KR100665676B1 - carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same - Google Patents

carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same Download PDF

Info

Publication number
KR100665676B1
KR100665676B1 KR1020040003527A KR20040003527A KR100665676B1 KR 100665676 B1 KR100665676 B1 KR 100665676B1 KR 1020040003527 A KR1020040003527 A KR 1020040003527A KR 20040003527 A KR20040003527 A KR 20040003527A KR 100665676 B1 KR100665676 B1 KR 100665676B1
Authority
KR
South Korea
Prior art keywords
polyethylene terephthalate
carbon nanotube
carbon nanotubes
composite
pet
Prior art date
Application number
KR1020040003527A
Other languages
Korean (ko)
Other versions
KR20050075858A (en
Inventor
지종기
김해식
우자희
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020040003527A priority Critical patent/KR100665676B1/en
Publication of KR20050075858A publication Critical patent/KR20050075858A/en
Application granted granted Critical
Publication of KR100665676B1 publication Critical patent/KR100665676B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/125Intrinsically conductive polymers comprising aliphatic main chains, e.g. polyactylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Abstract

본 발명은 폴리에틸렌테레프탈레이트(polyethyleneterephthalate;PET)에 탄소나노튜브(carbon nanotube:CNT)를 첨가하여 향상된 탄성률과 전기 전도성이 증가되는 특성을 가지는 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체를 합성하는 것이다. 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체는 중합법으로 제조될 수 있다. 본 발명에 따라 제조된 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체는 스포츠 용품이나 레저용품, 전도성 기계부품, 전도성 섬유, 전자파 차단제 등으로 적용할 수 있다.The present invention is to synthesize a carbon nanotube / polyethylene terephthalate composite having the properties of improved elastic modulus and electrical conductivity by adding carbon nanotube (CNT) to polyethylene terephthalate (PET). The carbon nanotube / polyethylene terephthalate composite may be prepared by a polymerization method. The carbon nanotube / polyethylene terephthalate composite prepared according to the present invention can be applied to sports articles or leisure articles, conductive machine parts, conductive fibers, electromagnetic wave shielding agents, and the like.

탄소나노튜브, 복합체, 탄성률, 전자파 차폐, 전도성 섬유Carbon nanotubes, composites, modulus of elasticity, electromagnetic shielding, conductive fibers

Description

고탄성률, 전도성 및 전자파 차폐 특성을 가지는 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체 및 그 제조방법{carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same}Carbon nanotube / polyethylene terephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same}

도 1은 본 발명에 따른 탄소나노튜브가 첨가된 폴리에틸렌테레프탈레이트 제조방법을 나타낸 공정도이다.1 is a process chart showing a method for producing polyethylene terephthalate added with carbon nanotubes according to the present invention.

도 2는 본 발명에 따른 0.5중량%에서 5중량%의 탄소나노튜브가 첨가된 폴리에틸렌테레프탈레이트의 탄성률과 표면저항에 대한 결과표이다.2 is a result table for the elastic modulus and surface resistance of the polyethylene terephthalate to which carbon nanotubes of 0.5% to 5% by weight according to the present invention is added.

도 3은 본 발명에 따른 0.5 중량%의 탄소나노튜브가 첨가된 폴리에틸렌테레프탈레이트 시편의 단면을 5만배 확대한 SEM 사진이다.FIG. 3 is a SEM photograph of a 50,000-fold enlarged cross section of a polyethylene terephthalate specimen to which 0.5 wt% carbon nanotubes are added.

도 4는 본 발명에 따른 5중량%의 탄소나노튜브가 첨가된 폴리에틸렌테레프탈레이트와 탄소나노튜브가 첨가되지 않은 폴리에틸렌테레프탈레이트의 열분석 결과이다.4 is a thermal analysis result of polyethylene terephthalate to which carbon nanotubes of 5% by weight according to the present invention is added and polyethylene terephthalate to which carbon nanotubes are not added.

도 5는 본 발명에 따른 5중량%의 탄소나노튜브가 첨가된 폴리에틸렌테레프탈레이트과 탄소나노튜브가 첨가되지 않은 폴리에틸렌테레프탈레이트의 전자파 차단 특성 결과이다.5 is a result of electromagnetic wave blocking properties of polyethylene terephthalate to which carbon nanotubes of 5% by weight according to the present invention are added and polyethylene terephthalate to which carbon nanotubes are not added.

본 발명은 폴리에틸렌테레프탈레이트에 관한 것으로, 뛰어난 탄성률과 전기 전도성 및 기계적인 특성을 지니고 있는 탄소나노튜브를 이용한 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체 및 그 제조방법에 관한 것이다.The present invention relates to a polyethylene terephthalate, and to a carbon nanotube / polyethylene terephthalate composite using carbon nanotubes having excellent elastic modulus, electrical conductivity and mechanical properties, and a method of manufacturing the same.

나노과학 기술 분야 중에서 특히 탄소나노튜브(CNT)는 도체, 반도체, 뛰어난 화학적 안정성, 물리적 강도 등의 특성을 지니고 있으므로, 기초 연구의 중요성과 산업적 응용성이 크게 각광을 받고 있다. 이러한 특성과 장점을 가진 탄소나노튜브를 이용한 여러 응용분야 중에 특히 탄소나노튜브 분산 고분자에 대한 연구가 활발히 진행되고 있다.
현재, 탄소 섬유나 제올라이트 등을 이용한 고분자 복합체를 사용하여 고강도 플라스틱 및 전자파 차단 플라스틱으로 사용하고 있으나, 탄소나노튜브는 이들 탄소섬유나 제올라이트에 비해 전도성이 크게 높고, 고분자나 유기용매 내에서 분산성이 뛰어나기 때문에, 기존의 탄소섬유나 제올라이트를 탄소나노튜브로 대체한다면 복합체의 전기전도성 및 기계적 물성이 매우 뛰어날 수 있다.
또한, 전자파 차폐를 위한 방법으로는, 전도성 고분자를 이용하는 방법, 카본블랙이나 탄소섬유의 고분자 복합체를 이용하는 방법, 무전해 도금법 및 구리나 은을 코팅하는 방법 등이 있으나, 이들 방법들에 사용되는 전도성 고분자는 유기용매에 낮은 용해성 및 낮은 내열성을 가지며, 카본블랙, 탄소섬유 및 금속 입자들은 고분자내에서 탄소나노튜브에 비해 낮은 분산성, 고중량비 등의 단점들이 있다.
탄소나노튜브는 소량의 첨가로도 전자파 특성이 크게 개선되며 열적, 전기적, 기계적 특성이 동시에 증가한다.
Carbon nanotubes (CNT) are particularly important in the field of nanotechnology because they have characteristics such as conductors, semiconductors, excellent chemical stability, and physical strength. Among various application fields using carbon nanotubes having such characteristics and advantages, researches on carbon nanotube dispersed polymers are being actively conducted.
Currently, polymer composites using carbon fibers or zeolites are used as high-strength plastics and electromagnetic wave shielding plastics, but carbon nanotubes have significantly higher conductivity than those of carbon fibers or zeolites, and have high dispersibility in polymers or organic solvents. Because of its superiority, if the existing carbon fiber or zeolite is replaced with carbon nanotubes, the electrical conductivity and mechanical properties of the composite may be excellent.
In addition, methods for shielding electromagnetic waves include a method of using a conductive polymer, a method of using a polymer composite of carbon black or carbon fiber, an electroless plating method, and a method of coating copper or silver, and the like. The polymer has low solubility and low heat resistance in an organic solvent, and carbon black, carbon fiber and metal particles have disadvantages such as low dispersibility and high weight ratio in the polymer compared to carbon nanotubes.
Carbon nanotubes significantly improve the electromagnetic wave characteristics even with the addition of a small amount of carbon nanotubes and simultaneously increase the thermal, electrical and mechanical properties.

삭제delete

본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 탄소나노튜브를 화학적으로 처리하여 고분자 내에서 분산성이 증가되게 한 후, 중합법으로 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체를 제조하는 것을 목적으로 한다.
이를 통해, 고탄성률, 개선된 전도성 및 전자파 차폐특성 등을 갖는 복합소재를 제공할 수 있게 한다.
The present invention has been made in order to solve the problems as described above, after the carbon nanotubes are chemically treated to increase the dispersibility in the polymer, to prepare a carbon nanotube / polyethylene terephthalate composite by a polymerization method The purpose.
Through this, it is possible to provide a composite material having a high modulus of elasticity, improved conductivity and electromagnetic shielding properties.

또한, 상기 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체(이하, CNT/PET 복합체)의 특성을 이용하여 스포츠 용품이나 레저용품, 전도성 기계부품, 전도성 섬유, 전자파 차단제로 활용할 수 있게 하는 것을 목적으로 한다.In addition, an object of the present invention is to enable the use of the carbon nanotube / polyethylene terephthalate composite (hereinafter, CNT / PET composite) as a sports article or leisure article, conductive mechanical part, conductive fiber, electromagnetic wave shielding agent.

상기의 목적을 달성하기 위하여, 본 발명의 일측면에 따르면, 폴리에틸렌테레프탈레트 95~99.5중량%와, 탄소나노튜브 0.5~5중량%를 포함하는 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체를 제공한다.
또한, 상기 탄소나노튜브는 산처리된 탄소나노튜브인 것을 특징으로 한다.
본 발명의 다른 측면에 따르면, 폴리에틸렌테레프탈레이트 95~99.5중량%와, 탄소나노튜브 0.5~5중량%를 포함하는 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체와, 촉매Ⅰ을 혼합한 후 초음파로 분산시키는 단계; 상기의 반응 혼합물을 교반하면서 200℃ 까지 가열하여 2시간 동안 유지한 후 발생된 메탄올을 제거하고, 촉매Ⅱ와 열안정제를 첨가한 후 진공상태를 유지하면서 280℃까지 가열한 후 3시간 동안 유지하는 단계; 를 포함하는 것을 특징으로 하는 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체의 제조방법; 를 포함하는 것을 특징으로 한다.
또한, 상기 탄소나노튜브를 산처리하는 단계를 더 포함하는 것을 특징으로 한다.
이하에서 첨부된 도면을 참조하여 본 발명의 바람직한 실시예가 상세히 설명된다.
일반적으로 탄소나노튜브는 높은 기계적 강도, 높은 영스모듈러스(Young's modulus)와 높은 종횡비(aspect ratio) 등의 기계적 특성, 높은 전기전도성, 및 높은 열안정성을 가지는 물질이다.
본 발명은 이러한 우수한 특성을 지닌 탄소나노튜브를 고분자 복합체에 응용하여 기계적, 열적, 전기적 특성이 향상된 탄소나노튜브/고분자 복합체를 제조하는 것이다.
도 1은 본 발명의 바람직한 일실시예에 따른 CNT/PET 복합체의 제조공정을 나타낸 흐름도이다.
여기서, 탄소나노튜브를 합성하는 방법은 최초로 나노튜브를 합성하는데 사용되었던 전기 방전법 (Arc-discharge), 열분해법 (pyrolysis), 레이저 증착법 (Laser vaporization), 플라즈마 화학기상증착법 (Plasma Enhanced Chemical Vapor Deposition), 열화학 기상증착법 (Thermal Chemical Vapor Deposition), 전기분해법, Flame 합성법 등이 있으나, 본 발명에서는 대량의 탄소나노튜브를 합성할 수 있는 방법인 열화학 기상증착법, 중합법을 이용하여 CNT/PET 복합체를 합성한 것으로, 도 1을 참조하여 설명한다.
먼저, 탄소나노튜브(CNT)의 분산성을 향상시키기 위해서 상기 탄소나노튜브를 황산과 질산의 혼합 용액(3:1) 속에서 85시간 동안 초음파 처리한 후 필터링하는 CNT 산처리 공정을 행한다(제1단계).
이후, 진공상태가 가능하고 교반기가 장착 가능한 용기에 디메틸테레프탈레이트(dimethyl terephthalate; DMT) 79g, 에틸렌글리콜(ethylene glycol: EG) 50ml, 탄소나노튜브 1g, 촉매I(zinc acetate dihydrate) 0.05g을 혼합한 후(제2단계), 초음파로 60분간 분산시킨다(제3단계).
이후, 상기 혼합물을 교반하면서 200℃까지 가열하여 2시간 동안 유지한다(제4단계).
이후, 발생된 메탄올을 제거한 후(제5단계), 촉매II(antimony acetate) 0.08g과 열안정제인 트리메틸포스페이트(trimethylphosphate) 0.01ml를 첨가한 후(제6단계), 진공상태를 유지하면서 280℃까지 가열한 후 3시간 동안 유지하여(제7단계), 1중량(%)의 탄소나노튜브가 첨가된 CNT/복합체를 형성하게 된다.
In order to achieve the above object, according to an aspect of the present invention, there is provided a carbon nanotube / polyethylene terephthalate composite containing 95 to 99.5 wt% polyethylene terephthalate, 0.5 to 5 wt% carbon nanotube.
The carbon nanotubes may be acid treated carbon nanotubes.
According to another aspect of the invention, a mixture of 95 to 99.5% by weight polyethylene terephthalate, carbon nanotube / polyethylene terephthalate composite containing 0.5 to 5% by weight of carbon nanotubes and the catalyst I, and then dispersed by ultrasonic wave ; After heating the reaction mixture to 200 ℃ while stirring for 2 hours to remove the generated methanol, and after adding the catalyst II and the heat stabilizer and heated to 280 ℃ while maintaining a vacuum state for 3 hours step; Carbon nanotube / polyethylene terephthalate composite production method comprising a; Characterized in that it comprises a.
In addition, the carbon nanotubes are characterized in that it further comprises the step of acid treatment.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
In general, carbon nanotubes are materials having high mechanical strength, high Young's modulus and high aspect ratio, high electrical conductivity, and high thermal stability.
The present invention is to produce a carbon nanotube / polymer composite having improved mechanical, thermal, and electrical properties by applying carbon nanotubes having such excellent properties to a polymer composite.
1 is a flow chart showing a manufacturing process of the CNT / PET composite according to an embodiment of the present invention.
Here, the method of synthesizing carbon nanotubes is the first method used in synthesizing nanotubes (Arc-discharge), pyrolysis (Laser vaporization), plasma vapor deposition (Plasma Enhanced Chemical Vapor Deposition) ), Thermal chemical vapor deposition, electrolysis, flame synthesis, etc., but in the present invention, CNT / PET composites are prepared using thermochemical vapor deposition and polymerization, which are methods for synthesizing a large amount of carbon nanotubes. It synthesize | combines and demonstrates with reference to FIG.
First, in order to improve the dispersibility of the carbon nanotubes (CNT), the CNT acid treatment process is performed by sonicating the carbon nanotubes in a mixed solution of sulfuric acid and nitric acid (3: 1) for 85 hours and then filtering (first Stage 1).
Afterwards, 79 g of dimethyl terephthalate (DMT), 50 ml of ethylene glycol (EG), 1 g of carbon nanotubes, and 0.05 g of catalyst I (zinc acetate dihydrate) were mixed in a container capable of vacuuming and equipped with a stirrer. After (second step), it is dispersed for 60 minutes by ultrasound (third step).
Thereafter, the mixture is heated to 200 ° C. with stirring for 2 hours (step 4).
After removing the generated methanol (step 5), 0.08 g of catalyst II (antimony acetate) and 0.01 ml of trimethylphosphate, a thermal stabilizer, were added (step 6), and then maintained at 280 ° C while maintaining a vacuum state. Heated to and maintained for 3 hours (seventh step), to form a CNT / composite to which 1 weight (%) of carbon nanotubes were added.

삭제delete

동일한 방법으로 폴리에틸렌테레프탈레이트(PET) 100중량%에서 상기 PET의 중량을 0.5~5중량(%) 감소시키는 만큼 동일한 중량의 탄소나노튜브(CNT)를 첨가하여 CNT/PET 복합체를 제조할 수 있다.In the same manner, CNT / PET composites may be prepared by adding carbon nanotubes (CNT) having the same weight as 100 wt% polyethylene terephthalate (PET) reduces the weight of the PET by 0.5-5 wt%.

삭제delete

삭제delete

도 2는 탄소나노튜브를 각각 0.5 중량%, 1중량%, 3중량%, 5중량% 첨가한 CNT/PET 복합체의 탄성률 및 표면저항의 특성을 나타낸 것이다.
또한, 산처리하지 않은 탄소나노튜브를 동일한 중량%로 제조하고, 탄소나노튜브가 전혀 첨가되지 않은 폴리에틸렌테레프탈레이트(PET)도 제조하여, CNT/PET 복합체를 비교테스트한 것이다.
또한, 상기 CNT/PET를 고온압축기(hot press)를 사용하여 필름형태로 만든 후 탄성률, 표면저항을 측정하였으며, 탄성률은 ASTM 규격에 따라 실행하였으며, 10개의 동일한 시편에 대한 테스트를 통해 그 평균값을 기록하였다.
도 2를 참조하면, 감소되는 PET의 양만큼 CNT를 첨가한 CNT/PET 복합체는 탄성률과 표면저항에서 순수한 PET보다 개선된 특성을 보여준다.
즉, 탄성률에서는 CNT/PET 복합체가 1.4~1.6 배수의 고탄성률을 가지며, 전도성에서도 표면저항이 1/200 정도로 감소되어 양호한 전도성을 가지게 됩니다. 이때, 첨가되는 CNT의 양은 0.5~5 중량%에서 개선된 효과를 가지며, 상기 범위 이상의 CNT 첨가는 그 효과가 미미하여 그 특성 기재는 생략한다.
도 3은 본 발명에 따른 0.5 중량%의 CNT/PET 복합체 시편의 단면을 5만배 확대한 SEM 사진으로, 복합체의 양호한 표면 특성을 보여준다.
도 4는 본 발명에 따른 5중량%의 CNT/PET 복합체(PET+MWNT 5wt.%)와 탄소나노튜브가 첨가되지 않은 순수한 PET의 열분석 결과를 비교하여 나타낸 그래프이고, 도 5는 본 발명에 따른 5중량%의 CNT/PET 복합체(PET+MWNT 5wt.%)와 탄소나노튜브가 첨가되지 않은 순수한 PET의 전자파 차단 특성 결과를 비교하여 나타낸 그래프이다.
도 4 및 도 5를 참조하면, 본 발명의 바람직한 실시예에 따른 CNT /PET 복합체는 탄소나노튜브가 첨가되지 않은 순수한 PET 보다 열적 흐름(Heat Flow)이 좋아 고온에서도 오래 견딜수 있으며, 전자파 차단 특성도 보다 향상되었음을 알 수 있다.
Figure 2 shows the properties of the elastic modulus and surface resistance of the CNT / PET composite is added 0.5% by weight, 1% by weight, 3% by weight, 5% by weight of carbon nanotubes, respectively.
In addition, carbon nanotubes which are not acid treated are prepared in the same weight%, polyethylene terephthalate (PET) having no carbon nanotubes added thereto is prepared, and the CNT / PET composites are compared and tested.
In addition, the CNT / PET was made into a film using a hot press, and then the elastic modulus and the surface resistance were measured. The elastic modulus was performed according to ASTM standards. Recorded.
Referring to FIG. 2, the CNT / PET composite, in which CNTs are added by the amount of PET, shows improved properties over pure PET in modulus and surface resistance.
That is, in elastic modulus, CNT / PET composite has high modulus of 1.4 ~ 1.6, and surface conductivity is reduced to 1/200 even in conductivity, so it has good conductivity. At this time, the amount of CNT added has an effect of improved at 0.5 to 5% by weight, the CNT addition over the above range is not effective, so the description of its characteristics is omitted.
FIG. 3 is a SEM photograph of a 50,000-fold magnification of 0.5% by weight of the CNT / PET composite specimen according to the present invention, showing good surface properties of the composite.
Figure 4 is a graph showing a comparison of the thermal analysis results of pure PET without added carbon nanotubes and 5% by weight of CNT / PET composite (PET + MWNT 5wt.%), According to the present invention The graph shows a comparison of the results of the electromagnetic shielding properties of pure PET without added carbon nanotubes and CNT / PET composite (PET + MWNT 5wt.%) Of 5% by weight.
4 and 5, the CNT / PET composite according to the preferred embodiment of the present invention has a good thermal flow (Heat Flow) better than the pure PET without carbon nanotubes is added, it can withstand long periods even at high temperatures, electromagnetic wave blocking characteristics It can be seen that the improvement.

이와 같이, 본 발명에 따른 CNT/PET 복합체는 우수한 물리화학적 특성을 가지고 있는 탄소나노튜브를 화학적으로 처리하여 카르복실 작용기(COOH)를 가지는 탄소나노튜브를 합성하고 PET에 분산시켜 물리화학적 특성이 개선된 CNT/PET 복합체를 제조하는 것이다.
또한, 상기 CNT/PET 복합체는 탄소나노튜브가 첨가되지 않은 순수한 PET 보다 전기전도성 및 탄성률이 크게 증가되며, 매우 가볍고, 고온에서도 오래 견딜 수 있으므로, 고탄성률이 요구되는 스포츠 용품이나 레저용품에 적용가능하다.
또한, 높은 전기 전도성 및 전자파 차단 특성을 가지므로, 전도성 기계부품, 전도성 섬유, 전자파 차단제 등으로 사용되는 고분자 재료에 적용가능하다.
As such, the CNT / PET composite according to the present invention synthesizes carbon nanotubes having a carboxyl functional group (COOH) by chemically treating carbon nanotubes having excellent physicochemical properties and dispersing them in PET to improve physicochemical properties. To prepare a CNT / PET complex.
In addition, the CNT / PET composite is significantly increased in electrical conductivity and elastic modulus than pure PET without carbon nanotubes, and is very light and can withstand high temperatures for a long time. Do.
In addition, since it has high electrical conductivity and electromagnetic wave shielding properties, it is applicable to polymer materials used as conductive mechanical parts, conductive fibers, electromagnetic wave shielding agents, and the like.

이상에서 본 발명의 바람직한 실시예를 상세히 설명하였으나, 이는 예를 들어 설명한 것에 불과하여 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 다양한 변화 및 변경이 가능함은 물론이다.Although the preferred embodiment of the present invention has been described in detail above, this is merely an example, and various changes and modifications are possible without departing from the technical spirit of the present invention.

삭제delete

삭제delete

상기에서 설명한 바와 같이, 본 발명은 PET에 탄소나노튜브를 첨가하여 CNT/PET 복합체를 합성함으로써, 탄소나노튜브를 첨가하지 않은 순수 PET 보다 고탄성률을 가지게 하며, 열적, 전기적 특성을 향상시킬 수 있게 한다.
이를 통해 상기 특성을 갖는 CNT/PET 복합체를 스포츠 용품, 전자재료 등 다양하게 활용할 수 있게 한다.
As described above, the present invention by adding carbon nanotubes to the PET to synthesize the CNT / PET composite, to have a higher elastic modulus than the pure PET without the carbon nanotubes, and to improve the thermal and electrical properties do.
This makes it possible to utilize a variety of CNT / PET composite having the above characteristics, such as sports equipment, electronic materials.

Claims (4)

폴리에틸렌테레프탈레트 95~99.5중량%와, 탄소나노튜브 0.5~5중량%를 포함하는 것을 특징으로 하는 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체.A carbon nanotube / polyethylene terephthalate composite comprising 95 to 99.5% by weight of polyethylene terephthalate and 0.5 to 5% by weight of carbon nanotubes. 제1항에 있어서,The method of claim 1, 상기 탄소나노튜브는 산처리된 탄소나노튜브인 것을 특징으로 하는 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체.The carbon nanotubes are carbon nanotubes / polyethylene terephthalate composite, characterized in that the acid-treated carbon nanotubes. 폴리에틸렌테레프탈레이트 95~99.5중량%와, 탄소나노튜브 0.5~5중량%를 포함하는 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체와, 촉매Ⅰ을 혼합한 후 초음파로 분산시키는 단계;95 to 99.5 wt% polyethylene terephthalate, carbon nanotube / polyethylene terephthalate composite including carbon nanotube 0.5 to 5 wt%, and the catalyst I, followed by dispersion by ultrasonic wave; 상기의 반응 혼합물을 교반하면서 200℃ 까지 가열하여 2시간 동안 유지한 후 발생된 메탄올을 제거하고, 촉매Ⅱ와 열안정제를 첨가한 후 진공상태를 유지하면서 280℃까지 가열한 후 3시간 동안 유지하는 단계; 를 포함하는 것을 특징으로 하는 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체의 제조방법.After heating the reaction mixture to 200 ℃ while stirring for 2 hours to remove the generated methanol, and after adding the catalyst II and the heat stabilizer and heated to 280 ℃ while maintaining a vacuum state for 3 hours step; Carbon nanotube / polyethylene terephthalate composite manufacturing method comprising a. 제3항에 있어서,The method of claim 3, 상기 탄소나노튜브를 산처리하는 단계를 더 포함하는 것을 특징으로 하는 탄소나노튜브/폴리에틸렌테레프탈레이트 복합체의 제조방법.Method of producing a carbon nanotube / polyethylene terephthalate composite, characterized in that it further comprises the step of acid treatment of the carbon nanotube.
KR1020040003527A 2004-01-17 2004-01-17 carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same KR100665676B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040003527A KR100665676B1 (en) 2004-01-17 2004-01-17 carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040003527A KR100665676B1 (en) 2004-01-17 2004-01-17 carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same

Publications (2)

Publication Number Publication Date
KR20050075858A KR20050075858A (en) 2005-07-22
KR100665676B1 true KR100665676B1 (en) 2007-01-09

Family

ID=37263869

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040003527A KR100665676B1 (en) 2004-01-17 2004-01-17 carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same

Country Status (1)

Country Link
KR (1) KR100665676B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427728B1 (en) * 2012-12-20 2014-08-13 인하대학교 산학협력단 Manufacturing method of carbon nanotube filled-thermoplastic resin for electromagnetic interference shielding material
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100602512B1 (en) * 2005-06-07 2006-07-19 김성훈 Aromatic polyester nanocomposite containing carbon nanotube and preparation of the same
KR100744517B1 (en) * 2005-09-28 2007-08-01 엘지전자 주식회사 Interception material of electromagnetic waves
KR100773729B1 (en) * 2006-06-02 2007-11-06 윤관한 Pet composition filled in surface modified multi walled carbon nanotube and manufacturing method therefor
KR100784822B1 (en) * 2006-09-12 2007-12-14 김주용 E-textile for active cooling
US8110170B2 (en) 2006-09-22 2012-02-07 Snu R&Db Foundation Conductive polymer-carbon nanotube composite and manufacturing method thereof
CN102532819B (en) * 2010-12-23 2014-11-19 上海杰事杰新材料(集团)股份有限公司 Low-percolation polyester/carbon nanotube conductive composite material and preparation method thereof
CN109912941B (en) * 2019-03-15 2021-04-02 广东格瑞纳思薄膜科技有限公司 Antistatic high-hardness nano-composite optical grade PET (polyethylene terephthalate) slice and preparation method thereof
CN109957221B (en) * 2019-03-15 2021-04-02 广东格瑞纳思薄膜科技有限公司 Antistatic scratch-resistant transparent BOPET film and preparation method thereof
CN115895228A (en) * 2022-11-28 2023-04-04 上海金发科技发展有限公司 High-stability PC/PBT alloy material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
KR101427728B1 (en) * 2012-12-20 2014-08-13 인하대학교 산학협력단 Manufacturing method of carbon nanotube filled-thermoplastic resin for electromagnetic interference shielding material

Also Published As

Publication number Publication date
KR20050075858A (en) 2005-07-22

Similar Documents

Publication Publication Date Title
Jou et al. The electromagnetic shielding effectiveness of carbon nanotubes polymer composites
KR101135672B1 (en) Conductive thermosets by extrusion
KR100665676B1 (en) carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same
US20190292721A1 (en) Process for graphene-mediated metallization of fibers, yarns, and fabrics
JP5152716B2 (en) Chemically modified carbon nanotube and method for producing the same
Mallakpour et al. One-pot synthesis of glucose functionalized multi-walled carbon nanotubes: dispersion in hydroxylated poly (amide-imide) composites and their thermo-mechanical properties
KR20060133099A (en) Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials
EP1425166A1 (en) Method of forming conductive polymeric nanocomposite materials and materials produced thereby
WO2007035442A2 (en) Conductive silicone and methods for preparing same
JP2008274060A (en) Method for mixing resin material and conductive filler, composite material produced by the method and master pellet
US20190292720A1 (en) Graphene-Mediated Metallization of Fibers, Yarns, and Fabrics
Mallakpour et al. Effect of amino acid-functionalization on the interfacial adhesion and behavior of multi-walled carbon nanotubes/poly (amide-imide) nanocomposites containing thiazole side unit
Yoon et al. Functionalization of Shortened Single‐Walled Carbon Nanotubes with Poly (p‐dioxanone) by “Grafting‐From” Approach
KR101471577B1 (en) Nanocomposite preparation by mechanochemical covalent functionalization of carbon nanotubes with polymer for enhanced mechanical strength
Ma et al. The architecture of carbon fiber-TiO2 nanorods hybrid structure in supercritical water for reinforcing interfacial and impact properties of CF/epoxy composites
KR101489174B1 (en) preparation of functionalized graphene and functionalized graphene by the same
Nisar et al. Synthesis of polyethylene/nickel–carbon stimuli-responsive material under magnetic field at room temperature: effect of the filler on the properties
Rakesh et al. Monomer self assembly and organo-gelation as a route to fabricate cyanate ester resins and their nanocomposites with carbon nanotubes
KR100789103B1 (en) Polylactic composite comprising carbon nanotube and manufacturing method thereof
JP2009057407A (en) Method for improving electrical conductivity of carbon nanotube-containing resin molded body by lamination heating and pressurization
KR100773729B1 (en) Pet composition filled in surface modified multi walled carbon nanotube and manufacturing method therefor
KR100854967B1 (en) Carbon nanomaterial dispersion and its preparation method
KR101093056B1 (en) Polytrimethylene terephthalate/Graphene Composites with Enhanced Mechanical Property and Electrical Conductivity and Method for Preparing the Same
Vukić et al. Influence of different functionalization methods of multi-walled carbon nanotubes on the properties of poly (L-lactide) based nanocomposites
Chen et al. Dramatic enhancement of carbon nanotube dispersion in polyimide composites by a two‐step amino functionalization approach

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111130

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131120

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141119

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee