KR100745495B1 - 반도체 제조방법 및 반도체 제조장치 - Google Patents

반도체 제조방법 및 반도체 제조장치 Download PDF

Info

Publication number
KR100745495B1
KR100745495B1 KR1020000010968A KR20000010968A KR100745495B1 KR 100745495 B1 KR100745495 B1 KR 100745495B1 KR 1020000010968 A KR1020000010968 A KR 1020000010968A KR 20000010968 A KR20000010968 A KR 20000010968A KR 100745495 B1 KR100745495 B1 KR 100745495B1
Authority
KR
South Korea
Prior art keywords
film
gas
plasma
forming
silicon
Prior art date
Application number
KR1020000010968A
Other languages
English (en)
Other versions
KR20000076774A (ko
Inventor
사토루 카와카미
시게미 무라카와
미쯔히로 유아사
토시아키 혼고
Original Assignee
동경 엘렉트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP06345599A external-priority patent/JP4119029B2/ja
Priority claimed from JP09783199A external-priority patent/JP4255563B2/ja
Application filed by 동경 엘렉트론 주식회사 filed Critical 동경 엘렉트론 주식회사
Publication of KR20000076774A publication Critical patent/KR20000076774A/ko
Application granted granted Critical
Publication of KR100745495B1 publication Critical patent/KR100745495B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02249Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by combined oxidation and nitridation performed simultaneously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate

Abstract

본 발명은, 반도체 제조방법 및 반도체 제조장치에 관한 것으로, 처리가스 환경하에서 규소를 주성분으로 하는 웨이퍼(W)에 복수의 슬릿을 가지는 평면안테나부재 RLSA(60)를 매개로 마이크로파를 조사함으로써 산소, 또는 질소, 또는 산소와 질소를 포함하는 플라스마를 형성하고, 이 플라스마를 이용하여 상기 웨이퍼(W) 표면에 직접적으로 산화, 질화, 또는 산질화를 실시하여 산화막 상당 환산막두께로 1nm 이하인 절연막(2)을 형성함으로써, 실리콘기판과 SiN막과의 계면에서의 막질제어를 성공적으로 수행할 수 있으며, 또한 단시간 내에 고품질의 SiN막을 형성할 수 있는 반도체 제조방법 및 제조장치를 얻을 수 있는 기술이 제시된다.

Description

반도체 제조방법 및 반도체 제조장치{SEMICONDUCTOR FABRICATION METHOD AND SEMICONDUCTOR FABRICATION EQUIPMENT}
도 1은 본 발명의 반도체 제조방법에 의해 제조되는 반도체장치의 수직단면도이다.
도 2는 본 발명의 반도체 제조방법을 실시하기 위한 반도체 제조장치의 개략도이다.
도 3은 본 발명의 반도체 제조방법에 이용하는 RLSA 플라스마 처리유니트의 수직단면도이다.
도 4는 본 발명의 반도체 제조장치에 이용하는 RLSA의 평면도이다.
도 5는 본 발명의 반도체 제조방법에 이용하는 CVD처리유니트의 모식적 수직단면도이다.
도 6은 본 발명의 방법에 있어서의 게이트절연막 형성공정의 순서도이다.
도 7은 본 발명의 방법에 있어서의 게이트절연막 형성의 상세도이다.
도 8은 각종 성막조건과 그 성막조건에서 얻어지는 게이트절연막의 품질특성을 비교한 도이다.
도 9는 각종 성막방법에 있어서의 성막시간과 막두께와의 관계를 나타낸 도이다.
도 10은 본 발명의 반도체 제조방법에 있어서의 성막시간과 막두께와의 관계를 나타낸 그래프이다.
도 11은 처리시간과 막두께와의 관계를 나타내는 특성도이다.
도 12는 처리시간과 막두께와의 관계를 나타내는 특성도이다.
도 13은 커패시턴스와 게이트전압과의 관계를 나타내는 특성도이다.
도 14는 Xe가스의 량과 전기적 특성과의 관계를 나타내는 특성도이다.
<도면의 주요부분에 대한 부호의 설명>
1 : 실리콘기판 2 : 게이트절연막
3, 50 : 진공용기 11 : 필드산화막
13 : 게이트전극 21 : 제 1 절연막
22 : 제 2 절연막 30 : 반도체 제조장치
31 : 반송실 32 : 플라스마 처리유니트
33 : CVD 처리유니트 34, 35 : 로드록 유니트
37, 38 : 반송아암 41, 42 : 로우더아암
43 : 카세트스테이지 44 : 카세트
45 : 예비냉각 유니트 46 : 냉각유니트
51 : 개구부 52, 87 : 재치대
53 : 배기관 54 : 가스공급실
55 : 진공펌프 56, 61 : 마이크로파 전원부
60 : 레이디얼 라인슬롯 안테나(RLSA) 60a : 슬롯
62 : 축부 63 : 도파로(導波路)
63A : 원형 도파관 63B : 원통형 도파관
63C : 동축 도파변환기 63D : 직사각형 도파관
72 : 가스공급관 82 : 처리실
82a : 개구부 83 : 가스 도입관
83a : 가스출구 84 : 가스공급원
85 : 가스배기관 88 : 샤워헤드
98 : 게이트밸브 W : 웨이퍼
본 발명은, 반도체의 제조방법에 관한 것으로, 더욱 상세하게는 MIS(MOS)형 반도체장치에 있어서의 게이트절연막 형성방법 및 실리콘기판의 표면에 절연막, 예를들어 게이트절연막을 갖춘 반도체장치의 제조방법에 관한 것이다.
최근들어, MIS(MOS)형 반도체디바이스의 미세화가 진전됨에 따라, 4nm정도 이하의 극히 얇은 게이트절연막이 요구되고 있다. 종래, 게이트절연막 재료로는, 850℃∼1000℃ 정도의 고온가열로를 이용하여 실리콘기판의 직접산화에 의해 얻어지는 실리콘산화막(SiO2)이 공업적으로 사용되어 왔다.
그러나, SiO2막을 4nm 이하로 얇게 하면, 이 게이트절연막을 흐르는 누설전 류(게이트 리크전류)가 많아지게 되어, 소비전력의 증대나 디바이스특성 열화의 가속 등과 같은 문제가 발생하게 된다.
또한, 게이트전극 형성시에, 당해 게이트에 포함되는 붕소가 SiO2막을 통과하여 실리콘기판에 달하여 반도체디바이스특성을 열화시키는 문제가 생긴다. 이와 같은 문제점을 해결하는 방법의 하나로서, 게이트절연막 재료로서 질화막(SiN막)이 검토되어 있다.
이 SiN을 CVD법에 의해 형성하게 되면, 실리콘기판과의 계면에 다수의 불완전결합(댕글링본드)이 발생하여 디바이스특성이 열화되어 버린다. 따라서, 당해 SiN막 형성에서는 플라스마를 이용한 실리콘기판을 직접 질화시키는 방법이 유망하다고 생각되어진다. 직접질화를 실시하는 이유는, 계면준위가 적은 고품질의 게이트절연막을 얻기 위함이다.
또한, 플라스마를 이용하는 이유는, 저온에서 SiN막을 형성하기 위함이다. SiN막을 가열에 의해 질화하면, 1000℃ 이상의 고온이 필요하며, 이 열공정에 의해 실리콘기판에 주입된 불순물이 차이확산함으로써 디바이스특성이 열화되어 버린다. 이와 같은 방법은 일본특허공개 소55-134937호 공보와 일본특허공개 소59-4059호 공보 등에 개시되어 있다.
그러나, 플라스마를 이용하여 SiN막을 형성하는 경우, 플라스마 중의 이온이 플라스마시스전위에 의해 가속되어 고 에너지로 실리콘기판에 입사되기 때문에, 이 른바 플라스마 대미지(damage)가 실리콘기판계면 혹은 실리콘기판에 발생하고, 디바이스특성의 열화가 발생한다는 문제가 지적되어 있다.
이 문제에 대하여 전자온도가 낮고 플라스마 대미지가 적은 다수의 슬릿을 가지는 평면안테나를 갖춘 마이크로파 플라스마장치가 보고되어 있다(Ultra Clean technology Vol.10 Supplement 1, p.32, 1998, Published by Ultra Clean Society).
이 플라스마장치를 이용하면, 전자온도는 1eV 정도 이하이며, 플라스마시스전압도 수V 이하로 되기 때문에, 플라스마시스전압이 50V 정도인 종래의 플라스마에 대하여 플라스마 대미지를 대폭적으로 줄일 수 있다.
그러나, 이 플라스마장치를 이용하여 실리콘 질화처리를 실시하는 경우에서도, 직접질화에 의해 SiN막을 형성하는 경우에는, 실리콘기판 계면에만 산소를 편재시킴으로써 결합결함이 적은 양질의 계면을 얻으려면, 실리콘기판과의 계면에서의 막질 제어가 어렵다고 하는 문제가 있다.
또한, 이 플라스마장치를 이용한 경우, 질소원자가 실리콘기판 내에 확산됨으로써 질화가 진전되기 때문에 질화속도가 느리고, 피처리체에 소정의 처리를 실시하는 시간이 길어 단위시간당 피처리체의 처리장수가 적어져서 공업적으로 이용할 수 없다는 문제가 있다. 예를들어, 4nm의 SiN막을 형성하는 경우, 압력이나 마이크로파 파워 등의 플라스마조건을 다양하게 조정하여도 5분 정도 이상이 걸리므로, 양산제조라는 점에서 요구되어지는 쓰루우풋, 예를들어 피처리체 1장당 1분 정도라는 처리시간의 목표값을 크게 밑돌고 있다.
본 발명은 상기 종래의 문제점을 해결하기 위하여 이루어진 것이다. 즉, 본 발명은, 실리콘기판과 SiN막과의 계면에서의 막질제어를 성공적으로 실시할 수 있는 반도체의 제조방법 및 제조장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 단시간에 고품질의 SiN막을 형성할 수 있는 반도체의 제조방법 및 제조장치를 제공하는 것을 목적으로 한다.
상기 목적달성을 위하여, 본 발명의 반도체 제조방법은 처리가스의 환경하에서 규소를 주성분으로 하는 피처리기체(基體)에, 복수의 슬릿을 가지는 평면안테나부재를 매개로 마이크로파를 조사함으로써, 산소 또는 질소 또는 산소와 질소를 포함하는 플라스마를 형성하고, 이 플라스마를 이용하여 상기 피처리기체 표면에 직접적으로 산화, 질화, 또는 산질화를 실시하여 1nm 이하의 막두께(실리콘산화막 환산)의 절연막을 형성하는 것을 특징으로 한다.
본 발명의 반도체 제조방법에서는, 절연막 두께가 1nm 이하이기 때문에 실리콘기판의 질화는 확산이 아니라 플라스마에 의해 생성된 질소원자 또는 산소원자 또는 질소원자와 산소원자가 실리콘기판 표면과 반응하는 공정이 주된 공정으로 되며, 질화속도는 30초 정도의 단시간에 이루어질 수 있다.
이 직접질화 또는 산화 또는 산질화한 박막 절연막상에 CVD법에 의해 나머지 절연막을 형성하는 경우, 3nm/min 이상의 제조속도가 비교적 용이하게 달성될 수 있기 때문에, 전체 4nm의 막두께의 절연막이라도 2분 이내에 형성할 수 있다.
또한, 본 발명의 반도체 제조방법에서는, 직접질화 또는 산화 또는 산질화에 의해 실리콘기판과의 계면에 양질의 절연막을 형성하는 공정과 그 위에 CVD법에 의 해 나머지 절연막을 형성하는 공정을 독립적으로 실시할 수 있기 때문에, 모두 직접질화 또는 CVD법에 의해 절연막을 형성하는 방법에 비해 실리콘기판 계면에서의 막질제어성이 향상되어 보다 양질의 절연막을 형성할 수 있다.
이 반도체 제조방법에 있어서, 상기 처리가스는 예를들어 N2 또는 N2O 또는 NO 또는 NH3를 포함하는 가스를 들 수 있다. 이 처리가스는 아르곤 등의 희가스를 포함하고 있을 수도 있다.
또한, 본 발명의 다른 반도체 제조방법은 처리가스 환경하에서 규소를 주성분으로 하는 피처리기체에 복수의 슬릿을 가지는 평면안테나 부재를 매개로 마이크로파를 조사함으로써 산소, 또는 질소, 또는 산소와 질소를 포함하는 플라스마를 형성하고, 이 플라스마를 이용하여 상기 피처리기체 표면에 직접적으로 산화, 질화, 또는 산질화를 실시하여 제 1 절연막을 형성하는 공정과, 상기 제 1 절연막상에 제 2 절연막을 형성하는 공정을 구비하는 것을 특징으로 한다.
상기 반도체 제조방법에 있어서, 상기 제 2 절연막은 예를들어 질화규소로 이루어지는 절연막을 들 수 있다.
이 제 2 절연막을 형성하는 공정은, CVD법에 의해 이루어질 수도 있고, 플라스마조사에 의해 이루어질 수도 있다.
이 제 2 절연막의 형성은, 예를들어 N2 또는 NH3 및 모노실란 또는 디크롤실란 또는 트리클로실란을 포함하는 플라스마를 공급함으로써 형성하는 방법을 들 수 있다.
본 발명의 반도체 제조방법에 의하면, 처리가스 환경하에서 규소를 주성분으로 하는 피처리기체에 복수의 슬릿을 가지는 평면안테나 부재를 매개로 마이크로파를 조사하는 이른바 RLSA(Radial Line Slot Antenna)안테나를 이용하는 방법으로, 실리콘기판상에 직접 플라스마를 공급하여 SiN 절연막을 형성하기 때문에, 실리콘기판과 그 표면에 형성되는 SiN 절연막과의 계면의 막질제어를 성공적으로 수행할 수 있다.
또한, 본 발명의 다른 반도체 제조방법에 의하면, 이른바 RLSA안테나를 이용한 방법으로 제 1 절연막을 형성한 다음에 제 2 절연막을 모두 저 대미지플라스마조사에 의해 형성하기 때문에 고품질의 SiN막을 형성할 수 있다. 특히 제 2 절연막을 CVD법에 의해 형성하는 경우에는 단시간 동안에 제막이 가능하게 되며, 단시간안에 고품질의 SiN막을 형성할 수 있다.
또한, 실리콘 반도체장치에 있어서, 종래 게이트절연막으로는 실리콘산화막(SiO2막)이 이용되고 있다. 그러나, SiO2막을 현재 이용되고 있는 막두께인 60 옴스트롱 보다도 얇게 하고자 한다면 40 옴스트롱이 한계이며, 이 이상 박막화하게 되면 누설전류가 커지게 되어 소비전력이 커지므로 실용적이지 못하다.
따라서, 40 옴스트롱 정도로 박막화 하여도 누설전류가 커지지 않는 실리콘질화막(SiN막)을 게이트절연막으로 사용하는 것이 검토되고 있다.
예를들어, 일본특허공개 평5-36899호 및 일본특허공개 평9-50996호에는, 열질화에 의한 질화실리콘막과 기상성장법에 의한 질화실리콘막을 적층시켜 이용하는 예가 제안되어 있으며, 일본특허공개 평5-36899호의 예에서는 다결정실리콘을 소정형상으로 패터닝하여 전극을 형성하고, 계속해서 어닐링장치를 이용하여 850℃, 60초의 급속열질화를 실시하여 전극의 표면에 막두께가 수nm 정도인 열질화에 의한 질화실리콘막을 형성하고, 이 질화실리콘막의 표면에 감압기상성장법에 의한 질화실리콘막을 4nm 정도 퇴적시키고 있다.
또한, 일본특허공개 평6-61470호에는, 실리콘산질화막을 이용하는 예가 제안되어 있으며, 이 예에서는 실리콘산화막을 NH3 환경속에서 900∼1000℃로 10분∼1시간 정도 어닐링함으로써 실리콘산질화막을 형성하고 있다.
또한, 일본특허공개 평10-178159호에는, 실리콘산질화막, 실리콘질화막, 실리콘산질화막으로 이루어지는 3층막을 이용하는 예가 제안되어 있다. 이 예에서는, 실리콘산질화막은 감압 CVD장치에서 모노실란과 아산화질소에 의해 약 50Pa, 700∼850℃의 성막조건에서 고온 실리콘산화막을 형성하고, 계속해서 700∼850℃에서 아산화질소를 도입하여 고온 실리콘산화막을 실리콘산질화막으로 변화시키고, 실리콘질화막은 감압 CVD장치에서 디크롤실란, 암모니아에 의해 700∼850℃에서 형성되어 있다.
그러나, 열질화에 의한 질화실리콘막은, 댕글링본드(미결합종)가 많고 전기특성이 나쁘다는 문제가 있다. 또한, 감압기상성장법에 의한 질화실리콘막(실리콘질화막)도 전기특성이 나쁘다는 문제가 있으며, 또한 실리콘산질화막은 형성하는 데에 있어서 시간이 걸린다는 문제가 있다.
따라서, 본 발명자들은 고밀도플라스마를 사용하여 아르곤가스와 질소가스, 수소가스의 혼합가스를 플라스마화하고, 이 플라스마로 실리콘기판 표면을 질화시켜 SiN막을 형성하는 것을 검토하고 있는데, 이 수법은 전기적 특성이 우수한 SiN막을 얻을 수는 있지만 SiN막의 성막속도가 작다고 하는 결점이 있다.
본 발명은 이와 같은 사정 하에서 이루어진 것으로, 그 목적은, 전기적 특성이 우수하며 성막속도가 큰 절연막을 갖춘 반도체장치를 제조하는 방법을 제공하는 데에 있다.
본 발명의 반도체장치의 제조방법은, 희가스와 질소와 수소 또는 희가스와 암모니아를 포함하며, 실리콘을 포함하지 않는 가스로서, 희가스의 함유량이 50% 이상 99% 이하인 가스를 플라스마화하고, 이 플라스마에 의해 실리콘기판의 표면을 질화시켜 제 1 실리콘질화막을 형성하는 공정과, 계속해서 희가스와 질소와 실리콘을 포함하며 희가스의 함유량이 50% 이상 99% 이하인 가스를 플라스마화하고, 이 플라스마에 의해 제 1 실리콘질화막의 표면에 제 1 실리콘질화막 보다도 성막속도가 큰 제 2 실리콘질화막을 형성하는 공정을 포함하는 것을 특징으로 한다. 이 때 플라스마는 300MHz 이상 2500MHz 이하의 고주파전력을 이용하여 발생시키는 것이 바람직하다.
또한, 본 발명의 반도체장치의 제조방법에서는, 실리콘기판의 계면에 형성되는 절연막을 실리콘산화막으로 하고, 이 실리콘산화막을, 희가스와 산소를 포함하며 실리콘을 포함하지 않는 가스로서, 희가스의 함유량이 50% 이상 99% 이하인 가스를 플라스마화하여, 이 플라스마에 의해 실리콘기판의 표면을 산화시켜 형성하도록 할 수도 있으며, 실리콘기판의 표면을 산화시켜 형성할 수도 있다. 또한, 실리콘기판의 계면에 형성되는 절연막을 실리콘산질화막으로 할 수도 있다.
실시예 1
이하에 본 발명의 한 실시예에 대하여 설명하기로 한다.
우선, 본 발명의 반도체 제조방법에 의해 제조되는 반도체장치의 제조의 한 예에 대하여, 절연막으로서 게이트절연막을 갖춘 반도체장치를 예로 들어 도 1에 의해 설명하기로 한다.
도 1A 중 참조번호 1은 실리콘기판, 11은 필드산화막, 2는 게이트절연막이며, 13은 게이트전극이다. 본 발명은 게이트절연막(2)에 특징이 있으며, 이 게이트절연막(2)은 도 1B에 나타낸 바와 같이 실리콘기판(1)과의 계면에 형성된 품질높은 절연막으로 이루어지는 예를들어 1nm 정도의 두께인 제 1 절연막(21)과, 제 1 절연막(21)의 상면에 형성되어 예를들어 3nm 정도의 두께인 제 2 막(22)에 의해 구성되어 있다.
이 예에서는, 품질높은 제 1 막(21)은 처리가스 환경하에서 규소를 주성분으로 하는 피처리기체에 복수의 슬릿을 가지는 평면안테나부재를 매개로 마이크로파를 조사함으로써 산소, 또는 질소, 또는 산소와 질소를 포함하는 플라스마를 형성하고, 이 플라스마를 이용하여 상기 피처리기체 표면에 직접적으로 산화, 질화, 또는 산질화를 실시하여 형성된 제 1 실리콘산질화막(이하, 「SiON막」이라고 한다)으로 이루어진다.
또한, 제 1 막(21) 보다도 성막속도가 큰 제 2 막(22)은 상기 제 1 절연막상에 제 2 절연막을 형성하는 공정에 의해 형성되어 있다.
다음으로, 이와 같은 게이트절연막(2)의 형성방법에 대하여 설명하기로 한다.
도 2는 본 발명의 반도체 제조방법을 실시하기 위한 반도체 제조장치(30)의 전체구성을 나타내는 개략도이다.
도 2에 나타낸 바와 같이 반도체 제조장치(30)의 거의 중앙에는 반송실(31)이 배설되어 있으며, 이 반송실(31)의 주위를 둘러싸듯이 플라스마 처리유니트(32), CVD 처리유니트(33), 2대의 로드록 유니트(34, 35), 가열유니트(36)가 배설되어 있다.
로드록 유니트(34, 35)의 옆에는 예비냉각 유니트(45), 냉각유니트(46)가 각각 배설되어 있다.
반송실(31)의 내부에는 반송아암(37, 38)이 배설되어 있으며, 상기 각 유니트(32∼36)와의 사이에서 웨이퍼(W)를 반송한다.
로드록 유니트(34, 35)의 도에서의 앞측에는 로우더아암(41, 42)이 배설되어 있다. 이들 로우더아암(41, 42)은 또한 그 앞측에 배설된 카세트스테이지(43) 상에 세트된 4대의 카세트(44)와의 사이에서 웨이퍼(W)를 출납한다.
또한, 도 2에서의 CVD 처리유니트(33)는 플라스마 처리유니트(32)와 동형인 플라스마 처리유니트와 교환가능하며, 플라스마 처리유니트를 2대 세트할 수도 있다.
또한, 이들 플라스마 처리유니트(32) 및 CVD 처리유니트(33)는, 모두 싱글챔버형 플라스마/CVD 처리유니트와 교환이 가능하며, 플라스마 처리유니트(32)나 CVD 처리유니트(33)의 위치에 1대 또는 2대의 싱글챔버형 플라스마/CVD 처리유니트를 세트할 수도 있다. 플라스마처리가 2대인 경우, 처리유니트(32)에서 직접 SiON막을 형성한 후, 처리유니트(33)에서 플라스마 SiN막을 CVD하는 방법과, 처리유니트(32, 33)에서 병렬로 직접 SiON막 형성과 SiN CVD막 형성을 수행할 수도 있다. 혹은, 처리유니트(32, 33)에서 병렬로 직접 SiON막 형성을 실시한 후 다른 장치에서 SiN CVD막 형성을 실시할 수도 있다.
도 3은 게이트절연막(2)의 성막에 이용되는 플라스마 처리유니트(32)의 수직단면도이다.
예를 들면 알루미늄에 의해 형성된 진공용기(50)가 배치된다. 이 진공용기(50)의 상면에는 기판 예를들어 웨이퍼(W) 보다도 큰 개구부(51)가 형성되어 있으며, 이 개구부(51)를 덮듯이 예를들어 질화 알루미늄 등의 유전체에 의해 구성된 편평한 원통형상의 가스공급실(54)이 설치되어 있다. 이 가스공급실(54)의 하면에는 다수의 가스공급구멍(도면에 도시되지 않았음)이 형성되어 있으며, 가스공급실(54)에 도입된 가스가 당해 가스공급구멍을 매개로 진공용기(50) 내에 샤워형으로 공급되도록 되어 있다.
가스공급실(54)의 외측에는, 예를들어 동판에 의해 형성된 레이디얼라인슬롯안테나(이하, 「RLSA」라 약기한다.)(60)를 매개로 고주파전원부를 이루며, 예를들어 2.45GHz의 마이크로파를 발생하는 마이크로파 전원부(61)에 접속된 도파로(63)가 설치되어 있다. 이 도파로(63)는 RLSA(60)에 아래 둘레가 접속된 편평한 원형 도파관(63A)과, 이 원형 도파관(63A)의 상면에 일단측이 접속된 원통형 도파관(63B)과, 이 원통형 도파관(63B)의 상면에 접속된 동축 도파변환기(63C)와, 이 동축 도파변환기(63C)의 측면에 직각으로 일단측이 접속되고 타단측이 마이크로파 전원부(61)에 접속된 직사각형 도파관(63D)을 조합시켜 구성되어 있다.
여기서 본 발명에서는 UHF와 마이크로파를 포함하여 고주파영역이라 부르고 있으며, 고주파전원부에서 공급되는 고주파전력은 300MHz 이상의 UHF나 1GHz 이상의 마이크로파를 포함하는 300MHz 이상 2500MHz 이하의 것으로 하고, 이들 고주파전력에 의해 발생되는 플라스마를 고주파플라스마라 부르기로 한다. 상기 원통형 도파관(63B)의 내부에는, 도전성재료로 이루어지는 축부(62)의 일단측이 RLSA(60)의 상면의 거의 중앙에 접속하며, 타단측이 원통형 도파관(63B)의 상면에 접속하도록 동축상으로 설치되어 있으며, 이에 의해 당해 도파관(63B)은 동축도파관으로서 구성되어 있다.
진공용기(50)의 상부측의 측벽에는 예를들어 그 둘레방향을 따라 균등하게 배치한 16곳의 위치에 가스공급관(72)이 설치되어 있으며, 이 가스공급관(72)으로부터 희가스 및 N을 포함하는 가스가 진공용기(50)의 플라스마영역(P) 근방에 골고루 균등하게 공급되어지도록 되어 있다.
또한, 진공용기(50) 내에는, 가스공급실(54)과 대향하도록 웨이퍼(W)의 재치대(52)가 설치되어 있다. 이 재치대(52)에는 도시하지 않은 온도조절부가 내장되어 있어 이로 인해 당해 재치대(52)는 열판으로서 기능하도록 되어 있다. 또한, 진공용기(50)의 바닥부에는 배기관(53)의 일단측이 접속되어 있으며, 이 배기관(53)의 타단측은 진공펌프(55)에 접속되어 있다.
도 4는 본 발명의 반도체 제조장치에 이용되는 RLSA(60)의 평면도이다.
도 4에 나타낸 바와 같이, 이 RLSA(60)에서는 표면에 복수의 슬롯(60a, 60a, …)이 동심원상으로 형성되어 있다. 각 슬롯(60a)은 거의 사각형의 관통된 홈으로, 인접하는 슬롯끼리 서로 직교하고 있어 거의 알파벳의 「T」자형으로 형성되도록 배설되어 있다. 슬롯(60a)의 길이나 배열간격은, 마이크로파 전원부(61)로부터 발생한 마이크로파의 파장에 따라 결정되어 있다. 도 5는 본 발명의 반도체 제조장치에 이용되는 CVD 처리유니트(33)를 모식적으로 나타낸 수직단면도이다.
도 5에 나타낸 바와 같이, CVD 처리유니트(33)의 처리실(82)은 예를들어 알루미늄 등에 의해 기밀가능한 구조로 형성되어 있다. 도 5에서는 생략하였지만, 처리실(82) 내에는 가열기구나 냉각기구를 갖추고 있다.
처리실(82)에는 상부중앙에 가스를 도입하는 가스도입관(83)이 접속되며, 처리실(82) 내와 가스도입관(83) 내가 연통되어 있다. 또한, 가스도입관(83)은 가스공급원(84)에 접속되어 있다. 그리고, 가스공급원(84)으로부터 가스도입관(83)에 가스가 공급되고, 가스도입관(83)을 매개로 처리실(82) 내에 가스가 도입되고 있다. 이 가스에는 박막형성의 원료가 되는 각종 가스가 이용되며, 필요한 경우에는 불활성가스가 캐리어가스로서 이용되고 있다.
처리실(82)의 하부에는 처리실(82) 내의 가스를 배기하는 가스배기관(85)이 접속되며, 가스배기관(85)은 진공펌프 등으로 이루어지는 도시하지 않은 배기수단에 접속되어 있다. 그리고, 이 배기수단에 의해 처리실(82) 내의 가스가 가스배기관(85)으로부터 배기되어 처리실(82) 내가 원하는 압력으로 설정되어 있다.
또한, 처리실(82)의 하부에는 웨이퍼(W)를 재치하는 재치대(87)가 배치되어 있다.
본 실시예에서는 웨이퍼(W)와 거의 동일한 지름크기인 도시하지 않은 정전척에 의해 웨이퍼(W)가 재치대(87) 상에 재치되어 있다. 이 재치대(87)에는 도시하지 않은 열원수단이 내설되어 있어, 재치대(87) 상에 재치된 웨이퍼(W)의 처리면을 원하는 온도로 조정할 수 있는 구조로 형성되어 있다.
이 재치대(87)의 크기는, 300mm의 큰지름의 웨이퍼(W)를 재치할 수 있는 크기로 되어 있으며, 필요에 따라 재치한 웨이퍼(W)를 회전시킬 수 있는 기구로 되어 있다.
이와 같이 대형 재치대(87)를 내장함으로써, 300mm의 큰지름 웨이퍼(W)를 처리할 수 있으며, 높은 성공율과, 그 결과로 인한 저렴한 제조비용을 실현할 수 있다.
도 5에서, 재치대(87)의 우측의 처리실(82) 벽면에는 웨이퍼(W)를 출납하기 위한 개구부(82a)가 설치되어 있으며, 이 개구부(82a)의 개폐는 게이트밸브(98)를 도의 상하방향으로 이동시킴으로써 이루어진다. 도 5에서, 게이트밸브(98)의 더욱 우측으로는 웨이퍼(W)를 반송하는 반송아암(도시생략)이 인접배치되어 있으며, 반송아암이 개구부(82a)를 매개로 처리실(82) 내로 출납되어 재치대(87) 상에 웨이퍼(W)를 재치하거나, 처리 후의 웨이퍼(W)를 처리실(82)로부터 반출하도록 되어 있다.
재치대(87)의 상방에는 샤워부재로서의 샤워헤드(88)가 배설되어 있다. 이 샤워헤드(88)는 재치대(87)와 가스도입관(83)과의 사이의 공간을 구획하도록 형성되어 있으며, 예를들어 알루미늄 등으로 만들어져 있다.
샤워헤드(88)는 그 상부중앙에 가스도입관(83)의 가스출구(83a)가 위치하도록 형성되며, 처리실(82) 내에 도입된 가스가 그대로 처리실(82) 내에 배설된 샤워헤드(88) 내에 도입되어 있다.
다음으로, 상술한 장치를 이용하여 웨이퍼(W) 상에 게이트절연막(2)으로 이루어지는 절연막을 형성하는 방법에 대하여 설명하기로 한다.
도 6은 본 발명의 방법의 각 공정의 흐름을 나타낸 순서도이다.
우선, 전단계 공정에서 웨이퍼(W) 표면에 필드산화막(11)을 형성한다.
이어서, 진공용기(50)의 측벽에 설치된 게이트밸브(도시생략)를 열어 반송아암(37, 38)에 의해 상기 실리콘기판(1) 표면에 필드산화막(11)이 형성된 웨이퍼(W)를 재치대(52) 상에 재치한다.
계속해서, 게이트밸브를 닫아 내부를 밀폐시킨 후, 진공펌프(55)에 의해 배기관(53)을 매개로 내부환경을 배기시켜 소정의 진공도까지 진공시키고, 소정의 압력으로 유지한다. 한편, 마이크로파 전원부(61)로부터 예를들어 2.45GHz(3kW)의 마이크로파를 발생시키고, 이 마이크로파를 도파로(63)에 의해 안내하여 RLSA(60) 및 가스공급실(54)을 매개로 진공용기(50) 내에 도입하고, 이로 인해 진공용기(50) 내의 상부측 플라스마영역(P)에서 고주파 플라스마를 발생시킨다.
여기서, 마이크로파는 직사각형 도파관(63D) 내를 직사각형 모드로 전송하여, 동축 도파변환기(63C)에서 직사각형 모드로부터 원형모드로 변환되고, 원형모드에서 원통형 동축도파관(63B)을 전송하고, 또한 원형도파관(63A)에서 확산된 상태로 전송해 나가, RLSA(60)의 슬롯(60a)으로부터 방사되어 가스공급실(54)을 투과하여 진공용기(50)에 도입된다. 이 때 마이크로파를 이용하고 있기 때문에 고밀도의 플라스마가 발생되며, 또한 마이크로파를 RLSA(60)의 다수의 슬롯(60a)으로부터 방사시키고 있기 때문에 플라스마가 고밀도인 것으로 된다.
그리고, 재치대(52)의 온도를 조절하여 웨이퍼(W)를 예를들어 400℃로 가열하면서 가스공급관(72)으로부터 제 1 가스인 Xe가스와, N2가스와, H2가스 및 O2가스를 각각 500sccm, 25sccm, 15sccm, 1.0sccm의 유량으로 도입하여 제 1 공정을 실시한다.
이 공정에서는, 도입된 가스는 진공용기(50)에서 발생한 플라스마의 흐름에 의해 활성화(플라스마화)되고, 이 플라스마에 의해 도 7A에 나타낸 바와 같이 실리콘기판(1)의 표면이 산질화되어 제 1 절연막(SiON막)(21)이 형성되어진다. 이렇게 해서 이 질화처리를 예를들어 30초간 실시하여, 1nm 두께인 제 1 절연막(SiON막)(21)을 형성한다.
다음으로, 게이트밸브를 열어 진공용기(50) 내에 반송아암(37, 38)을 진입시키고, 재치대(52) 상의 웨이퍼(W)를 건네받는다. 반송아암(37, 38)은 웨이퍼(W)를 플라스마 처리유니트(32)로부터 꺼낸 후, 인접하는 CVD 처리유니트(33) 내의 재치대(87)에 세트한다.
다음으로, 이 CVD 처리유니트(33) 내에서 웨이퍼(W) 상에 CVD 처리가 실시되고, 먼저 형성된 제 1 절연막 상에 제 2 절연막이 형성된다.
즉, 진공용기(50) 내에서 웨이퍼온도가 예를들어 400℃, 프로세스압력이 예를들어 50mTorr∼1Torr의 상태에서 용기(82) 내에 제 2 가스를 도입하여 제 2 공정을 실시한다.
즉, 가스공급원(84)으로부터 Si를 포함하는 가스 예를들어 SiH4가스를 예를들어 15sccm의 유량으로 도입함과 동시에, 가스도입관(83)으로부터 Xe가스와, N2가스를 각각 500sccm, 20sccm의 유량으로 도입한다.
이 공정에서는, 도입된 제 2 가스는 웨이퍼(W) 상에 퇴적되고, 비교적 단시간내에 막두께가 증대된다. 이렇게 해서 도 7B에 나타낸 바와 같이 제 1 절연막(SiON막)(21)의 표면에 제 2 절연막(SiN막)(22)이 형성된다. 이 SiN막(22)은 성막속도가 예를들어 4nm/분이기 때문에, 이 성막처리를 예를들어 30초간 실시하여, 2nm 두께의 제 2 절연막(SiN막)(22)을 형성한다. 이와 같이 해서 전체 30초간동안에 4nm의 두께의 게이트절연막(2)을 형성한다.
상술한 제 1 공정에서는, 제 1 절연막을 형성할 때에 처리가스 환경하에서 규소를 주성분으로 하는 웨이퍼(W)에 복수의 슬릿을 가지는 평면안테나 부재(RLSA)를 매개로 마이크로파를 조사함으로써 산소, 또는 질소, 또는 산소와 질소를 포함하는 플라스마를 형성하고, 이 플라스마를 이용하여 상기 피처리기체 표면에 직접적으로 산화, 질화, 또는 산질화를 실시하여 절연막을 형성하고 있기 때문에, 품질이 높을 뿐 아니라 막질제어를 성공적으로 수행할 수 있다.
즉, 제 1 절연막의 품질은 도 8에 나타낸 바와 같이 높은 것이다.
도 8에 나타낸 바와 같이, 본 발명의 반도체 제조방법에 의해 열산화막과 동일한 레벨의 낮은 계면준위를 확보하면서, 동시에 게이트절연막의 내압성과 게이트전극 중의 붕소의 관통을 줄일 수 있게 되었다.
이에 반해, 직접질화 및 CVD법에 의한 SiN막에서는 계면준위가 열산화막에 비해 증대되었다. 이 경우, 계면에서의 캐리어의 분산이 커지게 되어, 트랜지스터의 구동전류가 저하된다.
이와 같이 상술한 방법에 의해 형성된 제 1 절연막의 품질이 높아지는 이유는 다음과 같이 생각할 수 있다.
즉, 본 발명의 반도체 제조방법에서는, 실리콘기판 계면에 질소원자와 산소원자 모두가 실리콘원자의 결합을 효율적으로 종단(終端)하여 댕글링결합이 적어지게 된다. 또한, 게이트절연막의 내압성과 붕소의 관통에 대해서는 CVD-SiN막이 효과적으로 작용하고 있다. 그 결과, 본 발명의 반도체 제조방법에서는, 직접산질화 SiON막과 CVD-SiN막의 장점을 성공적으로 이용할 수 있다.
이에 반해, 계면을 SiN 만으로 형성할 경우, 댕글링결합의 종단이 불완전하며, 이 때문에 계면준위가 증대되었다고 생각되어진다.
또한, 상기 제 2 공정을 수행함으로써 상기 제 1 절연막상에 형성되는 제 2 절연막은 단시간내에 형성할 수 있다. 그 결과, 절연막(2) 전체를 형성하는 데에 있어서 하기에 나타낸 바와 같이 단시간 내에 끝마칠 수가 있다.
예를들어, 제 1 절연막 SiON의 형성에 대하여 RLSA 플라스마를 이용하여 압력 100mTorr, Xe, N2, H2, O2의 가스유량을 각각 500sccm, 25sccm, 15sccm, 1sccm, 온도 400℃에서 성막하게 되면, 도 9에 나타낸 바와 같이 1nm의 SiON막을 30초 정도로 형성할 수 있다.
그러나, 동일한 조건에서 3nm의 SiON막을 형성하려면 245초가 필요하였다. 이 성막속도에서 O2 유량을 제로로 하여도 거의 변화하지 않았다. 한편, CVD에서는 Xe, SiH4, N2가스유량을 각각 500sccm, 15sccm, 20sccm, 온도 400℃에 있어서 4.5nm/min 정도의 성막속도가 달성되었다. 따라서, 2nm의 막두께에서는 30초 정도 이내에서 형성되었다. 그 결과, 본 발명의 반도체 제조방법에서는 전체 60초 정도 이내에서 3nm의 절연막을 형성할 수 있기 때문에, 직접질화법에 비해 대폭적으로 성막속도를 향상시킬 수 있다.
또한, 상기 RLSA 플라스마에 의한 직접산질화의 성막에 의한 막두께 변화는 도 10에 나타낸 바와 같이 1nm 정도까지는 시간에 비례하고 있으며, 즉, 표면반응이 반응속도를 결정하고 있는 상태로 되는 표면반응률속인 것을 알 수 있다. 그러나, 이 이상의 막두께가 되면, 확산반응이 반응속도를 결정하는 상태로 되는 확산률속으로 되어 성막속도가 서서히 저하되어진다. 따라서, 본 발명의 반도체 제조방법에서는, 직접산질화에 의해 1nm의 SiON막을 형성하고, 그 후 CVD법에 의해 SiN막을 형성하였다.
이하에 그 실시예를 설명하기로 한다.
본 발명의 반도체 제조방법에 의하여, 소자분리형성을 실시한 n형 실리콘기판 상에 도 2에 나타낸 바와 같은 장치를 이용하여 RLSA 플라스마를 이용하여 도 2 의 32의 처리유니트에서 2nm의 SiON막을 형성하였다. 합계 절연막의 막두께는 3nm(산화막 환산막두께)이다. SiON 성막조건에 대해서는, Xe/N2/H2/O2 유량 = 500sccm/25sccm/15sccm/1sccm 에서 압력은 100mTorr, 미이크로파 파워는 2.0KW이고, 온도는 400℃였다. CVD-SiN막의 형성조건에 대해서는, Xe/SiH4/N2 유량 = 500sccm/15sccm/20sccm 에서 압력은 100mTorr, 마이크로파는 25KW이고 온도는 400℃였다. 성막시간은 62초로, 쓰르우풋은 40장/h를 달성하여 공업적으로 충분히 적용할 수 있는 레벨인 것을 확인할 수 있었다.
막두께의 균일성도 3시그마에서 3%로 양호한 결과를 얻을 수 있었다.
게이트절연막 형성에 이어서 p형 poly-Si-게이트를 형성하여 게이트누설전류와 계면준위를 측정하였다. 그 결과, 75mV/cm의 인가전계에 대하여 게이트누설은 1.3×10-6A/㎠, 계면준위는 6.5×1010-2·eV-1로 양호한 결과를 얻었다. 또한, p-MOSFET(L/W = 0.25/10㎛)를 형성하여 온전류를 계측한 결과, 산화막과 동일한 정도 이상의 값(5.5×10-4A/㎛)를 얻을 수 있었다.
이상에서 나타낸 바와 같이, 본 발명의 반도체 제조방법에 의하여 3nm 정도의 양질의 게이트절연막을 공업적으로 충분한 성막속도로 형성할 수 있었다.
본 발명에 의하면, 처리가스 환경하에서 규소를 주성분으로 하는 피처리기체에 복수의 슬릿을 가지는 평면안테나 부재를 매개로 마이크로파를 조사하는, 이른바 RLSA안테나를 이용하는 방법으로 실리콘기판 상에 직접 플라스마를 공급하여 SiN절연막을 형성하기 때문에, 실리콘기판과 그 표면에 형성되는 SiN절연막과의 계면의 막질제어를 성공적으로 실시할 수 있다.
또한, 본 발명의 다른 반도체 제조방법에 의하면, 이른바 RLSA안테나를 이용한 방법으로 제 1 절연막을 형성한 후에 제 2 절연막을 형성하기 때문에 고품질의 SiN막을 형성할 수 있다. 특히, 제 2 절연막을 CVD법에 의해 형성하는 경우에는 단시간 안에 제막을 할 수 있게 되며, 단시간 안에 고품질의 SiN막을 형성할 수 있다.
실시예 2
다음으로, 본 발명방법에 의해 제조되는 반도체장치의 제조의 다른 한 예에 대하여, 절연막으로서 게이트절연막을 갖춘 반도체장치를 예로 들어 도 1에 의해 설명하기로 한다. 도 1A의 1은 실리콘기판, 11은 필드산화막, 2는 게이트절연막이고, 13은 게이트전극이다. 본 발명은 게이트절연막(2)에 특징이 있으며, 이 게이트절연막(2)은 도 1B에 나타낸 바와 같이 실리콘기판(1)과의 계면에 형성되며, 전기적 특성이 좋은 절연막으로 이루어지는 예를들어 20옴스트롱 정도의 두께의 제 1 막(21)과, 제 1 층(21)의 상면에 형성되고 제 1 막(21) 보다 성막속도가 큰 절연막으로 이루어지는 예를들어 20옴스트롱 정도의 두께의 제 2 막(22)에 의해 구성되어 있다.
이 예에서는, 전기적 특성이 좋은 제 1 막(21)은 희가스와 질소(N)와 수소(H)를 포함하고, 실리콘(Si)을 포함하지 않은 가스로서, 희가스의 함유량이 50% 이상 99% 이하인 제 1 가스를 플라스마화하여 이 플라스마에 의해 실리콘기판(1)의 표면을 질화시켜 형성된 제 1 실리콘질화막(이하, 「SiN막」이라 한다)으로 이루어진다. 또한, 제 1 막(21) 보다도 성막속도가 큰 제 2 막(22)은 희가스와 N과 Si를 포함하고, 희가스의 함유량이 50% 이상 99% 이하인 가스를 플라스마화하여, 이 플라스마에 의해 형성된 제 2 SiN막으로 이루어진다.
상기 다구멍 슬롯전극(60)은, 상기 개구부(51) 보다도 큰 원판에 마이크로파를 투과시키기 위한 다수의 슬롯(60a)을 동심원상에 형성하여 구성되어 있으며, 슬롯(60a)의 길이나 배열간격은 마이크로파 전원부(61)로부터 발생한 마이크로파의 파장에 따라 결정되어지고 있다.
진공용기(50)의 상부측의 측벽에는 예를들어 그 둘레방향을 따라 균등하게 배치된 16곳의 위치에 가스공급관(72)이 설치되어 있으며, 이 가스공급관(72)으로부터 희가스 및 N을 포함하는 가스가 진공용기(50)의 플라스마영역(P) 근방에 골고루 균등하게 공급되어지도록 되어 있다.
또한, 진공용기(50) 내에는, 가스공급실(54)과 대향하도록 웨이퍼(W)의 재치대(52)가 설치되어 있다. 이 재치대(52)에는 도시하지 않은 온도조절부가 내장되어 있으며, 이로 인해 당해 재치대(52)는 열판으로서 작용하도록 구성되어 있다. 또한, 진공용기(50)의 바닥부에는 배기관(53)의 일단측이 접속되어 있으며, 이 배기관(53)의 타단측은 진공펌프(55)에 접속되어 있다.
다음으로, 상술한 장치를 이용하여 웨이퍼(W) 상에 게이트절연막(2)으로 이루어지는 절연막을 형성하는 방법에 대하여 설명하기로 한다. 우선, 진공용기(50)의 측벽에 설치된 도시하지 않은 게이트밸브를 열어 도시하지 않은 반송아암에 의 해 예를들어 실리콘기판(1) 표면에 필드산화막(11)이 형성된 웨이퍼(W)를 재치대(52) 상에 재치한다.
계속해서, 게이트밸브를 닫아 내부를 밀폐시킨 후, 진공펌프(55)에 의해 배기관(53)을 매개로 내부환경을 배기하여 소정의 진공도까지 진공시키고, 소정의 압력으로 유지한다. 한편, 마이크로파 전원부(61)로부터 예를들어 2.45GHz, 3kW의 마이크로파를 발생시키고, 이 마이크로파를 도파로(63)에 의해 안내하여 다구멍 슬롯전극(60) 및 가스공급실(54)을 매개로 진공용기(50) 내에 도입하고, 이로 인해 진공용기(50) 내의 상부측 플라스마영역(P)에서 고주파 플라스마를 발생시킨다.
여기서, 마이크로파는 직사각형 도파관(63D) 내를 직사각형 모드로 전송하어, 동축 도파변환기(63C)에서 직사각형 모드로부터 원형모드로 변환되고, 원형모드에서 원통형 동축도파관(63B)을 전송하며, 또한 원형 도파관(63A)에서 확산되어지는 상태로 전송해 나가, 다구멍 슬롯전극(60)의 슬롯(60a)으로부터 방사되어 가스공급실(54)을 투과시켜 진공용기(50)에 도입된다. 이 때 마이크로파를 이용하고 있기 때문에 고밀도의 플라스마가 발생하고, 또한 마이크로파를 다구멍 슬롯전극(60)의 다수의 슬롯(60a)으로부터 방사하고 있기 때문에 플라스마가 고밀도인 것으로 된다.
그리고, 재치대(52)의 온도를 조절하여 웨이퍼(W)를 예를들어 400℃로 가열하면서, 가스공급관(72)으로부터 제 1 가스인 Xe가스와, N2가스와, H2가스를 각각 500sccm, 25sccm, 15sccm의 유량으로 도입하여 제 1 공정을 실시한다. 이 공정에서는, 도입된 가스는 진공용기(50)에서 발생한 플라스마흐름에 의해 활성화(플라스마화)되고, 이 플라스마에 의해 도 7A에 나타낸 바와 같이 실리콘기판(1)의 표면이 질화되어 제 1 SiN막(21)이 형성되어진다. 이와 같이 해서 이 질화처리를 예를들어 2분 실시하여 20옴스트롱의 두께의 제 1 SiN막(21)을 형성한다.
이어서, 마이크로파 전원부(61)로부터 예를들어 2.45GHz, 200W의 마이크로파를 도입하여 진공용기(50) 내에서 플라스마를 발생시킴과 동시에, 웨이퍼온도가 예를들어 400℃, 프로세스압력이 예를들어 50mTorr∼1Torr의 상태에서, 진공용기(50) 내에 제 2 가스를 도입시켜 제 2 공정을 실시한다. 즉, 가스공급실(54)로부터 Si를 포함하는 예를들어 SiH4가스를 예를들어 15sccm의 유량으로 도입함과 동시에, 가스공급관(72)으로부터 Xe가스와, N2가스를 각각 500sccm, 20sccm의 유량으로 도입한다.
이 공정에서는, 도입된 제 2 가스는 진공용기(50)에서 발생한 플라스마흐름에 의해 플라스마화되고, 이 플라스마에 의해 도 7B에 나타낸 바와 같이 제 1 SiN막(21)의 표면에 제 2 SiN막(22)이 형성되어진다. 이 SiN막(22)은 성막속도가 예를들어 20옴스트롱/분이기 때문에, 이 성막처리를 예를들어 1분 실시하여 20옴스트롱의 두께의 제 2 SiN막(22)을 형성한다. 이와 같이 해서 전체 3분간 동안 40옴스트롱의 두께의 게이트절연막(2)을 형성한다.
상술한 제 1 공정에서는, 상술한 프로세스 성막장치에서 고밀도의 플라스마를 발생시키고, 이 플라스마에 의해 희가스와 N과 H를 포함하며, Si를 포함하지 않은 가스로서, 희가스의 함유량이 50% 이상 99% 이하인 제 1 가스를 플라스마화하고, 이로 인해 예를들어 300∼400℃의 온도로 가열된 실리콘기판(1)의 표면을 질화시켜 제 1 SiN막(21)을 형성하고 있기 때문에, 전기적 특성이 양호한 제 1 SiN막(21)을 얻을 수 있다.
여기서, 절연막의 전기적 특성은 결함의 수로 결정되며, 결함수가 적을수록 전기적 특성은 양호한데, 상술한 방법으로 형성되는 제 1 SiN막(21)의 결함의 수는 7×1010개·㎝-2 정도로, 1×1012개·㎝-2 정도의 수의 결함이 있는 열질화막에 비해 적기 때문에 전기적 특성은 양호하다고 할 수 있다.
이와 같이 상술한 방법에 의해 형성된 제 1 SiN막(21)의 전기적 특성이 양호한 이유는 다음과 같이 생각할 수 있다. 우선, 제 1 가스는, 희가스와 N과 H를 포함하고, Si를 포함하지 않는 가스인데, 희가스를 도입함으로써 계면순위밀도 등의 결함의 발생이 억제되어지기 때문이라고 추측되어진다. 이 때 후술할 실험에서 명확히 알 수 있듯이, 희가스의 함유량이 50% 보다도 적게되면 결함수가 많아진다. 또한 100% 로 하면 성막을 할 수 없게 되며, 99% 이하이면 성막속도는 작아지지만 막질을 악화시키지 않고 성막을 실시할 수 있기 때문에, 50% 이상 99% 이하로 하는 것이 바람직하다. 또한, H를 포함하는 가스를 도입함으로써, 댕글링결합을 감소시킬 수 있으며, 이로 인해 결함의 발생이 억제되어지기 때문에 보다 전기적 특성이 양호하게 된다고 생각되어진다.
또한, 예를들어 ICP(Inductive Coupled Plasma) 등이라 불리고 있는 돔 모양의 용기에 감겨진 코일에 의해 전계 및 자계를 주어 플라스마를 생성시키는 방법에 의해 발생된 플라스마에 제 1 가스를 플라스마화한 경우에는, 얻어진 SiN막의 결함수가 많아진 것으로부터 상술한 플라스마 성막장치에서 상술한 바와 같이 고밀도의 플라스마를 발생시키고, 이 플라스마에 의해 제 1 가스를 플라스마화함으로써 전기적 특성을 향상시킬 수 있다고 생각되어진다.
상술한 제 2 공정에서는, 상술한 프로세스 성막장치에서 고밀도의 플라스마를 발생시키고, 이 플라스마에 의해 희가스와 N과 Si를 포함하는 제 2 가스의 플라스마에 의해 제 2 SiN막(22)을 형성하고 있기 때문에, 제 1 SiN막(21) 보다도 성막속도가 큰 제 2 SiN막(22)을 얻을 수 있다.
이와 같이 성막속도가 커지게 되는 것은, Si를 포함하는 가스 예를들어 SiH4 등의 실란계의 가스를 도입하고 있기 때문인데, 동시에 희가스를 도입하고 있는 것은 성막속도가 지나치게 빨라지게 되면 막두께의 제어가 어려워지기 때문에, 실란계 가스의 농도를 낮게하기 위함이다. 여기서, 불활성 가스의 양은, 너무 많으면 성막속도가 작아지고, 너무 적으면 막의 결함수가 많아지기 때문에 50% 이상 99% 이하로 하는 것이 바람직하다.
또한, 상술한 프로세스에서는 제 2 SiN막(22)을 성막할 때에, 마이크로파의 전력을 200W로 제 1 SiN막(21)을 형성하는 경우(3kW) 보다도 작게하고 있는데, 이와 같이 하는 것은 SiH4의 분해에 의해 생성된 H2가 외측으로 확산되어 나가 이 H2에 의해 외측의 영역에서는 중앙영역 보다도 Si의 농도가 낮아지고, 그 결과 SiN막(22)의 막질의 균일성이 나빠져 버리기 때문에, 이를 방지하기 위하여 마이크로파의 전력을 작게하여 SiH4의 과도한 분해를 억제하고 있기 때문이다.
또한, 상술한 프로세스에서는, 제 1 공정과 제 2 공정을 동일한 플라스마 성막장치를 이용하여 실시하고 있기 때문에, 제 1 공정과 제 2 공정을 연속해서 실시할 수 있어 전체 성막시간을 단축할 수 있으며, 이로 인해 쓰르우풋을 향상시킬 수 있다. 또한, 상술한 플라스마 성막장치는 전자온도가 낮기 때문에, 이 장치를 이용하여 제 1 SiN막(21)이나 제 2 SiN막(22)을 형성함으로써, 실리콘기판(1)에 주어지는 대미지를 작게할 수 있다.
그런데, 상술한 방법으로 형성되어지는 제 2 SiN막(22)은 1×1011개·㎝-2 정도의 결함이 있으며, 제 1 SiN막(21) 보다도 전기적 특성이 나쁘지만, 전기적으로 양호한 특성이 필요한 부분은 SiN막이 실리콘기판에 접하고 있는 부분으로서, 반드시 막 전체에 걸쳐 전기적으로 양호할 필요는 없기 때문에, 이와 같은 제 2 SiN막(22)을 실리콘기판(1)과의 계면보다 상층에 형성하는 경우에는 게이트절연막(2)의 전기적 특성에 악영향을 미치지 않는다.
이와 같이 상술한 프로세스에서는, 게이트절연막(2)을 전기적 특성이 좋은 제 1 SiN막(21)과, 제 1 SiN막(21) 보다도 성막속도가 큰 제 2 SiN막(22)을 적층하여 형성하였기 때문에, 전기적 특성이 양호한 절연막을 짧은 성막시간 동안에 형성할 수 있다.
구체적으로는, 예를들어 상술한 제 1 공정의 프로세스와 같이 Xe가스/N2가스/H2가스 = 500sccm/25sccm/15sccm의 제 1 가스에 의한 실리콘기판(1)의 질화처리를 실시하면, 도 11에 나타낸 바와 같이 최초의 2분간 동안에 2nm(20옴스트롱)의 SiN막을 형성할 수 있으며, 처리의 초기에는 빠른 속도로 형성할 수 있지만, 막두께가 2nm를 넘게되면 형성속도가 느려져서 4nm의 질화막이 필요한 경우, 처리시간에 약 20분이 걸리게 된다. 한편, 제 2 공정의 프로세스와 같이 SiH4가스/N2가스/Xe가스 = 15sccm/20sccm/500sccm의 제 2 가스를 플라스마화하여 SiN막을 형성하면, 매분 2nm의 속도로 성막할 수 있다.
따라서, 4nm의 막두께의 실리콘질화막이 필요한 경우에는, 도 12에 나타낸 바와 같이 제 1 가스에 의한 질화처리를 2분간 실시하여, 실리콘기판(1)과의 계면에 제 1 SiN막(21)을 2nm형성하고, 이어서 제 2 가스에 의한 성막처리를 1분간 실시하여, 제 1 SiN막(21)의 상면에 2nm의 두께의 제 2 SiN막(22)을 형성함으로써, 결과적으로 막두께 4nm인 SiN막을 3분간에 형성할 수 있다.
또한 이렇게 해서 상술한 프로세스에서 얻어진 게이트절연막(2)에 대하여 커패시턴스와 게이트전압과의 관계를 측정한 결과, 도 13에 나타낸 전기적 특성을 얻을 수 있으며, 막두께가 4nm로 얇은 경우라도 종래 이용되어 왔던 SiO2막과 전기적으로 동등하다는 사실을 확인하였다.
또한, 상술한 플라스마 성막장치에서 제 1 가스로서 Ar가스와 N2가스와 H2가스를 90 : 7 : 3의 비율로 혼합한 가스(Ar/N2/H2 = 450sccm/35sccm/15sccm)를 이용하여, 웨이퍼온도 400℃, 프로세스압력 50mTorr∼1Torr 하에서 마이크로파 전원부(51)로부터 2.45GHz, 3kW의 마이크로파 전력을 도입하여 상술한 바와 마찬가지로 제 1 공정을 실시하여, 20옴스트롱의 두께의 제 1 SiN막(21)을 형성하고, 이어서 제 2 가스로서 SiH4가스와 N2가스와 Ar가스를 3 : 4 : 90의 비율로 혼합한 가스(SiH4/N2/Ar = 15sccm/20sccm/450sccm)를 이용하여 웨이퍼온도 400℃, 프로세스압력 50mTorr 하에서 마이크로파 전원부로부터 2.45GHz, 200W의 마이크로파 전력을 도입하여 제 2 공정을 실시하여, 20옴스트롱의 두께의 제 2 SiN막(23)을 형성한 결과, 전체 성막시간은 4분이었다. 또한, 얻어진 절연막에 대하여 전기적 특성을 측정한 결과, 막두께가 40옴스트롱으로 얇은 경우라도 전기적으로 양호하며, 게이트절연막에 적합하다는 사실이 인정되었다.
계속해서 제 1 가스의 불활성가스 비율의 최적화를 꾀하기 위하여 실시한 실험예에 대하여 설명하기로 한다. 제 1 가스로서 Xe가스와 N2가스와 H2가스를 이용하여, 상술한 플라스마 성막장치에서 웨이퍼온도 400℃, 프로세스압력 50mTorr∼1Torr 하에서 마이크로파 전원부(61)로부터 2.45GHz, 3kW의 마이크로파 전력을 도입하여 20옴스트롱의 두께의 제 1 SiN막(21)을 형성하였다. 이 때 N2가스와 H2가스의 유량을 5 : 2의 비율로 하고, Xe가스의 양을 30%∼99%의 범위로 바꾸어 제 1 SiN막(21)을 형성하고, 그 결함의 수를 CV측정법으로 측정하여 그 수에 따라 전기적 특성을 평가하였다. 이 결과를 도 14에 나타내었는데, 전기적 특성은 ○, ×, △의 3단계로 평가하였다.
그 결과, Xe가스가 50%∼99%인 경우에는 결함수는 7×1010개/㎠ 정도로서, 전기적 특성이 양호하지만, 40% 이하인 경우에는 결함수가 많아져서 전기적 특성이 악화되는 것을 확인하였다.
이상에 있어서, 제 1 가스에 포함되는 희가스로는, Xe 이외에 헬륨(He), 네온(Ne), 아르곤(Ar), 크립톤(Kr) 등을 이용할 수 있으며, 제 1 가스로서 희가스와 NH3를 포함하는 가스를 이용할 수도 있다. 또한, 제 2 가스로는, 희가스와 N과 Si를 포함하는 가스가 이용되어지는데, Si를 포함하는 가스로는 SiH4 이외에 Si2H6를 이용할 수도 있다.
또한, 상술한 플라스마 성막장치에서는, 2.45GHz의 마이크로파를 사용하는 예에 대하여 설명하였는데, 본 발명에서는 예를들어 500MHz의 UHF를 이용하여 플라스마를 발생시키도록 할 수도 있으며, 이 경우에는 주파수에 맞추어 다구멍 슬롯전극의 슬롯을 길게 설정한다.
다음으로, 본 발명의 다른 예에 대하여 설명하기로 한다. 이 예는 절연막의 제 1 막(21)을 SiO2막에 의해 형성한 것으로, 이 SiO2막은 예를들어 상술한 플라스마 성막장치에서 희가스와 산소(O)를 포함하고, Si를 포함하지 않은 가스로서 희가스의 함유량이 50% 이상 99% 이하인 가스의 플라스마에 의해 실리콘기판(1)의 표면을 플라스마 산화함으로써 형성되어진다.
구체적으로는, 희가스와 O를 포함하고, Si를 포함하지 않은 가스로서, 희가스의 함유량이 50% 이상 99% 이하인 가스로서, Ar가스와 O2가스의 혼합가스를 이용하고, 이들 가스를 Ar가스/O2가스 = 500sccm/15sccm의 유량으로 도입하여, 웨이퍼온도 430℃, 프로세스압력 50mTorr∼1Torr 하에서 마이크로파 전원부로부터 2.45GHz, 3kW의 마이크로파 전력을 도입하여 Ar가스와 O2가스를 플라스마화하고, 이 플라스마에 의해 실리콘기판(1)의 표면을 2분간 산화처리하여 예를들어 20옴스트롱의 두께인 SiO2막을 형성한다. 그리고, 얻어진 SiO2막의 위에 상술한 바와 같은 프로세스로 제 2 SiN막(22)을 예를들어 20옴스트롱 형성함으로써 절연막을 형성한다.
이 프로세스에서는 예를들어 전체 3분 동안에 40옴스트롱의 절연막을 성막할 수 있으며, 또한 실리콘의 플라스마산화에 의해 형성된 SiO2막은 결함수가 7×1010개/㎠로 적기 때문에 전기적 특성이 양호하다. 여기서, 불활성가스의 함유량은 50% 이상 99% 이하인 것이 바람직한데, 이것은 50% 보다도 적어지게 되면 계면순위밀도가 증가하기 때문이다.
실제로 상술한 프로세스에서 절연막을 형성하고, 커패시턴스와 게이트전압의관계를 측정한 결과 양호한 결과를 얻을 수 있었으며, 게이트절연막으로서 적합하다는 사실이 인정되었다. 이로 인해 제 1 막(21)으로서 SiO2막을 이용하여 전체 막두께가 40옴스트롱으로 얇은 절연막을 형성하는 경우라도, SiO2막 위에 제 2 막(22)을 적층시킴으로써 누설전류가 작아진다는 사실을 이해할 수 있다.
또한, 희가스와 O를 포함하고, Si를 포함하지 않는 가스로는, 희가스와 오존(O3)과의 조합이나 희가스와 수증기(H2O)와의 조합을 이용하도록 할 수도 있다.
다음으로, 본 발명의 또다른 예에 대하여 설명하기로 한다. 이 예는 절연막의 제 1 막(21)을 실리콘의 열산화에 의해 형성된 SiO2막에 의해 형성한 것으로, 이 SiO2막은 예를들어 급속열산화 프로세스에 의해 실리콘웨이퍼를 850℃ 정도로 가열하여 수증기 환경에 내놓음으로써 형성된다.
이와 같은 제 1 막(21)을 예를들어 5분간 20옴스트롱 형성하고, 그 후에 상술한 바와 마찬가지의 프로세스로 제 2 SiN막(22)을 예를들어 20옴스트롱 형성함으로써 절연막을 형성하면, 예를들어 전체 6분 동안에 40옴스트롱의 절연막을 성막할 수 있다. 또한, 실리콘의 열산화에 의해 형성된 SiO2막은 결함수가 5×1010개/㎠로 적기 때문에 전기적 특성이 매우 양호하다. 실제로 상술한 프로세스로 절연막을 형성하여 커패시턴스와 게이트전압과의 관계를 측정한 결과 양호한 결과를 얻을 수 있었으며, 게이트절연막으로서 적합하다는 사실이 인정되었다.
다음으로, 본 발명의 또다른 예에 대하여 설명하기로 한다. 이 예는 절연막의 제 1 막(21)을 실리콘 산질화막에 의해 형성한 것으로, 이 실리콘 산질화막은 예를들어 SiO2막을 NO환경 속에서 어닐링함으로써 형성된다. 구체적으로는, 20옴스트롱의 두께의 실리콘산화막을 가지는 실리콘웨이퍼를 850℃로 가열하고, NO가스에 쪼임으로써 열질화막을 형성한다.
이 프로세스에 의해, 실리콘기판(1)의 표면에 10분간 예를들어 20옴스트롱의 두께의 실리콘 산질화막을 형성하고, 그 후에 상술한 바와 마찬가지의 프로세스에서 제 2 SiN막(22)을 예를들어 20옴스트롱 형성함으로써 40옴스트롱의 절연막을 형성한다.
이 프로세스에서는, 예를들어 전체 11분간에 절연막을 형성할 수 있으며, 또한 상술한 프로세스에서 형성된 실리콘 산질화막은 결함의 수가 5×1010개/㎠ 정도로서 전기적 특성이 양호하다. 실제로, 상술한 프로세스에서 절연막을 형성하고, 커패시턴스와 게이트전압과의 관계를 측정한 결과 양호한 결과를 얻을 수 있었으며, 이 절연막이 게이트절연막으로서 적합하다는 사실이 인정되었다.
이상과 같이 본 발명에 의하면, 전기적 특성이 좋은 제 1 막과 성막속도가 큰 제 2 막을 적층하여 절연막을 형성하고 있기 때문에, 전기적 특성이 좋은 절연막을 단시간에 형성할 수 있다.
또한, 본 발명의 한 실시예에 대해 설명하였지만, 본 발명의 사상의 범위에서 벗어나지 않는 한, 그 형태에 관해 다양한 변화, 생략, 첨가를 할 수 있다는 것은 물론이다.

Claims (18)

  1. 처리가스 분위기하에서, 규소를 주성분으로 하는 피처리기체에 복수의 슬릿을 가지는 평면안테나 부재를 매개로 마이크로파를 조사함으로써, 산소 또는 질소, 또는 산소와 질소를 포함하는 처리가스의 플라스마를 형성하고, 이 플라스마를 이용하여 상기 피처리기체 표면에 직접적으로 산화, 질화, 또는 산질화를 실시하여 산화막 상당 환산 막두께로 1nm 이하의 절연막을 형성하는 것을 특징으로 하는 반도체 제조방법.
  2. 청구항 1에 있어서,
    상기 처리가스가 O2, H2O, 오존, N2, N2O, NO 또는 NH3 중 적어도 하나를 포함하는 것을 특징으로 하는 반도체 제조방법.
  3. 처리가스 분위기하에서, 규소를 주성분으로 하는 피처리기체에 복수의 슬릿을 가지는 평면안테나부재를 매개로 마이크로파를 조사함으로써, 산소 또는 질소, 또는 산소와 질소를 포함하는 처리가스의 플라스마를 형성하고, 이 플라스마를 이용하여 상기 피처리기체 표면에 직접적으로 산화, 질화, 또는 산질화를 실시하여 제 1 절연막을 형성하는 공정과,
    상기 제 1 절연막 상에 상기 제 1 절연막보다도 성막속도가 큰 제 2 절연막을 형성하는 공정으로 이루어지는 것을 특징으로 하는 반도체 제조방법.
  4. 청구항 3에 있어서,
    상기 제 2 절연막을 형성하는 공정이 질화규소로 이루어지는 절연층을 형성하는 공정인 것을 특징으로 하는 반도체 제조방법.
  5. 청구항 3 또는 청구항 4에 있어서,
    상기 제 2 절연막을 형성하는 공정이 CVD법에 의해 이루어지는 공정인 것을 특징으로 하는 반도체 제조방법.
  6. 청구항 3 또는 청구항 4에 있어서,
    상기 제 2 절연막을 형성하는 공정이 플라스마조사에 의해 이루어지는 공정인 것을 특징으로 하는 반도체 제조방법.
  7. 청구항 6에 있어서,
    상기 제 2 절연막을 형성하는 공정이 N2 또는 NH3 및 모노실란 또는 디크롤실란 또는 트리크롤실란을 포함하는 플라스마를 공급하는 공정인 것을 특징으로 하는 반도체 제조방법.
  8. 청구항 6에 있어서,
    상기 플라스마조사가 복수의 슬릿을 가지는 평면안테나부재를 매개로 이루어지는 것을 특징으로 하는 반도체 제조방법.
  9. 청구항 1에 기재된 반도체 제조방법을 실시하기 위한 반도체 제조장치에 있어서,
    산화, 질화 또는 산질화처리를 하는 챔버와,
    상기 챔버에 접속하는 마이크로파 전원과,
    당해 마이크로파를 안내하는 장치와 복수의 슬릿을 가지는 평면안테나부재와,
    피처리기체의 온도를 소정 온도로 보지하는 승온기구와,
    처리가스를 반응실로 안내하는 가스공급기구와,
    반응실을 감압하는 진공배기기구를 가지는 하나 또는 그 이상의 프로세스챔버와,
    피처리기체를 진공반송하는 반송계로 이루어지는 것을 특징으로 하는 반도체 제조장치.
  10. 청구항 9에 있어서,
    게이트절연막을 병렬적으로 형성할 수 있도록 상기 챔버가 2개 또는 그 이상 병설되어 있는 것을 특징으로 하는 반도체 제조장치.
  11. 청구항 9 또는 청구항 10에 있어서,
    상기 챔버와는 다른 CVD챔버를 구비하고, 직접 산화, 질화 또는 산질화처리후에 상기 피처리기체상에 상기 CVD챔버에 의해 SiN을 형성하는 것을 특징으로 하는 반도체 제조장치.
  12. 희가스와 질소와 수소 또는 희가스와 암모니아를 포함하고, 실리콘을 포함하지 않은 가스로서, 희가스의 함유량이 50% 이상 99% 이하인 처리가스를 플라스마화하고, 이 플라스마에 의해 실리콘기판의 표면을 질화시켜 제 1 실리콘질화막을 형성하는 공정과,
    계속해서, 희가스와 질소와 실리콘을 포함하고, 희가스의 함유량이 50% 이상 99% 이하인 처리가스를 플라스마화하고, 이 플라스마에 의해 제 1 실리콘질화막의 표면에 제 1 실리콘질화막 보다도 성막속도가 큰 제 2 실리콘질화막을 형성하는 공정으로 이루어지는 것을 특징으로 하는 반도체장치의 제조방법.
  13. 희가스와 산소를 포함하고, 실리콘을 포함하지 않은 가스로서, 희가스의 함유량이 50% 이상 99% 이하인 처리가스를 플라스마화하고, 이 플라스마에 의해 실리콘기판의 표면을 산화시켜 실리콘산화막을 형성하는 공정과,
    계속해서, 희가스와 질소와 실리콘을 포함하고, 희가스의 함유량이 50% 이상 99% 이하인 처리가스를 플라스마화하고, 이 플라스마에 의해 상기 실리콘산화막의 표면에 실리콘질화막을 형성하는 공정으로 이루어지는 것을 특징으로 하는 반도체장치의 제조방법.
  14. 실리콘기판의 표면을 산화시켜 실리콘산화막을 형성하는 공정과,
    계속해서 희가스와 질소와 실리콘을 포함하고 희가스의 함유량이 50% 이상 99% 이하인 처리가스를 플라스마화하여 이 플라스마에 의해 상기 실리콘산화막의 표면에 실리콘질화막을 형성하는 공정으로 이루어지는 것을 특징으로 하는 반도체장치의 제조방법.
  15. 실리콘기판의 표면에 실리콘산질화막을 형성하는 공정과,
    계속해서 희가스와 질소와 실리콘을 포함하고 희가스의 함유량이 50% 이상 99% 이하인 처리가스를 플라스마화하여, 이 플라스마에 의해 상기 실리콘산질화막의 표면에 실리콘질화막을 형성하는 공정으로 이루어지는 것을 특징으로 하는 반도체장치의 제조방법.
  16. 청구항 12 내지 청구항 15 중 어느 한 항에 있어서,
    상기 처리가스의 플라즈마화는 300MHz 이상 2500MHz 이하인 고주파전력에 의해 행하여지는 것을 특징으로 하는 반도체장치의 제조방법.
  17. 청구항 1, 청구항 3, 청구항 12 내지 청구항 15 중 어느 한 항에 있어서,
    상기 처리가스는 Ar, Kr, Xe, He 또는 Ne의 희가스 중 적어도 하나를 포함하는 것을 특징으로 하는 반도체장치의 제조방법.
  18. 청구항 6에 있어서,
    상기 플라즈마는 N2, N2O, NO 또는 NH3 중 적어도 하나를 포함하는 가스의 플라즈마인 것을 특징으로 하는 반도체장치의 제조방법.
KR1020000010968A 1999-03-10 2000-03-06 반도체 제조방법 및 반도체 제조장치 KR100745495B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP06345599A JP4119029B2 (ja) 1999-03-10 1999-03-10 半導体装置の製造方法
JP99-63455 1999-03-10
JP09783199A JP4255563B2 (ja) 1999-04-05 1999-04-05 半導体製造方法及び半導体製造装置
JP99-97831 1999-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020060044607A Division KR100856531B1 (ko) 1999-03-10 2006-05-18 반도체 제조방법 및 반도체 제조장치

Publications (2)

Publication Number Publication Date
KR20000076774A KR20000076774A (ko) 2000-12-26
KR100745495B1 true KR100745495B1 (ko) 2007-08-03

Family

ID=26404581

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020000010968A KR100745495B1 (ko) 1999-03-10 2000-03-06 반도체 제조방법 및 반도체 제조장치
KR1020060044607A KR100856531B1 (ko) 1999-03-10 2006-05-18 반도체 제조방법 및 반도체 제조장치
KR1020080019058A KR100943246B1 (ko) 1999-03-10 2008-02-29 반도체 제조방법 및 반도체 제조장치

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020060044607A KR100856531B1 (ko) 1999-03-10 2006-05-18 반도체 제조방법 및 반도체 제조장치
KR1020080019058A KR100943246B1 (ko) 1999-03-10 2008-02-29 반도체 제조방법 및 반도체 제조장치

Country Status (2)

Country Link
US (2) US6399520B1 (ko)
KR (3) KR100745495B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101063102B1 (ko) 2006-05-22 2011-09-07 도쿄엘렉트론가부시키가이샤 실리콘 산화막의 형성 방법 및 형성 장치
KR101225632B1 (ko) 2007-12-19 2013-01-24 고쿠리츠다이가쿠호진 도호쿠다이가쿠 광전 변환 소자 제조 장치

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682913B1 (en) * 1999-02-03 2004-01-27 Institute For Drug Research Ltd. Microbial process for preparing pravastatin
KR100745495B1 (ko) * 1999-03-10 2007-08-03 동경 엘렉트론 주식회사 반도체 제조방법 및 반도체 제조장치
EP1115147A4 (en) * 1999-05-26 2007-05-02 Tadahiro Ohmi DEVICE FOR PLASMA TREATMENT
TW520453B (en) * 1999-12-27 2003-02-11 Seiko Epson Corp A method to fabricate thin insulating films
TW498544B (en) * 2000-03-13 2002-08-11 Tadahiro Ohmi Flash memory device, manufacturing and its dielectric film formation
JP4504511B2 (ja) * 2000-05-26 2010-07-14 忠弘 大見 プラズマ処理装置
US6649543B1 (en) * 2000-06-22 2003-11-18 Micron Technology, Inc. Methods of forming silicon nitride, methods of forming transistor devices, and transistor devices
US6686298B1 (en) * 2000-06-22 2004-02-03 Micron Technology, Inc. Methods of forming structures over semiconductor substrates, and methods of forming transistors associated with semiconductor substrates
US6833329B1 (en) 2000-06-22 2004-12-21 Micron Technology, Inc. Methods of forming oxide regions over semiconductor substrates
US7081419B2 (en) * 2000-06-28 2006-07-25 Agere Systems Inc. Gate dielectric structure for reducing boron penetration and current leakage
JP4593741B2 (ja) * 2000-08-02 2010-12-08 東京エレクトロン株式会社 ラジアルアンテナ及びそれを用いたプラズマ処理装置
US6660657B1 (en) * 2000-08-07 2003-12-09 Micron Technology, Inc. Methods of incorporating nitrogen into silicon-oxide-containing layers
JP5068402B2 (ja) * 2000-12-28 2012-11-07 公益財団法人国際科学振興財団 誘電体膜およびその形成方法、半導体装置、不揮発性半導体メモリ装置、および半導体装置の製造方法
JP4713752B2 (ja) * 2000-12-28 2011-06-29 財団法人国際科学振興財団 半導体装置およびその製造方法
EP1361605A4 (en) * 2001-01-22 2006-02-15 Tokyo Electron Ltd METHOD FOR PRODUCING MATERIAL OF AN ELECTRONIC COMPONENT
JP2002299331A (ja) * 2001-03-28 2002-10-11 Tadahiro Omi プラズマ処理装置
JP3696119B2 (ja) * 2001-04-26 2005-09-14 株式会社日立製作所 半導体装置、及び半導体装置の製造方法
US7816188B2 (en) * 2001-07-30 2010-10-19 Sandisk 3D Llc Process for fabricating a dielectric film using plasma oxidation
TW557514B (en) * 2001-08-02 2003-10-11 Tokyo Electron Ltd Method for processing a substrate and material for electronic devices
JP3746968B2 (ja) * 2001-08-29 2006-02-22 東京エレクトロン株式会社 絶縁膜の形成方法および形成システム
US6878585B2 (en) * 2001-08-29 2005-04-12 Micron Technology, Inc. Methods of forming capacitors
US6803330B2 (en) * 2001-10-12 2004-10-12 Cypress Semiconductor Corporation Method for growing ultra thin nitrided oxide
JP4149168B2 (ja) 2001-11-09 2008-09-10 株式会社半導体エネルギー研究所 発光装置
US6723599B2 (en) * 2001-12-03 2004-04-20 Micron Technology, Inc. Methods of forming capacitors and methods of forming capacitor dielectric layers
JP4163432B2 (ja) * 2002-03-26 2008-10-08 矢崎総業株式会社 プラズマ処理装置
WO2003088345A1 (fr) 2002-03-29 2003-10-23 Tokyo Electron Limited Materiau pour dispositif electronique et procede de fabrication correspondant
US20030219989A1 (en) * 2002-04-03 2003-11-27 Tadashi Terasaki Semiconductor device producing method and semiconductor device producing apparatus
JP3986051B2 (ja) 2002-04-30 2007-10-03 株式会社半導体エネルギー研究所 発光装置、電子機器
US7094707B1 (en) 2002-05-13 2006-08-22 Cypress Semiconductor Corporation Method of forming nitrided oxide in a hot wall single wafer furnace
US20030224619A1 (en) * 2002-06-04 2003-12-04 Yoshi Ono Method for low temperature oxidation of silicon
US6686232B1 (en) * 2002-06-19 2004-02-03 Advanced Micro Devices, Inc. Ultra low deposition rate PECVD silicon nitride
JP2004023008A (ja) * 2002-06-20 2004-01-22 Renesas Technology Corp 半導体集積回路装置およびその製造方法
TWI235433B (en) * 2002-07-17 2005-07-01 Tokyo Electron Ltd Oxide film forming method, oxide film forming apparatus and electronic device material
US7569497B2 (en) 2002-07-30 2009-08-04 Tokyo Electron Limited Method and apparatus for forming insulating layer
KR100701359B1 (ko) * 2002-07-30 2007-03-28 동경 엘렉트론 주식회사 절연막의 형성 방법 및 처리 장치
US20050212035A1 (en) * 2002-08-30 2005-09-29 Fujitsu Amd Semiconductor Limited Semiconductor storage device and manufacturing method thereof
JP2004095918A (ja) * 2002-08-30 2004-03-25 Fasl Japan Ltd 半導体記憶装置及び半導体装置の製造方法
AU2003246154A1 (en) * 2002-08-30 2004-03-29 Fujitsu Amd Semiconductor Limited Semiconductor device and its manufacturing method
US7022605B2 (en) * 2002-11-12 2006-04-04 Micron Technology, Inc. Atomic layer deposition methods
US7097782B2 (en) * 2002-11-12 2006-08-29 Micron Technology, Inc. Method of exposing a substrate to a surface microwave plasma, etching method, deposition method, surface microwave plasma generating apparatus, semiconductor substrate etching apparatus, semiconductor substrate deposition apparatus, and microwave plasma generating antenna assembly
JP3946130B2 (ja) * 2002-11-20 2007-07-18 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
WO2004070816A1 (ja) * 2003-02-06 2004-08-19 Tokyo Electron Limited プラズマ処理方法,半導体基板及びプラズマ処理装置
TW200423185A (en) * 2003-02-19 2004-11-01 Matsushita Electric Ind Co Ltd Method of introducing impurity
JP2004319907A (ja) * 2003-04-18 2004-11-11 Tadahiro Omi 半導体装置の製造方法および製造装置
DE10320597A1 (de) * 2003-04-30 2004-12-02 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden von Halbleiterschichten mit zwei Prozessgasen, von denen das eine vorkonditioniert ist
JP4694108B2 (ja) * 2003-05-23 2011-06-08 東京エレクトロン株式会社 酸化膜形成方法、酸化膜形成装置および電子デバイス材料
TW200511430A (en) * 2003-05-29 2005-03-16 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
US20040259379A1 (en) * 2003-06-23 2004-12-23 Yoshi Ono Low temperature nitridation of silicon
EP1672683A4 (en) * 2003-10-09 2008-10-01 Matsushita Electric Ind Co Ltd TRANSITION EDUCATION PROCEDURE AND OBJECT THEREFORE TO BE PROCESSED AND PRODUCED
JP2005150637A (ja) * 2003-11-19 2005-06-09 Canon Inc 処理方法及び装置
JP3666751B2 (ja) * 2003-11-28 2005-06-29 東京エレクトロン株式会社 絶縁膜の形成方法及び絶縁膜形成システム
CA2555032C (en) * 2004-02-03 2013-08-20 Industrial Microwave Systems, L.L.C. Cylindrical microwave chamber
JP4698251B2 (ja) * 2004-02-24 2011-06-08 アプライド マテリアルズ インコーポレイテッド 可動又は柔軟なシャワーヘッド取り付け
CN102181819A (zh) * 2004-03-03 2011-09-14 东京毅力科创株式会社 等离子体氮化处理方法
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US20080194086A1 (en) * 2004-06-04 2008-08-14 Yuichiro Sasaki Method of Introducing Impurity
KR100643493B1 (ko) * 2004-09-23 2006-11-10 삼성전자주식회사 반도체 장치의 실리콘 산질화막을 형성하는 방법 및 장치
JP4149427B2 (ja) * 2004-10-07 2008-09-10 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
US20060105114A1 (en) * 2004-11-16 2006-05-18 White John M Multi-layer high quality gate dielectric for low-temperature poly-silicon TFTs
US8129290B2 (en) * 2005-05-26 2012-03-06 Applied Materials, Inc. Method to increase tensile stress of silicon nitride films using a post PECVD deposition UV cure
US8138104B2 (en) * 2005-05-26 2012-03-20 Applied Materials, Inc. Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ UV cure
WO2006132262A1 (ja) * 2005-06-08 2006-12-14 Tohoku University プラズマ窒化処理方法、半導体装置の製造方法およびプラズマ処理装置
JP2007019145A (ja) * 2005-07-06 2007-01-25 Tokyo Electron Ltd シリコン酸窒化膜の形成方法、シリコン酸窒化膜の形成装置及びプログラム
JP2007165480A (ja) * 2005-12-12 2007-06-28 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
KR100745370B1 (ko) * 2006-01-20 2007-08-02 삼성전자주식회사 반도체 디바이스의 절연막 제조방법
US7645710B2 (en) 2006-03-09 2010-01-12 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7837838B2 (en) 2006-03-09 2010-11-23 Applied Materials, Inc. Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus
US7678710B2 (en) 2006-03-09 2010-03-16 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
KR100980529B1 (ko) * 2006-03-27 2010-09-06 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
WO2007139142A1 (ja) * 2006-05-31 2007-12-06 Tokyo Electron Limited プラズマcvd方法、窒化珪素膜の形成方法、半導体装置の製造方法およびプラズマcvd装置
CN101454881B (zh) * 2006-05-31 2012-09-05 东京毅力科创株式会社 绝缘膜的形成方法和半导体装置的制造方法
US7938081B2 (en) * 2006-09-12 2011-05-10 Tokyo Electron Limited Radial line slot antenna having a conductive layer
WO2008039845A2 (en) 2006-09-26 2008-04-03 Applied Materials, Inc. Fluorine plasma treatment of high-k gate stack for defect passivation
US8143661B2 (en) * 2006-10-10 2012-03-27 Spansion Llc Memory cell system with charge trap
JP4864661B2 (ja) * 2006-11-22 2012-02-01 東京エレクトロン株式会社 太陽電池の製造方法及び太陽電池の製造装置
US8247331B2 (en) * 2006-12-28 2012-08-21 Tokyo Electron Limited Method for forming insulating film and method for manufacturing semiconductor device
WO2008108213A1 (ja) * 2007-03-08 2008-09-12 Tokyo Electron Limited プラズマ処理装置、プラズマ処理方法、および記憶媒体
US8318614B2 (en) * 2007-03-26 2012-11-27 Tokyo Electron Limited Method for forming silicon nitride film, method for manufacturing nonvolatile semiconductor memory device, nonvolatile semiconductor memory device and plasma apparatus
KR101257985B1 (ko) * 2007-07-11 2013-04-24 도쿄엘렉트론가부시키가이샤 플라즈마 처리 방법 및 플라즈마 처리 장치
CN101802998B (zh) * 2007-09-11 2014-07-30 佳能安内华股份有限公司 静电夹具
US7985695B2 (en) 2007-09-28 2011-07-26 Canon Kabushiki Kaisha Forming silicon oxide film from RF plasma of oxidizing gas
US7855153B2 (en) * 2008-02-08 2010-12-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8119540B2 (en) * 2008-03-28 2012-02-21 Tokyo Electron Limited Method of forming a stressed passivation film using a microwave-assisted oxidation process
US7763551B2 (en) * 2008-03-31 2010-07-27 Tokyo Electron Limited RLSA CVD deposition control using halogen gas for hydrogen scavenging
US20100108636A1 (en) * 2008-10-30 2010-05-06 Seagate Technology Llc Integrated Tool for Fabricating an Electronic Component
US20110219629A1 (en) * 2010-03-11 2011-09-15 Shih-Piao Wu Pruning Hook
JPWO2011125703A1 (ja) * 2010-03-31 2013-07-08 東京エレクトロン株式会社 プラズマ窒化処理方法
JP5698563B2 (ja) 2011-03-02 2015-04-08 東京エレクトロン株式会社 表面波プラズマ発生用アンテナおよび表面波プラズマ処理装置
DE102011107072B8 (de) * 2011-07-12 2013-01-17 Centrotherm Thermal Solutions Gmbh & Co. Kg Verfahren zum ausbilden einer oxidschicht auf einem substrat bei tiefen temperaturen
JP6010406B2 (ja) 2012-01-27 2016-10-19 東京エレクトロン株式会社 マイクロ波放射機構、マイクロ波プラズマ源および表面波プラズマ処理装置
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
RU2555743C2 (ru) * 2013-07-17 2015-07-10 Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук (ИСВЧПЭ РАН) Устройство свч плазменной обработки материалов
KR102148336B1 (ko) 2013-11-26 2020-08-27 삼성전자주식회사 표면 처리 방법, 반도체 제조 방법 및 이에 의해 제조된 반도체 장치
CN105161421B (zh) * 2015-07-24 2018-06-26 武汉新芯集成电路制造有限公司 一种半导体器件的制备方法
JP6671230B2 (ja) 2016-04-26 2020-03-25 東京エレクトロン株式会社 プラズマ処理装置およびガス導入機構
JP6796450B2 (ja) 2016-10-25 2020-12-09 東京エレクトロン株式会社 プラズマ処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587344A (en) * 1994-06-03 1996-12-24 Nec Corporation Method for fabricating an oxynitride film for use in a semiconductor device
JPH10178159A (ja) * 1996-12-17 1998-06-30 Fuji Electric Co Ltd キャパシタを有する半導体装置およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134937A (en) 1979-04-09 1980-10-21 Hitachi Ltd Preparation of semiconductor device
JPS594059A (ja) 1982-06-30 1984-01-10 Fujitsu Ltd 半導体装置の製造方法
US5284789A (en) * 1990-04-25 1994-02-08 Casio Computer Co., Ltd. Method of forming silicon-based thin film and method of manufacturing thin film transistor using silicon-based thin film
JP2722873B2 (ja) 1991-07-29 1998-03-09 日本電気株式会社 半導体装置およびその製造方法
JPH0661470A (ja) 1992-08-11 1994-03-04 Sony Corp 固体撮像装置及びその製造方法
JP3308091B2 (ja) * 1994-02-03 2002-07-29 東京エレクトロン株式会社 表面処理方法およびプラズマ処理装置
JP3212469B2 (ja) * 1995-02-01 2001-09-25 三菱重工業株式会社 耐高温酸化性表面処理方法
US5698036A (en) * 1995-05-26 1997-12-16 Tokyo Electron Limited Plasma processing apparatus
US5653811A (en) * 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
JPH0950996A (ja) 1995-08-07 1997-02-18 Ulvac Japan Ltd 窒化シリコン膜の形成方法およびその窒化シリコン膜
JPH09312815A (ja) 1996-01-30 1997-12-02 Funai Electric Co Ltd ブラウン管装置
US6143683A (en) 1997-04-09 2000-11-07 Fina Technology, Inc. Metallocene catalyst and catalyst system for polymerizing an olefin having at least 3 carbon atoms
US6217724B1 (en) * 1998-02-11 2001-04-17 Silicon General Corporation Coated platen design for plasma immersion ion implantation
US6155199A (en) * 1998-03-31 2000-12-05 Lam Research Corporation Parallel-antenna transformer-coupled plasma generation system
KR100745495B1 (ko) * 1999-03-10 2007-08-03 동경 엘렉트론 주식회사 반도체 제조방법 및 반도체 제조장치
US6143673A (en) * 1999-10-01 2000-11-07 Taiwan Semiconductor Manufacturing Company Method for forming gap filling silicon oxide intermetal dielectric (IMD) layer formed employing ozone-tEOS
US6341574B1 (en) * 1999-11-15 2002-01-29 Lam Research Corporation Plasma processing systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587344A (en) * 1994-06-03 1996-12-24 Nec Corporation Method for fabricating an oxynitride film for use in a semiconductor device
JPH10178159A (ja) * 1996-12-17 1998-06-30 Fuji Electric Co Ltd キャパシタを有する半導体装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101063102B1 (ko) 2006-05-22 2011-09-07 도쿄엘렉트론가부시키가이샤 실리콘 산화막의 형성 방법 및 형성 장치
KR101225632B1 (ko) 2007-12-19 2013-01-24 고쿠리츠다이가쿠호진 도호쿠다이가쿠 광전 변환 소자 제조 장치

Also Published As

Publication number Publication date
KR20080031705A (ko) 2008-04-10
KR100856531B1 (ko) 2008-09-04
US20020111000A1 (en) 2002-08-15
US6470824B2 (en) 2002-10-29
KR20000076774A (ko) 2000-12-26
US6399520B1 (en) 2002-06-04
KR100943246B1 (ko) 2010-02-18
KR20060066152A (ko) 2006-06-15

Similar Documents

Publication Publication Date Title
KR100745495B1 (ko) 반도체 제조방법 및 반도체 제조장치
JP4255563B2 (ja) 半導体製造方法及び半導体製造装置
KR100746120B1 (ko) 반도체 디바이스의 제조 방법, 플라즈마 처리 방법, 및게이트 절연막 형성 방법
US7217659B2 (en) Process for producing materials for electronic device
JP4429300B2 (ja) 電子デバイス材料の製造方法
US7622402B2 (en) Method for forming underlying insulation film
JP2005150637A (ja) 処理方法及び装置
JP4850861B2 (ja) 絶縁膜形成方法、絶縁膜形成装置及びプラズマ処理ユニット

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120629

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee