WO2011132952A2 - Electrochemical device electrode, method for manufacturing same, and electrochemical device - Google Patents

Electrochemical device electrode, method for manufacturing same, and electrochemical device Download PDF

Info

Publication number
WO2011132952A2
WO2011132952A2 PCT/KR2011/002867 KR2011002867W WO2011132952A2 WO 2011132952 A2 WO2011132952 A2 WO 2011132952A2 KR 2011002867 W KR2011002867 W KR 2011002867W WO 2011132952 A2 WO2011132952 A2 WO 2011132952A2
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
electrochemical device
electrode
metal
device electrode
Prior art date
Application number
PCT/KR2011/002867
Other languages
French (fr)
Korean (ko)
Other versions
WO2011132952A3 (en
Inventor
안희준
라구나스 살룬케라훌
유현욱
장기훈
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2011132952A2 publication Critical patent/WO2011132952A2/en
Publication of WO2011132952A3 publication Critical patent/WO2011132952A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrochemical device electrode, a method for manufacturing the same, and an electrochemical device, and more particularly, to an electrochemical device electrode having a high capacity, which is formed using a chemical impregnation method, a method for manufacturing the same, and an electrochemical device.
  • Such supercapacitors are broadly classified into Electric Double Layer Capacitors (EDLC) using carbon (particles or fibers) having a high specific surface area for electrode materials, and Pseudocapacitors composed of metal oxides or conductive polymers. can do.
  • EDLC Electric Double Layer Capacitors
  • Pseudocapacitors composed of metal oxides or conductive polymers. can do.
  • Electric double layer capacitors exhibit very good lifespan characteristics by utilizing physical adsorption and desorption of ions.
  • charges accumulate only on the electrical double layer on the surface, there is a disadvantage that the storage capacity is lower than that of the metal oxide-based or electrically conductive polymer-based supercapacitor using the Faraday reaction.
  • Metal oxide-based supercapacitors are supercapacitors using metal oxides having multiple valences capable of redox.
  • the electrode active material of the metal oxide supercapacitor is required to have a high specific surface area at the interface of the electrode because the ions and electrons required for redox are rapidly moved from the electrolyte and the electrode during charging and discharging, and the electrode active material has a high electrical conductivity. Is required.
  • metal oxide-based supercapacitors have a narrow operating voltage range, which results in a smaller energy density than EDLC.
  • conductive polymers having low production cost, high conductivity, and fast charge / discharge capability are attracting attention as a substitute material for metal oxides, but have a disadvantage in that they are less stable in charging and discharging processes than metal oxides. have.
  • An object of the present invention for solving the above problems is to provide an ultra-high capacity electrochemical device electrode, a method for manufacturing the same, and an electrochemical device formed using a chemical impregnation method.
  • an aspect of the present invention provides an electrochemical device electrode.
  • the electrochemical device electrode is a current collector; And an active material layer containing metal hydroxide nanowires having one end portion in a longitudinal direction thereof facing upward on the current collector.
  • the metal hydroxide nanowires are N (OH) 2 ⁇ mH 2 O, M (OH) 2 ⁇ mH 2 O, and [N (OH) 2 ] 1-x [M (OH) 2 ] x ⁇ mH 2 O. It contains two kinds of metal hydroxides selected from the group consisting of, wherein N and M are different kinds of metals selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn, 0 ⁇ X ⁇ 1 , m may be 0 to 10, preferably N and M may be Ni and Co, respectively.
  • the electrode may further include a conductive carbon film interposed between the current collector and the active material layer.
  • the active material layer may further contain a conductive carbon material, and the conductive carbon material may be at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene, and graphene oxide. have.
  • the electrochemical device electrode of the present invention And a N (OH) 2 ⁇ mH 2 O, M (OH) 2 ⁇ mH 2 O, and [N (OH) 2] 1 -x [M (OH) 2] x ⁇ mH 2 O onto the current collector
  • N and M are different kinds of metals selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn, 0 ⁇ X ⁇ 1 , m
  • m may include an active material layer of 0 to 10.
  • another aspect of the present invention provides a method of manufacturing an electrochemical device electrode.
  • the method includes preparing a metal precursor solution containing a first metal salt, a second metal salt having a metal different from the first metal salt, and a base material; And impregnating a current collector in the aqueous metal precursor solution to form metal hydroxide nanowires having one end portion in a longitudinal direction thereof upward.
  • the pH of the metal precursor aqueous solution may be 7 to 14.
  • Forming the metal hydroxide nanowires may be performed at a temperature of 50 °C to 100 °C.
  • Forming the metal hydroxide nanowires may be performed for 30 minutes to 3 hours.
  • the method may further include forming a conductive carbon film on the current collector before the forming of the metal hydroxide nanowires.
  • the metal precursor aqueous solution may further contain a conductive carbon material.
  • the method may further include forming a metal hydroxide nucleus on the current collector by impregnating a current collector in the aqueous metal precursor solution before forming the metal hydroxide nanowires.
  • the forming of the metal hydroxide nucleus on the current collector may further include taking out and drying the current collector impregnated in the metal precursor aqueous solution.
  • the method of manufacturing an electrochemical device electrode of the present invention contains a first metal salt of M (X) 2 ⁇ mH 2 O, a second metal salt of N (Y) 2 ⁇ nH 2 O, and a base material, the N and M is deulyigo metal of different types selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn, X and Y are independently selected, Cl -, nO 3 - and CHOO - the group consisting of M is 0 to 10 to prepare an aqueous metal precursor solution; And impregnating a current collector in the aqueous metal precursor solution to form an active material layer on the current collector.
  • the electrochemical device of the present invention includes a first electrode including a current collector and a first active material layer on the current collector; A second electrode including a current collector and a second active material layer on the current collector; A separator interposed between the first electrode and the second electrode; And an electrolyte solution for ion exchange, wherein the first active material layer of the first electrode contains a metal hydroxide nanowire having one end portion thereof in a length direction thereof facing upward.
  • the electrochemical device electrode of the present invention contains the current collector and the metal hydroxide nanowire with one end portion in the longitudinal direction of the current collector toward the top, thereby improving the contact area with the electrolyte. Accordingly, the capacitance and output of the electrochemical device can be improved.
  • an electrochemical device electrode having a conductive carbon film formed on a current collector and then forming a metal hydroxide nanowire thereon has a high energy density with improved capacitance and high output characteristics.
  • FIG. 1 is a schematic cross-sectional view for describing an electrochemical device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing an electrode of an electrochemical device according to an embodiment of the present invention.
  • 3 is an electron microscope image of an electrode manufactured according to an embodiment of the present invention.
  • 4 to 7 are graphs measuring the electrochemical characteristics of a super capacitor to which an electrode manufactured according to an embodiment of the present invention is applied.
  • 10 to 13 are graphs measuring the electrochemical characteristics of a super capacitor to which an electrode manufactured according to an embodiment of the present invention is applied.
  • the electrochemical device according to an embodiment of the present invention may be a super capacitor.
  • an electrochemical device includes a first electrode 10 and a second electrode 20, and a first electrode 10 and a second electrode 20 disposed opposite to each other. Electrolyte (not shown in figure) between the separator 30, the 1st electrode 10, and the separator 30, and between the separator 30 and the 2nd electrode 20 is included.
  • the first electrode 10 includes a current collector 11 and a first active material layer 13 on the current collector 11.
  • the conductive carbon film 12 may be further included between the current collector 11 and the first active material layer 13.
  • the first electrode 10 may be an anode.
  • the current collector 11 may be Fe, Cu, Ti, Ni, Pt, Al, Au and alloys thereof.
  • the current collector 11 may be any one selected from the group consisting of a conductive polymer and a conductive oxide.
  • the current collector 11 may be a porous or non-porous foam.
  • the conductive carbon film 12 may be at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene, and graphene oxide. However, the conductive carbon film 12 may be omitted.
  • the first active material layer 13 contains metal hydroxide nanowires whose one end in the longitudinal direction is directed upward, that is, in the direction opposite to the current collector 11 or in the direction of the second electrode 20.
  • the area of the first active layer 13 in contact with the electrolyte may be improved, and the capacitance of the electrochemical device may be improved.
  • Such metal hydroxide nanowires include two kinds of metal dihydroxides having different kinds of metals.
  • the metal hydroxide nanowires are N (OH) 2 ⁇ mH 2 O, M (OH) 2 ⁇ mH 2 O, and [N (OH) 2 ] 1-x [M (OH) 2 ] contains two kinds of metal hydroxide is selected from the group consisting of x ⁇ mH 2 O.
  • N and M may be different kinds of metals selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu, and Zn, and specifically, N and M may be Ni and Co, respectively.
  • X may be 0 ⁇ X ⁇ 1, m may be 0 to 10, specifically m may be 6 to 7.
  • the metal hydroxide nanowires of the first active material layer 13 may further include a conductive carbon material for improving the charge capacity of the electrochemical device and the electrical conductivity of the electrode according to the embodiment of the present invention.
  • the conductive carbon material may be at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene, and graphene oxide.
  • the conductive carbon material is preferably 15 wt% or less of the total composition of the first active material layer 13. When the conductive carbon material exceeds 15wt% of the total composition of the first active material layer 13, the conductive carbon material reduces the area where the metal hydroxide nanowire is in contact with the electrolyte, thereby reducing the capacitance of the supercapacitor. Because you can.
  • the second electrode 20 includes a current collector 21 and a second active material layer 22 on the current collector 21.
  • the second electrode 20 may be a cathode.
  • the current collector 21 of the second electrode 20 may be all made of a conductive material.
  • the current collector 21 of the second electrode 20 may be made of any one of a metal foil, a metal mesh, and a conductive polymer compound.
  • the negative electrode active material 22 of the second electrode 20 may be any conductive material.
  • the negative electrode active material 22 of the second electrode 20 may be made of a conductive carbon material, a conductive metal, and a conductive oxide.
  • the material that can be used as the separator 30 may be a microporous polypropylene or polyethylene membrane, a porous glass fiber tissue or a combination of polypropylene and polyethylene.
  • the electrolyte is an aqueous electrolyte having basic properties, and may be, for example, an alkaline electrolyte such as aqueous potassium hydroxide (KOH) solution.
  • KOH potassium hydroxide
  • the use of an acidic electrolyte is not preferred because it can cause dissolution of the electrodes 10 and 20.
  • FIG. 2 is a flowchart illustrating a method of manufacturing an electrode of an electrochemical device according to an embodiment of the present invention.
  • an aqueous metal precursor solution is prepared (S1).
  • the aqueous metal precursor solution contains a first metal salt, a second metal salt having a metal different from the first metal salt, and a base material.
  • the first metal salt may be M (X) 2 ⁇ mH 2 O
  • the second metal salt may be N (Y) 2 ⁇ mH 2 O
  • the N and M is Ca
  • X and Y are independently selected
  • Cl -, NO 3 - and CHOO - may be selected from the group consisting of which, m can be 0 to 10.
  • the molar ratio of the first metal salt and the second metal salt in the aqueous metal precursor solution that is, the molar ratio of the N and M is preferably 1: 9 to 9: 1.
  • the base material is added to the aqueous metal precursor solution to adjust the pH of the aqueous metal precursor solution to between 7 and 14.
  • the pH of the aqueous metal precursor solution may be adjusted to 10 to 13 by adjusting the amount of the base material to be added. This is because the aqueous metal precursor solution initially exhibits an acidity of less than pH 7. It is possible to synthesize the metal hydroxide nanowires using the aqueous metal precursor solution only in neutral or basic conditions, and the metal hydroxide at pH 10 to 13 of the aqueous metal precursor solution. This is because the production rate of nanowires is high.
  • any basic material may be used.
  • ammonia may be used.
  • the metal precursor aqueous solution may further include a conductive carbon material.
  • the conductive carbon material may be at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene, and graphene oxide.
  • a current collector may be prepared, and a conductive carbon film may be formed on the current collector (S2).
  • the current collector may be Fe, Cu, Ti, Ni, Pt, Al, Au and alloys thereof.
  • the current collector may be any one selected from the group comprising a conductive polymer and a conductive oxide, and may be a porous or non-porous foam.
  • the conductive carbon film may be at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene and graphene oxide.
  • the conductive carbon film on the current collector can be formed through various methods.
  • the conductive carbon film may be formed on the current collector through a carbonization reaction of a polymer precursor, or may be formed by applying a carbon material paste containing a dispersant to the current collector.
  • the forming of the conductive carbon film may be omitted.
  • a metal hydroxide nucleus may be formed on the current collector on which the conductive carbon film is formed (S3).
  • the metal hydroxide nucleus serves as a seed material for easily forming the metal hydroxide nanowires, and may be formed by impregnating a current collector having the conductive carbon film in an aqueous metal precursor solution for 10 to 30 minutes. have. At this time, the aqueous metal precursor solution may be maintained at 50 °C to 100 °C.
  • the current collector When the metal hydroxide nucleus is formed, the current collector may be taken out and dried, but the step of removing and drying the current collector may be omitted.
  • metal hydroxide nanowires are formed on a current collector using the metal hydroxide nucleus (S4).
  • the current collector on which the metal hydroxide nucleus is formed is impregnated in an aqueous metal precursor solution having a pH of 7 to 14, thereby forming an active material layer containing metal hydroxide nanowires.
  • the pH of the aqueous metal precursor solution may be maintained at 10 to 13. This is because the metal hydroxide nanowires are generated only when the pH of the aqueous metal precursor solution is neutral or base, and the production rate of the nanowires of the metal hydroxide is high when the pH is 10 to 13.
  • the impregnation of the current collector is preferably performed for 30 minutes to 3 hours.
  • the metal hydroxide nanowires may not be sufficiently generated, thereby degrading the performance of the supercapacitor, which is an electrochemical device.
  • the current collector is impregnated in the metal precursor aqueous solution for 3 hours or more, the amount of the nanowires produced increases and the thickness of the active material layer is increased.
  • the active material layer is thick, the internal resistance of the electrode of the electrochemical device is increased, thereby degrading the performance of the supercapacitor, which is an electrochemical device.
  • the metal precursor aqueous solution is preferably maintained at 50 °C to 100 °C.
  • the metal hydroxide nanowires are N (OH) 2 ⁇ mH 2 O, M (OH) 2 ⁇ mH 2 O, and [N (OH) 2 ] 1-x [M (OH) 2 ] x ⁇ mH 2 O. It contains two kinds of metal hydroxides selected from the group consisting of, wherein N and M are different kinds of metals selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn, 0 ⁇ X ⁇ 1 , m may be 0 to 10.
  • the metal hydroxide nanowires may be selected from Co (OH) 2 ⁇ 6H 2 O, Ni (OH) 2 ⁇ 6H 2 O, and [Co (OH) 2 ].
  • [Ni (OH) 2] ⁇ may be two kinds of metal hydroxide selected from the group consisting of 6H 2 O.
  • the present invention is not limited thereto, and the current collector is impregnated with an aqueous metal precursor solution to form a conductive carbon film on the current collector. It is also possible to simultaneously form a metal hydroxide nucleus and a metal hydroxide nanowire on the conductive carbon film.
  • a current collector on which the metal hydroxide nanowires are formed is dried (S5).
  • the drying method can be carried out using various methods. For example, it may be left to dry in an ambient temperature atmosphere, or may be dried by evaporating the solvent of the precursor solution by applying heat.
  • CoCl 2 and Ni (NO 3 ) 2 ⁇ 6H 2 O are used as precursors of cobalt and nickel, so that the molar ratio of nickel and cobalt ions is 3: 1 so that 0.1M CoCl 2 and 0.1M Ni (NO 3 ) 2 6H 2 O was dissolved in an aqueous solution, and ammonia was added to prepare an aqueous solution of cobalt and nickel ions having a pH of 12.
  • the aqueous solution was impregnated with a stainless steel substrate as a conductive current collector and coated at a temperature of 343K for 1 hour to prepare cobalt-nickel hydroxide nanowires, and dried to prepare an electrode of an electrochemical device.
  • An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 1, except that the molar ratio of nickel and cobalt ions was 2: 1.
  • An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 1, except that the molar ratio of nickel and cobalt ions was 1: 1.
  • An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 1, except that the molar ratio of nickel and cobalt ions was 1: 2.
  • An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 1, except that the molar ratio of nickel and cobalt ions was 1: 3.
  • Table 1 below is a table showing the measured values measured by applying the electrode prepared according to the electrode preparation examples 1 to 5 to the supercapacitor which is an electrochemical device.
  • the electrolyte used was a 1M KOH solution, and the reference electrode used Ag / AgCl. And the capacitance was measured at a scanning speed of 20 mV / s by the cyclic voltage-current method.
  • Electrode Preparation Example 1 1 328 One 69 59 85 453 13 47 17 Electrode Preparation Example 2 2: 1 213 One 187 151 80 1776 50 180 68 Electrode Preparation Example 3 1: 1 161 One 122 93 76 1453 41 147 55 Electrode Preparation Example 4 1: 2 113 One 51 41 80 911 26 94 35 Electrode Manufacturing Example 5 1: 3 196 One 41 37 90 474 13 14 18
  • the electrodes of the electrochemical device having a molar ratio of nickel and cobalt in the range of 3: 1 to 1: 3 all have sufficient capacitance for use as the electrode of the supercapacitor.
  • the electrode of the electrochemical device having a molar ratio of 3: 1 and 1: 3 of nickel and cobalt was 17% and 18%, respectively, and exhibited low characteristics in terms of utilization efficiency.
  • the electrode of the electrochemical device having a molar ratio of nickel and cobalt of 2: 1 to 1: 2 is applied to the super capacitor, it can be seen that the characteristics of the super capacitor are excellent.
  • an electrode manufactured according to an embodiment of the present invention includes nanowires in an active layer.
  • 4 to 7 are graphs measuring the electrochemical characteristics of the supercapacitor to which the electrode manufactured according to Electrode Preparation Example 2 is applied.
  • the electrolyte used was a 1M KOH solution, and the reference electrode used Ag / AgCl.
  • the supercapacitor to which the electrode manufactured according to the embodiment of the present invention is applied has a high redox peak as a result of the cyclic voltammetry measurement.
  • the supercapacitor to which the electrode manufactured according to the exemplary embodiment of the present invention is applied has a relatively symmetrical shape of charging and discharging characteristics, and the total charging and discharging time is long, and thus the electrode material participating in charging and discharging. Since the amount of is similar to the excellent device stability, it can be seen that the capacitance (capactance) is high.
  • the electrode manufactured according to the embodiment of the present invention has a low resistance of 1 ⁇ m / cm 2 in the electrode. Therefore, it can be seen that the electrode of the electrochemical device applied to the supercapacitor has a low internal resistance.
  • the supercapacitor to which the electrode manufactured according to the exemplary embodiment of the present invention is applied has a small change in capacitance due to repeated charging and discharging, thereby enabling stable charging and discharging.
  • the activated carbon paste which is well dispersed with a dispersant (Triton X), was evenly spread on a stainless steel substrate using a glass rod and heated to a temperature of 400 ° C. to remove impurities.
  • CoCl 2 and Ni (NO 3 ) 2 ⁇ 6H 2 O are used as precursors of cobalt and nickel, so that the molar ratio of nickel and cobalt ions is 1: 1 so that 0.1M CoCl 2 and 0.1M Ni (NO 3 ) 2 6H 2 O was dissolved in an aqueous solution, and ammonia was added to prepare an aqueous solution of cobalt and nickel ions having a pH of 12.
  • the aqueous solution was impregnated with a stainless steel substrate which is a conductive current collector coated with activated carbon, coated at a temperature of 343 K for 1 hour to prepare cobalt-nickel hydroxide nanowires, and then dried to prepare an electrode of an electrochemical device. .
  • An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 6, except that the active carbon was not coated between the current collector and the electrode active material.
  • An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 6, except that the molar ratio of nickel and cobalt ions was 2: 1.
  • Table 2 below is a table showing measured values measured by applying the electrodes of the electrode preparation examples 6 to 8 to the supercapacitor which is an electrochemical device.
  • the nickel-cobalt hydroxide electrode using the carbon film-coated current collector showed better performance than the electrode using the current collector without the carbon film in all aspects such as storage capacity, energy density, and power density.
  • the electrode of the electrochemical device manufactured by coating the carbon film on the current collector is applied to the super capacitor, it can be seen that the characteristics of the super capacitor can be further improved.
  • FIG. 8 is an electron microscope image of the electrode prepared according to the electrode preparation example 6 at various magnifications
  • FIG. 9 is an electron microscope image of the electrode manufactured according to the electrode preparation example 7.
  • the electrode manufactured according to the embodiment of the present invention includes nanowires in the active layer.
  • the diameter of the nickel-cobalt nanowires produced without coating treatment is thinner and the number of wires is also higher. It can be seen that the nickel-cobalt hydroxide electrode has a higher surface area and thus is a cause of showing better performance.
  • 10 to 13 are graphs measuring the electrochemical characteristics of a super capacitor to which an electrode manufactured according to an embodiment of the present invention is applied.
  • FIG. 10 is a cyclic voltage-current graph according to a scanning speed of a nickel-cobalt hydroxide electrode prepared using an active carbon coated current collector according to Preparation Example 6, having a high redox peak and having a high redox peak of 20 to 100 mV. In the range of / s, the redox curves are distinct.
  • FIG. 11 shows (i) activated carbon-coated nickel-cobalt hydroxide electrode (Preparation Example 6), (ii) activated carbon-coated nickel-cobalt hydroxide electrode (Preparation Example 7), and (iii) activated carbon layer only.
  • the cyclic current graph shows that the nickel-cobalt hydroxide electrode with the activated carbon layer shows a wider operating voltage range and circulating current curve than the electrode without. This indicates that nickel-cobalt hydroxide electrodes with an activated carbon layer have higher capacitance, energy density, and power density than those that do not.
  • FIG. 12 is a charge / discharge graph of an activated carbon-coated nickel-cobalt electrode prepared according to Preparation Example 6 of the present invention. Since the left and right symmetry is high, the amount of the electrode material participating in the charge and the electrode material participating in the discharge are similar. The long capacitance from overcharging to discharging shows a high capacitance.
  • FIG. 13 is an impedance graph of the electrode manufactured according to the Preparation Example 6, and it can be seen that it has a low internal resistance of 1 ⁇ / cm 2 .

Abstract

The present invention relates to a supercapacitive electrochemical device electrode formed by using chemical impregnation, a method for manufacturing same, and an electrochemical device. The electrochemical device electrode of the present invention comprises a current collector; and an active material layer on the current collector, wherein the active material layer contains a metal hydroxide nano-wire of which one longitudinal end is in an upward direction. Accordingly, a supercapacitor of the present invention has high capacitance, high output, and high energy density.

Description

전기화학소자 전극, 이의 제조 방법 및 전기화학소자Electrochemical device electrode, manufacturing method thereof and electrochemical device
본 발명은 전기화학소자 전극, 이의 제조 방법 및 전기화학소자에 관한 것으로, 보다 상세하게는 화학적 함침법을 사용하여 형성되는 초고용량의 전기화학소자 전극, 이의 제조 방법 및 전기화학소자에 관한 것이다.The present invention relates to an electrochemical device electrode, a method for manufacturing the same, and an electrochemical device, and more particularly, to an electrochemical device electrode having a high capacity, which is formed using a chemical impregnation method, a method for manufacturing the same, and an electrochemical device.
전기화학소자로서, 수퍼 캐패시터는 최근 전기자동차 및 전자기술의 비약적인 발전과 강력한 에너지원의 필요성에 의하여 관심이 집중되고 있다. 이는 순간 충방전이 가능한 에너지 저장원으로서의 역할이 요구되고 있기 때문이다. As electrochemical devices, supercapacitors are recently attracting attention due to the rapid development of electric vehicles and electronic technologies and the need for a powerful energy source. This is because a role as an energy storage source capable of instant charging and discharging is required.
이러한 수퍼커패시터는 전극 재료에 고 비표면적을 갖는 탄소 (입자 또는 섬유)를 사용하는 전기 이중층 커패시터(Electric Double Layer Capacitor; EDLC)와, 금속산화물 또는 전도성 고분자로 이루어진 산화환원 커패시터(Pseudocapacitor)로 크게 분류할 수 있다.Such supercapacitors are broadly classified into Electric Double Layer Capacitors (EDLC) using carbon (particles or fibers) having a high specific surface area for electrode materials, and Pseudocapacitors composed of metal oxides or conductive polymers. can do.
전기 이중층 커패시터는 이온의 물리적인 흡·탈착을 이용하므로 매우 우수한 수명 특성을 나타낸다. 그러나 표면의 전기 이중층에만 전하가 축적되므로, 패러데이 반응을 이용하는 금속산화물계 또는 전기 전도성 고분자계 수퍼커패시터보다 축전 용량이 낮은 단점이 있다. Electric double layer capacitors exhibit very good lifespan characteristics by utilizing physical adsorption and desorption of ions. However, since charges accumulate only on the electrical double layer on the surface, there is a disadvantage that the storage capacity is lower than that of the metal oxide-based or electrically conductive polymer-based supercapacitor using the Faraday reaction.
금속산화물계 수퍼커패시터는 산화환원이 가능한, 여러 개의 원자가 (valence)를 가지는 금속산화물을 사용하는 수퍼커패시터이다. 금속산화물계 수퍼커패시터의 전극활물질은 충·방전시 산화환원에 필요한 이온과 전자가 전해질과 전극에서 빠른 속도로 이동하여야 하므로, 전극 계면이 고 비표면적을 가지는 것이 바람직하며, 전극활물질은 높은 전기 전도도가 요구되고 있다. 하지만 금속산화물계 수퍼커패시터의 경우, 작동 전압 범위가 좁아서 에너지 밀도가 EDLC에 비해서 작은 단점이 있다.Metal oxide-based supercapacitors are supercapacitors using metal oxides having multiple valences capable of redox. The electrode active material of the metal oxide supercapacitor is required to have a high specific surface area at the interface of the electrode because the ions and electrons required for redox are rapidly moved from the electrolyte and the electrode during charging and discharging, and the electrode active material has a high electrical conductivity. Is required. However, metal oxide-based supercapacitors have a narrow operating voltage range, which results in a smaller energy density than EDLC.
또한, 금속산화물, 특히 루테늄 산화물(RuOx)을 전극재료로 사용하는 유사 수퍼커패시터는 EDLC에 비해 축전용량이 3~4배 정도 크다. 하지만 고가의 금속산화물을 전극활물질로 사용하기 때문에 생산단가를 낮출 수 있는 새로운 전극활물질 소재개발이 절실히 요구된다.In addition, similar supercapacitors using metal oxides, especially ruthenium oxide (RuOx) as electrode materials, have a capacity of about 3 to 4 times larger than EDLC. However, since expensive metal oxides are used as electrode active materials, development of new electrode active material materials that can lower production costs is urgently required.
이러한 점에서, 낮은 생산단가, 높은 전도도, 그리고 빠른 충·방전 능력을 갖는 전도성 고분자가 금속산화물을 대체할 수 있는 물질로 각광받고 있으나 금속산화물에 비해 충·방전 과정에서의 안정성이 떨어지는 단점을 갖고 있다.In this regard, conductive polymers having low production cost, high conductivity, and fast charge / discharge capability are attracting attention as a substitute material for metal oxides, but have a disadvantage in that they are less stable in charging and discharging processes than metal oxides. have.
상기한 문제점을 해결하기 위한 본 발명의 기술적 과제는 화학적 함침법을 사용하여 형성되는 초고용량의 전기화학소자 전극, 이의 제조 방법 및 전기화학소자를 제공하는 데에 그 목적이 있다.An object of the present invention for solving the above problems is to provide an ultra-high capacity electrochemical device electrode, a method for manufacturing the same, and an electrochemical device formed using a chemical impregnation method.
본 발명의 기술적 과제를 해결하기 위하여, 본 발명의 일 측면은 전기화학소자 전극을 제공한다. 상기 전기화학소자 전극은 집전체; 및 상기 집전체 상에 길이 방향 일측 단부가 상부로 향하는 금속 수산화물 나노와이어를 함유하는 활물질층을 포함한다.In order to solve the technical problem of the present invention, an aspect of the present invention provides an electrochemical device electrode. The electrochemical device electrode is a current collector; And an active material layer containing metal hydroxide nanowires having one end portion in a longitudinal direction thereof facing upward on the current collector.
상기 금속 수산화물 나노와이어는 N(OH)2·mH2O, M(OH)2·mH2O, 및 [N(OH)2]1-x[M(OH)2]x·mH2O로 이루어지는 군에서 선택되는 2종의 금속 수산화물을 함유하며, 상기 N과 M은 Ca, Mg, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택되는 서로 다른 종류의 금속들이고, 0<X<1, m은 0 내지 10일 수 있으며, 바람직하게는 상기 N과 M은 각각 Ni과 Co일 수 있다. The metal hydroxide nanowires are N (OH) 2 · mH 2 O, M (OH) 2 · mH 2 O, and [N (OH) 2 ] 1-x [M (OH) 2 ] x · mH 2 O. It contains two kinds of metal hydroxides selected from the group consisting of, wherein N and M are different kinds of metals selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn, 0 <X <1 , m may be 0 to 10, preferably N and M may be Ni and Co, respectively.
또한, 상기 전극은 상기 집전체와 상기 활물질층 사이에 개재된 전도성 탄소막을 더 포함할 수 있다. In addition, the electrode may further include a conductive carbon film interposed between the current collector and the active material layer.
상기 활물질층은 전도성 탄소물질을 더 함유할 수 있으며, 상기 전도성 탄소물질은 탄소나노튜브, 활성탄소, 그래핀(Graphene) 및 그래핀 산화물(Graphene Oxide)으로 이루어지는 군에서 선택되는 적어도 어느 하나일 수 있다. The active material layer may further contain a conductive carbon material, and the conductive carbon material may be at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene, and graphene oxide. have.
또한, 본 발명의 전기화학소자 전극은 집전체; 및 상기 집전체 상에 N(OH)2·mH2O, M(OH)2·mH2O, 및 [N(OH)2]1-x[M(OH)2]x·mH2O로 이루어지는 군에서 선택되는 2종의 금속 수산화물을 함유하며, 상기 N과 M은 Ca, Mg, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택되는 서로 다른 종류의 금속들이고, 0<X<1, m은 0 내지 10인 활물질층을 포함할 수 있다.In addition, the electrochemical device electrode of the present invention; And a N (OH) 2 · mH 2 O, M (OH) 2 · mH 2 O, and [N (OH) 2] 1 -x [M (OH) 2] x · mH 2 O onto the current collector It contains two kinds of metal hydroxides selected from the group consisting of, wherein N and M are different kinds of metals selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn, 0 <X <1 , m may include an active material layer of 0 to 10.
또한, 본 발명의 다른 측면은 전기화학소자 전극의 제조 방법을 제공한다. 상기 방법은 제1 금속염, 상기 제1 금속염과는 다른 금속을 갖는 제2 금속염 및 염기물질을 함유하는 금속 전구체 수용액을 준비하는 단계; 및 상기 금속 전구체 수용액 내에 집전체를 함침하여 상기 집전체 상에 길이 방향 일측 단부가 상부로 향하는 금속 수산화물 나노와이어를 형성하는 단계를 포함한다. In addition, another aspect of the present invention provides a method of manufacturing an electrochemical device electrode. The method includes preparing a metal precursor solution containing a first metal salt, a second metal salt having a metal different from the first metal salt, and a base material; And impregnating a current collector in the aqueous metal precursor solution to form metal hydroxide nanowires having one end portion in a longitudinal direction thereof upward.
상기 금속 수산화물 나노와이어를 형성하는 단계에서 상기 금속 전구체 수용액의 pH는 7 내지 14일 수 있다. In the forming of the metal hydroxide nanowires, the pH of the metal precursor aqueous solution may be 7 to 14.
상기 금속 수산화물 나노와이어를 형성하는 단계는 50℃ 내지 100℃의 온도에서 수행할 수 있다. Forming the metal hydroxide nanowires may be performed at a temperature of 50 ℃ to 100 ℃.
상기 금속 수산화물 나노와이어를 형성하는 단계는 30분 내지 3시간 동안 수행할 수 있다. Forming the metal hydroxide nanowires may be performed for 30 minutes to 3 hours.
상기 금속 수산화물 나노와이어를 형성하는 단계 이전에 상기 집전체 상에 전도성 탄소막을 형성하는 단계를 더 포함할 수 있다. The method may further include forming a conductive carbon film on the current collector before the forming of the metal hydroxide nanowires.
상기 금속 전구체 수용액은 전도성 탄소 물질을 더 함유할 수 있다. The metal precursor aqueous solution may further contain a conductive carbon material.
상기 금속 수산화물 나노와이어를 형성하기 전에 상기 금속 전구체 수용액 내에 집전체를 함침하여, 상기 집전체 상에 금속 수산화물 핵을 형성하는 단계를 더 포함할 수 있다. The method may further include forming a metal hydroxide nucleus on the current collector by impregnating a current collector in the aqueous metal precursor solution before forming the metal hydroxide nanowires.
상기 집전체 상에 금속 수산화물 핵을 형성하는 단계는 상기 금속 전구체 수용액에 함침된 집전체를 꺼내어 건조시키는 단계를 더 포함할 수 있다. The forming of the metal hydroxide nucleus on the current collector may further include taking out and drying the current collector impregnated in the metal precursor aqueous solution.
또한, 본 발명의 전기화학소자 전극의 제조 방법은 M(X)2·mH2O인 제1 금속염, N(Y)2·nH2O인 제2 금속염, 및 염기물질을 함유하며, 상기 N과 M은 Ca, Mg, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택되는 서로 다른 종류의 금속들이고, X와 Y는 서로에 관계없이, Cl-, NO3 - 및CHOO-로 이루어진 군에서 선택되고, m은 0 내지 10인 금속 전구체 수용액을 준비하는 단계; 및 상기 금속 전구체 수용액 내에 집전체를 함침하여 상기 집전체 상에 활물질층을 형성하는 단계를 포함한다.In addition, the method of manufacturing an electrochemical device electrode of the present invention contains a first metal salt of M (X) 2 · mH 2 O, a second metal salt of N (Y) 2 · nH 2 O, and a base material, the N and M is deulyigo metal of different types selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn, X and Y are independently selected, Cl -, nO 3 - and CHOO - the group consisting of M is 0 to 10 to prepare an aqueous metal precursor solution; And impregnating a current collector in the aqueous metal precursor solution to form an active material layer on the current collector.
또한, 본 발명의 전기화학소자는 집전체 및 상기 집전체 상의 제1 활물질층을 포함하는 제1 전극; 집전체 및 상기 집전체 상의 제2 활물질층을 포함하는 제2 전극; 상기 제1 전극 및 제2 전극 사이에 개재되는 세퍼레이터; 및 이온 교환을 위한 전해액;을 포함하며, 상기 제1 전극의 제1 활물질층은 길이 방향 일측 단부가 상부로 향하는 금속 수산화물 나노와이어를 함유한다.In addition, the electrochemical device of the present invention includes a first electrode including a current collector and a first active material layer on the current collector; A second electrode including a current collector and a second active material layer on the current collector; A separator interposed between the first electrode and the second electrode; And an electrolyte solution for ion exchange, wherein the first active material layer of the first electrode contains a metal hydroxide nanowire having one end portion thereof in a length direction thereof facing upward.
상술한 바와 같이 본 발명에 따르면, 본 발명의 전기화학소자 전극은 집전체와 상기 집전체 상에 길이 방향 일측 단부가 상부로 향하는 금속 수산화물 나노와이어를 함유하여 전해액과의 접촉면적이 향상되며, 이에 따라 전기화학소자의 축전용량 및 출력을 향상시킬 수 있다. 또한, 집전체 위에 전도성 탄소막을 형성한 후, 그 위에 금속 수산화물 나노와이어를 형성한 전기화학소자 전극은 보다 향상된 축전 용량 및 고출력의 특성과 더불어 높은 에너지 밀도를 갖는다.As described above, according to the present invention, the electrochemical device electrode of the present invention contains the current collector and the metal hydroxide nanowire with one end portion in the longitudinal direction of the current collector toward the top, thereby improving the contact area with the electrolyte. Accordingly, the capacitance and output of the electrochemical device can be improved. In addition, an electrochemical device electrode having a conductive carbon film formed on a current collector and then forming a metal hydroxide nanowire thereon has a high energy density with improved capacitance and high output characteristics.
도 1은 본 발명의 일 실시예에 따른 전기화학소자를 설명하기 위한 개략적인 단면도이다.1 is a schematic cross-sectional view for describing an electrochemical device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전기화학소자의 전극 제조 방법을 설명하기 위한 흐름도이다. 2 is a flowchart illustrating a method of manufacturing an electrode of an electrochemical device according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따라 제조된 전극을 촬영한 전자 현미경 이미지이다.3 is an electron microscope image of an electrode manufactured according to an embodiment of the present invention.
도 4 내지 7은 본 발명의 일 실시예에 따라 제조된 전극이 적용된 수퍼 캐패시터의 전기화학적 특성을 측정한 그래프이다.4 to 7 are graphs measuring the electrochemical characteristics of a super capacitor to which an electrode manufactured according to an embodiment of the present invention is applied.
도 8 및 9는 본 발명의 일 실시예에 따라 제조된 전극을 촬영한 전자 현미경 이미지이다.8 and 9 are electron microscope images of the electrode prepared according to an embodiment of the present invention.
도 10 내지 13은 본 발명의 일 실시예에 따라 제조된 전극이 적용된 수퍼 캐패시터의 전기화학적 특성을 측정한 그래프이다.10 to 13 are graphs measuring the electrochemical characteristics of a super capacitor to which an electrode manufactured according to an embodiment of the present invention is applied.
본 발명의 특징 및 작용들은 첨부도면을 참조하여 이하에서 설명되는 실시예들을 통해 명백하게 드러나게 될 것이다. The features and acts of the present invention will become apparent from the embodiments described below with reference to the accompanying drawings.
첨부된 도면과 관련하여 이하에서 개시되는 상세한 설명은 발명의 바람직한 실시예들을 설명할 의도로서 행해진 것이고, 발명이 실행될 수 있는 형태들만을 나타내는 것은 아니다. 본 발명의 사상이나 범위에 포함된 동일한 또한 등가의 기능들이 다른 실시예들에 의해서도 달성될 수 있음을 주지해야 한다. 또한, 도면에 개시된 어떤 특징들은 설명의 용이함을 위해 확대한 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다. 그리고, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략한다. DETAILED DESCRIPTION The detailed description set forth below in connection with the appended drawings is made with the intention of describing preferred embodiments of the invention and does not represent the only forms in which the invention may be practiced. It should be noted that the same and equivalent functions included in the spirit or scope of the present invention may be achieved by other embodiments. In addition, certain features disclosed in the drawings are enlarged for ease of description, and the drawings and their components are not necessarily drawn to scale. However, those skilled in the art will readily understand these details. In addition, the same reference numerals are used for the same components in the drawings, and redundant description of the same components is omitted.
이하, 첨부도면을 참조하여 본 발명의 실시예에 대해 상세히 설명하기로 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 전기화학소자를 설명하기 위한 개략적인 단면도이며, 본 발명의 일 실시예에 따른 전기화학소자는 수퍼 캐패시터일 수 있다. 1 is a schematic cross-sectional view for describing an electrochemical device according to an embodiment of the present invention, the electrochemical device according to an embodiment of the present invention may be a super capacitor.
도 1을 참조하면, 본 발명의 일 실시예에 따른 전기화학소자는 대향 배치되는 제1 전극(10) 및 제2 전극(20), 제1 전극(10) 및 제2 전극(20) 사이의 세퍼레이터(30)와, 제1 전극(10)과 세퍼레이터(30)의 사이 및 세퍼레이터(30)와 제2 전극(20) 사이의 전해액(도면상에는 미도시)을 포함한다. Referring to FIG. 1, an electrochemical device according to an exemplary embodiment includes a first electrode 10 and a second electrode 20, and a first electrode 10 and a second electrode 20 disposed opposite to each other. Electrolyte (not shown in figure) between the separator 30, the 1st electrode 10, and the separator 30, and between the separator 30 and the 2nd electrode 20 is included.
상기 제1 전극(10)은 집전체(11) 및 상기 집전체(11) 상에 제1 활물질층(13)을 포함한다. 또한, 상기 집전체(11) 및 제1 활물질층(13) 사이에 개재된 전도성 탄소막(12)을 더 포함할 수도 있다. 상기 제1 전극(10)은 양극일 수 있다. The first electrode 10 includes a current collector 11 and a first active material layer 13 on the current collector 11. In addition, the conductive carbon film 12 may be further included between the current collector 11 and the first active material layer 13. The first electrode 10 may be an anode.
이때, 상기 집전체(11)는 Fe, Cu, Ti, Ni, Pt, Al, Au 및 이들의 합금일 수 있다. 또한, 상기 집전체(11)는 전도성 고분자 및 전도성 산화물을 포함하는 군에서 선택되는 어느 하나일 수 있다. 그리고, 상기 집전체(11)는 다공성 또는 비다공성 폼(foam)일 수 있다.In this case, the current collector 11 may be Fe, Cu, Ti, Ni, Pt, Al, Au and alloys thereof. In addition, the current collector 11 may be any one selected from the group consisting of a conductive polymer and a conductive oxide. In addition, the current collector 11 may be a porous or non-porous foam.
또한, 상기 전도성 탄소막(12)은 탄소나노튜브, 활성탄소, 그래핀(Graphene) 및 그래핀 산화물(Graphene Oxide)을 포함하는 군에서 선택되는 적어도 어느 하나일 수 있다. 다만, 상기 전도성 탄소막(12)은 생략이 가능하다. In addition, the conductive carbon film 12 may be at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene, and graphene oxide. However, the conductive carbon film 12 may be omitted.
또한, 상기 제1 활물질층(13)은 길이 방향의 일측 단부가 상부 방향, 즉, 집전체(11)의 반대 방향 또는 제2 전극(20) 방향으로 향하는 금속 수산화물 나노와이어를 함유한다. 이와 같이, 상기 제1 활물질층(13)이 나노와이어를 함유하므로 상기 제1 활성층(13)은 전해액과 접촉하는 면적이 향상되며, 전기화학소자의 캐패시턴스를 향상시키는 것이 가능하다. 이러한 금속 수산화물 나노와이어는 서로 다른 종류의 금속을 갖는 2가지 종류의 금속 이수산화물(metal dihydroxide)을 포함한다.In addition, the first active material layer 13 contains metal hydroxide nanowires whose one end in the longitudinal direction is directed upward, that is, in the direction opposite to the current collector 11 or in the direction of the second electrode 20. As such, since the first active material layer 13 contains nanowires, the area of the first active layer 13 in contact with the electrolyte may be improved, and the capacitance of the electrochemical device may be improved. Such metal hydroxide nanowires include two kinds of metal dihydroxides having different kinds of metals.
이를 보다 상세히 설명하면, 상기 금속 수산화물 나노와이어는 N(OH)2·mH2O, M(OH)2·mH2O, 및 [N(OH)2]1-x[M(OH)2]x·mH2O로 이루어지는 군에서 선택되는 2종의 금속 수산화물을 함유한다. 이때, 상기 N과 M은 Ca, Mg, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택되는 서로 다른 종류의 금속들일 수 있으며, 구체적으로 N과 M은 각각 Ni과 Co일 수 있다. 또한, 상기 X는 0<X<1일 수 있고, 상기 m은 0 내지 10일 수 있으며, 구체적으로 m은 6 내지 7일 수 있다.In more detail, the metal hydroxide nanowires are N (OH) 2 · mH 2 O, M (OH) 2 · mH 2 O, and [N (OH) 2 ] 1-x [M (OH) 2 ] contains two kinds of metal hydroxide is selected from the group consisting of x · mH 2 O. In this case, N and M may be different kinds of metals selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu, and Zn, and specifically, N and M may be Ni and Co, respectively. In addition, X may be 0 <X <1, m may be 0 to 10, specifically m may be 6 to 7.
또한, 상기 제1 활물질층(13)의 금속 수산화물 나노와이어는 본 발명의 일 실시예에 따른 전기화학소자의 충전 용량 향상 및 전극의 전기전도도 향상을 위하여 전도성 탄소 물질을 더 포함할 수도 있다. 상기 전도성 탄소 물질은 탄소나노튜브, 활성탄소, 그래핀 및 그래핀 산화물을 포함하는 군에서 선택되는 적어도 어느 하나일 수 있다. 상기 전도성 탄소물질은 제1 활물질층(13) 전체 조성의 15wt% 이하인 것이 바람직하다. 이는 상기 전도성 탄소 물질이 상기 제1 활물질층(13) 전체 조성 중 15wt%를 초과하는 경우, 상기 전도성 탄소물질이 상기 금속 수산화물 나노와이어가 전해질과 접촉하는 면적을 감소시켜, 수퍼 캐패시터의 캐패시턴스가 감소할 수 있기 때문이다.In addition, the metal hydroxide nanowires of the first active material layer 13 may further include a conductive carbon material for improving the charge capacity of the electrochemical device and the electrical conductivity of the electrode according to the embodiment of the present invention. The conductive carbon material may be at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene, and graphene oxide. The conductive carbon material is preferably 15 wt% or less of the total composition of the first active material layer 13. When the conductive carbon material exceeds 15wt% of the total composition of the first active material layer 13, the conductive carbon material reduces the area where the metal hydroxide nanowire is in contact with the electrolyte, thereby reducing the capacitance of the supercapacitor. Because you can.
상기 제2 전극(20)은 집전체(21) 및 상기 집전체(21) 상에 제2 활물질층(22)을 포함한다. 상기 제2 전극(20)은 음극일 수 있다.The second electrode 20 includes a current collector 21 and a second active material layer 22 on the current collector 21. The second electrode 20 may be a cathode.
이러한 제2 전극(20)의 집전체(21)는 전도성 물질이면 모두 가능할 수 있다. 예를 들면, 상기 제2 전극(20)의 집전체(21)는 금속 포일, 금속 메쉬 및 전도성 고분자 화합물 중 어느 하나로 이루어질 수 있다. The current collector 21 of the second electrode 20 may be all made of a conductive material. For example, the current collector 21 of the second electrode 20 may be made of any one of a metal foil, a metal mesh, and a conductive polymer compound.
또한, 상기 제2 전극(20)의 음극 활물질(22)은 도전성 물질이면 모두 가능할 것이다. 예를 들어, 상기 제2 전극(20)의 음극 활물질(22)은 도전성의 탄소재질, 도전성 금속 및 도전성 산화물로 이루어질 수 있다.In addition, the negative electrode active material 22 of the second electrode 20 may be any conductive material. For example, the negative electrode active material 22 of the second electrode 20 may be made of a conductive carbon material, a conductive metal, and a conductive oxide.
상기 세퍼레이터(30)로 사용될 수 있는 물질은 마이크로포러스 폴리프로필렌 또는 폴리에틸렌 멤브레인, 다공성 유리 섬유 티슈 또는 폴리프로필렌과 폴리에틸렌의 조합일 수 있다.The material that can be used as the separator 30 may be a microporous polypropylene or polyethylene membrane, a porous glass fiber tissue or a combination of polypropylene and polyethylene.
상기 전해액은 염기성 성질을 갖는 수성 전해질로서, 예를 들어 수산화칼륨(KOH) 수용액과 같은 알칼리 전해질일 수 있다. 산성 전해질을 사용하는 경우 전극(10, 20)의 용해를 일으킬 수 있기 때문에 바람직하지 않다.The electrolyte is an aqueous electrolyte having basic properties, and may be, for example, an alkaline electrolyte such as aqueous potassium hydroxide (KOH) solution. The use of an acidic electrolyte is not preferred because it can cause dissolution of the electrodes 10 and 20.
도 2는 본 발명의 일 실시예에 따른 전기화학소자의 전극 제조 방법을 설명하기 위한 흐름도이다.2 is a flowchart illustrating a method of manufacturing an electrode of an electrochemical device according to an embodiment of the present invention.
도 2를 참조하면, 우선, 금속 전구체 수용액을 준비한다(S1).Referring to FIG. 2, first, an aqueous metal precursor solution is prepared (S1).
이때, 상기 금속 전구체 수용액은 제1 금속염, 상기 제1 금속염과는 다른 금속을 갖는 제2 금속염 및 염기 물질을 함유한다. In this case, the aqueous metal precursor solution contains a first metal salt, a second metal salt having a metal different from the first metal salt, and a base material.
상기 제1 금속염은 M(X)2·mH2O이고, 상기 제2 금속염은 N(Y)2·mH2O일 수 있다. 이때, 상기 N과 M은 Ca, Mg, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택되는 서로 다른 종류의 금속들이고, X와 Y는 서로에 관계없이, Cl-, NO3 - 및 CHOO-로 이루어진 군에서 선택될 수 있으며, m은 0 내지 10일 수 있다. 또한, 상기 금속 전구체 수용액 내에서 상기 제1 금속염 및 제2 금속염의 몰비, 즉, 상기 N 및 M의 몰비는 1:9 내지 9:1인 것이 바람직하다. The first metal salt may be M (X) 2 · mH 2 O, and the second metal salt may be N (Y) 2 · mH 2 O. In this case, the N and M is Ca, Mg, Fe, Co, Ni, deulyigo metal of different types selected from the group consisting of Cu and Zn, X and Y are independently selected, Cl -, NO 3 - and CHOO - may be selected from the group consisting of which, m can be 0 to 10. In addition, the molar ratio of the first metal salt and the second metal salt in the aqueous metal precursor solution, that is, the molar ratio of the N and M is preferably 1: 9 to 9: 1.
상기 염기 물질은 상기 금속 전구체 수용액에 첨가되어 금속 전구체 수용액의 pH를 7 내지 14 사이로 조절한다. 바람직하게는, 상기 첨가되는 염기 물질의 양을 조절하여 상기 금속 전구체 수용액의 pH를 10 내지 13으로 조절할 수 있다. 이는 금속 전구체 수용액이 최초에 pH 7 미만의 산성을 나타내는데, 중성 또는 염기성의 조건에서만 상기 금속 전구체 수용액을 이용하여 금속 수산화물 나노와이어를 합성하는 것이 가능하며, 금속 전구체 수용액의 pH 10 내지 13에서 금속 수산화물 나노와이어의 생성 속도가 높기 때문이다.The base material is added to the aqueous metal precursor solution to adjust the pH of the aqueous metal precursor solution to between 7 and 14. Preferably, the pH of the aqueous metal precursor solution may be adjusted to 10 to 13 by adjusting the amount of the base material to be added. This is because the aqueous metal precursor solution initially exhibits an acidity of less than pH 7. It is possible to synthesize the metal hydroxide nanowires using the aqueous metal precursor solution only in neutral or basic conditions, and the metal hydroxide at pH 10 to 13 of the aqueous metal precursor solution. This is because the production rate of nanowires is high.
상기 염기 물질로는 염기성의 물질이면 모두 가능할 것이며, 일 예로 암모니아가 사용될 수 있다.As the base material, any basic material may be used. For example, ammonia may be used.
또한, 상기 금속 전구체 수용액은 전도성 탄소물질을 더 포함할 수도 있다. 상기 전도성 탄소물질은 탄소나노튜브, 활성탄소, 그래핀 및 그래핀 산화물을 포함하는 군에서 선택되는 적어도 어느 하나일 수 있다.In addition, the metal precursor aqueous solution may further include a conductive carbon material. The conductive carbon material may be at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene, and graphene oxide.
상기 금속 전구체 수용액을 준비한 후, 집전체를 준비하고, 상기 집전체 상에 전도성 탄소막을 형성할 수 있다(S2).After preparing the metal precursor aqueous solution, a current collector may be prepared, and a conductive carbon film may be formed on the current collector (S2).
상기 집전체는 Fe, Cu, Ti, Ni, Pt, Al, Au 및 이들의 합금일 수 있다. 또한, 상기 집전체는 전도성 고분자 및 전도성 산화물을 포함하는 군에서 선택되는 어느 하나의 일 수 있으며, 다공성 또는 비다공성 폼일 수 있다.The current collector may be Fe, Cu, Ti, Ni, Pt, Al, Au and alloys thereof. In addition, the current collector may be any one selected from the group comprising a conductive polymer and a conductive oxide, and may be a porous or non-porous foam.
또한, 상기 전도성 탄소막은 탄소나노튜브, 활성탄소, 그래핀 및 그래핀 산화물을 포함하는 군에서 선택되는 적어도 어느 하나일 수 있다.In addition, the conductive carbon film may be at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene and graphene oxide.
그리고, 상기 집전체 상의 전도성 탄소막은 다양한 방법을 통하여 형성하는 것이 가능하다. 예를 들어, 상기 전도성 탄소막은 고분자 전구체의 탄화 반응을 통하여 상기 집전체 상에 형성하거나, 분산제를 함유하는 탄소 소재 페이스트를 상기 집전체에 도포하는 방법으로 형성하는 것도 가능하다.The conductive carbon film on the current collector can be formed through various methods. For example, the conductive carbon film may be formed on the current collector through a carbonization reaction of a polymer precursor, or may be formed by applying a carbon material paste containing a dispersant to the current collector.
다만, 상기 전도성 탄소막을 형성하는 단계는 생략할 수도 있다.However, the forming of the conductive carbon film may be omitted.
상기 전도성 탄소막을 형성한 후, 전도성 탄소막이 형성된 집전체 상에 금속 수산화물 핵을 형성할 수 있다(S3).After forming the conductive carbon film, a metal hydroxide nucleus may be formed on the current collector on which the conductive carbon film is formed (S3).
상기 금속 수산화물 핵은 상기 금속 수산화물 나노와이어를 용이하게 형성하기 위한 씨드(seed) 물질의 역할을 하는 것으로서, 상기 전도성 탄소막이 형성된 집전체를 금속 전구체 수용액에 10분 내지 30분 동안 함침시켜 형성할 수 있다. 이때, 상기 금속 전구체 수용액은 50℃ 내지 100℃로 유지할 수 있다.The metal hydroxide nucleus serves as a seed material for easily forming the metal hydroxide nanowires, and may be formed by impregnating a current collector having the conductive carbon film in an aqueous metal precursor solution for 10 to 30 minutes. have. At this time, the aqueous metal precursor solution may be maintained at 50 ℃ to 100 ℃.
상기 금속 수산화물 핵이 형성되면, 집전체를 꺼내고 건조시킬 수 있으나, 상기 집전체를 꺼내어 건조시키는 단계는 생략될 수도 있다.When the metal hydroxide nucleus is formed, the current collector may be taken out and dried, but the step of removing and drying the current collector may be omitted.
상기 금속 수산화물 핵을 형성한 후, 상기 금속 수산화물 핵을 이용하여 집전체 상에 금속 수산화물 나노와이어를 형성한다(S4).After the metal hydroxide nucleus is formed, metal hydroxide nanowires are formed on a current collector using the metal hydroxide nucleus (S4).
상기 금속 수산화물 핵이 형성된 집전체를 pH가 7 내지 14 사이에서 유지되는 금속 전구체 수용액에 함침시켜, 금속 수산화물 나노와이어를 함유하는 활물질층을 형성한다. 바람직하게는, 상기 금속 전구체 수용액의 pH를 10 내지 13으로 유지할 수 있다. 이는 상기 금속 전구체 수용액의 pH가 중성 또는 염기인 경우에만 금속 수산화물 나노와이어가 생성되기 때문이며, pH가 10 내지 13인 경우에 금속 수산화물의 나노와이어의 생성 속도가 높기 때문이다.The current collector on which the metal hydroxide nucleus is formed is impregnated in an aqueous metal precursor solution having a pH of 7 to 14, thereby forming an active material layer containing metal hydroxide nanowires. Preferably, the pH of the aqueous metal precursor solution may be maintained at 10 to 13. This is because the metal hydroxide nanowires are generated only when the pH of the aqueous metal precursor solution is neutral or base, and the production rate of the nanowires of the metal hydroxide is high when the pH is 10 to 13.
또한, 상기 활물질층의 적절한 두께를 얻기 위하여, 상기 집전체의 함침은 30분 내지 3시간 동안 수행하는 것이 바람직하다. 상기 집전체를 금속 전구체 수용액에 30분 이하로 함침하면, 상기 금속 수산화물 나노와이어가 충분히 생성되지 않아 전기화학소자인 수퍼 캐패시터의 성능이 저하될 수 있다. 또한, 상기 집전체를 금속 전구체 수용액에 3시간 이상 함침하면, 상기 나노와이어의 생성량이 증가하여 활물질층의 두께가 두꺼워진다. 상기 활물질층이 두꺼워지면, 전기화학소자 전극의 내부 저항이 증가하게 되어 전기화학소자인 수퍼 캐패시터의 성능이 저하될 수 있다.In addition, in order to obtain an appropriate thickness of the active material layer, the impregnation of the current collector is preferably performed for 30 minutes to 3 hours. When the current collector is impregnated in the aqueous metal precursor solution for 30 minutes or less, the metal hydroxide nanowires may not be sufficiently generated, thereby degrading the performance of the supercapacitor, which is an electrochemical device. In addition, when the current collector is impregnated in the metal precursor aqueous solution for 3 hours or more, the amount of the nanowires produced increases and the thickness of the active material layer is increased. When the active material layer is thick, the internal resistance of the electrode of the electrochemical device is increased, thereby degrading the performance of the supercapacitor, which is an electrochemical device.
또한, 상기 금속 전구체 수용액은 50℃ 내지 100℃로 유지하는 것이 바람직하다.In addition, the metal precursor aqueous solution is preferably maintained at 50 ℃ to 100 ℃.
상기 금속 수산화물 나노와이어는 N(OH)2·mH2O, M(OH)2·mH2O, 및 [N(OH)2]1-x[M(OH)2]x·mH2O로 이루어지는 군에서 선택되는 2종의 금속 수산화물을 함유하며, 상기 N과 M은 Ca, Mg, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택되는 서로 다른 종류의 금속들이고, 0<X<1, m은 0 내지 10일 수 있다. 예를 들면, N으로 Co를, M으로 Ni을 사용하는 경우, 상기 금속 수산화물 나노와이어는 Co(OH)2·6H2O, Ni(OH)2·6H2O 및 [Co(OH)2][Ni(OH)2]·6H2O으로 이루어지는 군에서 선택되는 2종의 금속 수산화물일 수 있다.The metal hydroxide nanowires are N (OH) 2 · mH 2 O, M (OH) 2 · mH 2 O, and [N (OH) 2 ] 1-x [M (OH) 2 ] x · mH 2 O. It contains two kinds of metal hydroxides selected from the group consisting of, wherein N and M are different kinds of metals selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn, 0 <X <1 , m may be 0 to 10. For example, when Co is used as N and Ni is used as M, the metal hydroxide nanowires may be selected from Co (OH) 2 · 6H 2 O, Ni (OH) 2 · 6H 2 O, and [Co (OH) 2 ]. [Ni (OH) 2] · may be two kinds of metal hydroxide selected from the group consisting of 6H 2 O.
상기에서는 금속 수산화물 핵을 형성한 후, 금속 수산화물 나노와이어를 형성하는 방법을 설명하였으나, 본 발명은 이에 한정되지 않으며, 집전체를 금속 전구체 수용액에 함침하여 집전체 상에 (또는 전도성 탄소막이 형성된 경우 전도성 탄소막 상에) 금속 수산화물 핵 및 금속 수산화물 나노와이어를 동시에 형성하는 방법도 가능하다. In the above, a method of forming metal hydroxide nanowires after forming a metal hydroxide nucleus has been described. However, the present invention is not limited thereto, and the current collector is impregnated with an aqueous metal precursor solution to form a conductive carbon film on the current collector. It is also possible to simultaneously form a metal hydroxide nucleus and a metal hydroxide nanowire on the conductive carbon film.
상기 금속 수산화물 나노와이어를 형성한 후, 상기 금속 수산화물 나노와이어가 형성된 집전체를 건조시킨다(S5).After the metal hydroxide nanowires are formed, a current collector on which the metal hydroxide nanowires are formed is dried (S5).
건조 방법은 다양한 방법을 이용하여 실시할 수 있다. 예를 들면, 상온 대기 중에 방치하여 건조하는 것도 가능하며, 열을 가하여 상기 전구체 용액의 용매를 증발시켜 건조하는 것도 가능하다.The drying method can be carried out using various methods. For example, it may be left to dry in an ambient temperature atmosphere, or may be dried by evaporating the solvent of the precursor solution by applying heat.
이하, 본 발명의 이해를 돕기 위해 바람직한 전극 제조예를 제시한다. 다만, 하기의 전극 제조예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 전극 제조예에 의해 한정되는 것은 아니다.Hereinafter, preferred electrode preparation examples are provided to aid the understanding of the present invention. However, the following electrode preparation examples are merely to aid the understanding of the present invention, the present invention is not limited by the following electrode preparation examples.
<전극 제조예 1>Electrode Preparation Example 1
CoCl2와 Ni(NO3)2·6H2O를 코발트와 니켈의 각 전구물질로 사용하여, 니켈 및 코발트 이온의 몰비가 3:1이 되도록 0.1M CoCl2와 0.1M Ni(NO3)2·6H2O를 수용액에 용해하고, 암모니아를 첨가하여 pH가 12인 코발트 및 니켈 이온의 수용액을 제조하였다.CoCl 2 and Ni (NO 3 ) 2 · 6H 2 O are used as precursors of cobalt and nickel, so that the molar ratio of nickel and cobalt ions is 3: 1 so that 0.1M CoCl 2 and 0.1M Ni (NO 3 ) 2 6H 2 O was dissolved in an aqueous solution, and ammonia was added to prepare an aqueous solution of cobalt and nickel ions having a pH of 12.
이 수용액에 전도성 집전체인 스테인리스 스틸 기판을 함침시켜서 343K의 온도로 1시간 동안 코팅하여 코발트-니켈 수산화물 나노와이어를 제조하였으며 이를 건조하여 전기화학소자의 전극을 제조하였다.The aqueous solution was impregnated with a stainless steel substrate as a conductive current collector and coated at a temperature of 343K for 1 hour to prepare cobalt-nickel hydroxide nanowires, and dried to prepare an electrode of an electrochemical device.
<전극 제조예 2>Electrode Preparation Example 2
니켈 및 코발트 이온의 몰비가 2:1이 되도록 제조한 것을 제외하고는, 상기 전극 제조예 1과 동일한 방법으로 전기화학소자의 전극을 제조하였다. An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 1, except that the molar ratio of nickel and cobalt ions was 2: 1.
<전극 제조예 3><Electrode Preparation Example 3>
니켈 및 코발트 이온의 몰비가 1:1이 되도록 제조한 것을 제외하고는, 상기 전극 제조예 1과 동일한 방법으로 전기화학소자의 전극을 제조하였다. An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 1, except that the molar ratio of nickel and cobalt ions was 1: 1.
<전극 제조예 4><Electrode Preparation Example 4>
니켈 및 코발트 이온의 몰비가 1:2가 되도록 제조한 것을 제외하고는, 상기 전극 제조예 1과 동일한 방법으로 전기화학소자의 전극을 제조하였다. An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 1, except that the molar ratio of nickel and cobalt ions was 1: 2.
<전극 제조예 5>Electrode Preparation Example 5
니켈 및 코발트 이온의 몰비가 1:3이 되도록 제조한 것을 제외하고는, 상기 전극 제조예 1과 동일한 방법으로 전기화학소자의 전극을 제조하였다. An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 1, except that the molar ratio of nickel and cobalt ions was 1: 3.
하기의 표 1은 상기의 전극 제조예 1 내지 5에 따라 제조된 전극을 전기화학소자인 수퍼 캐패시터에 적용하여 측정한 측정값을 나타내는 표이다.Table 1 below is a table showing the measured values measured by applying the electrode prepared according to the electrode preparation examples 1 to 5 to the supercapacitor which is an electrochemical device.
이때, 사용된 전해질은 1M KOH 용액이었으며, 기준 전극은 Ag/AgCl을 사용하였다. 그리고,순환 전압-전류법으로 20mV/s의 주사속도로 축전용량을 측정하였다. At this time, the electrolyte used was a 1M KOH solution, and the reference electrode used Ag / AgCl. And the capacitance was measured at a scanning speed of 20 mV / s by the cyclic voltage-current method.
표 1
Ni:Co(몰비) 면질량(㎎/㎠) 인가전류면밀도(㎃/㎠) 충전시간(s) 방전시간(s) 충·방전효율(%) 축전용량(F/g) 에너지밀도(Wh/㎏) 파워밀도(kW/㎏) 전기화학적이용효율(%)
전극 제조예1 3:1 328 1 69 59 85 453 13 47 17
전극 제조예2 2:1 213 1 187 151 80 1776 50 180 68
전극 제조예3 1:1 161 1 122 93 76 1453 41 147 55
전극 제조예4 1:2 113 1 51 41 80 911 26 94 35
전극 제조예5 1:3 196 1 41 37 90 474 13 14 18
Table 1
Ni: Co (molar ratio) Surface mass (mg / cm 2) Applied Current Surface Density (㎃ / ㎠) Charging time (s) Discharge time (s) Charge and discharge efficiency (%) Capacity (F / g) Energy density (Wh / ㎏) Power density (kW / kg) Electrochemical application efficiency (%)
Electrode Preparation Example 1 3: 1 328 One 69 59 85 453 13 47 17
Electrode Preparation Example 2 2: 1 213 One 187 151 80 1776 50 180 68
Electrode Preparation Example 3 1: 1 161 One 122 93 76 1453 41 147 55
Electrode Preparation Example 4 1: 2 113 One 51 41 80 911 26 94 35
Electrode Manufacturing Example 5 1: 3 196 One 41 37 90 474 13 14 18
표 1을 참조하면, 니켈 및 코발트의 몰비가 3:1 내지 1:3 범위의 전기화학소자의 전극은 모두 수퍼 캐패시터의 전극으로 사용하기에 충분한 축전용량을 가짐을 알 수 있다. 그러나, 니켈 및 코발트의 몰비가 3:1 및 1:3인 전기화학소자의 전극은 이용효율이 각각 17% 및 18%로, 이용효율 측면에서 낮은 특성을 나타내었다. Referring to Table 1, it can be seen that the electrodes of the electrochemical device having a molar ratio of nickel and cobalt in the range of 3: 1 to 1: 3 all have sufficient capacitance for use as the electrode of the supercapacitor. However, the electrode of the electrochemical device having a molar ratio of 3: 1 and 1: 3 of nickel and cobalt was 17% and 18%, respectively, and exhibited low characteristics in terms of utilization efficiency.
따라서, 니켈 및 코발트의 몰비가 2:1 내지 1:2의 범위의 전기화학소자의 전극을 수퍼 캐패시터에 적용하는 경우, 수퍼 캐패시터의 특성이 우수함을 알 수 있다. Therefore, when the electrode of the electrochemical device having a molar ratio of nickel and cobalt of 2: 1 to 1: 2 is applied to the super capacitor, it can be seen that the characteristics of the super capacitor are excellent.
도 3은 상기 전극 제조예 2에 따라 제조된 전극을 다양한 배율로 촬영한 전자 현미경 이미지이다. 3 is an electron microscope image of the electrode prepared according to the Preparation Example 2 at various magnifications.
도 3을 참조하면, 본 발명의 일 실시예에 따라 제조된 전극은 활성층에 나노와이어를 포함하고 있음을 알 수 있다.Referring to FIG. 3, it can be seen that an electrode manufactured according to an embodiment of the present invention includes nanowires in an active layer.
도 4 내지 7은 상기 전극 제조예 2에 따라 제조된 전극이 적용된 수퍼 캐패시터의 전기화학적 특성을 측정한 그래프이다. 이때, 사용된 전해질은 1M KOH 용액이었으며, 기준 전극은 Ag/AgCl을 사용하였다. 4 to 7 are graphs measuring the electrochemical characteristics of the supercapacitor to which the electrode manufactured according to Electrode Preparation Example 2 is applied. At this time, the electrolyte used was a 1M KOH solution, and the reference electrode used Ag / AgCl.
도 4를 참조하면, 본 발명의 일 실시예에 따라 제조된 전극을 적용한 수퍼 캐패시터는 순환 전압-전류계 측정 결과 높은 산화환원 피크를 가짐을 알 수 있다. Referring to FIG. 4, it can be seen that the supercapacitor to which the electrode manufactured according to the embodiment of the present invention is applied has a high redox peak as a result of the cyclic voltammetry measurement.
도 5를 참조하면, 본 발명의 일 실시예에 따라 제조된 전극을 적용한 수퍼 캐패시터는 충·방전 특성이 비교적 좌우 대칭 형상이며, 전체 충·방전 시간이 긴 것으로 보아, 충·방전에 참여한 전극물질의 양이 비슷하여 소자 안정성이 우수하며, 커패시턴스(capactance)가 높음을 알 수 있다. Referring to FIG. 5, the supercapacitor to which the electrode manufactured according to the exemplary embodiment of the present invention is applied has a relatively symmetrical shape of charging and discharging characteristics, and the total charging and discharging time is long, and thus the electrode material participating in charging and discharging. Since the amount of is similar to the excellent device stability, it can be seen that the capacitance (capactance) is high.
도 6을 참조하면, 본 발명의 일 실시예에 따라 제조된 전극은 전극 내부의 저항이 1Ω/㎠으로 낮음을 알 수 있다. 따라서, 수퍼 캐패시터에 적용된 전기화학소자의 전극이 낮은 내부 저항을 가짐을 알 수 있다.Referring to FIG. 6, it can be seen that the electrode manufactured according to the embodiment of the present invention has a low resistance of 1 μm / cm 2 in the electrode. Therefore, it can be seen that the electrode of the electrochemical device applied to the supercapacitor has a low internal resistance.
도 7을 참조하면, 본 발명의 일 실시예에 따라 제조된 전극을 적용한 수퍼 캐패시터는 반복된 충·방전에 따른 캐패시턴스의 변화가 적으므로, 안정적인 충·방전이 가능함을 알 수 있다.Referring to FIG. 7, it can be seen that the supercapacitor to which the electrode manufactured according to the exemplary embodiment of the present invention is applied has a small change in capacitance due to repeated charging and discharging, thereby enabling stable charging and discharging.
<전극 제조예 6>Electrode Preparation Example 6
분산제(Triton X)로 잘 분산되어 있는 활성탄소 페이스트를 스테인리스 스틸 기판 위에 유리막대를 사용하여 고르게 펴 바르고 400℃의 온도로 가열하여 불순물을 제거하였다.The activated carbon paste, which is well dispersed with a dispersant (Triton X), was evenly spread on a stainless steel substrate using a glass rod and heated to a temperature of 400 ° C. to remove impurities.
CoCl2와 Ni(NO3)2·6H2O를 코발트와 니켈의 각 전구물질로 사용하여, 니켈 및 코발트 이온의 몰비가 1:1이 되도록 0.1M CoCl2와 0.1M Ni(NO3)2·6H2O를 수용액에 용해하고, 암모니아를 첨가하여 pH가 12인 코발트 및 니켈 이온의 수용액을 제조하였다.CoCl 2 and Ni (NO 3 ) 2 · 6H 2 O are used as precursors of cobalt and nickel, so that the molar ratio of nickel and cobalt ions is 1: 1 so that 0.1M CoCl 2 and 0.1M Ni (NO 3 ) 2 6H 2 O was dissolved in an aqueous solution, and ammonia was added to prepare an aqueous solution of cobalt and nickel ions having a pH of 12.
이 수용액에 활성탄소가 코팅된 전도성 집전체인 스테인리스 스틸 기판을 함침시키고, 343K의 온도로 1시간 동안 코팅하여 코발트-니켈 수산화물 나노와이어를 제조한 후, 이를 건조하여 전기화학소자의 전극을 제조하였다.The aqueous solution was impregnated with a stainless steel substrate which is a conductive current collector coated with activated carbon, coated at a temperature of 343 K for 1 hour to prepare cobalt-nickel hydroxide nanowires, and then dried to prepare an electrode of an electrochemical device. .
<전극 제조예 7>Electrode Preparation Example 7
집전체와 전극활물질 사이에 활성탄소를 코팅하지 않은 것을 제외하고는, 상기 전극 제조예 6과 동일한 방법으로 전기화학소자의 전극을 제조하였다.An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 6, except that the active carbon was not coated between the current collector and the electrode active material.
<전극 제조예 8>Electrode Preparation Example 8
니켈 및 코발트 이온의 몰비가 2:1이 되도록 제조한 것을 제외하고는, 상기 전극 제조예 6과 동일한 방법으로 전기화학소자의 전극을 제조하였다.An electrode of an electrochemical device was manufactured in the same manner as in Preparation Example 6, except that the molar ratio of nickel and cobalt ions was 2: 1.
하기의 표 2는 상기 전극 제조예 6 내지 8의 전극을 전기화학소자인 수퍼 캐패시터에 적용하여 측정한 측정값을 나타내는 표이다. Table 2 below is a table showing measured values measured by applying the electrodes of the electrode preparation examples 6 to 8 to the supercapacitor which is an electrochemical device.
표 2
Ni:Co(몰비) 집전체의 탄소막코팅유무 충전시간(s) 방전시간(s) 충·방전효율(%) 축전용량(F/g) 에너지밀도(Wh/㎏) 파워밀도(kW/㎏)
전극 제조예6 1:1 250 230 92 2500 420 1512
전극 제조예7 1:1 × 122 93 76 1453 41 147
전극 제조예8 2:1 × 187 151 80 1776 50 180
TABLE 2
Ni: Co (molar ratio) Carbon film coating on current collector Charging time (s) Discharge time (s) Charge and discharge efficiency (%) Capacity (F / g) Energy density (Wh / ㎏) Power density (kW / kg)
Electrode Preparation Example 6 1: 1 250 230 92 2500 420 1512
Electrode Preparation Example 7 1: 1 × 122 93 76 1453 41 147
Electrode Preparation Example 8 2: 1 × 187 151 80 1776 50 180
표 2를 참조하면, 탄소막이 코팅된 집전체를 사용한 니켈-코발트 수산화물 전극은 축전용량, 에너지 밀도, 파워밀도 등의 모든 면에서 탄소막이 코팅되지 않은 집전체를 사용한 전극보다 우수한 성능을 나타내었다.Referring to Table 2, the nickel-cobalt hydroxide electrode using the carbon film-coated current collector showed better performance than the electrode using the current collector without the carbon film in all aspects such as storage capacity, energy density, and power density.
따라서, 집전체에 탄소막을 코팅하여 제작한 전기화학소자의 전극을 수퍼 캐패시터에 적용하는 경우, 수퍼 캐패시터의 특성을 더욱 향상시킬 수 있음을 알 수 있다.Therefore, when the electrode of the electrochemical device manufactured by coating the carbon film on the current collector is applied to the super capacitor, it can be seen that the characteristics of the super capacitor can be further improved.
도 8은 상기 전극 제조예 6에 따라 제조된 전극을 다양한 배율로 촬영한 전자 현미경 이미지이고, 도 9는 상기 전극 제조예 7에 따라 제조된 전극을 촬영한 전자 현미경 이미지이다.8 is an electron microscope image of the electrode prepared according to the electrode preparation example 6 at various magnifications, and FIG. 9 is an electron microscope image of the electrode manufactured according to the electrode preparation example 7.
도 8 및 9를 참조하면, 본 발명의 실시예에 따라 제조된 전극은 활성층에 나노와이어를 포함하고 있음을 알 수 있다. 또한, 탄소막을 집전체 상에 코팅한 후에 제작한 니켈-코발트 나노와이어의 경우 코팅처리 없이 제작한 니켈-코발트 나노와이어보다 직경이 가늘고 와이어의 숫자 또한 많은 것을 확인할 수 있으며, 이로 인해 탄소막이 코팅된 니켈-코발트 수산화물 전극이 보다 높은 표면적을 가지기 때문에 보다 우수한 성능을 나타내는 원인이 됨을 알 수 있다.8 and 9, it can be seen that the electrode manufactured according to the embodiment of the present invention includes nanowires in the active layer. In addition, in the case of nickel-cobalt nanowires manufactured after coating the carbon film on the current collector, the diameter of the nickel-cobalt nanowires produced without coating treatment is thinner and the number of wires is also higher. It can be seen that the nickel-cobalt hydroxide electrode has a higher surface area and thus is a cause of showing better performance.
도 10 내지 13은 본 발명의 실시예에 따라 제조된 전극이 적용된 수퍼 캐패시터의 전기화학적 특성을 측정한 그래프이다.10 to 13 are graphs measuring the electrochemical characteristics of a super capacitor to which an electrode manufactured according to an embodiment of the present invention is applied.
도 10은 상기 전극 제조예 6에 따라 활성탄소가 코팅된 집전체를 사용하여 제조된 니켈-코발트 수산화물 전극의 주사속도에 따른 순환 전압-전류 그래프로서, 높은 산화환원 피크를 가지며, 20~100 mV/s의 범위에서도 뚜렷한 산화-환원곡선을 보이고 있다.10 is a cyclic voltage-current graph according to a scanning speed of a nickel-cobalt hydroxide electrode prepared using an active carbon coated current collector according to Preparation Example 6, having a high redox peak and having a high redox peak of 20 to 100 mV. In the range of / s, the redox curves are distinct.
도 11은 (i) 활성탄소가 코팅된 니켈-코발트 수산화물 전극(제조예 6), (ii) 활성탄소가 코팅되지 않은 니켈-코발트 수산화물 전극(제조예 7), 및 (iii) 활성탄소층만의 순환전류 그래프이며, 활성탄소층이 있는 니켈-코발트 수산화물 전극이 그렇지 않은 전극보다 넓은 작동전압 범위와 순환전류 곡선을 보여주고 있다. 이는 활성탄소층이 있는 니켈-코발트 수산화물 전극이 그렇지 않은 전극보다 높은 축전용량과 에너지 밀도, 파워밀도를 지니고 있음을 나타내는 것이다.11 shows (i) activated carbon-coated nickel-cobalt hydroxide electrode (Preparation Example 6), (ii) activated carbon-coated nickel-cobalt hydroxide electrode (Preparation Example 7), and (iii) activated carbon layer only. The cyclic current graph shows that the nickel-cobalt hydroxide electrode with the activated carbon layer shows a wider operating voltage range and circulating current curve than the electrode without. This indicates that nickel-cobalt hydroxide electrodes with an activated carbon layer have higher capacitance, energy density, and power density than those that do not.
도 12는 상기 전극 제조예 6에 따라 제조된 활성탄소가 코팅된 니켈-코발트 전극의 충·방전 그래프로서, 좌우 대칭성이 높으므로 충전에 참여한 전극물질과 방전에 참여한 전극물질의 양이 비슷하다는 점과 충전에서부터 방전까지 걸리는 시간이 길기 때문에 커패시턴스가 높음을 보여준다.FIG. 12 is a charge / discharge graph of an activated carbon-coated nickel-cobalt electrode prepared according to Preparation Example 6 of the present invention. Since the left and right symmetry is high, the amount of the electrode material participating in the charge and the electrode material participating in the discharge are similar. The long capacitance from overcharging to discharging shows a high capacitance.
도 13은 상기 전극 제조예 6에 따라 제조된 전극의 임피던스(impedence) 그래프로서, 1Ω/cm2 의 낮은 내부저항을 가짐을 확인할 수 있다.FIG. 13 is an impedance graph of the electrode manufactured according to the Preparation Example 6, and it can be seen that it has a low internal resistance of 1Ω / cm 2 .

Claims (18)

  1. 집전체; 및 Current collector; And
    상기 집전체 상에 길이 방향 일측 단부가 상부로 향하는 금속 수산화물 나노와이어를 함유하는 활물질층을 포함하는 전기화학소자 전극. An electrochemical device electrode comprising an active material layer containing a metal hydroxide nanowire with one end in the longitudinal direction toward the top of the current collector.
  2. 제1항에 있어서, The method of claim 1,
    상기 금속 수산화물 나노와이어는 N(OH)2·mH2O, M(OH)2·mH2O, 및 [N(OH)2]1-x[M(OH)2]x·mH2O로 이루어지는 군에서 선택되는 2종의 금속 수산화물을 함유하며, 상기 N과 M은 Ca, Mg, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택되는 서로 다른 종류의 금속들이고, 0<X<1, m은 0 내지 10인 전기화학소자 전극.The metal hydroxide nanowires are N (OH) 2 · mH 2 O, M (OH) 2 · mH 2 O, and [N (OH) 2 ] 1-x [M (OH) 2 ] x · mH 2 O. It contains two kinds of metal hydroxides selected from the group consisting of, wherein N and M are different kinds of metals selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn, 0 <X <1 , m is 0 to 10 electrochemical device electrode.
  3. 제2항에 있어서, The method of claim 2,
    상기 N과 M은 각각 Ni과 Co인 전기화학소자 전극. N and M are each Ni and Co electrochemical device electrode.
  4. 제1항에 있어서, The method of claim 1,
    상기 집전체와 상기 활물질층 사이에 개재된 전도성 탄소막을 더 포함하는 전기화학소자 전극. Electrochemical device electrode further comprises a conductive carbon film interposed between the current collector and the active material layer.
  5. 제1항에 있어서, The method of claim 1,
    상기 활물질층은 전도성 탄소물질을 더 함유하는 전기화학소자 전극. The active material layer is an electrochemical device electrode further containing a conductive carbon material.
  6. 제4항 또는 제5항에 있어서,The method according to claim 4 or 5,
    상기 전도성 탄소는 탄소나노튜브, 활성탄소, 그래핀 및 그래핀 산화물로 이루어지는 군에서 선택되는 적어도 어느 하나인 전기화학소자 전극.The conductive carbon is at least one selected from the group consisting of carbon nanotubes, activated carbon, graphene and graphene oxide electrochemical device electrode.
  7. 집전체; 및 Current collector; And
    상기 집전체 상에 N(OH)2·mH2O, M(OH)2·mH2O, 및 [N(OH)2]1-x[M(OH)2]x·mH2O로 이루어지는 군에서 선택되는 2종의 금속 수산화물을 함유하며, 상기 N과 M은 Ca, Mg, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택되는 서로 다른 종류의 금속들이고, 0<X<1, m은 0 내지 10인 활물질층을 포함하는 전기화학소자 전극.On the current collector N (OH) 2 · mH 2 O, M (OH) 2 · mH consisting of 2 O, and [N (OH) 2] 1 -x [M (OH) 2] x · mH 2 O It contains two kinds of metal hydroxides selected from the group, wherein N and M are different kinds of metals selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn, 0 <X <1, m is an electrochemical device electrode comprising an active material layer of 0 to 10.
  8. 제1 금속염, 상기 제1 금속염과는 다른 금속을 갖는 제2 금속염 및 염기물질을 함유하는 금속 전구체 수용액을 준비하는 단계; 및 Preparing a metal precursor aqueous solution containing a first metal salt, a second metal salt having a metal different from the first metal salt, and a base material; And
    상기 금속 전구체 수용액 내에 집전체를 함침하여 상기 집전체 상에 길이 방향 일측 단부가 상부로 향하는 금속 수산화물 나노와이어를 형성하는 단계를 포함하는 전기화학소자 전극의 제조 방법. Impregnating a current collector in the aqueous metal precursor solution to form a metal hydroxide nanowire with one end in the longitudinal direction toward the top of the current collector to form an electrochemical device electrode.
  9. 제8항에 있어서, The method of claim 8,
    상기 제1 금속염은 M(X)2·mH2O이고, 상기 제2 금속염은 N(Y)2·mH2O이고, 상기 N과 M은 Ca, Mg, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택되는 서로 다른 종류의 금속들이고, X와 Y는 서로에 관계없이, Cl-, NO3 - 및 CHOO-로 이루어진 군에서 선택되고, m은 0 내지 10인 전기화학소자 전극의 제조 방법. The first metal salt is M (X)2MH2O, and the second metal salt is N (Y)2MH2O and N and M are each selected from the group consisting of Ca, Mg, Fe, Co, Ni, Cu and Zn. Different kinds of metals, X and Y are independent of each other, Cl-, NO3                 - And CHOO-It is selected from the group consisting of, m is 0 to 10 method for producing an electrochemical device electrode.
  10. 제8항에 있어서, The method of claim 8,
    상기 금속 수산화물 나노와이어를 형성하는 단계에서 상기 금속 전구체 수용액의 pH는 7 내지 14인 전기화학소자 전극의 제조 방법. PH of the aqueous metal precursor solution in the step of forming the metal hydroxide nanowires is 7 to 14 manufacturing method of the electrochemical device electrode.
  11. 제8항에 있어서, The method of claim 8,
    상기 금속 수산화물 나노와이어를 형성하는 단계는 50℃ 내지 100℃의 온도에서 수행하는 전기화학소자 전극의 제조 방법. Forming the metal hydroxide nanowires is a method of manufacturing an electrochemical device electrode performed at a temperature of 50 ℃ to 100 ℃.
  12. 제8항에 있어서, The method of claim 8,
    상기 금속 수산화물 나노와이어를 형성하는 단계는 30분 내지 3시간 동안 수행하는 전기화학소자 전극의 제조 방법. Forming the metal hydroxide nanowires is a method of manufacturing an electrochemical device electrode performed for 30 minutes to 3 hours.
  13. 제8항에 있어서, The method of claim 8,
    상기 금속 수산화물 나노와이어를 형성하는 단계 이전에 Before forming the metal hydroxide nanowires
    상기 집전체 상에 전도성 탄소막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 전기화학소자 전극의 제조 방법. The method of manufacturing an electrochemical device electrode, characterized in that it further comprises the step of forming a conductive carbon film on the current collector.
  14. 제8항에 있어서, The method of claim 8,
    상기 금속 전구체 수용액은 전도성 탄소 물질을 더 함유하는 전기화학소자 전극의 제조 방법. The metal precursor aqueous solution further comprises a conductive carbon material.
  15. 제8항에 있어서,The method of claim 8,
    상기 금속 수산화물 나노와이어를 형성하기 전에Before forming the metal hydroxide nanowires
    상기 금속 전구체 수용액 내에 집전체를 함침하여, 상기 집전체 상에 금속 수산화물 핵을 형성하는 단계를 더 포함하는 전기화학소자 전극의 제조 방법.Impregnating a current collector in the aqueous metal precursor solution, to form a metal hydroxide nucleus on the current collector further comprising the manufacturing method of the electrochemical device electrode.
  16. 제15항에 있어서,The method of claim 15,
    상기 집전체 상에 금속 수산화물 핵을 형성하는 단계는 Forming a metal hydroxide nucleus on the current collector
    상기 금속 전구체 수용액에 함침된 집전체를 꺼내어 건조시키는 단계를 더 포함하는 전기화학소자 전극의 제조 방법. The method of manufacturing an electrochemical device electrode further comprising the step of drying the collector impregnated in the aqueous metal precursor solution.
  17. M(X)2·mH2O인 제1 금속염, N(Y)2·nH2O인 제2 금속염, 및 염기물질을 함유하며, 상기 N과 M은 Ca, Mg, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택되는 서로 다른 종류의 금속들이고, X와 Y는 서로에 관계없이, Cl-, NO3 - 및CHOO-로 이루어진 군에서 선택되고, m은 0 내지 10인 금속 전구체 수용액을 준비하는 단계; 및 A first metal salt of M (X) 2 · mH 2 O, a second metal salt of N (Y) 2 · nH 2 O, and a base material, wherein N and M are Ca, Mg, Fe, Co, Ni, deulyigo metal of different types selected from the group consisting of Cu and Zn, X and Y are independently selected, Cl -, nO 3 - and CHOO - is selected from the group consisting of a, m is the metal precursor solution from 0 to 10 Preparing a; And
    상기 금속 전구체 수용액 내에 집전체를 함침하여 상기 집전체 상에 활물질층을 형성하는 단계를 포함하는 전기화학소자 전극 제조 방법. Impregnating a current collector in the aqueous metal precursor solution to form an active material layer on the current collector.
  18. 집전체 및 상기 집전체 상의 제1 활물질층을 포함하는 제1 전극; A first electrode including a current collector and a first active material layer on the current collector;
    집전체 및 상기 집전체 상의 제2 활물질층을 포함하는 제2 전극; A second electrode including a current collector and a second active material layer on the current collector;
    상기 제1 전극 및 제2 전극 사이에 개재되는 세퍼레이터; 및 A separator interposed between the first electrode and the second electrode; And
    이온 교환을 위한 전해액을 포함하며, It includes an electrolyte for ion exchange,
    상기 제1 전극의 제1 활물질층은 길이 방향 일측 단부가 상부로 향하는 금속 수산화물 나노와이어를 함유하는 전기화학소자.The first active material layer of the first electrode is an electrochemical device containing a metal hydroxide nanowire with one end in the longitudinal direction toward the top.
PCT/KR2011/002867 2010-04-21 2011-04-21 Electrochemical device electrode, method for manufacturing same, and electrochemical device WO2011132952A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100037094 2010-04-21
KR10-2010-0037094 2010-04-21

Publications (2)

Publication Number Publication Date
WO2011132952A2 true WO2011132952A2 (en) 2011-10-27
WO2011132952A3 WO2011132952A3 (en) 2012-05-10

Family

ID=44834656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002867 WO2011132952A2 (en) 2010-04-21 2011-04-21 Electrochemical device electrode, method for manufacturing same, and electrochemical device

Country Status (2)

Country Link
KR (1) KR101220036B1 (en)
WO (1) WO2011132952A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521598A (en) * 2016-10-28 2017-03-22 南京工程学院 Nanosheet self-assembly ferrocobalt hydroxide and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101536459B1 (en) * 2013-12-20 2015-07-13 주식회사 포스코 Metal encapsulation for oled and fabrication method of the same
CN115440508A (en) * 2022-08-25 2022-12-06 信阳师范学院 Preparation method of array type nickel-iron-nitrogen nanosheet for supercapacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048172A (en) * 2003-11-19 2005-05-24 한국과학기술연구원 Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor
US20080034921A1 (en) * 2005-01-14 2008-02-14 Cabot Corporation Production of metal nanoparticles
WO2010042196A1 (en) * 2008-10-08 2010-04-15 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158787B2 (en) * 2007-03-13 2013-03-06 独立行政法人産業技術総合研究所 NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL
KR101364398B1 (en) * 2007-05-17 2014-02-18 주식회사 엘지화학 Lithium titanate with nanostructure
KR100968583B1 (en) 2008-06-05 2010-07-08 한양대학교 산학협력단 Electrochemical cell
KR101013937B1 (en) 2008-09-26 2011-02-14 한양대학교 산학협력단 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048172A (en) * 2003-11-19 2005-05-24 한국과학기술연구원 Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor
US20080034921A1 (en) * 2005-01-14 2008-02-14 Cabot Corporation Production of metal nanoparticles
WO2010042196A1 (en) * 2008-10-08 2010-04-15 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521598A (en) * 2016-10-28 2017-03-22 南京工程学院 Nanosheet self-assembly ferrocobalt hydroxide and preparation method thereof
CN106521598B (en) * 2016-10-28 2019-03-26 南京工程学院 A kind of nanometer sheet self assembly ferro-cobalt hydroxide and preparation method thereof

Also Published As

Publication number Publication date
KR20110117633A (en) 2011-10-27
WO2011132952A3 (en) 2012-05-10
KR101220036B1 (en) 2013-01-21

Similar Documents

Publication Publication Date Title
WO2021091323A1 (en) Two-dimensional ni-organic framework/rgo composite and electrode for secondary battery or super-capacitor comprising same
KR102227276B1 (en) Metal-oxide anchored graphene and carbon-nanotube hybrid foam
WO2019108039A2 (en) Anode and secondary battery comprising same
WO2014163272A1 (en) Electrode composition for supercapacitor, cured product of said composition, electrode comprising said cured product, capacitor comprising said electrode, and manufacturing method for said supercapacitor
WO2014123385A1 (en) Graphene lithium ion capacitor
WO2016204565A1 (en) Silicon oxide-carbon-polymer composite, and anode active material comprising same
WO2016182100A1 (en) Three-dimensional mesh structure form electrode for electrochemical device, method for producing same, and electrochemical device comprising same
JP6374117B2 (en) Electrochemical device including cellulose nanofiber separation membrane and method for producing the same
WO2017003083A1 (en) High power energy storage device additive and high power energy storage device comprising same
WO2011122757A2 (en) Method for manufacturing a mixed catalyst containing a metal oxide nanowire, and electrode and fuel cell including a mixed catalyst manufactured by the method
JPH10275747A (en) Electric double layer capacitor
Huang et al. High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co 3 O 4/MnO 2 hybrid electrodes
WO2017082546A1 (en) Anode slurry for secondary battery for improving dispersibility and reducing resistance, and anode comprising same
WO2021225315A1 (en) Mxene-coated hydrophilic fiber membrane-based complex generator
WO2021145557A1 (en) Method for improving charging/discharging speed characteristics of mxene and carbon nanotube-based energy storage device
CN104241601A (en) Preparation method of metal-current-collector-free lithium battery or super-capacitor electrode
WO2018088735A1 (en) Anode and method for fabricating same
WO2019225879A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
WO2012115340A1 (en) Negative electrode material for a secondary battery and method for manufacturing same
WO2011132952A2 (en) Electrochemical device electrode, method for manufacturing same, and electrochemical device
WO2016122070A1 (en) Method for modifying carbon material electrode surface by current carrying, surface-modified carbon material electrode, and electrochemical capacitor comprising surface-modified carbon material electrode
WO2022086098A1 (en) Anode active material comprising graphene-silicon composite, manufacturing method therefor, and lithium secondary battery comprising same
WO2017146513A1 (en) Method for manufacturing laminated supercapacitor
WO2021085767A1 (en) Composition for super-capacitor electrode capable of improving electrode density, method for manufacturing super-capacitor electrode using same, and super-capacitor manufactured using manufacturing method
KR100895267B1 (en) AC/CNT Composite Electrode Using Electrostatic attraction and Method for Manufacturing the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772240

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772240

Country of ref document: EP

Kind code of ref document: A2