloidal solution. It relates to a nanocomposite powder production method consisting of.

탄소나노튜브는 수십 GPa급의 높은 강도와 1TPa급의 탄성계수를 가지며, 기존의 탄소섬유를 능가하는 우수한 전기전도도와 열전도도를 보이는 등 그 특성이 매우 뛰어나다. 탄소나노튜브와 원료 금속분말의 혼합 및 합성에 관한 연구는 최근 수년간 많이 수행되었다. 특히, 중국의 B. Q. Wei(Carbon 37(1999) 855-858) 그룹과 S. R. Dong(Materials Science and Engineering, A313, 2001) 연구그룹이 탄소나노튜브 강화 알루미늄 및 구리기지 복합재료를 분말 혼합 및 소결공정으로 제조하여 특성 평가를 하였지만, 탄소나노튜브의 응집문제를 해결하지 못함에 따라 소결체의 상대밀도가 85∼95%로 낮았기 때문에 향상된 특성을 얻지 못하였다. 따라서, 기존의 분말상태 혼합공정에 의해서는 탄소나노튜브를 기지재료내에 분산시키는 것이 불가능하고 응집된 탄소나노튜브 내부로 기지재료를 균일하게 혼합시키기도 어려워서 기존 방법으로는 한계에 직면하였다.Carbon nanotubes have high strength of tens of GPa grade and elastic modulus of 1TPa grade, and have excellent characteristics such as excellent electrical conductivity and thermal conductivity that exceed the existing carbon fiber. Many studies have been conducted on the mixing and synthesis of carbon nanotubes and raw metal powders in recent years. In particular, China's BQ Wei (Carbon 37 (1999) 855-858) group and SR Dong (Materials Science and Engineering, A313, 2001) research group used carbon nanotube-reinforced aluminum and copper base composites as powder mixing and sintering processes. Although the manufacturing and evaluation of the characteristics, the relative density of the sintered body was low as 85 ~ 95% as the problem of coagulation of carbon nanotubes were not solved, and thus the improved characteristics were not obtained. Therefore, it is impossible to disperse the carbon nanotubes in the base material by the conventional powder mixing process, and it is difficult to uniformly mix the base material into the aggregated carbon nanotubes.

따라서, 본 발명이 이루고자 하는 과제는 탄소나노튜브를 금속분말 내부에 균일하게 분산시킬 수 있는 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법을 제공하는 데 있다. Accordingly, an object of the present invention is to provide a method for producing nanocomposite powders composed of carbon nanotubes and metals that can uniformly disperse carbon nanotubes inside metal powders.

상기 기술적 과제를 달성하기 위한 본 발명에 따른 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법은: 탄소나노튜브를 비극성 용매에 투입하고 분산 시키는 단계와; 상기 탄소나노튜브가 분산된 용매에 폴리올 환원제와 금속 전구체 분말을 투입하고 가열함으로써 상기 금속 전구체를 금속입자로 환원시켜, 상기 탄소나노튜브가 상기 금속입자 분말 내에서 분산되도록 하는 단계를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method for preparing a nanocomposite powder consisting of carbon nanotubes and a metal, comprising: dispersing and dispersing carbon nanotubes in a nonpolar solvent; And reducing the metal precursor to metal particles by injecting and heating a polyol reducing agent and a metal precursor powder into a solvent in which the carbon nanotubes are dispersed, so that the carbon nanotubes are dispersed in the metal particle powder. It is done.

이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들에 대해 설명한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명의 실시예에 따른 탄소나노튜브와 금속으로 이루어진 나노 복합분말 제조방법을 설명하기 위한 순서도이고, 도 2는 도 1에 따른 제조방법에 의하여 제조된 탄소나노튜브와 Co의 나노복합분말을 나타낸 주사전자현미경 사진 및 개념도이고, 도 3은 도 1에 따른 제조방법에 의하여 제조된 탄소나노튜브와 Cu의 나노복합분말을 나타낸 주사전자현미경 사진 및 개념도이다. 여기서, 도 2의 (a) 및 도 3의 (a)는 주사전자현미경 사진이고, 도 2의 (b) 및 도 3의 (b)는 개념도이다.1 is a flowchart illustrating a method for manufacturing nanocomposite powder consisting of carbon nanotubes and a metal according to an embodiment of the present invention, and FIG. 2 is a nanocomposite of carbon nanotubes and Co prepared by the method according to FIG. 1. Scanning electron microscope photograph and conceptual diagram showing the powder, Figure 3 is a scanning electron microscope photograph and conceptual diagram showing the nanocomposite powder of carbon nanotubes and Cu prepared by the manufacturing method according to FIG. 2 (a) and 3 (a) are scanning electron micrographs, and FIGS. 2 (b) and 3 (b) are conceptual views.

도 1을 참조하면, 먼저 응집된 상태로 존재하는 탄소나노튜브를 계면활성제가 포함되어 있는 비극성 용매에 투입하고 분산시켜 탄소나노튜브 콜로이드 용액을 제조한다. 이 때, 탄소나노튜브로는 열화학기상법, 아크방전법 등으로 제조된 3∼40nm의 지름과 0.5∼4㎛의 길이를 가진 단일벽 또는 다중벽 나노튜브를 사용할 수 있다. 비극성 용매로는 옥틸에테르(octylether), 톨루엔, 디페닐에테르(Diphenylether), 헥산, 디메틸포름알데히드(Dimethylformaldehide), 테트라하이드 로퓨란(Tetrahydrofuran), 1,2디클로로벤젠(1,2-Dichlorobenzene), 아세톤, 에탄올 또는 메탄올 등이 사용될 수 있으며, 특별한 제한은 없다. 계면활성제로는 올레일아민(Oleylamine)과 같은 알킬 아민(alkyl amine, R-NH2)류 또는 올레산(Oeic acid)과 같은 지방산(fatty acid, R-COOH)을 포함하는 화합물이 사용된다. 탄소나노튜브가 분산된 콜로이드 용액을 제조함에 있어서 탄소나노튜브의 분산이 잘 이루어지도록 초음파를 가해준다.Referring to FIG. 1, a carbon nanotube colloidal solution is prepared by first dispersing and dispersing carbon nanotubes in an aggregated state in a nonpolar solvent containing a surfactant. In this case, as the carbon nanotubes, single-walled or multi-walled nanotubes having a diameter of 3 to 40 nm and a length of 0.5 to 4 μm manufactured by thermochemical vapor deposition, arc discharge, or the like may be used. Non-polar solvents include octylether, toluene, diphenylether, hexane, dimethylformaldehide, tetrahydrofuran, 1,2dichlorobenzene, acetone , Ethanol or methanol may be used, and there is no particular limitation. As the surfactant, a compound including an alkyl amine (R-NH 2 ) such as oleylamine or a fatty acid (R-COOH) such as oleic acid is used. In preparing a colloidal solution in which carbon nanotubes are dispersed, ultrasonic waves are applied to facilitate the dispersion of carbon nanotubes.

다음에, 그 콜로이드 용액에 폴리올(polyol) 환원제와 폴리올 환원제에 의하여 환원되는 금속 전구체 분말을 투입하고 불활성 가스 분위기에서 가열함으로써 금속 전구체를 금속입자로 환원시켜, 탄소나노튜브가 금속입자 분말 내에서 분산되도록 한다. 여기서, 폴리올 환원제란 2개 이상의 히드록시기(-OH)를 가진 지방족화합물로 이루어진 환원제로서, 본 실시예에서는 에틸렌글리콜(ethylene) 또는 1,2 헥사데칸디올(1,2-hexadecanediol)을 사용하였지만, 반드시 이에 국한되는 것은 아니다. 금속 전구체로는 전이금속, 귀금속 또는 녹는점이 철보다 높은 고융점금속(refractory metal)을 포함하는 화합물이 이용되고, 특히 Co, Ni, Cu, Ag, Au, Mo, W, Fe, Cd, Ru, Sn 또는 In 등이 사용되어질 수 있다. 금속 전구체 분말의 가열온도 및 가열시간은 그 종류에 따라 각각 다르며, 예를 들어 설명하면 표 1과 같다. Next, a metal precursor powder reduced by a polyol reducing agent and a polyol reducing agent is added to the colloidal solution, and the metal precursor is reduced to metal particles by heating in an inert gas atmosphere, whereby carbon nanotubes are dispersed in the metal particle powder. Be sure to Here, the polyol reducing agent is a reducing agent composed of an aliphatic compound having two or more hydroxyl groups (-OH). In this embodiment, ethylene glycol (ethylene) or 1,2 hexadecanediol (1,2-hexadecanediol) is used. It is not limited to this. As the metal precursor, a compound containing a transition metal, a noble metal or a high melting point metal (refractory metal) having a higher melting point than iron is used, and in particular, Co, Ni, Cu, Ag, Au, Mo, W, Fe, Cd, Ru, Sn or In may be used. The heating temperature and the heating time of the metal precursor powder are different depending on the kind thereof, for example, as shown in Table 1 below.

금속의 종류Type of metal 가열온도Heating temperature 가열시간Heating time Co 전구체Co precursor 150~300℃150 ~ 300 ℃ 10분~2시간10 minutes-2 hours Ni 전구체Ni precursor 300~400℃300 ~ 400 ℃ 1시간~4시간1 hour-4 hours Cu 전구체Cu precursor 150~350℃150 ~ 350 ℃ 30분~2시간30 minutes-2 hours Ag 전구체Ag precursor 150~400℃150 ~ 400 ℃ 30분~2시간30 minutes-2 hours Au 전구체Au precursor 150~350℃150 ~ 350 ℃ 30분~1시간30 minutes-1 hour Mo 전구체Mo precursor 200~500℃200 ~ 500 ℃ 30분~4시간30 minutes-4 hours W 전구체W precursor 150~450℃150 ~ 450 ℃ 30분~4시간30 minutes-4 hours Fe 전구체Fe precursor 150~300℃150 ~ 300 ℃ 10분~2시간10 minutes-2 hours Cd 전구체Cd precursor 100~350℃100 ~ 350 ℃ 1시간~2시간1 hour-2 hours Ru 전구체Ru precursor 200~400℃200 ~ 400 ℃ 1시간~4시간1 hour-4 hours Sn 전구체Sn precursor 100~500℃100 ~ 500 ℃ 10분~4시간10 minutes-4 hours In 전구체In precursor 150~350℃150 ~ 350 ℃ 2시간~3시간2 hours-3 hours

상술한 표 1은 예를 들어 설명한 것으로 본원발명의 권리범위를 한정하는 것은 아니다. 특히, 표 1에서 가열온도는 금속 전구체가 금속입자로 환원되기 시작하는 온도로서 금속 전구체의 양이나 가스 분위기에 따라 변화될 수 있으며, 가열시간은 금속 전구체가 환원되는 온도에서의 유지시간으로서 역시 금속 전구체의 양에 따라 변화될 수 있다.Table 1 described above is an example and does not limit the scope of the present invention. In particular, in Table 1, the heating temperature is a temperature at which the metal precursor begins to be reduced to the metal particles, and may be changed depending on the amount of the metal precursor or the gas atmosphere, and the heating time is also a holding time at the temperature at which the metal precursor is reduced. It can vary depending on the amount of precursor.

한편, 금속 전구체를 환원시키는 단계에서도 탄소나노튜브의 분산 상태가 유지되도록 초음파를 가해주는 것이 바람직하다. 콜로이드 용액을 제조하는 단계에서만 초음파를 가해주거나 또는 콜로이드 용액을 제조하는 단계와 금속 전구체를 환원시키는 단계에서 초음파를 가해주는 것을 불문하고 초음파를 가해주는 시간은 120~180분으로 한다. 이것은 180분 이상 초음파를 가하게 되면 탄소나노튜브가 손상될 수 있기 때문이다.On the other hand, it is preferable to apply ultrasonic waves to maintain the dispersion state of the carbon nanotubes even in the step of reducing the metal precursor. Ultrasonic wave is applied only in the step of preparing the colloidal solution or in the step of preparing the colloidal solution and in the step of reducing the metal precursor, the time of applying the ultrasonic wave is 120 to 180 minutes. This is because carbon nanotubes may be damaged if ultrasonic waves are applied for more than 180 minutes.

그 다음에, 금속입자 분말과 탄소나노튜브가 포함되어 있는 용액을 상온까지 냉각시키면, 탄소나노튜브와 금속입자의 덩어리가 결합된 탄소나노튜브와 금속의 나노복합분말(100)이 제조된다. 이것은 분산된 탄소나노튜브와 결합된 금속입자들이 인력에 의하여 서로 뭉쳐져 나노크기의 입자 덩어리로 됨으로써 탄소나노튜브와 금속입자의 덩어리로 이루어진 나노복합분말(100)이 되는 것이다. Next, when the solution containing the metal particle powder and the carbon nanotubes is cooled to room temperature, the nanocomposite powder 100 of the carbon nanotubes and the metal in which the agglomerates of the carbon nanotubes and the metal particles are combined is manufactured. This is the metal particles combined with the dispersed carbon nanotubes are agglomerated with each other by the attraction force to form a nano-sized particle mass, which is a nanocomposite powder 100 composed of agglomerates of carbon nanotubes and metal particles.

본 발명과 같이 폴리올 환원제를 사용하면 금속입자들의 결합으로 인한 금속입자 덩어리의 생성속도는 느리지만, 도 2 및 도 3에 도시된 바와 같이 금속입자 덩어리의 형태와 크기를 용이하게 제어할 수 있는 장점이 있다. 또한, 폴리올 환원제는 가격이 싸기 때문에 경제성이 보장된다.When the polyol reducing agent is used as in the present invention, the formation rate of the metal particle lump due to the bonding of the metal particles is slow, but as shown in FIGS. 2 and 3, the shape and size of the metal particle lump can be easily controlled. There is this. In addition, polyol reducing agents are economical because of their low price.

이하에서, 금속 전구체로서 Co와 Cu를 사용한 실시예들을 보다 상세히 설명한다. 하지만 이하에서 설명하는 실시예들은 본 발명의 이해를 돕기 위하여 제시되는 것일 뿐 본 발명의 권리범위가 그 실시예들에만 국한되는 것은 아니다.Hereinafter, embodiments using Co and Cu as metal precursors will be described in more detail. However, the embodiments described below are presented to aid the understanding of the present invention, but the scope of the present invention is not limited to the embodiments.

[실시예 1]Example 1

먼저, 탄소나노튜브를 계면활성제가 포함되어 있는 비극성 용매에 투입하고 초음파를 가하면서 분산시켜 탄소나노튜브 콜로이드 용액을 제조한다. 다음에, 그 콜로이드 용액에 Co 전구체와 폴리올 환원제를 투입하였다. 이 때, Co 전구체의 양은 결과물, 즉 탄소나노튜브와 금속으로 이루어진 나노복합분말에서 탄소나노튜브의 부피분율이 10%가 되도록 투입되었다. 이어서, 반응온도를 150~300℃로 제어하고, 반응시간을 10분∼2시간 사이에서 조절하여 탄소나노튜브를 Co입자 분말내에서 균일하게 분산시킨다. 그리고, 금속입자 분말과 탄소나노튜브가 포함되어 있는 용액을 상온까지 냉각시켜 탄소나노튜브와 Co입자의 덩어리가 결합된 도 2와 같은 탄소나노튜브와 Co의 나노복합분말을 제조하였다.First, carbon nanotubes are added to a non-polar solvent containing a surfactant and dispersed while applying ultrasonic waves to prepare a carbon nanotube colloidal solution. Next, a Co precursor and a polyol reducing agent were added to the colloidal solution. At this time, the amount of the Co precursor was added so that the volume fraction of the carbon nanotubes in the nanocomposite powder consisting of carbon nanotubes and metals was 10%. Subsequently, the reaction temperature is controlled at 150 to 300 ° C., and the reaction time is adjusted between 10 minutes and 2 hours to uniformly disperse the carbon nanotubes in the Co particle powder. The solution containing the metal particle powder and the carbon nanotubes was cooled to room temperature to prepare carbon nanotubes and the nanocomposite powder of Co as shown in FIG. 2 in which the agglomerates of the carbon nanotubes and the Co particles were combined.

[실시예 2]Example 2

먼저, 탄소나노튜브를 계면활성제가 포함되어 있는 비극성 용매에 투입하고 초음파를 가하면서 분산시켜 탄소나노튜브 콜로이드 용액을 제조한다. 다음에, 그 콜로이드 용액에 Cu 전구체와 폴리올 환원제를 투입하였다. 이 때에도, Cu 전구체의 양은 탄소나노튜브와 금속으로 이루어진 나노복합분말에서 탄소나노튜브의 부피분율이 10%가 되도록 투입되었다. 이어서, 반응온도를 150~350℃로 제어하고, 반응시간을 30분∼2시간 사이에서 조절하여 탄소나노튜브를 Cu입자 분말내에서 균일하게 분산시킨다. 그리고, 금속입자 분말과 탄소나노튜브가 포함되어 있는 용액을 상온까지 냉각시켜 탄소나노튜브와 Cu입자의 덩어리가 결합된 도 3과 같은 탄소나노튜브와 Cu의 나노복합분말을 제조하였다.First, carbon nanotubes are added to a non-polar solvent containing a surfactant and dispersed while applying ultrasonic waves to prepare a carbon nanotube colloidal solution. Next, Cu precursor and a polyol reducing agent were added to the colloidal solution. At this time, the amount of Cu precursor was added so that the volume fraction of the carbon nanotubes was 10% in the nanocomposite powder composed of the carbon nanotubes and the metal. Subsequently, the reaction temperature is controlled to 150 to 350 ° C., and the reaction time is adjusted between 30 minutes and 2 hours to uniformly disperse the carbon nanotubes in the Cu particle powder. Then, the solution containing the metal particle powder and carbon nanotubes was cooled to room temperature to prepare carbon nanotube and Cu nanocomposite powder as shown in FIG. 3 in which agglomerates of carbon nanotubes and Cu particles were combined.

[실시예 3]Example 3

먼저, 탄소나노튜브를 계면활성제가 포함되어 있는 비극성 용매에 투입하고 초음파를 가하면서 분산시켜 탄소나노튜브 콜로이드 용액을 제조한다. 다음에, 그 콜로이드 용액에 Ni 전구체와 폴리올 환원제를 투입하였다. 이 때에도, Ni 전구체의 양은 탄소나노튜브와 금속으로 이루어진 나노복합분말에서 탄소나노튜브의 부피분율이 10%가 되도록 투입되었다. 이어서, 반응온도를 300~400℃로 제어하고, 반응시간을 1시간~4시간 사이에서 조절하여 탄소나노튜브위에 Ni입자 분말을 균일하게 코팅또는 분산시킨다. 그리고, 금속입자 분말과 탄소나노튜브가 포함되어 있는 용액을 상온까지 냉각시켜 탄소나노튜브와 Ni입자의 덩어리가 결합된 도 4와 같은 탄소나노튜브와 Ni의 나노복합분말을 제조하였다.First, carbon nanotubes are added to a non-polar solvent containing a surfactant and dispersed while applying ultrasonic waves to prepare a carbon nanotube colloidal solution. Next, a Ni precursor and a polyol reducing agent were added to the colloidal solution. At this time, the amount of Ni precursor was added so that the volume fraction of the carbon nanotubes was 10% in the nanocomposite powder composed of the carbon nanotubes and the metal. Subsequently, the reaction temperature is controlled to 300 to 400 ° C., and the reaction time is adjusted between 1 hour and 4 hours to uniformly coat or disperse the Ni particle powder on the carbon nanotubes. Then, the solution containing the metal particle powder and carbon nanotubes was cooled to room temperature to prepare carbon nanotube and Ni nanocomposite powder as shown in FIG. 4 in which agglomerates of carbon nanotubes and Ni particles were combined.

상술한 바와 같이 본 발명에 따른 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법에 의하면, 탄소나노튜브를 금속기지 분말내에 균일하게 분산시킬 수 있고, 탄소나노튜브와 금속으로 이루어진 나노복합분말의 형태 제어가 가능하며, 제조공정의 간소화로 인한 경제성이 보장된다.As described above, according to the method for preparing a nanocomposite powder made of carbon nanotubes and a metal according to the present invention, the carbon nanotubes can be uniformly dispersed in a metal base powder, and the form of the nanocomposite powder made of carbon nanotubes and a metal Controllable and economical due to the simplification of the manufacturing process.

나아가, 본 발명에 의한 나노복합분말은 탄소나노튜브와 금속의 장점을 동시에 나타내어 고전도성 페이스트 및 FED용 전계방출 팁재료, 수소저장매체로 사용가능하다. Furthermore, the nanocomposite powder according to the present invention exhibits the advantages of carbon nanotubes and metals simultaneously, and can be used as a high conductivity paste, a field emission tip material for FED, and a hydrogen storage medium.

더 나아가, 나노복합분말은 벌크화를 통해 고밀도 고성능의 탄소나노튜브/금속 벌크나노복합재료를 제조할 수 있어 고강도 내마모 부품소재, 전자기 부품소재 등 탄소나노튜브 강화 나노복합재료의 응용분야의 확대에도 크게 기여할 수 있다.Furthermore, nanocomposite powder can be used to manufacture high-density, high-performance carbon nanotube / metal bulk nanocomposites through bulking, expanding the application fields of carbon nanotube-reinforced nanocomposites such as high-strength wear-resistant component materials and electromagnetic component materials. Can also contribute significantly.

본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의하여 많은 변형이 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical spirit of the present invention.

Claims (7)

탄소나노튜브를 비극성 용매에 투입하고 분산시키는 단계와;Adding and dispersing carbon nanotubes in a nonpolar solvent; 상기 탄소나노튜브가 분산된 용매에 폴리올 환원제와 금속 전구체 분말을 투입하고 가열함으로써 상기 금속 전구체를 금속입자로 환원시켜, 상기 탄소나노튜브가 상기 금속입자 분말 내에서 분산되도록 하는 단계를 포함하는 것을 특징으로 하는 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법.And reducing the metal precursor to metal particles by injecting and heating a polyol reducing agent and a metal precursor powder into a solvent in which the carbon nanotubes are dispersed, so that the carbon nanotubes are dispersed in the metal particle powder. Nanocomposite powder production method consisting of carbon nanotubes and metal. 제 1항에 있어서, 상기 폴리올 환원제는 에틸렌글리콜(ethylene) 또는 1,2 헥사데칸디올(1,2-hexadecanediol)인 것을 특징으로 하는 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법.The method of claim 1, wherein the polyol reducing agent is ethylene glycol (ethylene) or 1,2 hexadecanediol (1,2-hexadecanediol). 제 1항에 있어서, 상기 비극성 용매는 옥틸에테르(octylether), 톨루엔, 디페닐에테르(Diphenylether), 헥산, 디메틸포름알데히드(Dimethylformaldehide), 테트라하이드로퓨란(Tetrahydrofuran), 1,2디클로로벤젠(1,2-Dichlorobenzene), 아세톤, 에탄올 또는 메탄올인 것을 특징으로 하는 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법.The method of claim 1, wherein the nonpolar solvent is octylether, toluene, diphenylether, hexane, dimethylformaldehyde, tetrahydrofuran, 1,2dichlorobenzene (1,2). -Dichlorobenzene), acetone, ethanol or methanol characterized in that the nanocomposite powder production method consisting of a metal and a carbon nanotube. 제 1항에 있어서, 상기 금속 전구체는 Co, Ni, Cu, Ag, Au, Mo, W, Fe, Cd, Ru, Sn 또는 In을 포함하는 화합물인 것을 특징으로 하는 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법.According to claim 1, wherein the metal precursor is a carbon nanotube and a metal made of a metal, characterized in that the compound containing Co, Ni, Cu, Ag, Au, Mo, W, Fe, Cd, Ru, Sn or In Composite powder production method. 제 1항에 있어서, 상기 비극성 용매에는 계면활성제가 포함되는 것을 특징으로 하는 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법.The method of claim 1, wherein the non-polar solvent comprises a carbon nanotube and a metal composite powder manufacturing method, characterized in that a surfactant is included. 제 5항에 있어서, 상기 계면활성제로는 알킬 아민류 또는 지방산을 포함하는 화합물을 사용하는 것을 특징으로 하는 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법.[Claim 6] The method of claim 5, wherein the surfactant comprises a compound containing alkyl amines or fatty acids. 제 1항에 있어서, 탄소나노튜브를 비극성 용매에서 분산시키는 상기 단계를 진행하는 동안 초음파를 가해주는 것을 특징으로 하는 탄소나노튜브와 금속으로 이루어진 나노복합분말 제조방법.The method of claim 1, wherein ultrasonic waves are applied during the step of dispersing the carbon nanotubes in the nonpolar solvent.
KR1020050018722A 2005-03-07 2005-03-07 Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal KR100778094B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050018722A KR100778094B1 (en) 2005-03-07 2005-03-07 Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050018722A KR100778094B1 (en) 2005-03-07 2005-03-07 Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal

Publications (2)

Publication Number Publication Date
KR20060098784A KR20060098784A (en) 2006-09-19
KR100778094B1 true KR100778094B1 (en) 2007-11-28

Family

ID=37630150

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050018722A KR100778094B1 (en) 2005-03-07 2005-03-07 Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal

Country Status (1)

Country Link
KR (1) KR100778094B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145393A1 (en) 2008-05-28 2009-12-03 Bioneer Corporation Nanocomposites consisting of carbon nanotube and metal and a process for preparing the same
KR101113632B1 (en) 2009-10-29 2012-03-13 서울대학교산학협력단 Synthesis methods of Nano-sized transition metal catalyst on a Carbon support
US9241434B2 (en) 2011-09-28 2016-01-19 Bioneer Corporation NANO composite consisting of carbon nanotubes and metal oxide and method for manufacturing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101036148B1 (en) * 2008-07-30 2011-05-23 한국과학기술원 Method for fabricating carbon nanotube-metal-polymer nanocomposites
KR101027073B1 (en) * 2008-08-25 2011-04-05 한국과학기술원 Carbon Nanotube Reinforced Metal Alloy Nanocomposite and Fabrication Process Thereof
KR101147145B1 (en) * 2009-06-24 2012-05-25 윤진중 Method of forming coating composition and method for manufacturing construction structure finish member using the coating composition
KR20110041647A (en) * 2009-10-16 2011-04-22 (주)바이오니아 Thermal conductive composites consisting of carbon nanostructures and metal
KR101142917B1 (en) * 2010-01-20 2012-05-10 한국기계연구원 Method for fabricating thermoelectric nano composition powder
KR101335520B1 (en) * 2012-02-20 2013-12-02 한국화학연구원 A method for preparing carbon-coated magnetic nano particles and carbon-coated magnetic nano particles by the same
KR20140081149A (en) * 2012-12-21 2014-07-01 한국기계연구원 Manufacturing method of super hard metal containing carbon nanotube, the super hard metal manufactured using the same and cutting tools comprising the super hard metal
KR102142334B1 (en) * 2013-12-27 2020-08-07 주식회사 동진쎄미켐 Method for preparing of carbon-metal composite
CN106367737B (en) * 2016-09-09 2018-12-28 江西铃格有色金属加工有限公司 A kind of method of multi-wall carbon nano-tube pipe surface coating elemental copper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010102598A (en) * 2000-05-01 2001-11-16 김성근 Carbon nanotubes having thiol groups and method for preparing the same
KR20050012556A (en) * 2003-07-25 2005-02-02 한국과학기술원 Metal Nanocomposite Powders Reinforced with Carbon Nanotubes and Their Fabrication Process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010102598A (en) * 2000-05-01 2001-11-16 김성근 Carbon nanotubes having thiol groups and method for preparing the same
KR20050012556A (en) * 2003-07-25 2005-02-02 한국과학기술원 Metal Nanocomposite Powders Reinforced with Carbon Nanotubes and Their Fabrication Process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1020010102598
1020050012556

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145393A1 (en) 2008-05-28 2009-12-03 Bioneer Corporation Nanocomposites consisting of carbon nanotube and metal and a process for preparing the same
US9096925B2 (en) 2008-05-28 2015-08-04 Bioneer Corporation Nanocomposites consisting of carbon nanotube and metal and a process for preparing the same
KR101113632B1 (en) 2009-10-29 2012-03-13 서울대학교산학협력단 Synthesis methods of Nano-sized transition metal catalyst on a Carbon support
US9241434B2 (en) 2011-09-28 2016-01-19 Bioneer Corporation NANO composite consisting of carbon nanotubes and metal oxide and method for manufacturing the same

Also Published As

Publication number Publication date
KR20060098784A (en) 2006-09-19

Similar Documents

Publication Publication Date Title
KR100778094B1 (en) Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal
Azarniya et al. Physicomechanical properties of spark plasma sintered carbon nanotube-reinforced metal matrix nanocomposites
US7217311B2 (en) Method of producing metal nanocomposite powder reinforced with carbon nanotubes and the power prepared thereby
KR101583916B1 (en) Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
WO2006043431A1 (en) Composite metal article and method for preparation thereof
JP2007224359A (en) Metal matrix composite powder, metal matrix composite material and method for producing the same
KR100840742B1 (en) Manufacturing method of carbon nano tube/metal composite powder
CN112030025B (en) W/WC composite grain reinforced tungsten-copper composite material and preparation method thereof
Babu et al. Sintering behaviour of copper/carbon nanotube composites and their characterization
Kang et al. Achieving highly dispersed nanofibres at high loading in carbon nanofibre–metal composites
JP6153076B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
KR20060030591A (en) Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal, the nanocomposite powders by the method, their application as emitter for field emission display
JP2007254886A (en) Composite material
CN113088763A (en) Graphene/aluminum alloy composite material and preparation method thereof
CN112680636A (en) Micro-nano composite configuration aluminum matrix composite material and preparation method thereof
CN109797306A (en) A kind of preparation method of carbon nano tube-copper composite material
JP4898144B2 (en) Alumina composite precursor, method for producing alumina composite, and method for producing sintered alumina composite
KR100428948B1 (en) A production method of tungsten nano powder without impurities and its sintered part
KR101755988B1 (en) Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
CN115533091A (en) 3D printing preparation method of high-density tungsten alloy
Babu et al. Effect of different processing techniques on hardness, electrical and thermal conductivity of Copper/Carbon nanotube composites for industrial applications
JP2743090B2 (en) How to control the carbon content of metal injection products
KR100408647B1 (en) Manufacturing Process of alloyed and composite nano-metal powder of a high degree of purity
KR970001558B1 (en) Method for composite powder
KR101351744B1 (en) Method of fabricating metal base carbon nano composite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121031

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131030

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee