KR100599874B1 - Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor - Google Patents

Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor Download PDF

Info

Publication number
KR100599874B1
KR100599874B1 KR1020030082025A KR20030082025A KR100599874B1 KR 100599874 B1 KR100599874 B1 KR 100599874B1 KR 1020030082025 A KR1020030082025 A KR 1020030082025A KR 20030082025 A KR20030082025 A KR 20030082025A KR 100599874 B1 KR100599874 B1 KR 100599874B1
Authority
KR
South Korea
Prior art keywords
carbon
current collector
salt
electrode
metal oxide
Prior art date
Application number
KR1020030082025A
Other languages
Korean (ko)
Other versions
KR20050048172A (en
Inventor
주오심
정광덕
이재경
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020030082025A priority Critical patent/KR100599874B1/en
Priority to PCT/KR2003/002849 priority patent/WO2005050682A1/en
Priority to AU2003285806A priority patent/AU2003285806A1/en
Publication of KR20050048172A publication Critical patent/KR20050048172A/en
Application granted granted Critical
Publication of KR100599874B1 publication Critical patent/KR100599874B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

본 발명은 탄소나노물질과 나노크기의 금속산화물이 조합된 전기화학 캐패시터용 전극의 제조방법에 관한 것으로서, 집전체 표면을 수소와 탄화수소의 혼합기체와 접촉시켜 집전체 위에 탄소나노물질을 화학증착시키고, 이 탄소나노물질에 나노크기의 금속산화물을 분산 담지시키는, 본 발명의 방법에 의하면, 낮은 저항 및 높은 캐패시턴스 값을 갖는 전기화학 캐패시터용 전극을 제조할 수 있다.The present invention relates to a method for manufacturing an electrode for an electrochemical capacitor in which a carbon nano material and a nano-sized metal oxide are combined. The surface of the current collector is contacted with a mixed gas of hydrogen and hydrocarbon to chemically deposit a carbon nano material on the current collector. According to the method of the present invention, by dispersing and carrying a nano-sized metal oxide on the carbon nanomaterial, an electrode for an electrochemical capacitor having a low resistance and a high capacitance value can be manufactured.

Description

탄소나노물질과 나노크기의 금속산화물이 조합된 전기화학 캐패시터용 전극의 제조방법 {METHOD FOR PREPARING HYBRID ELECTRODE OF CARBON NANOMATERIALS AND NANO-SIZED METAL OXIDES FOR ELECTROCHEMICAL CAPACITOR} METHOD FOR PREPARING HYBRID ELECTRODE OF CARBON NANOMATERIALS AND NANO-SIZED METAL OXIDES FOR ELECTROCHEMICAL CAPACITOR}             

도 1은 집전체 위에 성장시킨 탄소나노물질에 나노크기의 금속산화물을 담지시켜 제조한, 본 발명에 따른 전극의 개략도이고,1 is a schematic diagram of an electrode according to the present invention prepared by supporting a nano-sized metal oxide on a carbon nano material grown on a current collector,

도 2는 흑연 집전체 위에 성장시킨 탄소나노물질에 나노크기의 RuO2을 탄소물질 중량 대비 여러 비율로 담지시켜 얻은 전극 각각의 순환전압전류(cyclic voltametry) 곡선이고,FIG. 2 is a cyclic voltametry curve of each electrode obtained by supporting nano-sized RuO 2 in various ratios with respect to the carbon material weight on a carbon nano material grown on a graphite current collector.

도 3은 흑연 집전체 위에 성장시킨 탄소나노물질 전극(비교예) 및 탄소나노물질에 RuO2를 탄소물질 중량의 100%로 담지시켜 얻은 전극(실시예 2) 각각의 충방전 특성 그래프이고,FIG. 3 is a graph showing charge and discharge characteristics of a carbon nanomaterial electrode (comparative example) grown on a graphite current collector and an electrode (Example 2) obtained by supporting RuO 2 on a carbon nano material at 100% of the weight of a carbon material.

도 4는 비교예의 탄소나노물질 전극 및 실시예 2의 탄소나노물질/RuO2 전극의 SEM 사진이고,4 is a SEM photograph of the carbon nano material electrode of Comparative Example and the carbon nano material / RuO 2 electrode of Example 2,

도 5는 실시예 2의 탄소나노물질/RuO2 전극의 TEM 사진이다.5 is a TEM photograph of a carbon nano material / RuO 2 electrode of Example 2. FIG.

본 발명은 화학증착법을 이용하여 집전체 위에 탄소나노물질을 직접 성장시키고 그 탄소물질에 나노크기의 금속산화물을 분산 담지시켜, 낮은 저항 및 높은 캐패시턴스 값을 갖는 전기화학 캐패시터용 전극을 제조하는 방법에 관한 것이다.The present invention is a method for producing an electrode for an electrochemical capacitor having a low resistance and a high capacitance value by directly growing a carbon nano material on the current collector using a chemical vapor deposition method and by dispersing and supporting a nano-sized metal oxide on the carbon material It is about.

전기화학 이중층 캐패시터는 하나의 단위셀 내에 두 개의 전극, 두 전극 사이에 위치하는 전해질 및 폴리프로필렌 등으로 이루어진 분리막, 및 전극의 양단에 맞닿아 전자 흐름의 출입구 역할을 하는 집전체(current collector)로 이루어지며, 전극과 전해질이 접촉하는 계면에 전기이중층을 형성함으로써 에너지를 저장한다.An electrochemical double layer capacitor is a separator consisting of two electrodes in one unit cell, an electrolyte and a polypropylene positioned between the two electrodes, and a current collector which serves as an entrance and exit of electron flow in contact with both ends of the electrode. Energy is stored by forming an electric double layer at an interface between the electrode and the electrolyte.

이러한 전기화학 이중층 캐패시터의 전극재료로서 비표면적이 넓은 활성탄이 주로 이용되어 왔는데, 활성탄을 바인더 및 도전제(conducting agent)와 혼합하여 집전체에 부착시켜 전기화학 이중층 캐패시터용 전극을 제조하는 방법이 미국특허 제6,214,204호, 제6,045,685호 및 문헌[엘즈비에타(Elzbieta, F.) 등, "Carbon materials for the electrochemical storage of energy in capacitors", Carbon 39(2001) pp937-950]에 개시되어 있다.As an electrode material of such an electrochemical double layer capacitor, activated carbon having a large specific surface area has been mainly used.A method for manufacturing an electrode for an electrochemical double layer capacitor by mixing activated carbon with a binder and a conducting agent and attaching it to a current collector is disclosed in the United States. Patents 6,214,204, 6,045,685 and Elzbieta, F. et al., "Carbon materials for the electrochemical storage of energy in capacitors", Carbon 39 (2001) pp937-950.

그러나, 활성탄은 세공의 크기가 너무 작아 전해질과 접촉시 전기이중층을 형성할 수 있는 표면적이 일부분으로 제한되기 때문에, 활성탄으로부터 유도된 종래의 전극은 약 40 F/g 이하의 낮은 캐패시턴스 값을 갖는다.However, conventional activated carbon derived from activated carbon has a low capacitance value of about 40 F / g or less, since activated carbon has a small pore size and is limited to a portion of the surface area capable of forming an electric double layer upon contact with the electrolyte.

이러한 문제점을 해결하고자, 활성탄 대신에, 캐패시터 전극재료에 요구되는 특성, 즉 높은 전자 전도성, 넓은 표면적, 전기화학적 비활성, 용이한 성형 및 가공성 등을 만족시키는 탄소, 특히 탄소나노물질을 사용하여 전극을 제조하는 연구가 꾸준히 진행되었다.In order to solve this problem, instead of activated carbon, an electrode using carbon, in particular carbon nanomaterials, which satisfies the characteristics required for the capacitor electrode material, that is, high electronic conductivity, large surface area, electrochemical inertness, and easy formability and processability, is used. Manufacturing studies have been ongoing.

예를 들어, 바인더를 이용하여 탄소나노튜브로 전극을 제조하고 그의 전기이중층 특성을 관찰한 문헌이 발표된 바 있고(문헌[조셉(Joseph, N.B.) 등, "Electrochemical studies of single-wall nanotubes in aqueous solution", J. Electroananlytical Chem., 488(2000) pp92-98; 쟝(Zhang, B.) 등, "Electric double layer capacitors using carbon nanotube electrodes and organic electrolyte", Materials Letters 51(2001) pp539-542; 마크(Mark, H.) 등, "Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrole", Chem. Mater. 14(2002) pp1610-1613; 엘즈비에타(Elzbieta, F.) 등, "Electrochemical storage of energy in carbon nanotubes and nanostructured carbons", Carbon (2002) pp1-14] 참조); 의사캐패시턴스(pseudocapacitance)를 나타내는 금속산화물을 탄소나노물질, 바인더 및 도전제와 함께 혼합하여 전극을 제조하는 방법이 제시되었다(문헌[J.M. Miller and B. Dunn, "Morphology and Electrochemistry of Ruthenium/Carbon Aerogel Nanostructure", Langmuir, 15(1999) 799-806; B.E. Conway 등, "The role and Utilization of pseudocapacitance for energy storage by supercapacitors", J. power Source, 66(1997) 1-14; G. Arabale 등, "Enhanced Supercapacitance of multiwalled carbon nanotubes funtionalized with ruthenium oxide", Chem. Phys. Lett., 376(2003) 207-213; J.W. Long 등, "Voltammetric Chracterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The nature of Capacitance in Nanostructured materials", Langnuir, 15(3)(1999) 780-785] 참조).For example, a document has been published in which an electrode is made of carbon nanotubes using a binder and its properties are observed (Joseph, NB et al., "Electrochemical studies of single-wall nanotubes in aqueous solution"). solution, "J. Electroananlytical Chem., 488 (2000) pp 92-98; Zhang, B. et al.," Electric double layer capacitors using carbon nanotube electrodes and organic electrolyte ", Materials Letters 51 (2001) pp 539-542; Mark, H., et al., "Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrole", Chem. Mater. 14 (2002) pp 1610-1613; Elzbieta, F. et al., "Electrochemical storage of energy in carbon nanotubes and nanostructured carbons ", Carbon (2002) pp 1-14); A method of preparing an electrode by mixing a metal oxide exhibiting pseudocapacitance with a carbon nanomaterial, a binder, and a conductive agent has been proposed (JM Miller and B. Dunn, "Morphology and Electrochemistry of Ruthenium / Carbon Aerogel Nanostructure). ", Langmuir, 15 (1999) 799-806; BE Conway et al.," The role and Utilization of pseudocapacitance for energy storage by supercapacitors ", J. power Source, 66 (1997) 1-14; G. Arabale et al.," Enhanced Supercapacitance of multiwalled carbon nanotubes funtionalized with ruthenium oxide ", Chem. Phys. Lett., 376 (2003) 207-213; JW Long et al.," Voltammetric Chracterization of Ruthenium Oxide-Based Aerogels and Other RuO 2 Solids: The nature of Capacitance in Nanostructured materials ", Langnuir, 15 (3) (1999) 780-785).

그러나, 이들 방법은 전극 제조시 바인더를 이용함으로 인해서 탄소나노물질의 넓은 표면적을 충분히 활용하지 못 할 뿐 아니라 전기 저항 및 전해질 용액의 물질전달 저항을 증가시키는 문제점을 갖는다.However, these methods do not fully utilize the large surface area of the carbon nano material due to the use of a binder in electrode production, and also have problems of increasing the electrical resistance and the mass transfer resistance of the electrolyte solution.

따라서, 본 발명의 목적은 바인더를 사용하지 않음으로써 전극 활물질인 탄소나노물질 및 금속산화물의 표면적을 충분히 활용하여 낮은 저항 및 높은 캐패시턴스 값을 갖는 등 성능이 우수한, 전기화학 캐패시터용 전극을 제조하는 방법을 제공하는 것이다.
Accordingly, an object of the present invention is to produce an electrode for electrochemical capacitors having excellent performance, such as low resistance and high capacitance values by fully utilizing the surface area of carbon nanomaterials and metal oxides as electrode active materials by not using a binder. To provide.

상기 목적을 달성하기 위하여 본 발명에서는, In the present invention to achieve the above object,

1) 집전체 표면을 수소와 탄화수소의 혼합기체와 접촉시켜 집전체 위에 탄소나노물질을 화학증착시키고, 1) The surface of the current collector is contacted with a mixed gas of hydrogen and hydrocarbon to chemically deposit carbon nanomaterial on the current collector,

2) 집전체 위에 화학증착된 탄소나노물질에 금속산화물 전구체의 용액을 함침시킨 다음 열처리하여 탄소나노물질에 나노크기의 금속산화물을 분산 담지시키는 것을 포함하는, 2) impregnating a solution of a metal oxide precursor in a carbon nanomaterial chemically deposited on a current collector, followed by heat treatment to disperse and support the nano-sized metal oxide in the carbon nanomaterial.

전기화학 캐패시터용 전극의 제조방법을 제공한다.Provided is a method of manufacturing an electrode for an electrochemical capacitor.

이하 본 발명을 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail.

본 발명의 방법은 전극 특성을 보이는 탄소나노물질의 표면에 금속산화물을 나노크기로 균일하게 분산시킴으로써 고가의 금속산화물을 최소로 이용하여 최대 캐패시턴스 값을 보이는 전기화학 캐패시터용 전극을 제조하는 것이다.The method of the present invention is to produce an electrode for an electrochemical capacitor showing the maximum capacitance value by using a small amount of expensive metal oxide by uniformly dispersing the metal oxide in nano size on the surface of the carbon nano material showing the electrode characteristics.

본 발명 방법의 단계 1)에서, 집전체 표면을 수소와 탄화수소의 혼합기체와 접촉시켜 탄소나노물질을 화학증착시키는 공정은 400 내지 1200℃, 바람직하게는 500 내지 1000℃의 온도에서 1 내지 60분, 바람직하게는 3 내지 20분 동안 수행할 수 있다. 상기 증착온도가 400℃ 보다 낮은 경우에는 탄소나노물질의 성장이 어렵고, 1200℃ 보다 높은 경우에는 집전체로 사용하는 기판의 저항이 증가하는 문제점이 있다.In step 1) of the method of the present invention, a process of chemically depositing carbon nanomaterials by bringing the surface of the current collector into contact with a mixed gas of hydrogen and hydrocarbons is performed at a temperature of 400 to 1200 ° C, preferably 500 to 1000 ° C for 1 to 60 minutes. , Preferably 3 to 20 minutes. When the deposition temperature is lower than 400 ℃, the growth of the carbon nano material is difficult, when higher than 1200 ℃ there is a problem that the resistance of the substrate used as the current collector increases.

본 발명에 사용되는 수소와 탄화수소의 혼합기체는 수소 및 탄화수소를 1 : 0.2∼30, 바람직하게는 1 : 8∼12의 몰비로 포함하는 혼합물로부터 유도되며, 탄화수소의 구체적인 예로는 아세틸렌, 에틸렌, 메탄, 프로판 및 부탄 등을 들 수 있다. The mixed gas of hydrogen and hydrocarbon used in the present invention is derived from a mixture containing hydrogen and hydrocarbon in a molar ratio of 1: 0.2-30, preferably 1: 8-12, and specific examples of hydrocarbons include acetylene, ethylene, methane And propane and butane.

본 발명에 사용되는 집전체 재료로는 전기저항이 작고 고온에서 견딜 수 있는 물질이 적합한데, 대표적인 예로는 흑연, 탄소(grassy carbon), 티타늄(Ti), 스테인레스 스틸(stainless steel) 및 니켈(Ni)을 들 수 있으며, 이중에서 탄소와 흑연이 바람직하다.As the current collector material used in the present invention, materials having low electrical resistance and capable of withstanding high temperatures are suitable, and representative examples thereof include graphite, grassy carbon, titanium (Ti), stainless steel, and nickel (Ni). ), Of which carbon and graphite are preferred.

이와 같은 본 발명 방법의 단계 1)에 의하면, 탄소나노튜브(carbon nanotube), 탄소나노섬유(carbon nanofiber) 및 무정형 탄소(amorphous carbon)와 같은 탄소나노물질이 집전체 위에 형성된다.According to the step 1) of the present invention, carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and amorphous carbon are formed on the current collector.

본 발명에 따르면, 탄소나노물질을 화학증착시키기 전에 탄소나노물질의 성장을 촉진할 목적으로, 집전체 표면에 Ni, Co 및 Fe 중에서 선택된 1종 이상의 금속을 추가로 담지시킬 수 있다. 금속의 담지는, 집전체 표면에 금속염 수용액을 분무하고 건조한 후 500 내지 1200℃, 바람직하게는 750 내지 900℃에서 열처리하여 금속산화물을 형성한 후 이를 환원시킴으로써 수행할 수 있다.According to the present invention, one or more metals selected from Ni, Co, and Fe may be further supported on the surface of the current collector for the purpose of promoting growth of the carbon nanomaterials before chemical vapor deposition of the carbon nanomaterials. The supporting of the metal may be performed by spraying a metal salt aqueous solution on the surface of the current collector, drying and heat-treating at 500 to 1200 ° C., preferably 750 to 900 ° C., to form a metal oxide and then reducing it.

이때, 금속이 소결되는 것을 방지하기 위하여 상기 금속과 함께 알루미늄을 담지시킬 수 있으며, 니켈이 담지되는 경우에는 니켈의 크기를 조절하여 이후 성장하는 탄소나노물질의 크기를 변화시킬 수 있다.In this case, in order to prevent the metal from being sintered, aluminum may be supported together with the metal. When nickel is supported, the size of the carbon nano material may be changed by controlling the size of nickel.

이어, 본 발명 방법의 단계 2)에서, 탄소나노물질이 성장한 집전체를 금속산화물 전구체의 용액에 담구어 탄소나노물질에 상기 용액을 함침시킨 다음 100 내지 1000℃, 바람직하게는 100 내지 400℃에서 열처리함으로써 탄소나노물질에 나노크기의 금속산화물을 탄소물질 중량의 10 내지 500%, 바람직하게는 10 내지 200%의 양으로 분산 담지시킬 수 있다.Subsequently, in step 2) of the method of the present invention, the current collector in which the carbon nanomaterial is grown is immersed in a solution of a metal oxide precursor, and the carbon nanomaterial is impregnated with the solution, and then, at 100 to 1000 ° C., preferably at 100 to 400 ° C. By heat treatment, the nano-sized metal oxide may be dispersedly supported on the carbon nano material in an amount of 10 to 500%, preferably 10 to 200% of the weight of the carbon material.

금속산화물 전구체로는 루테늄(Ru)염, 코발트(Co)염, 망간(Mn)염, 이리듐(Ir)염, 납(Pb)염, 티타늄(Ti)염 및 이들의 혼합물 중에서 선택된 금속염을 사용할 수 있다.As the metal oxide precursor, a metal salt selected from ruthenium (Ru), cobalt (Co), manganese (Mn), iridium (Ir), lead (Pb), titanium (Ti), and mixtures thereof may be used. have.

이와 같은 방법에 의해 제조된, 탄소나노물질과 나노크기의 금속산화물이 조 합된 전극의 개략도를 도 1에 나타내었으며, 본 발명의 전극은 전극 활물질인 탄소나노물질 및 금속산화물의 넓은 표면적을 효율적으로 이용하여 전극의 내부저항을 크게 감소시키고 높은 캐패시턴스 값을 달성할 수 있어, 전기화학 캐패시터용 전극으로서 고순도 이온 분리, 무기이온 제거 및 정수기와 같은 소규모 정제 공정 뿐만 아니라 대용량 수처리 공정, 해수 담수화 공정 및 에너지 저장 공정 등에 다양하게 이용될 수 있다.A schematic diagram of an electrode incorporating a carbon nano material and a nano-sized metal oxide prepared by the above method is shown in FIG. 1, and the electrode of the present invention efficiently utilizes a large surface area of the carbon nano material and the metal oxide, which are electrode active materials. It can greatly reduce the internal resistance of the electrode and achieve high capacitance value.It is an electrode for electrochemical capacitor, so it can be used for large-scale water treatment process, seawater desalination process and energy as well as small-scale purification process such as high purity ion separation, inorganic ion removal and water purifier. It can be used in various ways, such as a storage process.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

비교예Comparative example

흑연 집전체의 한쪽 표면(크기: 2㎝×0.8㎝)에 0.05M의 Ni(NO3)2·6H2O 수용액을 분무하고 40℃에서 30분 동안 건조한 후, 흑연 집전체를 석영관 반응기에 넣고 운반기체로서 아르곤(Ar)을 100 ml/분의 속도로 공급하면서 반응기의 온도를 10℃/분의 속도로 500℃까지 승온시켜 2시간 동안 열처리하였다. 열처리에 의해 생성된 NiO을 100 ml/분의 속도로 공급되는 수소의 존재하에서 10℃/분의 속도로 600℃까지 승온시켜 1시간 동안 환원처리하여, 집전체 표면에 니켈을 담지시켰다.After spraying 0.05M Ni (NO 3 ) 2 .6H 2 O aqueous solution on one surface (size: 2cm × 0.8cm) of the graphite current collector and drying at 40 ° C. for 30 minutes, the graphite current collector was transferred to a quartz tube reactor. After argon (Ar) was supplied at a rate of 100 ml / min as a carrier gas, the temperature of the reactor was raised to 500 ° C. at a rate of 10 ° C./min, and heat-treated for 2 hours. NiO produced by the heat treatment was heated to 600 ° C. at a rate of 10 ° C./min in the presence of hydrogen supplied at a rate of 100 ml / min, and reduced for 1 hour to carry nickel on the surface of the current collector.

이어, 니켈이 담지된 흑연 집전체 표면에 수소와 아세틸렌(C2H2)의 혼합기체를 1:10의 중량비로 20분 동안 공급하면서 집전체 위에 탄소나노튜브를 성장시켰 다. 탄소나노튜브의 성장이 완료된 후에는 전기로를 개방하여 반응이 더 진행되지 않도록 반응기를 식혀주고 아세틸렌 가스의 공급은 중단한 채 3분 가량 수소만 공급하였다. 형성된 탄소나노튜브 전극의 두께는 약 30㎛ 정도이었다.Subsequently, carbon nanotubes were grown on the current collector while supplying a mixed gas of hydrogen and acetylene (C 2 H 2 ) at a weight ratio of 1:10 on the surface of the nickel-supported graphite current collector for 20 minutes. After the growth of the carbon nanotubes were completed, the reactor was cooled by opening the electric furnace so that the reaction did not proceed further, and only 3 minutes of hydrogen was supplied without stopping the supply of acetylene gas. The carbon nanotube electrode formed had a thickness of about 30 μm.

실시예 1Example 1

상기 비교예에서 성장한 탄소나노튜브에 Ru(NO)(NO3)x(OH)y (x+y=3, 분자량=317.09g) 수용액을 함침시킨 다음 350℃에서 30분 동안 열처리하여 탄소물질 중량의 50%의 양으로 RuO2를 분산 담지시켜, 탄소나노튜브와 나노크기의 루테늄 산화물이 조합된 전극을 제조하였다.The carbon nanotubes grown in the comparative example were impregnated with an aqueous solution of Ru (NO) (NO 3 ) x (OH) y (x + y = 3, molecular weight = 317.09g), followed by heat treatment at 350 ° C. for 30 minutes to weight the carbon material. RuO 2 was dispersed and supported in an amount of 50% of to prepare an electrode in which carbon nanotubes and nano-sized ruthenium oxide were combined.

실시예 2 내지 4Examples 2-4

실시예 1과 동일한 방법으로 탄소나노튜브에 RuO2를 탄소물질 중량의 100%, 150% 및 200%의 양으로 각각 분산 담지시켜, 탄소나노튜브와 나노크기의 루테늄 산화물이 조합된 각각의 전극을 제조하였다.In the same manner as in Example 1, RuO 2 was dispersed and supported on carbon nanotubes in an amount of 100%, 150% and 200% of the carbon material weight, respectively, thereby combining each electrode of carbon nanotubes and nano-sized ruthenium oxide. Prepared.

시험예: 전극 특성Test Example: Electrode Characteristics

상기 비교예에서 제조한 탄소나노튜브(CNT) 전극 및 실시예 1 내지 4에서 제조한 탄소나노튜브(CNT)/RuO2 전극 각각을 사용하여 전기화학 이중층 캐패시터의 단위셀을 제작하였다. 이때, 전해질인 1M 황산용액과 폴리프로필렌 분리막을 사이에 두고 두 개의 전극을 부착시켜 단위셀을 제조하였다. A unit cell of an electrochemical double layer capacitor was prepared using each of the carbon nanotube (CNT) electrode prepared in the comparative example and the carbon nanotube (CNT) / RuO 2 electrode prepared in Examples 1 to 4. At this time, a unit cell was prepared by attaching two electrodes with 1M sulfuric acid solution and a polypropylene separator interposed therebetween.

제조된 캐패시터 단위셀의 비 캐패시턴스(specific capacitance) 값을 하기 표 1에 나타내었으며, 순환전압전류(cyclic voltametry) 및 충방전 특성을 도 2 및 3에 각각 나타내었다.Specific capacitance values of the prepared capacitor unit cells are shown in Table 1 below, and cyclic voltametry and charge / discharge characteristics are shown in FIGS. 2 and 3, respectively.

CNT:RuO2 (중량비)CNT: RuO 2 (weight ratio) 전극 활물질 (CNT+RuO2)(g)Electrode Active Material (CNT + RuO 2 ) (g) 비 캐패시턴스 (F/g)Specific capacitance (F / g) 비교예Comparative example 1:01: 0 0.00120.0012 170170 실시예Example 1One 1:0.51: 0.5 0.00070.0007 628628 22 1:1.01: 1.0 0.00210.0021 467467 33 1:1.51: 1.5 0.00160.0016 362362 44 1:2.01: 2.0 0.00180.0018 370370

상기 표 1로부터, 본 발명에 따라 제조된 전극을 포함하는 캐패시터 단위셀이 탄소나노물질 만으로 이루어진 전극을 갖는 단위셀(170 F/g)보다 월등히 높은 370 F/g 이상의 비 캐패시턴스 값을 나타냄을 알 수 있으며, 도 2의 순환전압전류 곡선 및 도 3의 충방전 특성 그래프로부터도 본 발명의 캐패시터가 우수한 성능을 가짐을 확인할 수 있다.From Table 1, it can be seen that the capacitor unit cell including the electrode manufactured according to the present invention exhibits a specific capacitance value of 370 F / g or more which is significantly higher than that of the unit cell (170 F / g) having an electrode made of carbon nanomaterial only. In addition, it can be seen from the cyclic voltage current curve of FIG. 2 and the charge / discharge characteristic graph of FIG. 3 that the capacitor of the present invention has excellent performance.

또한, 충방전 특성이 도 3에 도시된, 비교예의 탄소나노물질 전극 및 실시예 2의 탄소나노물질/RuO2 전극의 SEM 사진을 도 4에, 실시예 2의 탄소나노물질/RuO2 전극의 TEM 사진을 도 5에 각각 나타내었는데, 이들 사진으로부터 본 발명에 따른 전극에서는 넓은 탄소나노물질의 표면에 나노크기의 RuO2가 매우 균일하게 분산되어 있음을 확인할 수 있다.In addition, SEM images of the carbon nanomaterial electrode of Comparative Example and the carbon nanomaterial / RuO 2 electrode of Example 2, in which the charge and discharge characteristics are shown in FIG. 3, are shown in FIG. 4, and the carbon nanomaterial / RuO 2 electrode of Example 2 is shown in FIG. Each of the TEM photographs is shown in FIG. 5. From these photographs, it can be seen that in the electrode according to the present invention, nano-sized RuO 2 is uniformly dispersed on the surface of a wide carbon nanomaterial.

이와 같이, 탄소나노물질과 나노크기의 금속산화물이 조합된 본 발명의 전극은 전극 활물질인 탄소나노물질 및 금속산화물의 넓은 표면적을 효율적으로 이용하여 전극의 내부저항을 크게 감소시키고 높은 캐패시턴스 값을 달성할 수 있어, 전기화학 캐패시터용 전극으로서 고순도 이온 분리, 무기이온 제거 및 정수기와 같은 소규모 정제 공정 뿐만 아니라 대용량 수처리 공정, 해수 담수화 공정 및 에너지 저장 공정 등에 다양하게 이용될 수 있다.As described above, the electrode of the present invention in which a carbon nano material and a nano-sized metal oxide are combined effectively reduces the internal resistance of the electrode and achieves a high capacitance value by efficiently utilizing a large surface area of the carbon nano material and the metal oxide as electrode active materials. As an electrode for an electrochemical capacitor, it can be used in various applications such as high-purity ion separation, inorganic ion removal and small-scale purification processes such as a water purifier, as well as a large-scale water treatment process, seawater desalination process, and energy storage process.

Claims (10)

1) 집전체 표면을 수소와 탄화수소의 혼합기체와 접촉시켜 집전체 위에 탄소나노물질을 화학증착시키고, 1) The surface of the current collector is contacted with a mixed gas of hydrogen and hydrocarbon to chemically deposit carbon nanomaterial on the current collector, 2) 집전체 위에 화학증착된 탄소나노물질에 금속산화물 전구체의 용액을 함침시킨 다음 열처리하여 탄소나노물질에 나노크기의 금속산화물을 분산 담지시키는 것을 포함하는, 2) impregnating a solution of a metal oxide precursor in a carbon nanomaterial chemically deposited on a current collector, followed by heat treatment to disperse and support the nano-sized metal oxide in the carbon nanomaterial. 전기화학 캐패시터용 전극의 제조방법.Method for producing an electrode for an electrochemical capacitor. 제 1 항에 있어서,The method of claim 1, 단계 1)의 화학증착이 400 내지 1200℃의 온도 범위에서 수행됨을 특징으로 하는 방법.The chemical vapor deposition of step 1) is carried out in a temperature range of 400 to 1200 ℃. 제 1 항에 있어서,The method of claim 1, 수소와 탄화수소의 혼합기체가 수소 및 탄화수소를 1 : 0.2∼30 의 몰비로 포함하는 혼합물로부터 유도된 것임을 특징으로 하는 방법.Wherein the mixed gas of hydrogen and hydrocarbon is derived from a mixture comprising hydrogen and hydrocarbon in a molar ratio of 1: 0.2-30. 제 1 항에 있어서,The method of claim 1, 화학증착된 탄소나노물질이 탄소나노튜브(carbon nanotube), 탄소나노섬유(carbon nanofiber) 또는 무정형 탄소임을 특징으로 하는 방법.Chemically deposited carbon nano material is characterized in that the carbon nanotube (carbon nanotube), carbon nanofiber (carbon nanofiber) or amorphous carbon. 제 1 항에 있어서,The method of claim 1, 단계 1)에서 집전체 표면을 수소와 탄화수소의 혼합기체와 접촉시키기에 앞서, 집전체 표면에 금속염 수용액을 분무하고 건조한 후 500 내지 1200℃에서 열처리하여 금속산화물을 형성한 다음 이를 환원시켜, 집전체 표면에 금속을 추가로 담지시키는 것을 특징으로 하는 방법.Prior to contacting the surface of the current collector with a mixed gas of hydrogen and hydrocarbon in step 1), spray the aqueous metal salt solution on the surface of the current collector, and then dry and heat-treat at 500 to 1200 ° C. to form a metal oxide and reduce the current collector. And further supporting the metal on the surface. 제 5 항에 있어서,The method of claim 5, 금속염이 Ni, Co, Fe 및 이들의 혼합물 중에서 선택된 금속의 염인 것을 특징으로 하는 방법.The metal salt is a salt of a metal selected from Ni, Co, Fe and mixtures thereof. 제 1 항에 있어서,The method of claim 1, 단계 2)에서 사용하는 금속산화물 전구체가 루테늄(Ru)염, 코발트(Co)염, 망간(Mn)염, 이리듐(Ir)염, 납(Pb)염, 티타늄(Ti)염 및 이들의 혼합물 중에서 선택된 금속염인 것을 특징으로 하는 방법.The metal oxide precursor used in step 2) is selected from ruthenium (Ru) salt, cobalt (Co) salt, manganese (Mn) salt, iridium (Ir) salt, lead (Pb) salt, titanium (Ti) salt and mixtures thereof. The selected metal salt. 제 1 항에 있어서,The method of claim 1, 단계 2)의 열처리가 100 내지 1000℃의 온도 범위에서 수행됨을 특징으로 하는 방법.Characterized in that the heat treatment of step 2) is carried out in a temperature range of 100 to 1000 ° C. 제 1 항에 있어서, The method of claim 1, 단계 2)에서, 탄소나노물질에 나노크기의 금속산화물을 탄소물질 중량의 10 내지 500%의 양으로 분산 담지시키는 것을 특징으로 하는 방법.In step 2), the nano-scale metal oxide on the carbon nano material dispersed and supported in an amount of 10 to 500% of the weight of the carbon material. 삭제delete
KR1020030082025A 2003-11-19 2003-11-19 Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor KR100599874B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020030082025A KR100599874B1 (en) 2003-11-19 2003-11-19 Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor
PCT/KR2003/002849 WO2005050682A1 (en) 2003-11-19 2003-12-26 Method for preparing electrode for electrochemical capacitor
AU2003285806A AU2003285806A1 (en) 2003-11-19 2003-12-26 Method for preparing electrode for electrochemical capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030082025A KR100599874B1 (en) 2003-11-19 2003-11-19 Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor

Publications (2)

Publication Number Publication Date
KR20050048172A KR20050048172A (en) 2005-05-24
KR100599874B1 true KR100599874B1 (en) 2006-07-13

Family

ID=34617248

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030082025A KR100599874B1 (en) 2003-11-19 2003-11-19 Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor

Country Status (3)

Country Link
KR (1) KR100599874B1 (en)
AU (1) AU2003285806A1 (en)
WO (1) WO2005050682A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926177B1 (en) * 2007-12-13 2009-11-10 한국과학기술연구원 Electrochemical capacitor and electrode for use therein

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584671B1 (en) * 2004-01-14 2006-05-30 (주)케이에이치 케미컬 Process for the preparation of carbon nanotube or carbon nanofiber electrodes by using sulfur or metal nanoparticle as a binder and electrode prepared thereby
US7531267B2 (en) 2003-06-02 2009-05-12 Kh Chemicals Co., Ltd. Process for preparing carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder
KR100772442B1 (en) * 2005-12-28 2007-11-01 엘지전자 주식회사 Electric double layer capacitor, polarizable electrode for electric double layer capacitor and method for manufacturing the same
KR100806678B1 (en) * 2006-07-13 2008-02-26 연세대학교 산학협력단 The fabrication method of carbon nanotube?metal oxide nanocomposite electrode
KR100892382B1 (en) * 2006-08-25 2009-04-10 광주과학기술원 Manufacturing method of carbon nanotube electrode for capacitor
KR100894481B1 (en) * 2007-04-16 2009-04-22 한국과학기술연구원 Electrode for supercapacitor having metal oxide deposited onto ultrafine carbon fiber and the fabrication method thereof
KR100899806B1 (en) * 2007-07-11 2009-05-28 포항공과대학교 산학협력단 Methods of manufacturing carbon nanotube-inorganic oxide nanoparticle composites
US8404613B2 (en) 2008-10-21 2013-03-26 Brookhaven Science Associates, Llc Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures
US8699207B2 (en) 2008-10-21 2014-04-15 Brookhaven Science Associates, Llc Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer
WO2011117657A2 (en) * 2010-03-26 2011-09-29 Shanghai Jiao Tong University Carbon materials comprising nano structures
WO2011132952A2 (en) * 2010-04-21 2011-10-27 한양대학교 산학협력단 Electrochemical device electrode, method for manufacturing same, and electrochemical device
JP6803582B2 (en) * 2019-03-06 2020-12-23 株式会社ダイセル Electrode forming material for electrochemical capacitors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699852B2 (en) * 1993-12-28 1998-01-19 日本電気株式会社 Method for producing single-walled carbon nanotubes
JP3484174B2 (en) * 2000-11-24 2004-01-06 ドン ウン インターナショナル カンパニー リミテッド Multi-walled carbon nanotube and method for producing the same
JP3712972B2 (en) * 2000-11-24 2005-11-02 ドン ウン インターナショナル カンパニー リミテッド Manufacturing method of fibrous carbon nanomaterial and electrode material for electrochemical capacitor using the same
JP3725063B2 (en) * 2001-09-25 2005-12-07 株式会社国際基盤材料研究所 Method for producing carbon nanotube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926177B1 (en) * 2007-12-13 2009-11-10 한국과학기술연구원 Electrochemical capacitor and electrode for use therein

Also Published As

Publication number Publication date
KR20050048172A (en) 2005-05-24
AU2003285806A1 (en) 2005-06-08
WO2005050682A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
Yun et al. Three‐dimensional architectures constructed from transition‐metal dichalcogenide nanomaterials for electrochemical energy storage and conversion
Fan et al. Carbon nanosheets: synthesis and application
Li et al. Graphene and its composites with nanoparticles for electrochemical energy applications
Chen et al. Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution
Hu et al. Carbon‐based metal‐free catalysts for electrocatalysis beyond the ORR
Duan et al. Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application
Jin et al. Synergetic advantages of atomically coupled 2D inorganic and graphene nanosheets as versatile building blocks for diverse functional nanohybrids
Jiang et al. Recent advances in carbon-based electrocatalysts for vanadium redox flow battery: Mechanisms, properties, and perspectives
Li et al. Incorporating transition metals (Ta/Co) into nitrogen-doped carbon as counter electrode catalysts for dye-sensitized solar cells
Shah et al. Heteroatom-doped carbonaceous electrode materials for high performance energy storage devices
Park et al. Three-dimensional carbon foam/N-doped graphene@ MoS 2 hybrid nanostructures as effective electrocatalysts for the hydrogen evolution reaction
Rao et al. Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements
Tian et al. Nitrogen‐doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction
Zhao et al. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes
Azam et al. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review
Liu et al. Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities
Zhao et al. Vertically aligned MnO 2 nanosheets coupled with carbon nanosheets derived from Mn-MOF nanosheets for supercapacitor electrodes
KR100599874B1 (en) Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor
US11170948B2 (en) Method for preparing an electrode comprising a substrate, aligned carbon nanotubes and a metal oxide deposited by reductive deposition
Zakaria et al. Recent progress in the three-dimensional structure of graphene-carbon nanotubes hybrid and their supercapacitor and high-performance battery applications
Cai et al. Porous MnOx covered electrospun carbon nanofiber for capacitive deionization
Wang et al. Three-dimensional porous architectures of carbon nanotubes and graphene sheets for energy applications
Kumar et al. Microwave-assisted dry synthesis of hybrid electrode materials for supercapacitors: Nitrogen-doped rGO with homogeneously dispersed CoO nanocrystals
Balamurugan et al. Growth of carbon nanotubes over transition metal loaded on Co-SBA-15 and its application for high performance dye-sensitized solar cells
Paul et al. Carbon nanotubes, graphene, porous carbon, and hybrid carbon-based materials: Synthesis, properties, and functionalization for efficient energy storage

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120720

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee