KR100591139B1 - Lithium-ion-cell lithium-manganese-oxide powder and production - Google Patents

Lithium-ion-cell lithium-manganese-oxide powder and production Download PDF

Info

Publication number
KR100591139B1
KR100591139B1 KR1020050106328A KR20050106328A KR100591139B1 KR 100591139 B1 KR100591139 B1 KR 100591139B1 KR 1020050106328 A KR1020050106328 A KR 1020050106328A KR 20050106328 A KR20050106328 A KR 20050106328A KR 100591139 B1 KR100591139 B1 KR 100591139B1
Authority
KR
South Korea
Prior art keywords
powder
lithium
manganese oxide
lithium manganese
ion battery
Prior art date
Application number
KR1020050106328A
Other languages
Korean (ko)
Inventor
장상구
원창환
Original Assignee
장상구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장상구 filed Critical 장상구
Priority to KR1020050106328A priority Critical patent/KR100591139B1/en
Application granted granted Critical
Publication of KR100591139B1 publication Critical patent/KR100591139B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬2차전지 양극소재의 한가지인 스피넬결정구조의

Figure 112005064132319-pat00001
로 대표되는 리튬망간산화물(
Figure 112005064132319-pat00002
)(M,N=Al,Ni,Co,Cr,Fe,Ti,W중에서 선택된 어느 하나의 금속, M과 N은 같거나 다를수도 있으며, x,y는 몰비이고 0.0 에서 0.5 사이의 값)분말을 얻기 위하여
Figure 112005064132319-pat00003
Figure 112005064132319-pat00004
, Mn, KCl 및 소량의 금속성분(Al,Ni,Co,Cr,Fe,Ti,W 중에서 선택된 어느하나의 금속)을 출발 물질로 하여 고압용기에서 자전연소합성법에 의해 순간적으로 합성한후, 상압의 800도-900도씨 가량의 조건하에서 열처리하여 최종 리튬망간산화물을 제조하는 방법에 관한 것이다,The present invention is a spinel crystal structure of one of the lithium secondary battery cathode material
Figure 112005064132319-pat00001
Lithium manganese oxide represented by
Figure 112005064132319-pat00002
(M, N = Al, Ni, Co, Cr, Fe, Ti, W any metal selected from M, M and N may be the same or different, x, y is molar ratio and value between 0.0 and 0.5) To get
Figure 112005064132319-pat00003
Wow
Figure 112005064132319-pat00004
, Mn, KCl and a small amount of metal components (any metal selected from Al, Ni, Co, Cr, Fe, Ti, W) as a starting material, after the instant synthesis by auto-combustion synthesis method in a high pressure vessel It relates to a method for producing the final lithium manganese oxide by heat treatment under the conditions of about 800-900 degrees Celsius of,

리튬망간산화물,금속(Al,Ni,Co,Cr,Fe,Ti,W). Lithium manganese oxide, metal (Al, Ni, Co, Cr, Fe, Ti, W).

Description

리튬이온전지용 리튬망간산화물분말 및 그 제조방법{Lithium-ion-cell lithium-manganese-oxide powder and production}Lithium manganese oxide powder for lithium ion battery and its manufacturing method {Lithium-ion-cell lithium-manganese-oxide powder and production}

도1 본 발명의

Figure 112005064132319-pat00005
분말 제조 공정도.1 of the present invention
Figure 112005064132319-pat00005
Powder manufacturing flow chart.

도2 본 발명의 자전연소합성법을 통해 제조한

Figure 112005064132319-pat00006
분말의 XRD를 나타내는 그래프.Figure 2 prepared by the autocombustion synthesis method of the present invention
Figure 112005064132319-pat00006
Graph showing XRD of powder.

도3 본 발명의 자전연소합성법을 통해 제조한

Figure 112005064132319-pat00007
분말의 SEM으로 촬열한 사진.Figure 3 prepared by the autogenous combustion synthesis method of the present invention
Figure 112005064132319-pat00007
SEM photograph of the powder.

도4 본 발명의 자전연소 합성법을 통해 제조한

Figure 112005064132319-pat00008
분말을 사용하여 제조한 전지에 0.05C의 전류를 인가하였을 때의 충방전 특성을 나타낸 그래프. Figure 4 prepared by the auto-combustion synthesis method of the present invention
Figure 112005064132319-pat00008
Graph showing charge and discharge characteristics when a current of 0.05C was applied to a battery prepared using powder.

도5 본 발명의 자전연소합성법을 통해 제조한

Figure 112005064132319-pat00009
분말을 사용하여 제조한 전지에 0.05C의 전류를 인가하였을 때의 열화 특성을 나타낸 그래프. 5 prepared by the autogenous combustion synthesis method of the present invention
Figure 112005064132319-pat00009
A graph showing deterioration characteristics when a current of 0.05 C was applied to a battery prepared using powder.

도6 본 발명의 자전연소합성법을 통해 제조한

Figure 112005064132319-pat00010
분말을 사용하여 제조한 전지에 0.05C의 전류를 50회 인가하였을 때의 열화 특성을 나타낸 그래 프. Figure 6 prepared by the autogenous combustion synthesis method of the present invention
Figure 112005064132319-pat00010
A graph showing deterioration characteristics when a current of 0.05 C was applied 50 times to a battery prepared using powder.

본 발명은 리튬이온전지용 리튬망간산화물(

Figure 112005064132319-pat00011
)분말 및 그의 제조방법에 관한 것으로서, 더욱 상세하게는 리튬 이차 전지의 양극 활물질로 사용되는 리튬이온전지용 리튬망간산화물(
Figure 112005064132319-pat00012
)분말 및 그의 제조방법에 관한 것이다. The present invention is a lithium manganese oxide for lithium ion battery (
Figure 112005064132319-pat00011
The present invention relates to a powder and a method for manufacturing the same, and more particularly, to a lithium manganese oxide for a lithium ion battery used as a cathode active material of a lithium secondary battery (
Figure 112005064132319-pat00012
) Powder and method for producing the same.

[종래기술][Private Technology]

최근 디지털캠코더, 소형오디오, 노트PC, 셀룰러폰 등의 새로운 포터블 전자기기가 급속히 진보하고 있으며, 이와 함께 그 전원이 되는 전지의 수요도 급속히 증가하고 있다. 이런 전자기기들의 소형화 및 경량화 추세와 관련하여, 이들 기기의 전원으로 사용되는 전지의 성능을 고성능화하고, 대용량화하려는 기술이 필요하게 되었으며, 특히 경제적 측면에서 이들 전지의 제조 원가를 절감하는 기술개발 노력이 진행되고 있다. 그 중 충전에 의해 계속해서 사용할 수 있는 이차전지가 각광을 받아 왔으며, 특히 리튬이온이 가역적으로 삽입 방출되며, 전지전압이 3~4V로 높고, 또한 100 Wh/Kg 정도의 고에너지 밀도를 갖는 리튬이온 전지에 관한 연구개발이 활발히 진행되고 있다. 리튬이온 전지는 충방전시 리튬이온이 가역적으로 삽 입/방출되는 재료를 양극과 음극에 사용하고 있으며, 그 중 양극재료로서

Figure 112005064132319-pat00013
,
Figure 112005064132319-pat00014
,
Figure 112005064132319-pat00015
등이 기전력, 안정성, 에너지 밀도 등의 관점에서 우수한 전이금속 산화물로서 주목받고 있다.Recently, new portable electronic devices such as digital camcorders, small audio, notebook PCs, cellular phones, etc. are rapidly progressing, and along with the demand for batteries that are used as power sources are also rapidly increasing. In connection with the trend toward miniaturization and light weight of such electronic devices, there is a need for a technology for improving the performance and capacity of batteries used as power sources for these devices. It's going on. Among them, secondary batteries that can be used continuously by charging have been in the spotlight, especially lithium ions are reversibly inserted and discharged, and the battery voltage is high as 3-4V, and has a high energy density of about 100 Wh / Kg. Research and development on ion batteries is actively progressing. Lithium-ion batteries use materials for positive and negative electrodes in which lithium ions are reversibly inserted / released during charging and discharging.
Figure 112005064132319-pat00013
,
Figure 112005064132319-pat00014
,
Figure 112005064132319-pat00015
And the like have attracted attention as excellent transition metal oxides in terms of electromotive force, stability, energy density and the like.

그러나 현재 사용되고 있는 양극 활물질,

Figure 112005064132319-pat00016
,
Figure 112005064132319-pat00017
등은 이론용량의 40~60% 정도밖에 활용할 수 없어서 보다 큰 용량을 갖는 양극활물질의 개발과 병행하여 이론용량에 접근할수 있는 기존 양극 활물질의 특성을 개선하기 위한 노력이 진행되고 있다. However, the cathode active material currently in use,
Figure 112005064132319-pat00016
,
Figure 112005064132319-pat00017
Etc. can only utilize about 40 ~ 60% of the theoretical capacity, and in parallel with the development of the positive electrode active material having a larger capacity, efforts are being made to improve the characteristics of the existing positive electrode active material that can approach the theoretical capacity.

상기와 같음 리튬 이차 전지의 양극 활물질로서는

Figure 112005064132319-pat00018
가 가장 일반적으로 사용되고 있는데, 여기서 코발트(Co)는 가격적인 면에서 니켈(Ni)의 약 2배, 망간(Mn)의 약 50배에 달하고 있어 경제적인 면에서 부담이 많으며, 특히 인체에 유해하여 대체 재료 개발의 필요성이 제기되어 왔다. As the positive electrode active material of the lithium secondary battery
Figure 112005064132319-pat00018
The most commonly used is cobalt (Co) is about twice the price of nickel (Ni) and about 50 times of manganese (Mn) in terms of economical burden is economical, especially harmful to the human body The need for developing alternative materials has been raised.

높은 충방전 특성, 경제적인 장점, 전해질의 안정성 및 우수한 가역성 등으로 인하여 리튬 이차 전지의 양극재료 중에서 현재까지

Figure 112005064132319-pat00019
를 대상으 로 한 연구 특히
Figure 112005064132319-pat00020
합성법에 대한 연구가 활발하게 진행되고 있다. Due to high charge and discharge characteristics, economic advantages, electrolyte stability and excellent reversibility
Figure 112005064132319-pat00019
Research in particular
Figure 112005064132319-pat00020
There is an active research on the synthesis method.

그 예로서 미국 특허 제5135732호에서는 고상 반응법을 이용한

Figure 112005064132319-pat00021
합성법을 시행하고 있다. 그러나 고상 반응법은 높은 온도와 장시간의 제조 시간이 요구되는 문제점이 있으므로 이 방법으로 제조된
Figure 112005064132319-pat00022
를 사용하여 전지를 제조할 경우 초기 용량이 낮은 문제점이 있다. As an example, US Pat. No. 5,153,322 uses solid phase reaction method
Figure 112005064132319-pat00021
Synthetic method is implemented. However, the solid phase reaction method requires a high temperature and a long production time.
Figure 112005064132319-pat00022
When manufacturing a battery using the problem that the initial capacity is low.

또한 P. Barboux 등은 망간 나이트레이트(Mn nitrate) 또는 망간 아세테이트(Mn acetate)와 리튬 하이드록사이드(LiOH) 및 암모니아()를 이용하는 졸-겔법에 의한

Figure 112005064132319-pat00024
제조 방법을 발표하였으며(J. Solid State Chem. 94, 185-186, 1991), 미국 특허 제3300697호의 페치니(Pechini) 합성법을 응용한 졸-겔법에 의한
Figure 112005064132319-pat00025
제조 방법을 개시하였다. 졸-겔법은 액상 상태에서 화학 합성이 일어나므로 제조된 분말이 균일하고 세밀한 형태(1 um)를 얻을 수 있다. 그러나 이들 방법들 역시 장시간의 제조 시간과 비싼 원료가격, 많은 시설투자가 요구되는 문제점이 발생한다.In addition, P. Barboux et al., Manganese nitrate (Mn nitrate) or manganese acetate (Mn acetate), lithium hydroxide (LiOH) and ammonia ( By sol-gel method using
Figure 112005064132319-pat00024
A manufacturing method was disclosed (J. Solid State Chem. 94, 185-186, 1991), and the sol-gel method using the Pechini synthesis method of US Pat.
Figure 112005064132319-pat00025
The preparation method is disclosed. Since the sol-gel method is chemically synthesized in a liquid state, the powder produced can obtain a uniform and fine form (1 um). However, these methods also require long manufacturing time, expensive raw material prices, and large facility investment.

Li 2차전지에 주로 쓰이는

Figure 112005064132319-pat00026
는 층상구조로 Li 이온이 층상구조에서 이동하면서 충전과 방전을 일으키는 원리로 3.6V 140mAh/g의 안정적인 양극소재이다. 그러나 코발트(Co)는 독성이 있고 가격이 비싸며 지구상의 코발트자원은 한계가 있어 이의 대체 가능성을 그간 탐색하여 왔다.Mainly used for Li secondary battery
Figure 112005064132319-pat00026
It is a layered structure, which is a stable anode material of 3.6V 140mAh / g. However, Cobalt (Co) is toxic and expensive, and cobalt resources on the planet are limited, so we have been exploring the possibility of replacing them.

특히 전기자동차에 쓰이는 2차전지는 용량도 대용량이 필요하고 가격도 낮은 조건에 적합한 2차전지 양극소재로서 망간을 기저로 한 리튬망간산화물에 대한 많은 연구가 진행되고 있다.In particular, secondary batteries used in electric vehicles have a lot of research on lithium manganese oxide based on manganese as a secondary battery cathode material suitable for the condition that requires a large capacity and low price.

리튬망간산화물중 대표적인 화합물인

Figure 112005064132319-pat00027
는 결정구조가 스피넬(Spinel)구조로 망간이온이 산소이온 사이에 겹쳐 있으므로 Li이온이 3차원적인 통로를 따라 이동할 수 있는 공간을 제공한다. Representative compound of lithium manganese oxide
Figure 112005064132319-pat00027
Since the crystal structure is a spinel structure, manganese ions overlap between oxygen ions, thus providing a space for Li ions to move along a three-dimensional passage.

Figure 112005064132319-pat00028
는 Li/Mn 몰비가 1/2로 1인
Figure 112005064132319-pat00029
에 비하여 안정적이고 작동전압도 4.2V, 이론용량 148mAh/g으로
Figure 112005064132319-pat00030
에 비할 수 있는 장점이 있으나 반면 싸이클 열화가 빠르고 여러 가지 이유로 실제용량은 110~125mAh/g으로
Figure 112005064132319-pat00031
에 비하여 떨어져서 사용이 제한적인 면이 있다. 따라서 Cycle 특성을 높여주기 위하여 소량의 금속성분을 첨가 Mn이온을 일부 치환(doping)하여
Figure 112005064132319-pat00032
표면과 내부 사이의 전위차에 의한 결정의 구조적인 불안정을 해소 하고 전지의 성능을 높혀주는 방법에 대하여도 많은 연구가 필요하다.
Figure 112005064132319-pat00028
Has a Li / Mn molar ratio of 1 to 1/2
Figure 112005064132319-pat00029
Compared to the stable and operating voltage of 4.2V and theoretical capacity of 148mAh / g
Figure 112005064132319-pat00030
Compared to the above, the cycle deterioration is fast and the actual capacity is 110 ~ 125mAh / g for various reasons.
Figure 112005064132319-pat00031
There is a limit to use compared to the fall. Therefore, a small amount of metal is added to do some Mn ions to improve the cycle characteristics.
Figure 112005064132319-pat00032
Much research is also needed to solve the structural instability of the crystal due to the potential difference between the surface and the interior and to improve the battery performance.

또한 Mn이 고온에서는 촉매기능이 강화되어 전해액인

Figure 112005064132319-pat00033
등과 반응하여 붕소를 유리시키고 망간이 석출하여 전지수명을 단축시키는 문제에 대하여도
Figure 112005064132319-pat00034
분말의 표면을 코팅하고 Mn 이온의 치환(doping)을 통해 싸이클 열화 문제를 해결하는 노력도 진행되어야 한다.In addition, at high temperatures, Mn enhances the catalytic function,
Figure 112005064132319-pat00033
Regarding the problem of liberating boron in the reaction of water and the precipitation of manganese to shorten battery life
Figure 112005064132319-pat00034
Efforts should also be made to solve the cycle degradation problem by coating the surface of the powder and doping of Mn ions.

본 발명은 상기와 같은 리튬망간산화물의 문제점을 해결하기 위하여 The present invention to solve the problems of the lithium manganese oxide as described above

첫째, 분말의 결정을 형성하는 과정에서 입도가 조밀하고 입자의 크기가 일정한 리튬망간산화물 분말을 제조하는 방법을 제시하고, Firstly, a method of preparing lithium manganese oxide powder having a dense particle size and a constant particle size in the process of forming a crystal of the powder,

둘째, 일반적으로 합성온도가 높을수록 결정구조가 더 규칙적인 결정구조가 되고 Li이 결정구조에 들어가지 못한 결함이 있는 결정구조가 줄어든다.Secondly, in general, the higher the synthesis temperature, the more regular the crystal structure becomes, and the less defective the crystal structure does not allow Li to enter the crystal structure.

그러나 Li이 매우 연한 물질이여서 어느 일정온도 이상에서는 휘발하여 버린다. 본 발명의 특징은 이 같은 문제를 해결하기 위하여 고압의 반응로에서 반응시켜 Li이온이 결정구조에 고르게 삽입될 수 있는 적정압력과 온도를 찾고.However, Li is a very soft substance and volatilizes above a certain temperature. A feature of the present invention is to find the proper pressure and temperature by which the Li ion can be evenly inserted into the crystal structure by reacting in a high pressure reactor to solve this problem.

셋째, 초기 용량이 이론용량인 140mAh/g에 근접할 수 있는 리튬망간산화물(

Figure 112005064132319-pat00035
)(여기서 x,y는 몰비로 0 ~ 0.5이고 M,N은 Fe, Al, Co,Ni,Cr,W등에서 선택된 어느 하나의 천이금속원소) 분말을 제조함으로서 현재 상용으로 주로 쓰이는
Figure 112005064132319-pat00036
분말을 대체할 수 있는 리튬이온전지용 리튬망간 산화물(
Figure 112005064132319-pat00037
)분말 및 그의 제조방법을 제공하는 것이 본 발명이 이루고자 하는 기술적 과제인 것이다.Third, lithium manganese oxide whose initial capacity is close to the theoretical capacity of 140mAh / g (
Figure 112005064132319-pat00035
(Where x and y are molar ratios from 0 to 0.5 and M and N are any transition metal element selected from Fe, Al, Co, Ni, Cr, W, etc.).
Figure 112005064132319-pat00036
Lithium Manganese Oxide for Lithium-ion Battery
Figure 112005064132319-pat00037
Providing a powder and a manufacturing method thereof is a technical problem to be achieved by the present invention.

여기서 고압의 반응 과정은 반응물들이 발열과정을 거치면서 외부에서 추가적인 에너지 공급이 없어도 반응화염이 전파되면서 수초이내에 반응이 완결되는 현상( Self-propagating High temperature Synthesis Process, SHS, 자전연소합성법)을 이용한다. 이렇게 함으로써 기존의 공법에 비하여 에너지 절약과 제조시간 단축을 기할 수 있는 장점을 갖출 수 있다.Here, the high-pressure reaction process uses a phenomenon in which the reaction is propagated and the reaction is completed within a few seconds as the reaction flame propagates without additional energy supply from the outside (SHS, SHS). By doing so, it is possible to save energy and shorten manufacturing time compared to the existing method.

상기와 같은 목적을 달성하기 위하여, 본 발명은 리튬 나이트레이트(

Figure 112005064132319-pat00038
)와 망간옥사이드(
Figure 112005064132319-pat00039
), 망간(Mn), 포타슘 클로라이드(KCl)과 금속(Al,Ni,Co,Cr,Fe,Ti,W중에서 선택된 어느하나의 금속)을 볼밀기를 통해 화학양론적으로 혼합 교반시킨후 자전연소합성법을 통해 리튬망간산화물(
Figure 112005064132319-pat00040
)을 합성하고 상기 분말을 증류수에 용해시켜 포타슘클로라이드를 녹인후 상기 용해시킨 물질을 건조시킨 후800~900℃에서 3시간 열처리함으로써 리튬이온 전지 양극활성물질을 제조하는 리튬이온전지용 리튬망간산화물(
Figure 112005064132319-pat00041
) 분말 및 그의 제조방법을 제공한다. In order to achieve the above object, the present invention is lithium nitrate (
Figure 112005064132319-pat00038
) And manganese oxide (
Figure 112005064132319-pat00039
), Manganese (Mn), potassium chloride (KCl) and metal (any metal selected from Al, Ni, Co, Cr, Fe, Ti, W) stoichiometric mixing and stirring through a ball mill Through lithium manganese oxide (
Figure 112005064132319-pat00040
), The powder is dissolved in distilled water to dissolve the potassium chloride, and the dissolved material is dried and then heat-treated at 800 to 900 ° C. for 3 hours to produce a lithium ion battery cathode active material for lithium ion battery.
Figure 112005064132319-pat00041
) It provides a powder and a method for producing the same.

자전연소합성법을 통한 공정에서 혼합시 1mol의 KCl을 첨가하는 것이 바람직하다. 상기 공정에서 자전연소합성법을 실시할때는 공기(Air) 분위기에서 시행하는 것이 바람직하다. 상기 열처리 공정은 800내지 900℃인 것이 바람직하다. It is preferable to add 1 mol of KCl when mixing in a process through autocombustion synthesis. In the above-described process, when carrying out the autogenous combustion synthesis method, it is preferable to carry out in an air atmosphere. The heat treatment step is preferably 800 to 900 ℃.

본 발명에서 M과 N은 Al,Ni,Co,Cr,Fe,Ti,W에서 선택된 어느 하나의 금속이며,In the present invention, M and N is any one metal selected from Al, Ni, Co, Cr, Fe, Ti, W,

M과 N은 같거나 다를수도 있다.M and N may be the same or different.

x,y는 0에서 0.5사이의 값임.x, y is between 0 and 0.5

본 발명의

Figure 112005064132319-pat00042
물리적 성질은 Of the present invention
Figure 112005064132319-pat00042
Physical properties

결정구조(Spinel): a = 8.24 Å, 이론용량(Theoretical capacity) (mAh/g): 148, 실제용량(Practical capacity) (mAh/g): 100~120 임을 알 수 있다.Crystal structure (Spinel): a = 8.24 Å, Theoretical capacity (mAh / g): 148, Practical capacity (mAh / g): 100 ~ 120 It can be seen that.

이하 본 발명을 보다 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in more detail.

연소반응기의 재질은 SUS316을 사용하였고, 내부 부피는 5L로 내부에 걸리는 최대 압력은 250atm이 되도록 설계되었다. 반응기 내부는 진공펌프와 가스밸브(in-gas valve)가 장착되었고, 반응기 외부에는 내열·내압유리가 부착되었다. 또한 실험하기 위하여 시편을 점화시키기 위하여 Ni-Cr 선(wire)을 내부에 설치하였고 반 응기에 에어분위기를 조성하고자 에어공급장치를 설치하였다.The material of the combustion reactor was SUS316, and the internal volume was 5L and the maximum pressure applied to the inside was designed to be 250atm. The inside of the reactor was equipped with a vacuum pump and an in-gas valve, and the heat and pressure resistant glass was attached to the outside of the reactor. In addition, Ni-Cr wire was installed inside to ignite the specimen for the experiment, and an air supply device was installed to create an air atmosphere in the reactor.

외부의 전기적 스파크를 통해 망간이 반응하면서 리튬 나이트레이트(

Figure 112005064132319-pat00043
)가 리튬옥사이드(
Figure 112005064132319-pat00044
) 와 NO 가스로 분해한다. 리튬옥사이드(
Figure 112005064132319-pat00045
)는 망간옥사이드(
Figure 112005064132319-pat00046
) 및 망간(Mn) 내부에 침투하여 리튬망간산화물(
Figure 112005064132319-pat00047
) 상을 형성한다. 이때 반응온도가 너무 높아 반응물의 활동도가 높아질수 있으므로 포타슘 클로라이드(KCl)를 혼합해줌으로서 반응온도의 저하와 함께 활동도를 떨어뜨릴 수 있다. 자전연소합성법을 통해 생성된 리튬망간산화물(
Figure 112005064132319-pat00048
) 분말에는 희석을 위한 포타슘 클로라이드(KCl)등 불순물이 섞여있으므로 증류수에 세척 제거하도록 한다. 상기 과정을 통해 얻은 분말은 이미 어느 정도의 완성된 상을 가지면서 분말 입자크기 또한 작고 균일하여 소결시간을 단축할 수 있다. 상기 분말은 800내지 900℃에서 3시간 이내의 열처리 공정을 통해 완성된 리튬망간산화물(
Figure 112005064132319-pat00049
) 분말을 얻을 수 있으므로 고상 반응법에 비해 훨씬 유리하다. As manganese reacts through an external electrical spark, lithium nitrate (
Figure 112005064132319-pat00043
) Is lithium oxide (
Figure 112005064132319-pat00044
) And NO gas. Lithium oxide (
Figure 112005064132319-pat00045
) Is manganese oxide (
Figure 112005064132319-pat00046
) And lithium manganese oxide (Mn)
Figure 112005064132319-pat00047
) Form the phase. In this case, since the reaction temperature is too high, the activity of the reactant may be increased, so that potassium chloride (KCl) may be mixed to decrease the activity with the decrease of the reaction temperature. Lithium manganese oxide produced by the
Figure 112005064132319-pat00048
) The powder contains impurities such as potassium chloride (KCl) for dilution, so wash it in distilled water. The powder obtained through the above process may already have a degree of finished phase, and the powder particle size is also small and uniform, thereby shortening the sintering time. The powder is a lithium manganese oxide completed through a heat treatment process within 3 hours at 800 to 900 ℃ (
Figure 112005064132319-pat00049
) Since powders can be obtained, they are much more advantageous than solid phase reactions.

이하 본 발명을 실시예를 통해 설명하면 다음과 같다. 그러나 본 발명의 범위가 이러한 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described through Examples. However, the scope of the present invention is not limited to these examples.

실시예 1Example 1

제1공정(제조공정)First process (manufacturing process)

최대 압력은 250atm 이며, 외부에는 내열·내압유리가 부착되고, 내부는 진공펌프와 가스밸브(in-gas valve)가 장착되며, Ni-Cr 선(wire)을 내부에 설치하였고 반응기에 에어분위기를 조성하고자 에어공급장치에 연결된 자전연소반응기 내에

Figure 112005064132319-pat00050
Figure 112005064132319-pat00051
Mn을 1:2 몰비로 정량한 후, KCl 1몰을 추가적으로 혼합하여 에어공급장치에서 공기주입압력 4기압으로 공기를 주입하며, 800내지 900℃에서 6시간 동안 건식 분쇄 및 혼합하여 자전연소합성법에 의해
Figure 112005064132319-pat00052
를 제조한 후, 진공 건조기에서 50℃, 12시간 건조한 다음, 분말을 증류수에 용해시켜 여분의 포타슘클로라이드를 제거한 다음에, The maximum pressure is 250atm, the heat-resistant and pressure-resistant glass is attached to the outside, the vacuum pump and the in-gas valve inside, the Ni-Cr wire is installed inside, and the air atmosphere in the reactor In a rotating combustion reactor connected to an air supply
Figure 112005064132319-pat00050
Wow
Figure 112005064132319-pat00051
After quantifying Mn in a 1: 2 molar ratio, 1 mol of KCl is additionally mixed to inject air at an air injection pressure of 4 atm from an air supply device, and dry grinding and mixing at 800 to 900 ° C. for 6 hours to perform autogenous combustion synthesis. due to
Figure 112005064132319-pat00052
After preparing, dried in a vacuum dryer at 50 ℃ for 12 hours, the powder was dissolved in distilled water to remove excess potassium chloride,

제2공정(가공공정)2nd process (processing process)

상기 제2공정에서 제조, 건조된

Figure 112005064132319-pat00053
분말을 전기로에서 600내지 1,000℃ 3시간 동안 열처리한 후 Roll mill을 이용하여 1차 분쇄한 다음, cell 전극구성에 필요한 미세 분말을 얻기 위하여 펄버라이져(Pulverizer)를 사용하여 10㎛이하로 2차 분쇄하여 최종 분말로 가공하여 리튬이온전지용
Figure 112005064132319-pat00054
분말을 제조하였다. Manufactured and dried in the second process
Figure 112005064132319-pat00053
The powder is heat-treated in an electric furnace for 600 hours to 1,000 ° C. for 3 hours, and then pulverized first using a roll mill, and then secondly pulverized to 10 μm or less using a pulverizer to obtain fine powder necessary for cell electrode configuration. Processed into final powder for lithium ion battery
Figure 112005064132319-pat00054
Powder was prepared.

실시예2내지 실시예6Example 2 to Example 6

상기 실시예 1과 동일한 방법으로 제조하고, 첨가되는 금속을 Al, Ni, Co,Cr,Fe,Ti,W로 하여, 제조하였으며, 따라서, 최종물질 또한 상이한 것으로서, 다음 도표와 같은 화학구조식을 갖는 리튬망간산화물을 제조하였다.Prepared in the same manner as in Example 1, and added to the metal was prepared as Al, Ni, Co, Cr, Fe, Ti, W, and thus, the final material is also different, having the chemical formula shown in the following table Lithium manganese oxide was prepared.

M,N(천이금속M, N (transition metal 화학구조식Chemical structure 비고Remarks 실시예1Example 1 MnMn

Figure 112005064132319-pat00055
Figure 112005064132319-pat00055
실시예2 Example 2 AlAl
Figure 112005064132319-pat00056
Figure 112005064132319-pat00056
실시예3 Example 3 NiNi
Figure 112005064132319-pat00057
Figure 112005064132319-pat00057
실시예4 Example 4 CoCo
Figure 112005064132319-pat00058
Figure 112005064132319-pat00058
실시예5 Example 5 CrCr
Figure 112005064132319-pat00059
Figure 112005064132319-pat00059
실시예6Example 6 WW
Figure 112005064132319-pat00060
Figure 112005064132319-pat00060

실험예Experimental Example

본 실험에서는 전기화학적 특성을 분석하기 위해 코인셀(coin cell)을 구성하였다. 그리고 워킹엘렉트로드(working electrode)로 자전연소합성법에 의해 합성된 리튬망간산화물(

Figure 112005064132319-pat00061
)을 이용하였고, 카운터엘렉트로드(counter electrode)와 비교전극(reference electrode)로는 Li 호일(foil)을 사용하였다. 전해질은 에틸렌카보네이트(Ethylene carbonate)(EC)와 디메틸카보네이 트(Dimethyl carbonate) (DMC)를 1:1의 부피비로 섞은 용매에 1M
Figure 112005064132319-pat00062
을 녹인 용액을 사용하였다. 코인셀의 제조는 Ar 가스로 충진되어 수분이 1ppm이하로 존재하는 글로브박스(glove box) 내의 실온에서 진행되었다. 제작된 셀(cell)의 충·방전 시험은 정전류 인가법(galvanostatic mode)으로 배터리사이클러(battery cycler)(WBCS3000, WonATech)를 이용하여 3.0~ 4.3V의 영역에서 측정하였다. In this experiment, a coin cell was constructed to analyze the electrochemical properties. Lithium manganese oxide synthesized by a rotating combustion synthesis method as a working electrode (working electrode)
Figure 112005064132319-pat00061
) And a Li foil was used as a counter electrode and a reference electrode. The electrolyte is 1M in a solvent mixed with ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 1.
Figure 112005064132319-pat00062
The solution which melt | dissolved was used. Coin cell production was performed at room temperature in a glove box filled with Ar gas and having moisture of 1 ppm or less. The charge / discharge test of the manufactured cell was measured in a range of 3.0 to 4.3 V using a battery cycler (WBCS3000, WonATech) in a galvanostatic mode.

[비교예 1]Comparative Example 1

Figure 112005064132319-pat00063
Figure 112005064132319-pat00064
를 1:4 몰비로 정량하여 24시간 건식 분쇄 및 혼합한 후 800℃에서 36시간 동안 대기 분위기하에서 열처리를 통해 스피넬
Figure 112005064132319-pat00065
를 합성하였다. 그리고 cell 전극구성에 필요한 미세 분말을 얻기 위하여 펄버라이저(Pulverizer)를 사용하여 10㎛이하로 2차 분쇄하여 최종 분말을 얻을 수 있었다. 본 실험에서는 전기화학적 특성을 분석하기 위해 코인셀(coin cell)을 구성하였다.
Figure 112005064132319-pat00063
Wow
Figure 112005064132319-pat00064
Spinel was quantified in a 1: 4 molar ratio for 24 hours of dry grinding and mixing, followed by spinel heat treatment at 800 ° C. for 36 hours in an air atmosphere.
Figure 112005064132319-pat00065
Was synthesized. In order to obtain the fine powder required for the cell electrode configuration, a final powder was obtained by secondary grinding using a pulverizer to less than 10 μm. In this experiment, a coin cell was constructed to analyze the electrochemical properties.

그리고 워킹엘렉트로드(working electrode)로 자전연소합성법에 의해 합성된

Figure 112005064132319-pat00066
를 이용하였고, 카운터엘렉트로드(counter electrode)와 비교전극(reference electrode)로는 Li 호일을 사용하였다. 전해질은 에틸렌카보네이트(Ethylene carbonate)(EC)와 디메틸카보네이트(Dimethyl carbonate) (DMC)를 1:1의 부피비로 섞은 용매에 1M
Figure 112005064132319-pat00067
을 녹인 용액을 사용하였다. 코인셀의 제조는 Ar 가스로 충진되어 수분이 1ppm이하로 존재하는 글로브박스(glove box) 내의 실온에서 진행되었다. 제작된 셀(cell)의 충·방전 시험은 정전류 인가법(galvanostatic mode)으로 배터리사이클러(battery cycler)(WBCS3000, WonATech)를 이용하여 3.0~ 4.3V의 영역에서 측정하였다. And synthesized by a rotating combustion synthesis method with a working electrode
Figure 112005064132319-pat00066
Li foil was used as a counter electrode and a reference electrode. The electrolyte is 1M in a solvent mixed with ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 1.
Figure 112005064132319-pat00067
The solution which melt | dissolved was used. Coin cell production was performed at room temperature in a glove box filled with Ar gas and having moisture of 1 ppm or less. The charge / discharge test of the manufactured cell was measured in a range of 3.0 to 4.3 V using a battery cycler (WBCS3000, WonATech) in a galvanostatic mode.

[표 1]TABLE 1

각 분말의 방전용량 변화 특성Characteristics of Discharge Capacity of Each Powder

1회째 방전용량(mAh/g)1st discharge capacity (mAh / g) 3회째 방전용량(mAh/g)3rd discharge capacity (mAh / g) 방전용량 감소율(%)Discharge Capacity Reduction Rate (%) 실시예1 (

Figure 112005064132319-pat00068
)Example 1
Figure 112005064132319-pat00068
) 100100 9898 0.020.02 실시예2
Figure 112005064132319-pat00069
Example 2
Figure 112005064132319-pat00069
8080 7979 0.1250.125
실시예3
Figure 112005064132319-pat00070
Example 3
Figure 112005064132319-pat00070
120120 118118 0.0170.017
실시예4
Figure 112005064132319-pat00071
Example 4
Figure 112005064132319-pat00071
125125 123123 0.0160.016
실시예5
Figure 112005064132319-pat00072
Example 5
Figure 112005064132319-pat00072
130130 129129 0.0070.007
실시예6
Figure 112005064132319-pat00073
Example 6
Figure 112005064132319-pat00073
130130 128128 0.0060.006
비교예1Comparative Example 1 8787 8383 0.050.05

본 발명을 도면을 참고하여 상세히 설명하면, 도1은 본 발명의

Figure 112005064132319-pat00074
분말 제조 공정도이며, 도2는 본 발명의 자전연소합 성법을 통해 제조한
Figure 112005064132319-pat00075
분말의 XRD를 나타내는 그래프이고, 도3은 본 발명의 자전연소합성법을 통해 제조한
Figure 112005064132319-pat00076
분말의 SEM으로 촬영한 사진이며, 도4는 본 발명의 자전연소 합성법을 통해 제조한
Figure 112005064132319-pat00077
분말을 사용하여 제조한 전지에 0.05C의 전류를 3회 인가하였을 때의 충방전 특성을 나타낸 그래프이며, 도5는 본 발명의 자전연소합성법을 통해 제조한
Figure 112005064132319-pat00078
분말을 사용하여 제조한 전지에 0.05C의 전류를 인가하였을 때의 열화 특성을 나타낸 그래프이며, 도6는 본 발명의 자전연소합성법을 통해 제조한
Figure 112005064132319-pat00079
분말을 사용하여 제조한 전지에 0.05C의 전류를 50회 인가하였을 때의 열화 특성을 나타낸 그래프로 방전용량이 80%로서, 50회 인가하였을 때 약 20%감소된 것을 나타낸 것으로서, 아주 우수한 2차전지임을 간접적으로 시사한 것이다.Referring to the present invention in detail with reference to the drawings, Figure 1 of the present invention
Figure 112005064132319-pat00074
Figure 2 is a manufacturing process of the powder, Figure 2 is prepared by the autocombustion method of the present invention
Figure 112005064132319-pat00075
A graph showing the XRD of the powder, Figure 3 is prepared by the autocombustion synthesis method of the present invention
Figure 112005064132319-pat00076
SEM photograph of the powder, Figure 4 is prepared by the auto-combustion synthesis method of the present invention
Figure 112005064132319-pat00077
5 is a graph showing charge and discharge characteristics when a current of 0.05 C is applied three times to a battery manufactured using powder. FIG.
Figure 112005064132319-pat00078
6 is a graph showing deterioration characteristics when a current of 0.05 C is applied to a battery manufactured using powder. FIG.
Figure 112005064132319-pat00079
A graph showing the deterioration characteristics when a current of 0.05C was applied 50 times to a battery manufactured using powder showed that the discharge capacity was 80%, which was reduced by about 20% when applied 50 times. Indirectly suggested that the battery.

상기한 바와 같이 리튬 나이트레이트와 망간옥사이드, 망간, 포타슘 클로라이드를 출발 물질로 사용하여 자전연소합성법으로 리튬이온전지용 리튬망간산화물(

Figure 112005064132319-pat00080
)분말을 제조하는 방법은 총 제조 시간의 단축으로 인한 생산성 향상으로 원가절감 및 분말의 입도가 균등하게 미세하므로(약5㎛이하) 이 분말을 사용하여 전지를 제조할 경우 용량이 증가한 전지를 얻을 수 있다. As described above, using lithium nitrate, manganese oxide, manganese and potassium chloride as starting materials, lithium manganese oxide for lithium ion batteries by a self-burning synthesis method (
Figure 112005064132319-pat00080
The powder manufacturing method is costly and the particle size of the powder is equally fine (about 5 μm or less) due to productivity improvement due to shortening of the total manufacturing time, so when the battery is manufactured using this powder, a battery with increased capacity is obtained. Can be.

Claims (6)

리튬이온전지용 리튬망간산화물(
Figure 112005064132319-pat00081
)분말의 제조방법에 있어서,
Lithium Manganese Oxide for Lithium-ion Battery
Figure 112005064132319-pat00081
In the manufacturing method of the powder,
Figure 112005064132319-pat00082
Figure 112005064132319-pat00083
, Mn, KCl 및 소량의 금속성분인 Al,Ni,Co,Cr,Fe,Ti,W에서 선택된 금속을 출발 물질로 하여 고압용기에서 자전연소합성법에 의해 순간적으로 합성한후, 얻어진 분말을 상압의 800도~900도씨 가량의 조건하에서 열처리하여 제조함을 특징으로 하는 리튬망간산화물(
Figure 112005064132319-pat00084
M,N=Al,Ni,Co,Cr,Fe,Ti,W에서 선택된 어느 하나의 금속이며, M과 N은 같거나 다를수도 있으며, x,y는 몰비이고 0.0 에서 0.5 사이의 값)분말을 제조하는 방법.
Figure 112005064132319-pat00082
Wow
Figure 112005064132319-pat00083
After the instantaneous synthesis by autogenous combustion synthesis in a high-pressure container using a metal selected from Al, Ni, Co, Cr, Fe, Ti, W as a starting material, Mn, KCl and a small amount of metal components, Lithium manganese oxide, characterized in that manufactured by heat treatment under the conditions of about 800 ~ 900 ℃ (
Figure 112005064132319-pat00084
M, N = Al, Ni, Co, Cr, Fe, Ti, W any one metal selected from, M and N may be the same or different, x, y is molar ratio and value between 0.0 and 0.5) How to manufacture.
리튬이온전지용 리튬망간산화물(
Figure 112005064132319-pat00085
)분말의 제조방법에 있어서,
Lithium Manganese Oxide for Lithium-ion Battery
Figure 112005064132319-pat00085
In the manufacturing method of the powder,
제1공정(제조공정)First process (manufacturing process) 최대 압력은 250atm 이며, 외부에는 내열·내압유리가 부착되고, 내부는 진공펌프와 가스밸브(in-gas valve)가 장착되며, Ni-Cr 선(wire)을 내부에 설치하였고 반응기에 에어분위기를 조성하고자 에어공급장치에 연결된 자전연소반응기 내에
Figure 112005064132319-pat00086
Figure 112005064132319-pat00087
, Mn 및 Al,Ni,Co,Cr,Fe,Ti,W에서 선택된 어느 하나의 금속을 Mn대비 x,y를 0.0~0.5로 정량한 후, KCl 1몰을 추가적으로 혼합하여
The maximum pressure is 250atm, the heat-resistant and pressure-resistant glass is attached to the outside, the vacuum pump and the in-gas valve inside, the Ni-Cr wire is installed inside, and the air atmosphere in the reactor In a rotating combustion reactor connected to an air supply
Figure 112005064132319-pat00086
Wow
Figure 112005064132319-pat00087
, Mn and Al, Ni, Co, Cr, Fe, Ti, W any one metal selected from x, y to 0.0 ~ 0.5 compared to Mn, and then additionally mixed with 1 mol of KCl
에어공급장치에서 공기주입압력이 대기압보다 높은 압력으로 공기를 주입하며, 800내지 900℃에서 6시간 동안 건식 분쇄 및 혼합하여 자전연소합성법에 의해 리튬망간산화물(
Figure 112005064132319-pat00088
)(M,N=Al,Ni,Co,Cr,Fe,Ti,W 중에서 선택된 어느 하나의 금속),M과 N은 같거나 다를수도 있으며, x,y는 몰비이고 0.0 에서 0.5 사이의 값)을 제조한 후, 진공 건조기에서 50℃, 12시간 건조한 다음, 분말을 증류수에 세척시켜 여분의 포타슘클로라이드를 제거한 다음에,
The air injection pressure is injected from the air supply device at a pressure higher than atmospheric pressure, and dry grinding and mixing at 800 to 900 ° C. for 6 hours to produce lithium manganese oxide by autogenous combustion synthesis method.
Figure 112005064132319-pat00088
(M, N = Al, Ni, Co, Cr, Fe, Ti, W any one metal selected from), M and N may be the same or different, x, y is a molar ratio and a value between 0.0 and 0.5) After preparing, dried in a vacuum dryer at 50 ℃ for 12 hours, the powder was washed in distilled water to remove excess potassium chloride,
제2공정(가공공정)2nd process (processing process) 상기 제 공정에서 제조된 리튬망간산화물(
Figure 112005064132319-pat00089
)을 전기로에서 600내지 1,000℃ 3시간 동안 열처리한 후 Roll mill을 이용하여 1차 분쇄한 다음, cell 전극구성에 필요한 미세 분말을 얻기 위하여 펄버라이져(Pulverizer)를 사용하여 10㎛이하로 2차 분쇄하여 최종 분말로 가공하여 제조함을 특징으로 하는 리튬이온전지용 리튬망간산화물(
Figure 112005064132319-pat00090
)분말의 제조방법.
Lithium manganese oxide prepared in the above process (
Figure 112005064132319-pat00089
) Was heat-treated in an electric furnace for 600 hours to 1,000 ° C. for 3 hours, followed by primary grinding using a roll mill, and then secondary grinding to 10 μm or less using a pulverizer to obtain fine powders necessary for cell electrode configuration. Lithium manganese oxide for a lithium ion battery, characterized in that it is manufactured by processing to a final powder
Figure 112005064132319-pat00090
) Production method of powder.
제2항에 있어서, 상기 KCl은 0.5~3mol 의 농도로 제조함을 특징으로 하는 리 튬이온전지용 리튬망간산화물(
Figure 112005064132319-pat00091
)분말의 제조방법.
The lithium manganese oxide for lithium ion batteries according to claim 2, wherein the KCl is prepared at a concentration of 0.5 to 3 mol.
Figure 112005064132319-pat00091
) Production method of powder.
제2항에 있어서, 상기 자전연소합성시 반응로에서 공기(Air) 주입압력을 대기압 이상 즉 1기압 이상에서 제조함을 특징으로 하는 리튬이온전지용 리튬망간산화물(
Figure 112005064132319-pat00092
)분말의 제조방법 및 상기와 같은 방법에 의해서 제조함을 특징으로 하는 리튬이온전지용 각종 양극재료 분말의 제조방법.
The lithium manganese oxide for lithium ion battery according to claim 2, wherein the air injection pressure is manufactured at atmospheric pressure or higher, i.
Figure 112005064132319-pat00092
) Manufacturing method of powder and manufacturing method of various cathode material powder for lithium ion battery, characterized in that it is manufactured by the same method as described above.
삭제delete 상기 제1항 또는 제2항에 의해 제조된 리튬이온전지용 리튬망간산화물(
Figure 112005064132319-pat00094
)은 M,N=Al,Ni,Co,Cr,Fe,Ti,W에서 선택된 어느하나의 금속이고,M과 N은 같거나 다를수도 있으며, x,y는 몰비이고 0.0 에서 0.5 사이의 값이며, 분말의 물리적성질은 결정구조(Spinel): a = 8.24 Å, 이론용량(Theoretical capacity) (mAh/g): 148, 실제용량(Practical capacity) (mAh/g): 100~120임 을 특징으로 하는 리튬이온전지용 리튬망간산화물(
Figure 112005064132319-pat00095
)분말
Lithium manganese oxide for lithium ion battery prepared by claim 1 or 2 (
Figure 112005064132319-pat00094
) Is any one metal selected from M, N = Al, Ni, Co, Cr, Fe, Ti, W, M and N may be the same or different, x, y is a molar ratio and a value between 0.0 and 0.5 The physical properties of the powder are: Spinel: a = 8.24 Å, Theoretical capacity (mAh / g): 148, Practical capacity (mAh / g): 100 ~ 120 Lithium manganese oxide for lithium ion battery
Figure 112005064132319-pat00095
)powder
KR1020050106328A 2005-11-08 2005-11-08 Lithium-ion-cell lithium-manganese-oxide powder and production KR100591139B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050106328A KR100591139B1 (en) 2005-11-08 2005-11-08 Lithium-ion-cell lithium-manganese-oxide powder and production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050106328A KR100591139B1 (en) 2005-11-08 2005-11-08 Lithium-ion-cell lithium-manganese-oxide powder and production

Publications (1)

Publication Number Publication Date
KR100591139B1 true KR100591139B1 (en) 2006-06-20

Family

ID=37182924

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050106328A KR100591139B1 (en) 2005-11-08 2005-11-08 Lithium-ion-cell lithium-manganese-oxide powder and production

Country Status (1)

Country Link
KR (1) KR100591139B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723481A (en) * 2012-07-09 2012-10-10 华南师范大学 High-voltage lithium battery cathode material doped with trace amount of tungsten and preparation method thereof
CN103400979A (en) * 2013-08-05 2013-11-20 营口航盛科技实业有限责任公司 Self-propagating combustion decomposition method for preparing LiaNixCoyMnzO2 anode material
KR101974589B1 (en) * 2017-11-07 2019-05-02 한국생산기술연구원 Method of recovering lithium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211922A (en) 1999-01-25 2000-08-02 Toda Kogyo Corp Production of lithium manganese spinel oxide particle powder
JP2001220145A (en) 2000-02-02 2001-08-14 Korea Advanced Inst Of Science & Technol Method for manufacturing lithium manganese oxide powder for lithium secondary battery
KR20020039944A (en) * 2000-11-23 2002-05-30 윤덕용 Preparation of lithium manganese oxide for Li-secondary battery
JP2003238162A (en) 2001-06-29 2003-08-27 Nichia Chem Ind Ltd Lithium manganese composite oxide powder and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211922A (en) 1999-01-25 2000-08-02 Toda Kogyo Corp Production of lithium manganese spinel oxide particle powder
JP2001220145A (en) 2000-02-02 2001-08-14 Korea Advanced Inst Of Science & Technol Method for manufacturing lithium manganese oxide powder for lithium secondary battery
KR20020039944A (en) * 2000-11-23 2002-05-30 윤덕용 Preparation of lithium manganese oxide for Li-secondary battery
JP2003238162A (en) 2001-06-29 2003-08-27 Nichia Chem Ind Ltd Lithium manganese composite oxide powder and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723481A (en) * 2012-07-09 2012-10-10 华南师范大学 High-voltage lithium battery cathode material doped with trace amount of tungsten and preparation method thereof
CN103400979A (en) * 2013-08-05 2013-11-20 营口航盛科技实业有限责任公司 Self-propagating combustion decomposition method for preparing LiaNixCoyMnzO2 anode material
KR101974589B1 (en) * 2017-11-07 2019-05-02 한국생산기술연구원 Method of recovering lithium
WO2019093736A1 (en) * 2017-11-07 2019-05-16 한국생산기술연구원 Lithium recovery method
CN111315904A (en) * 2017-11-07 2020-06-19 韩国生产技术研究院 Lithium recovery method
CN111315904B (en) * 2017-11-07 2022-08-19 韩国生产技术研究院 Lithium recovery method

Similar Documents

Publication Publication Date Title
Wang et al. Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
JP4546937B2 (en) Cathode active material for non-aqueous electrolyte lithium secondary battery, method for producing the same, and lithium secondary battery including the same
EP2383820B1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
Yi et al. Enhanced electrochemical performance of Li-rich low-Co Li1. 2Mn0. 56Ni0. 16Co0. 08− xAlxO2 (0≤ x≤ 0.08) as cathode materials
JP2018503238A (en) Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery
JP2008255000A (en) New titanium oxide, its preparation method and lithium rechargeable battery using the same as active material
KR20120017004A (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
JPH09175825A (en) Production of compound oxide using sol-gel method
KR20060130964A (en) Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and method for preparing thereof
Lou et al. Mg-doped Li1. 2Mn0. 54Ni0. 13Co0. 13O2 nano flakes with improved electrochemical performance for lithium-ion battery application
KR20130001703A (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
CN109873140B (en) Graphene composite ternary cathode material of lithium ion battery and preparation method of graphene composite ternary cathode material
CN103022471B (en) Improve the method for nickelic tertiary cathode material chemical property
KR102400050B1 (en) Lithium cobalt metal oxide powder, method for preparing same, and method for determining content of cobalt (II, III) oxide
JP4973826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
CN107204426A (en) A kind of cobalt nickel oxide manganses lithium/titanate composite anode material for lithium of zirconium doping vario-property
KR102086100B1 (en) Manufacturing method of metal coated cathode active material And cathode active material made by the same
Kim et al. Improved cyclic stability by octahedral Co3+ substitution in spinel lithium manganese oxide thin-film cathode for rechargeable microbattery
CN115394985A (en) High-entropy cathode material and preparation method and application thereof
KR102175842B1 (en) Positive active material doped with Ti, method of fabricating of the same, and lithium secondary battery comprising the same
KR100591139B1 (en) Lithium-ion-cell lithium-manganese-oxide powder and production
JP2004175609A (en) Lithium cobaltate used for positive electrode of lithium ion battery, its manufacturing process and lithium ion battery
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
Wu et al. Synthesis and characterization of Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3-coated LiMn 2 O 4 by wet chemical route

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130611

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140527

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150520

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee