JP2018503238A - Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery - Google Patents

Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery Download PDF

Info

Publication number
JP2018503238A
JP2018503238A JP2017553292A JP2017553292A JP2018503238A JP 2018503238 A JP2018503238 A JP 2018503238A JP 2017553292 A JP2017553292 A JP 2017553292A JP 2017553292 A JP2017553292 A JP 2017553292A JP 2018503238 A JP2018503238 A JP 2018503238A
Authority
JP
Japan
Prior art keywords
lithium ion
ion battery
salt solution
component material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017553292A
Other languages
Japanese (ja)
Other versions
JP6612356B2 (en
Inventor
シュンリン ソン、
シュンリン ソン、
ヤフェイ リウ、
ヤフェイ リウ、
ヤンビン チェン、
ヤンビン チェン、
チャンチュン ヂァン、
チャンチュン ヂァン、
Original Assignee
ベイジン イースプリング マテリアル テクノロジー カンパニー リミテッド
ベイジン イースプリング マテリアル テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410845856.9A external-priority patent/CN105810931A/en
Priority claimed from CN201410845715.7A external-priority patent/CN105810930A/en
Application filed by ベイジン イースプリング マテリアル テクノロジー カンパニー リミテッド, ベイジン イースプリング マテリアル テクノロジー カンパニー リミテッド filed Critical ベイジン イースプリング マテリアル テクノロジー カンパニー リミテッド
Publication of JP2018503238A publication Critical patent/JP2018503238A/en
Application granted granted Critical
Publication of JP6612356B2 publication Critical patent/JP6612356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明は、リチウムイオン電池用の傾斜構造を有する多成分材料、その調製方法、リチウムイオン電池の正極、およびリチウムイオン電池を提供する。本発明により提供されるリチウムイオン電池用の傾斜構造を有する多成分材料は、式(I):LiNixCoyMnzGdO2式(I)(式中、0.4≦x≦0.9,0≦y+z≦0.6,0≦d≦0.1,x+y+z+d=1,GはLi、Cr、Fe、Mg、Ca、Sr、Ba、B、Al、Y、Sm、Ti、Zn、Zr、V、Nb、Ta、Mo及びW元素の1種以上である。)で示される平均組成を有し、リチウムイオン電池用の傾斜構造を有する多成分材料において、Ni元素の含有量は粒子の中心から表面まで連続的に減少する。本発明により提供されるリチウムイオン電池用の傾斜構造を有する多成分材料を使用するリチウムイオン電池は、高容量、改善されたサイクル性能及び安全性能を有し、比較的低コストである。【選択図】図4The present invention provides a multi-component material having an inclined structure for a lithium ion battery, a preparation method thereof, a positive electrode of a lithium ion battery, and a lithium ion battery. The multi-component material having a graded structure for a lithium ion battery provided by the present invention has the formula (I): LiNixCoyMnzGdO2 formula (I) (where 0.4 ≦ x ≦ 0.9, 0 ≦ y + z ≦ 0. 6, 0 ≦ d ≦ 0.1, x + y + z + d = 1, G is Li, Cr, Fe, Mg, Ca, Sr, Ba, B, Al, Y, Sm, Ti, Zn, Zr, V, Nb, Ta, In a multi-component material having an average composition represented by (1) Mo and W elements) and having an inclined structure for a lithium ion battery, the Ni element content is continuously from the center to the surface of the particles. Decrease. A lithium ion battery using a multi-component material having a graded structure for a lithium ion battery provided by the present invention has a high capacity, improved cycle performance and safety performance, and is relatively low cost. [Selection] Figure 4

Description

本発明は、リチウムイオン電池の技術分野に属する、リチウムイオン電池用の傾斜構造を有する多成分材料、その製造方法、リチウムイオン電池の正極、及びリチウムイオン電池に関する。   The present invention relates to a multi-component material having an inclined structure for a lithium ion battery, a manufacturing method thereof, a positive electrode of a lithium ion battery, and a lithium ion battery, which belong to the technical field of lithium ion batteries.

リチウムイオン電池は、現代社会においてますます広く適用され、現在、携帯電話、ラップトップコンピュータ、電動工具および電気自動車の分野で主に使用されている。大容量リチウムイオン電池に対する需要の増加に伴い、高い安全性、高エネルギー密度、高出力、長寿命、環境適合性を有し、低コストであるリチウムイオン電池の開発が急務となっている。   Lithium ion batteries are increasingly applied in modern society and are currently used mainly in the field of mobile phones, laptop computers, power tools and electric vehicles. As demand for large-capacity lithium-ion batteries increases, there is an urgent need to develop a low-cost lithium-ion battery that has high safety, high energy density, high output, long life, and environmental compatibility.

正極材料は、リチウムイオン電池の性能およびその価格の重要な要素である。現在、正極材料としては、LiCoO、LiNiO、LiNiCo1−x、LiNiCoMn1−x−y、LiMn,およびLiFePOが主に挙げられ、その中でLiCoOは、その安定した性能と容易な合成方法により商業化を実現した最初のもので、現在でも広く使用されている正極材料であるが、限られたCo資源は材料の高コスト化につながり、いくつかの新興市場ではその適用に制限を課してしまう。LiNiOは、高容量であるが製造が困難であり、その性能は一貫性および再現性が低く、安全性の重大な問題がある。LiNiCo1−xは、LiNiOとLiCoOの固溶体と考えられ、一時期、LiCoOを、LiNiOとLiCoOの両方の利点で置き換えられる可能性が最も高い、新しい正極材料とされていたが、合成が難しい、安全性に劣る等の欠点があり、その総合的な特性が改善されるべきである。立方晶スピネル構造のLiMnは、低コストであるが、低容量および劣化しやすいなどの欠点を有する。また、オリビン構造のLiFePOは、低電圧および低密度などの欠点を有する。 The positive electrode material is an important factor in the performance of a lithium ion battery and its price. Currently, as the cathode material, LiCoO 2, LiNiO 2, LiNi x Co 1-x O 2, LiNi x Co y Mn 1-x-y O 2, LiMn 2 O 4, and LiFePO 4 may be mentioned primarily its Among them, LiCoO 2 is the first to achieve commercialization by its stable performance and easy synthesis method, and is still a widely used positive electrode material, but limited Co resources increase the cost of the material Leading to restrictions in some emerging markets. LiNiO 2 has a high capacity but is difficult to manufacture, its performance is inconsistent and reproducible, and has significant safety issues. LiNi x Co 1-x O 2 is considered a solid solution of LiNiO 2 and LiCoO 2, one time, a LiCoO 2, are most likely to be replaced with the advantages of both the LiNiO 2 and LiCoO 2, is a new positive electrode material However, there are drawbacks such as difficulty in synthesis and poor safety, and the overall characteristics should be improved. LiMn 2 O 4 having a cubic spinel structure is low in cost, but has disadvantages such as low capacity and easy deterioration. Further, LiFePO 4 having an olivine structure has drawbacks such as low voltage and low density.

層状構造は、Liの可逆的インターカレーション/デインターカレーションに有利であるため、低コスト、より高い環境適合性、および、より良い性能を有する層状構造の正極材料を開発することが望まれる。近年、LiNiO、LiCoO、LiMnおよび他の材料の利点(例えば、高容量、良好なサイクル性能、優れたレート特性および熱安定性)を組み合わせるために、ニッケルリッチな正極材料(層状LiNiCoMn1−x−y)に関する研究がますます脚光を浴びており、広範な商業的用途に使用される価値が高い。 Since the layered structure is advantageous for the reversible intercalation / deintercalation of Li + , it is desirable to develop a cathode material with a layered structure that has lower cost, higher environmental compatibility, and better performance. It is. In recent years, nickel-rich cathode materials (layered) have been combined to combine the advantages of LiNiO 2 , LiCoO 2 , LiMn 2 O 4 and other materials (eg, high capacity, good cycle performance, excellent rate characteristics and thermal stability). Research on LiNi x Co y Mn 1-xy O 2 ) is increasingly in the spotlight and is of great value for use in a wide range of commercial applications.

層状のLiNiCoMn1−x−yにおいて、Ni含有量の増加は、比容量を改善することができ、例えば、LiNi0.8Co0.1Mn0.1の可逆容量は、LiCoOの比容量(約145mAh/g)をはるかに上回る約190mAh/gまであり得る。しかし、そのサイクル性能と安全性能は幾分低下し、実用上の制限が課される。 In layered LiNi x Co y Mn 1-xy O 2 , increasing the Ni content can improve the specific capacity, for example, reversibility of LiNi 0.8 Co 0.1 Mn 0.1 O 2 . The capacity can be up to about 190 mAh / g, far exceeding the specific capacity of LiCoO 2 (about 145 mAh / g). However, its cycle performance and safety performance are somewhat degraded and impose practical limitations.

第1に、上記ニッケルリッチな正極材料は、充放電の繰返しが進む間に、体積変化に伴う結晶構造の大きな相転移を起こしやすく、結果的に結晶層の空間が部分的に崩壊し、リチウムイオンのインターカレーション/デインターカレーションを阻害し、分極抵抗が増大するとともにサイクル性能が低下する。従来技術において、ニッケルリッチな正極材料の合成条件を最適化することにより上記の問題を解決する試みがなされているが、結果として満足できるものではない。これは、作製したニッケルリッチな正極材料が、結晶構造の相転移とともに、加熱時のリチウム欠乏相の相転移および分解とを根本的に防ぐことができず、繰返しの充放電サイクルによるサイクル性能の激しい劣化の問題に対応できないためである。   First, the nickel-rich positive electrode material is likely to undergo a large phase transition of the crystal structure accompanying volume change during repeated charge and discharge, resulting in partial collapse of the crystal layer space, Ion intercalation / deintercalation is inhibited, and the polarization resistance increases and the cycle performance decreases. In the prior art, attempts have been made to solve the above problems by optimizing the synthesis conditions of the nickel-rich positive electrode material, but this is not satisfactory as a result. This is because the produced nickel-rich positive electrode material cannot fundamentally prevent the phase transition and decomposition of the lithium-deficient phase during heating together with the phase transition of the crystal structure, and the cycle performance due to repeated charge and discharge cycles This is because the problem of severe deterioration cannot be dealt with.

第2に、上記ニッケルリッチな正極材料を作製する工程の間に、ニッケルとリチウムとが混在して配置される可能性が高く、反応後に粒子の表面上および粒子間に残存するLiの量が増加し;LiCOおよびLiOHの形で存在する残存したLiは、貯蔵またはリサイクル中に分解してCOなどのガスを生成し、電池が膨張して高温になる場合、安全性の低下につながる可能性がある。 Secondly, during the step of producing the nickel-rich positive electrode material, there is a high possibility that nickel and lithium are mixed and the amount of Li remaining on the surface of the particles and between the particles after the reaction is small. Increased; remaining Li present in the form of Li 2 CO 3 and LiOH decomposes during storage or recycling to produce gases such as CO 2 , reducing safety when the battery expands to high temperatures May lead to

特許出願CN1778003は、式Li(NiCo1−2xMn)O(式中、0.025≦x≦0.5)で示される組成を有する正極材料を開示しており、サイクル性能および安全性能は良好であるが、ニッケル含有量が低いため、比容量が低い。特許出願CN101300696は、式Li(Ni1−a−b(Ni1/2Mn1/2Co(式中、0.4≦Ni≦0.7,0.1≦Co≦0.4,0.05≦Mn≦0.6)で示される組成を有する別の正極材料を開示しており、ニッケル含有量および比容量の両方がある程度改善されるが、サイクル性能および安全性能は劣る。 Patent application CN 1777003 discloses a positive electrode material having a composition represented by the formula Li y (Ni x Co 1-2x Mn x ) O 2 , where 0.025 ≦ x ≦ 0.5, and cycle performance And the safety performance is good, but the specific capacity is low due to the low nickel content. Patent CN101300696 has the formula Li x (Ni 1-a- b (Ni 1/2 Mn 1/2) a Co b A k) y O 2 ( wherein, 0.4 ≦ Ni ≦ 0.7,0. 1 ≦ Co ≦ 0.4, 0.05 ≦ Mn ≦ 0.6) is disclosed, and both the nickel content and the specific capacity are improved to some extent, Performance and safety performance are inferior.

本発明は、リチウムイオン電池用の傾斜構造を有する多成分材料を提供する。多成分材料を用いて製造されたリチウムイオン電池は、高容量、改善されたサイクル性能、及び安全性能を有し、比較的低コストである。   The present invention provides a multi-component material having an inclined structure for a lithium ion battery. Lithium ion batteries made using multi-component materials have high capacity, improved cycle performance, and safety performance, and are relatively low cost.

また、本発明は、上記リチウムイオン電池用の傾斜構造を有する多成分材料の調製方法を提供し、これは、単純なプロセス、比較的低コストで、かつ連続性を有し、したがって工業生産に好適である。   The present invention also provides a method for preparing a multi-component material having a graded structure for the lithium ion battery, which has a simple process, a relatively low cost, and has continuity, and thus is suitable for industrial production. Is preferred.

また、本発明は、リチウムイオン電池用の傾斜構造を有する上記多成分材料から作製されたリチウムイオン電池の正極を提供する。   Moreover, this invention provides the positive electrode of the lithium ion battery produced from the said multi-component material which has the inclination structure for lithium ion batteries.

また、本発明は、上記リチウムイオン電池の正極を含み、高容量であるとともに、優れたサイクル性能及び安全性能を有するリチウムイオン電池を提供する。   Moreover, this invention provides the lithium ion battery which has the positive electrode of the said lithium ion battery, is high capacity | capacitance, and has the outstanding cycling performance and safety | security performance.

本発明によって提供される、リチウムイオン電池用の傾斜構造を有する多成分材料は、式(I):   A multi-component material having a graded structure for a lithium ion battery provided by the present invention has the formula (I):

LiNiCoMn 式(I) LiNi x Co y Mn z G d O 2 Formula (I)

(式中、0.4≦x≦0.9,0≦y+z≦0.6,0≦d≦0.1,x+y+z+d=1,Gは、Li、Cr、Fe、Mg、Ca、Sr、Ba、B、Al、Y、Sm、Ti、Zn、Zr、V、Nb、Ta、Mo、W元素の1種以上である。)で示される平均組成を有し、リチウムイオン電池用の傾斜構造を有する多成分材料において、Ni元素の含有量が粒子の中心から表面に向かって連続的に減少する。   (In the formula, 0.4 ≦ x ≦ 0.9, 0 ≦ y + z ≦ 0.6, 0 ≦ d ≦ 0.1, x + y + z + d = 1, G is Li, Cr, Fe, Mg, Ca, Sr, Ba , B, Al, Y, Sm, Ti, Zn, Zr, V, Nb, Ta, Mo, and W elements)), and an inclined structure for a lithium ion battery. In the multicomponent material, the Ni element content continuously decreases from the center of the particle toward the surface.

本発明によって提供される、リチウムイオン電池用の傾斜構造を有する多成分材料は、球状粒子であり;Ni元素の含有量は粒子の中心から表面に向かって連続的かつ単調に減少する。このNi含有量の傾斜を有する粒状の正極材料は、その中心部が高いNi含有量を有し、正極材料の高い比容量という要望を達成でき;一方、粒子表面のNiの含有量が比較的少ないことから、原料粒子表面の電極反応が弱く、そのため、正極材料のサイクル性能と安全性能の要求を同時に満たすことができる。また、粒状材料中のNi元素の含有量が中心から表面にかけて連続的に変化するため、電極反応において、Ni元素の含有量の急激な低下による層状化が起こらず、正極材料から作製された電極の安全性能をさらに保障する。   The multi-component material having a graded structure for lithium ion batteries provided by the present invention is a spherical particle; the content of Ni element decreases continuously and monotonically from the center of the particle toward the surface. This granular positive electrode material having a Ni content gradient has a high Ni content at the center, and can achieve the demand for a high specific capacity of the positive electrode material; Therefore, the electrode reaction on the surface of the raw material particles is weak, so that the requirements for the cycle performance and safety performance of the positive electrode material can be satisfied at the same time. Further, since the content of Ni element in the granular material continuously changes from the center to the surface, the electrode reaction does not cause stratification due to a rapid decrease in the Ni element content, and the electrode is made from the positive electrode material. Further ensure the safety performance.

また、リチウムイオン電池用の傾斜構造を有する多成分材料のメジアン径は、3〜25μmであり、メジアン径は、粒子径、すなわち、50%の分布率に対応する粒子径を意味し、それは実際に要求されるように具体的に調整することができる。リチウムイオン電池用の傾斜構造を有する多成分材料のタップ密度は、1.5〜3.0g/cmである。また、本発明の正極材料から作製した電池は、従来の正極材料と比較して、同じ電池体積でより大きな容量を有し、これはリチウムイオン電池の軽量化に寄与する。 Moreover, the median diameter of the multi-component material having an inclined structure for a lithium ion battery is 3 to 25 μm, and the median diameter means a particle diameter, that is, a particle diameter corresponding to a distribution ratio of 50%. Can be specifically adjusted as required. The tap density of the multicomponent material having an inclined structure for a lithium ion battery is 1.5 to 3.0 g / cm 3 . Moreover, the battery produced from the positive electrode material of this invention has a larger capacity | capacitance with the same battery volume compared with the conventional positive electrode material, and this contributes to the weight reduction of a lithium ion battery.

本発明により提供されるリチウムイオン電池用の傾斜構造を有する多成分材料は、Ni、Co、MnおよびG元素の1種以上を含む金属塩をNi含有金属塩溶液に徐々に添加して、沈殿剤および錯化剤と沈殿反応させ、その後酸素ガスを含む雰囲気中で沈殿生成物とリチウム源とを焼結する。   The multi-component material having an inclined structure for a lithium ion battery provided by the present invention is obtained by gradually adding a metal salt containing one or more of Ni, Co, Mn and G elements to a Ni-containing metal salt solution, Then, the precipitation product and the lithium source are sintered in an atmosphere containing oxygen gas.

また、本発明は、リチウムイオン電池用の傾斜構造を有する上記多成分材料の調製方法であって、以下の工程:   The present invention is also a method for preparing the multi-component material having an inclined structure for a lithium ion battery, which comprises the following steps:

(1)Ni含有金属塩を水に溶解して第1塩溶液を調製し、Ni、Co、MnおよびG元素の1種以上を含む金属塩を水に溶解して第2塩溶液を調製する工程;   (1) A first salt solution is prepared by dissolving a Ni-containing metal salt in water, and a second salt solution is prepared by dissolving a metal salt containing one or more of Ni, Co, Mn and G elements in water. Process;

(2)混合塩溶液を得るために、撹拌しながら第2塩溶液を第1塩溶液中に徐々に添加して、次いで、混合塩溶液、錯化剤および沈殿剤を反応器に同時に注入し、pH値を8〜13、反応温度を40〜80℃、反応時間を5〜50時間に制御することにより前駆体沈殿物を得、前駆体沈殿物を濾過、洗浄、熱処理した後、傾斜構造を有する多成分材料の前駆体を得る工程;   (2) To obtain a mixed salt solution, the second salt solution is gradually added into the first salt solution with stirring, and then the mixed salt solution, complexing agent and precipitating agent are simultaneously injected into the reactor. The precursor precipitate is obtained by controlling the pH value to 8 to 13, the reaction temperature to 40 to 80 ° C., and the reaction time to 5 to 50 hours, and after the precursor precipitate is filtered, washed, and heat-treated, a gradient structure is obtained. Obtaining a precursor of a multi-component material having:

(3)傾斜構造を有する多成分材料の前駆体とリチウム源とを均一に混合し、空気または酸素ガスの反応雰囲気中で、500〜1100℃で4〜30時間焼結し、好ましくは700〜1000℃で7〜20時間焼結し、粉砕を行い、リチウム電池用の傾斜構造を有する多成分材料を得る工程
を含む。
(3) A precursor of a multi-component material having an inclined structure and a lithium source are uniformly mixed and sintered in a reaction atmosphere of air or oxygen gas at 500 to 1100 ° C. for 4 to 30 hours, preferably 700 to It includes a step of sintering at 1000 ° C. for 7 to 20 hours, pulverizing, and obtaining a multicomponent material having an inclined structure for a lithium battery.

この際、混合塩溶液中のNi元素の濃度は、第2塩溶液の添加に伴って徐々に減少し、錯化剤と沈殿剤の作用により、粒状の沈殿物が生成し、ここで、最初に反応したNiが粒子の中心部に析出し、その後に反応した金属元素は粒子の周辺に沿って徐々に成長しながら、リチウムイオン電池用の傾斜構造を有する上記多成分材料を形成する。第2塩溶液を徐々に添加すると、Ni濃度が徐々に低下し、調製された材料中のNi元素の含有量が粒子の中心から表面に向かって連続的に減少する。   At this time, the concentration of Ni element in the mixed salt solution gradually decreases with the addition of the second salt solution, and a granular precipitate is formed by the action of the complexing agent and the precipitating agent. Ni reacting with (1) precipitates in the center of the particle, and the metal element reacted thereafter gradually grows along the periphery of the particle to form the multi-component material having an inclined structure for a lithium ion battery. When the second salt solution is gradually added, the Ni concentration gradually decreases, and the content of Ni element in the prepared material continuously decreases from the center of the particle toward the surface.

さらに、第1塩溶液R1は、Ni以外の元素、例えば、Co、MnおよびG元素の1種以上を含んでいてもよい。   Furthermore, the first salt solution R1 may contain one or more elements other than Ni, for example, Co, Mn, and G elements.

さらに、第2塩溶液R2を第1塩溶液に、混合塩溶液を反応器に添加する流速の0.1〜0.6倍の流速で添加し、撹拌する。換言すれば、反応器に注入される混合塩溶液の流速をvとすると、第1塩溶液に注入される第2塩溶液の流速は0.1v〜0.6vである。   Further, the second salt solution R2 is added to the first salt solution and stirred at a flow rate of 0.1 to 0.6 times the flow rate at which the mixed salt solution is added to the reactor. In other words, when the flow rate of the mixed salt solution injected into the reactor is v, the flow rate of the second salt solution injected into the first salt solution is 0.1 v to 0.6 v.

上記の方法において、金属塩は、可溶性金属塩、例えば、硫酸塩、塩化物、硝酸塩および酢酸塩の1種以上である。   In the above method, the metal salt is one or more of a soluble metal salt, for example, sulfate, chloride, nitrate and acetate.

錯化剤は、EDTA、アンモニア水、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、クエン酸アンモニウムおよびエチレンジアミンのうちの1種以上である。錯化剤対総金属塩の比は、錯化平衡の原理または実際の要求に従って決定してよく、例えば錯化剤対総金属塩のモル比は通常0.1:1〜3:1であり、ここで、総金属塩とは、R1およびR2に含まれる金属塩の総モル数を意味する。   The complexing agent is at least one of EDTA, aqueous ammonia, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium citrate and ethylenediamine. The ratio of complexing agent to total metal salt may be determined according to the principle of complexation equilibrium or actual requirements, for example the molar ratio of complexing agent to total metal salt is usually 0.1: 1 to 3: 1. Here, the total metal salt means the total number of moles of metal salts contained in R1 and R2.

沈殿剤は、OH、CO 2−等を含む化合物であり、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、重炭酸アンモニウム、炭酸アンモニウム、重炭酸ナトリウムおよび炭酸ナトリウムのうちの1種以上であり、金属と沈殿物を形成できる。沈殿剤対総金属塩の比は、反応平衡の原理または実際の需要に従って決定してよく、例えば、沈殿剤対総金属塩のモル比は、通常1:1〜2.5:1であってよく、ここで、総金属塩とは、R1およびR2に含まれる金属塩の総モル数を意味する。 The precipitant is a compound containing OH , CO 3 2−, and the like, for example, one kind of sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium bicarbonate, ammonium carbonate, sodium bicarbonate, and sodium carbonate. As described above, a precipitate can be formed with the metal. The ratio of precipitant to total metal salt may be determined according to the principle of reaction equilibrium or actual demand; for example, the molar ratio of precipitant to total metal salt is usually 1: 1 to 2.5: 1. Well, here, the total metal salt means the total number of moles of metal salts contained in R1 and R2.

上記調製方法において、工程(2)の熱処理は、70〜150℃で乾燥させてもよく、また、酸素ガスを含む雰囲気中で300〜700℃で焼成してもよい。   In the said preparation method, the heat processing of a process (2) may be dried at 70-150 degreeC, and may be baked at 300-700 degreeC in the atmosphere containing oxygen gas.

リチウム源は、リチウムイオン電池の正極材料を調製するために典型的に使用されるリチウム源であり、例えば、リチウム源は、炭酸リチウム、水酸化リチウムおよび硝酸リチウムのうちの1種以上である。   The lithium source is a lithium source typically used to prepare a positive electrode material for a lithium ion battery. For example, the lithium source is one or more of lithium carbonate, lithium hydroxide, and lithium nitrate.

また、本発明は、リチウムイオン電池用の傾斜構造を有する上記多成分材料から調製されたリチウムイオン電池の正極を提供する。調製方法は、従来技術の方法を参照してよい。例えば、上記リチウムイオン電池用の傾斜構造を有する多成分材料を、カーボンブラックとポリフッ化ビニリデン(PVDF)と重量比94%:3%:3%でブレンドしてコーティングして電極板を形成することで、リチウムイオン電池の正極を作製してもよい。   Moreover, this invention provides the positive electrode of the lithium ion battery prepared from the said multi-component material which has the inclination structure for lithium ion batteries. The preparation method may refer to a prior art method. For example, a multi-component material having an inclined structure for the above lithium ion battery is blended and coated with carbon black and polyvinylidene fluoride (PVDF) at a weight ratio of 94%: 3%: 3% to form an electrode plate. Thus, a positive electrode of a lithium ion battery may be produced.

また、本発明は、上記リチウムイオン電池の正極と、人造黒鉛を用いた負極と、正極と負極との間のセパレータを備え、これらはロールされて電解液が注入されて形成するリチウムイオン電池を提供する。作製されたリチウムイオン電池の電気化学的性能及び安全性能は、関連する規格に従って試験してよい。   The present invention also includes a positive electrode of the lithium ion battery, a negative electrode using artificial graphite, and a separator between the positive electrode and the negative electrode, which are formed by being rolled and injected with an electrolyte. provide. The electrochemical and safety performance of the fabricated lithium ion battery may be tested according to relevant standards.

本発明は以下の利点を有する:   The present invention has the following advantages:

1.本発明によって提供される、リチウムイオン電池用の傾斜構造を有する多成分材料は、ニッケル、コバルト、マンガンおよび他の元素の特性を十分に利用し、Ni元素の含有量が粒子の中心から表面に向かって連続的に減少する;製造された電極は高い比容量を有し、かつ、優れた高温サイクル性能及び安全性能を有する。   1. The multi-component material having an inclined structure for a lithium ion battery provided by the present invention fully utilizes the characteristics of nickel, cobalt, manganese and other elements, and the content of Ni element is from the center of the particle to the surface. The manufactured electrode has a high specific capacity and has excellent high temperature cycle performance and safety performance.

2.本発明により提供されるリチウムイオン電池用の傾斜構造を有する多成分材料においては、粒状多成分材料のNi元素の含有量が内側から外側に連続的に減少することにより、電極反応の進行中の層状化を効率的に回避することが実現される。   2. In the multi-component material having an inclined structure for a lithium ion battery provided by the present invention, the content of Ni element in the granular multi-component material continuously decreases from the inside to the outside, so that the electrode reaction is in progress. Efficient avoidance of stratification is realized.

3.本発明により提供される、リチウムイオン電池用の傾斜構造を有する多成分材料は、調製プロセスが簡単で、設備に対する要求が少なく、比較的低コストであり、したがって工業化に適している。   3. The multi-component material having a graded structure for lithium-ion batteries provided by the present invention is simple in the preparation process, requires little equipment, is relatively low cost, and is therefore suitable for industrialization.

本発明により提供されるリチウムイオン電池用の傾斜構造を有する多成分材料の反応プロセスの概略図である。1 is a schematic view of a reaction process of a multi-component material having an inclined structure for a lithium ion battery provided by the present invention. 実施形態2によって調製された多成分材料の走査型電子顕微鏡画像である。3 is a scanning electron microscope image of a multi-component material prepared according to Embodiment 2. 図2の多成分材料粒子の断面の電子顕微鏡画像である。It is an electron microscope image of the cross section of the multi-component material particle of FIG. 図3の断面の電子顕微鏡像に示された多成分材料粒子の中心から周辺までのNi、Co、Mn元素のエネルギースペクトル線走査像である。FIG. 4 is an energy spectrum line scanning image of Ni, Co, and Mn elements from the center to the periphery of multi-component material particles shown in the electron microscope image of the cross section of FIG. 3.

本発明の実施形態の目的、技術的解決策および利点を、より明確に説明するために、本発明の実施形態における技術的解決策を、本発明の実施形態に伴う図面と併せて以下のように明瞭かつ完全に説明する。そして明らかに、記載された実施形態は、本発明のすべての実施形態ではなく一部に過ぎない。創造的努力をすることなく本発明の実施形態に基づいて当業者によって得られる他のすべての実施形態は、本発明の権利範囲に該当する。   In order to more clearly describe the objects, technical solutions and advantages of the embodiments of the present invention, the technical solutions in the embodiments of the present invention are described below in conjunction with the drawings accompanying the embodiments of the present invention. To be clear and complete. And clearly, the described embodiments are only a part rather than all of the embodiments of the present invention. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the scope of the present invention.

実施形態1   Embodiment 1

硫酸ニッケルを溶解して1.5mol/Lの第1塩溶液R1を300L得;硫酸コバルトと硫酸マンガンとを0.5:0.5の金属モル比で溶解させて1.5mol/Lの第2塩溶液R2を得;錯化剤Cとして5.0mol/Lのアンモニアの水溶液と、沈殿剤Dとして8mol/Lの水酸化ナトリウム溶液を調製し;第1塩溶液R1を撹拌器を備えた容器に入れる。   Nickel sulfate is dissolved to obtain 300 L of a 1.5 mol / L first salt solution R1; cobalt sulfate and manganese sulfate are dissolved at a metal molar ratio of 0.5: 0.5 to obtain a 1.5 mol / L first salt solution R1. 2 salt solution R2 is obtained; 5.0 mol / L aqueous ammonia solution as complexing agent C and 8 mol / L sodium hydroxide solution as precipitating agent D are prepared; first salt solution R1 is equipped with a stirrer Place in a container.

混合塩溶液を得るために、第2塩溶液R2を第1塩溶液R1に6.67L/hの流速で撹拌しながら添加し;次いで、混合塩溶液、沈殿剤Dおよび錯化剤Cを同時に反応器Aに添加して反応させ、ここで、反応器Aへ混合塩溶液を添加する流速は16.66L/hであり、この反応プロセスは図1に示されたとおりであり、窒素雰囲気の保護下で、反応のpHを11.3、反応温度を50℃、錯化剤のアンモニア水対総金属塩のモル比が1:1、反応時間は30時間に制御しながら反応させることにより、前駆体沈殿物を得る。   To obtain the mixed salt solution, the second salt solution R2 is added to the first salt solution R1 with stirring at a flow rate of 6.67 L / h; then the mixed salt solution, the precipitating agent D and the complexing agent C are simultaneously added. The reaction is performed by adding to the reactor A, where the flow rate of adding the mixed salt solution to the reactor A is 16.66 L / h, and this reaction process is as shown in FIG. Under the protection, the reaction pH is 11.3, the reaction temperature is 50 ° C., the molar ratio of ammonia water of the complexing agent to the total metal salt is 1: 1, and the reaction time is controlled to 30 hours, A precursor precipitate is obtained.

前駆体沈殿物を濾過し、洗浄し、120℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体を水酸化リチウムと1:1.05のモル比で完全に混合し、空気雰囲気中、890℃で10時間保持する。自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。   The precursor precipitate is filtered, washed and dried at 120 ° C. to obtain a multi-component material precursor. The precursor is thoroughly mixed with lithium hydroxide at a molar ratio of 1: 1.05 and held at 890 ° C. for 10 hours in an air atmosphere. Natural cooling, grinding and sieving are performed, thereby obtaining a spherical multi-component material having an inclined structure.

本実施形態で調製した材料は、LiNi0.6Co0.2Mn0.2の組成を有し、粒状材料の中心におけるNi元素の含有量が100mol%であり、Ni元素の含有量が内側から外側に連続的に減少し、粒状材料は球形であって;試験すると、メジアン径は15.3μmであり、タップ密度は2.55g/cmである。 The material prepared in the present embodiment has a composition of LiNi 0.6 Co 0.2 Mn 0.2 O 2 , the content of Ni element at the center of the granular material is 100 mol%, and the content of Ni element Continuously decreasing from the inside to the outside, the granular material is spherical; when tested, the median diameter is 15.3 μm and the tap density is 2.55 g / cm 3 .

上記のリチウムイオン電池用の傾斜構造を有する多成分材料を、カーボンブラックとポリフッ化ビニリデン(PVDF)と重量比94%:3%:3%でブレンドし、コーティングして電極板を形成し、このように作製したリチウムイオン電池の正極、負極として人造黒鉛を用いた電極、正極と負極の間のセパレータを、ロールしてから電解液を注入して、角形のアルミニウムシェル電池053048を形成した。これは、具体的には先行技術の作製方法を参照することができる。   The above multi-component material having an inclined structure for a lithium ion battery is blended with carbon black and polyvinylidene fluoride (PVDF) at a weight ratio of 94%: 3%: 3%, and coated to form an electrode plate. Thus, the positive electrode of the lithium ion battery produced, the electrode using artificial graphite as the negative electrode, the separator between the positive electrode and the negative electrode was rolled, and then the electrolyte solution was injected to form a square aluminum shell battery 053048. Specifically, reference can be made to a prior art manufacturing method.

リチウムイオンのための国家規格GB/T18287−2000に従って製造されたリチウムイオン電池の電気化学的性能と安全性能を試験する。試験は具体的には次のとおりである:   Test the electrochemical and safety performance of lithium-ion batteries manufactured according to national standard GB / T18287-2000 for lithium-ion. The test is specifically as follows:

比放電容量   Specific discharge capacity

0.2CA充放電の間、放電状態で1gの正極材料によって放出される容量で、単位はmAh/gである。試験すると、本実施形態によって調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、171mAh/gの比放電容量を有する。 The capacity discharged by 1 g of positive electrode material in the discharged state during 0.2 C 5 A charge / discharge, the unit is mAh / g. When tested, the multicomponent material having a graded structure for a lithium ion battery prepared according to this embodiment has a specific discharge capacity of 171 mAh / g.

1CA充放電サイクル 1C 5 A charge / discharge cycle

20±5℃で1CAで4.2Vまで充電を行い、充電電流≦0.01CAになるまで定電圧充電に切り替え、1CAで2.75Vまでで放電して1サイクルとした後、1CA充放電を繰り返す。試験すると、本実施形態により調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、1CAかつ常温で充放電サイクルを100回した後、容量維持率が95%で、常温で良好なサイクル性能を有す。 Charge to 4.2V at 1C 5 A at 20 ± 5 ° C, switch to constant voltage charging until charging current ≤ 0.01C 5 A, and discharge to 2.75V at 1C 5 A to make one cycle Then, 1C 5 A charge / discharge is repeated. When tested, the multi-component material having a tilted structure for a lithium ion battery prepared according to this embodiment has a capacity retention rate of 95% and is good at room temperature after 1C 5 A and 100 times of charge / discharge cycles at room temperature. Cycle performance.

1CAでの高温充放電サイクル High-temperature charge / discharge cycle at 1C 5 A

45±2℃で、1CAで4.2Vまで充電を行い、充電電流≦0.01CAになるまで定電圧充電に切り替え、1CAで2.75Vまで放電することを1サイクルした後、1CAの充放電を繰り返す。試験すると、本実施形態によって調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、45℃で100サイクル後、容量維持率が92%で、高温で良好なサイクル性能を有する。 In 45 ± 2 ° C., at 1C 5 A to 4.2V and charges, switching to the constant voltage until the charge current ≦ 0.01 C 5 A, and one cycle to discharge 1C 5 A to 2.75V Then, 1C 5 A charge / discharge is repeated. When tested, the multi-component material having a graded structure for a lithium ion battery prepared according to the present embodiment has a capacity retention rate of 92% after 100 cycles at 45 ° C. and has good cycle performance at high temperatures.

85℃の高温保存後の電池厚みの変化率   Change rate of battery thickness after high temperature storage at 85 ℃

20±5℃において、0.2CAで4.2Vまで充電を行い、充電電流≦0.01CAになるまで定電圧充電に切り替え、1CAで2.75Vまで放電して1サイクルとした後、1CAの充放電サイクルを行い、電池が3サイクル目の充電状態のとき、電池を取り出して初期の厚みを測定し;その後、85±5℃で4時間放置してその厚さを測定し;電池の厚み変化率を算出する。試験すると、本実施形態により調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、85℃の高温下で4時間保存した後の電池厚みの増加率が6.7%であり、高温時の電池膨れが小さい。 At 20 ± 5 ° C, charge up to 4.2V at 0.2C 5 A, switch to constant voltage charge until charge current ≤ 0.01C 5 A, discharge to 2.75V at 1C 5 A, 1 cycle 1C 5 A charge / discharge cycle was performed, and when the battery was charged in the third cycle, the battery was taken out and the initial thickness was measured; then, the thickness was left at 85 ± 5 ° C. for 4 hours. The thickness change rate of the battery is calculated. When tested, the multi-component material having a graded structure for a lithium ion battery prepared according to this embodiment has an increase rate of the battery thickness of 6.7% after being stored at a high temperature of 85 ° C. for 4 hours. Battery swelling is small.

ホットオーブン中の150℃における熱衝撃   Thermal shock at 150 ° C in a hot oven

20±5℃で、0.2CAで4.2Vまで充電を行い、充電電流≦0.01CAになるまで定電圧充電に切り替え、1CAで2.75Vまで放電して1サイクルとした後、1CAの充放電サイクルを行い、電池が3サイクル目の充電状態のとき、電池を取り出してオーブンに入れ、5℃/分の昇温速度で150℃に加熱し、150℃で電池が破裂する時間を調べる。試験すると、本実施形態により調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、60分以内に破裂または割れがなく、ホットオーブン中150℃での熱衝撃試験結果が示すように、安全性が良好である。 At 20 ± 5 ° C, charge to 4.2V at 0.2C 5 A, switch to constant voltage charging until charge current ≤ 0.01C 5 A, discharge to 2.75V at 1C 5 A, 1 cycle 1C 5 A charge / discharge cycle was performed, and when the battery was in the charge state of the third cycle, the battery was taken out and placed in an oven and heated to 150 ° C. at a rate of 5 ° C./min. Find out how long the battery will explode. When tested, the multi-component material having a graded structure for a lithium ion battery prepared according to the present embodiment has no rupture or cracking within 60 minutes, and the results of a thermal shock test at 150 ° C. in a hot oven show that Good safety.

上記の試験データから、本実施形態によって調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、LiCoO(約145mAh/g)の比放電容量をはるかに上回る170mAh/gまでの高い比放電容量を有し;同時に、多成分材料は、優れた高温サイクル性能及び安全性能を有する。 From the above test data, the multi-component material having a graded structure for lithium ion batteries prepared according to this embodiment has a high ratio up to 170 mAh / g, far exceeding the specific discharge capacity of LiCoO 2 (about 145 mAh / g). Having a discharge capacity; at the same time, the multi-component material has excellent high temperature cycling and safety performance.

実施形態2   Embodiment 2

硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを、0.87:0.06:0.07の金属モル比で溶解して、225Lの1.5mol/Lの第1塩溶液R1を得、硫酸コバルトおよび硫酸マンガンを、1:1.3の金属モル比で溶解して、1.5mol/Lの第2塩溶液R2を35L得、錯化剤Cとして5.0mol/Lのアンモニア水溶液を調製し、沈殿剤Dとして8mol/Lの水酸化ナトリウム溶液を調製し、第1塩溶液R1を、撹拌機を備えた容器に入れる。   Nickel sulfate, cobalt sulfate and manganese sulfate were dissolved at a metal molar ratio of 0.87: 0.06: 0.07 to obtain 225 L of a 1.5 mol / L first salt solution R1, cobalt sulfate and sulfuric acid Manganese is dissolved at a metal molar ratio of 1: 1.3 to obtain 35 L of a 1.5 mol / L second salt solution R2, and a 5.0 mol / L aqueous ammonia solution is prepared as a complexing agent C and precipitated. An 8 mol / L sodium hydroxide solution is prepared as the agent D, and the first salt solution R1 is put in a container equipped with a stirrer.

第1塩溶液R1に第2塩溶液R2を流速1.16L/hで撹拌しながら添加して混合塩溶液を得;次いで、混合塩溶液、沈殿剤Dおよび錯化剤Cを反応器Aに同時に添加して反応させ、ここで、反応器Aに添加する混合塩溶液の流速は8.67L/hであり、この反応プロセスは図1に示されたとおりであり、窒素雰囲気の保護下で、反応のpHを11.3、反応温度を50℃、アンモニア水対総金属塩のモル比を1:1、反応時間を30時間に制御しながら反応させることにより、前駆体沈殿物を得る。   The second salt solution R2 is added to the first salt solution R1 at a flow rate of 1.16 L / h with stirring to obtain a mixed salt solution; the mixed salt solution, the precipitating agent D, and the complexing agent C are then added to the reactor A. The flow rate of the mixed salt solution added to the reactor A is 8.67 L / h, and the reaction process is as shown in FIG. 1 under the protection of a nitrogen atmosphere. The precursor precipitate is obtained by carrying out the reaction while controlling the reaction pH to 11.3, the reaction temperature to 50 ° C., the molar ratio of aqueous ammonia to the total metal salt to 1: 1, and the reaction time to 30 hours.

前駆体沈殿物を濾過し、洗浄し、110℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体と水酸化リチウムとを1:1.05のモル比で完全に混合し、酸素ガスの雰囲気中で890℃で10時間保持する。自然冷却、粉砕および篩い分けを行うことによって、傾斜構造を有する球状の多成分材料を得る。   The precursor precipitate is filtered, washed and dried at 110 ° C. to obtain a multi-component material precursor. The precursor and lithium hydroxide are thoroughly mixed at a molar ratio of 1: 1.05 and kept at 890 ° C. for 10 hours in an oxygen gas atmosphere. By performing natural cooling, pulverization and sieving, a spherical multi-component material having an inclined structure is obtained.

実施形態1の方法を用いて、正極は、本実施形態で調製されたリチウムイオン電池用の傾斜構造を有する多成分材料から製造され、かつ、この正極を角形のアルミニウムシェル電池053048に加工する。   Using the method of Embodiment 1, the positive electrode is manufactured from a multicomponent material having a graded structure for a lithium ion battery prepared in this embodiment, and this positive electrode is processed into a square aluminum shell battery 053048.

本実施形態により調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、LiNi0.77Co0.10Mn0.13の組成を有し、粒状材料の中心におけるNi元素の含有量が87mol%であり、Ni元素の含有量は内側から外側に向かって連続的に減少し、かつ、粒状材料は球形である。試験すると、メジアン径は10.6μm、タップ密度は2.43g/cm、比放電容量は183mAh/g、常温で1CAで100回の充放電サイクル後の容量維持率は90%であり、45℃で100サイクル後の容量維持率は88%であり、85±2℃の高温で4時間保存後の電池厚みの増加率は7.9%であり、熱衝撃試験の結果は、150℃のホットオーブン中で60分以内に、破裂または割れがおこらないことを示す。 The multi-component material having a graded structure for a lithium ion battery prepared according to this embodiment has a composition of LiNi 0.77 Co 0.10 Mn 0.13 O 2 and contains Ni element at the center of the granular material The amount is 87 mol%, the content of Ni element continuously decreases from the inside to the outside, and the granular material is spherical. When tested, the median diameter was 10.6 μm, the tap density was 2.43 g / cm 3 , the specific discharge capacity was 183 mAh / g, and the capacity retention rate after 100 charge / discharge cycles at 1C 5 A at room temperature was 90%. The capacity retention rate after 100 cycles at 45 ° C. is 88%, the rate of increase in battery thickness after 4 hours storage at a high temperature of 85 ± 2 ° C. is 7.9%, and the result of the thermal shock test is 150 Indicates that no bursting or cracking occurs within 60 minutes in a hot oven at 0 ° C.

図2は、実施形態2によって調製された多成分材料の走査電子顕微鏡画像である。図3は、図2の多成分材料粒子の断面の電子顕微鏡画像である。図4は、図3の断面の電子顕微鏡画像に示された多成分材料粒子の中心から周辺までのNi、Co及びMn元素のエネルギースペクトル線走査像である。図2、図3、図4から、本実施形態で調製された多成分材料において、中心部から周辺部にかけてNi含有量が連続的かつ単調に減少し、MnおよびCoの含有量が中心部から周辺部にかけて連続的に増加することがわかる。   FIG. 2 is a scanning electron microscope image of the multi-component material prepared according to Embodiment 2. FIG. 3 is an electron microscope image of a cross section of the multi-component material particle of FIG. FIG. 4 is an energy spectral line scan image of Ni, Co, and Mn elements from the center to the periphery of the multi-component material particles shown in the electron microscope image of the cross section of FIG. 2, 3, and 4, in the multi-component material prepared in the present embodiment, the Ni content continuously and monotonously decreases from the central part to the peripheral part, and the Mn and Co contents increase from the central part. It turns out that it increases continuously toward the periphery.

実施形態3   Embodiment 3

塩化ニッケル、塩化コバルト及び塩化マンガンを0.85:0.1:0.05の金属モル比で溶解して、500Lの2mol/Lの第1塩溶液R1を得;硝酸コバルト、硫酸マンガンおよび硝酸アルミニウムを0.52:0.05:0.43の金属モル比で溶解して66.5Lの2mol/Lの第2塩溶液R2を得;錯化剤Cとして2mol/Lの硫酸アンモニウム溶液を調製し、錯化剤C対総金属塩のモル比は0.7:1であり;沈殿剤Dとして5mol/Lの水酸化カリウム溶液を調製し、沈殿剤D対総金属塩のモル比を2:1に制御し;第1塩溶液R1を、撹拌器を備えた容器に入れる。   Nickel chloride, cobalt chloride and manganese chloride are dissolved in a metal molar ratio of 0.85: 0.1: 0.05 to obtain 500 L of a 2 mol / L first salt solution R1; cobalt nitrate, manganese sulfate and nitric acid Aluminum was dissolved at a metal molar ratio of 0.52: 0.05: 0.43 to obtain 66.5 L of a 2 mol / L second salt solution R2; 2 mol / L ammonium sulfate solution was prepared as complexing agent C The molar ratio of complexing agent C to total metal salt is 0.7: 1; 5 mol / L potassium hydroxide solution is prepared as precipitating agent D, and the molar ratio of precipitating agent D to total metal salt is 2 1; the first salt solution R1 is placed in a vessel equipped with a stirrer.

混合塩溶液を得るために、第2塩溶液R2を第1塩溶液R1に3.33L/hの流速で撹拌しながら添加し、次いで、混合塩溶液、沈殿剤Dおよび錯化剤Cを反応器Aに同時に添加して反応させ、ここで、反応器Aに添加される混合塩溶液の流速は28.32L/hであり、この反応プロセスは図1に示されたとおりであり、反応は窒素雰囲気の保護下で、反応pHを11.5、反応温度を60℃、反応時間を20時間に制御しながら行い、これにより前駆体沈殿物を得る。   To obtain the mixed salt solution, the second salt solution R2 is added to the first salt solution R1 with stirring at a flow rate of 3.33 L / h, and then the mixed salt solution, the precipitant D and the complexing agent C are reacted. The mixed salt solution added to the reactor A has a flow rate of 28.32 L / h, and the reaction process is as shown in FIG. Under the protection of nitrogen atmosphere, the reaction pH is controlled to 11.5, the reaction temperature is controlled to 60 ° C., and the reaction time is controlled to 20 hours, whereby a precursor precipitate is obtained.

前駆体沈殿物を濾過し、洗浄し、80℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体を炭酸リチウムと1:0.52のモル比で完全に混合し、酸素ガス雰囲気中、800℃で15時間保持する。自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。   The precursor precipitate is filtered, washed and dried at 80 ° C. to obtain a multi-component material precursor. The precursor is thoroughly mixed with lithium carbonate at a molar ratio of 1: 0.52, and held at 800 ° C. for 15 hours in an oxygen gas atmosphere. Natural cooling, grinding and sieving are performed, thereby obtaining a spherical multi-component material having an inclined structure.

実施形態1の方法を用いて、正極は、本実施形態で調製されたリチウムイオン電池用の傾斜構造を有する多成分材料から製造され、かつ、この正極を角形のアルミニウムシェル電池053048に加工する。   Using the method of Embodiment 1, the positive electrode is manufactured from a multicomponent material having a graded structure for a lithium ion battery prepared in this embodiment, and this positive electrode is processed into a square aluminum shell battery 053048.

本実施形態により調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、LiNi0.75Co0.15Mn0.05Al0.05の組成を有し、粒状材料の中心におけるNi元素の含有量は85mol%であり、Ni元素の含有量は連続的に内側から外側に向かって減少し、粒状材料は球形である。試験すると、メジアン径は10.1μm、タップ密度は2.45g/cm、比放電容量は180mAh/g、常温で、1CAで100回の充放電サイクル後の容量維持率は92%であり、45℃で100回サイクル後の容量維持率は90%であり、85±2℃の高温で4時間保存後の電池厚みの増加率は7.7%であり、熱衝撃試験の結果は150℃のホットオーブン中で60分以内に、破裂または割れがおこらないことを示す。 The multi-component material having a graded structure for a lithium ion battery prepared according to this embodiment has a composition of LiNi 0.75 Co 0.15 Mn 0.05 Al 0.05 O 2 and is in the center of the granular material. The content of Ni element is 85 mol%, the content of Ni element continuously decreases from the inside to the outside, and the granular material is spherical. When tested, the median diameter was 10.1 μm, the tap density was 2.45 g / cm 3 , the specific discharge capacity was 180 mAh / g, and the capacity retention rate after 100 charge / discharge cycles at 1C 5 A at 92 ° C. was 92%. Yes, the capacity retention rate after 100 cycles at 45 ° C. is 90%, and the increase rate of battery thickness after 4 hours storage at 85 ± 2 ° C. is 7.7%. Indicates that no rupture or cracking occurs within 60 minutes in a 150 ° C. hot oven.

実施形態4   Embodiment 4

硝酸ニッケル、硝酸コバルトおよび塩化マンガンを、0.8:0.1:0.1の金属モル比で溶解して、1111Lの1.8mol/Lの第1塩溶液R1を得、塩化コバルト、硫酸マンガン、硝酸アルミニウムおよび塩化マグネシウムを、0.5:0.366:0.107:0.027の金属モル比で溶解して、667Lの1.8mol/Lの第2塩溶液R2を得、錯化剤Cとして10mol/Lのアンモニア水溶液を調製し、錯化剤C対総金属塩のモル比を0.8:1とし;沈殿剤Dとして8mol/Lの水酸化ナトリウム溶液を調製し、沈殿剤D対総金属塩のモル比を2.05:1に制御し、第1塩溶液R1を撹拌機付き容器に入れる。   Nickel nitrate, cobalt nitrate and manganese chloride are dissolved at a metal molar ratio of 0.8: 0.1: 0.1 to obtain 1111 L of a 1.8 mol / L first salt solution R1, cobalt chloride, sulfuric acid Manganese, aluminum nitrate and magnesium chloride were dissolved in a metal molar ratio of 0.5: 0.366: 0.107: 0.027 to obtain 667 L of a 1.8 mol / L second salt solution R2, A 10 mol / L aqueous ammonia solution is prepared as the agent C, the molar ratio of the complexing agent C to the total metal salt is 0.8: 1; an 8 mol / L sodium hydroxide solution is prepared as the precipitant D and precipitated. The molar ratio of agent D to total metal salt is controlled to 2.05: 1 and the first salt solution R1 is placed in a vessel with a stirrer.

混合塩溶液を得るために、第2塩溶液R2を第1塩溶液R1に26.7L/hの流速で撹拌しながら添加し;次いで、混合塩溶液、沈殿剤Dおよび錯化剤Cを同時に反応器Aに添加して反応させ、ここで、反応器Aに添加される混合塩溶液の流速は71.12L/hであり、この反応プロセスは図1に示されたとおりであり、反応のpHを11.5、反応温度を55℃、反応時間を25時間に制御しながら、窒素雰囲気の保護下で反応させることにより、前駆体沈殿物を得る。   To obtain the mixed salt solution, the second salt solution R2 is added to the first salt solution R1 with stirring at a flow rate of 26.7 L / h; then the mixed salt solution, the precipitating agent D and the complexing agent C are simultaneously added. The reaction is performed by adding to the reactor A, where the flow rate of the mixed salt solution added to the reactor A is 71.12 L / h, and this reaction process is as shown in FIG. A precursor precipitate is obtained by reacting under the protection of a nitrogen atmosphere while controlling the pH at 11.5, the reaction temperature at 55 ° C., and the reaction time at 25 hours.

前駆体沈殿物を濾過し、洗浄し、100℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体を炭酸リチウムと1:0.525のモル比で完全に混合し、大気中、950℃で16時間保持する。自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。   The precursor precipitate is filtered, washed and dried at 100 ° C. to obtain a multi-component material precursor. The precursor is thoroughly mixed with lithium carbonate at a molar ratio of 1: 0.525 and held in air at 950 ° C. for 16 hours. Natural cooling, grinding and sieving are performed, thereby obtaining a spherical multi-component material having an inclined structure.

実施形態1の方法を用いて、正極は、本実施形態で調製されたリチウムイオン電池用の傾斜構造を有する多成分材料から製造され、かつ、この正極を角形のアルミニウムシェル電池053048に加工する。   Using the method of Embodiment 1, the positive electrode is manufactured from a multicomponent material having a graded structure for a lithium ion battery prepared in this embodiment, and this positive electrode is processed into a square aluminum shell battery 053048.

本実施形態により調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、LiNi0.50Co0.25Mn0.20Al0.04Mg0.01の組成を有し、粒状材料の中心におけるNi元素の含有量が80mol%であり、Ni元素は内側から外側に向かって連続的に減少し、粒状材料は球形である。試験すると、メジアン径は9.9μm、タップ密度は2.46g/cm、比放電容量は158mAh/g、常温で、1CAで100回の充放電サイクル後の容量維持率は96%であり、45℃で100サイクル後の容量維持率は93%であり、85±2℃の高温で4時間保存後の電池厚みの増加率は5.9%であり、熱衝撃試験の結果は、150℃のホットオーブン中で60分以内に、破裂または割れがおこらないことを示す。 The multi-component material having a graded structure for a lithium ion battery prepared according to this embodiment has a composition of LiNi 0.50 Co 0.25 Mn 0.20 Al 0.04 Mg 0.01 O 2 and is granular. The content of Ni element at the center of the material is 80 mol%, the Ni element continuously decreases from the inside to the outside, and the granular material is spherical. When tested, the median diameter was 9.9 μm, the tap density was 2.46 g / cm 3 , the specific discharge capacity was 158 mAh / g, and the capacity retention rate after 100 charge / discharge cycles at 1C 5 A was 96% at room temperature. Yes, the capacity retention rate after 100 cycles at 45 ° C. is 93%, the rate of increase in battery thickness after 4 hours storage at a high temperature of 85 ± 2 ° C. is 5.9%, and the result of the thermal shock test is Indicates that no rupture or cracking occurs within 60 minutes in a 150 ° C. hot oven.

実施形態5   Embodiment 5

塩化ニッケル、硫酸コバルトおよび硫酸マンガンを0.7:0.15:0.15の金属モル比で溶解し、250Lの2mol/Lの第1塩溶液R1を得、硫酸アルミニウムと硫酸マグネシウムを0.5:0.5の金属モル比で溶解して、10.5Lの2mol/Lの第2塩溶液R2を得、塩化アンモニウムとEDTAをモル比0.8:0.2で溶解させて2mol/Lの錯化剤Cを得、錯化剤C対総金属塩のモル比は0.2:1であり;沈殿剤Dとして7mol/L水酸化ナトリウム溶液を調製し、沈殿剤D対総金属塩のモル比を2.1:1に制御し、第1塩溶液R1を撹拌機付き容器に入れる。   Nickel chloride, cobalt sulfate and manganese sulfate were dissolved in a metal molar ratio of 0.7: 0.15: 0.15 to obtain 250 L of a 2 mol / L first salt solution R1, and aluminum sulfate and magnesium sulfate were added in an amount of 0.1. Dissolve at a metal molar ratio of 5: 0.5 to obtain 10.5 L of a 2 mol / L second salt solution R2, and dissolve ammonium chloride and EDTA at a molar ratio of 0.8: 0.2 to give 2 mol / L. L complexing agent C is obtained, the molar ratio of complexing agent C to total metal salt is 0.2: 1; 7 mol / L sodium hydroxide solution is prepared as precipitating agent D, precipitating agent D to total metal The salt molar ratio is controlled to 2.1: 1 and the first salt solution R1 is placed in a vessel with a stirrer.

混合塩溶液を得るために、0.7L/hの流速で第1塩溶液R1に第2塩溶液R2を撹拌しながら添加し;次いで、混合塩溶液、沈殿剤Dおよび錯化剤Cを同時に反応器Aに添加して反応させ、ここで、反応器Aに添加される混合塩溶液の流速は17.36L/hであり、この反応プロセスは図1に示されたとおりであり、反応のpHを12.4、反応温度を60℃、反応時間を15時間に制御しながら、窒素雰囲気の保護下で反応させることにより、前駆体沈殿物を得る。   To obtain a mixed salt solution, the second salt solution R2 is added to the first salt solution R1 with stirring at a flow rate of 0.7 L / h; then the mixed salt solution, the precipitating agent D and the complexing agent C are simultaneously added. The reaction is performed by adding to the reactor A, where the flow rate of the mixed salt solution added to the reactor A is 17.36 L / h, and this reaction process is as shown in FIG. The precursor precipitate is obtained by reacting under the protection of nitrogen atmosphere while controlling the pH at 12.4, the reaction temperature at 60 ° C., and the reaction time at 15 hours.

前駆体沈殿物を濾過し、洗浄し、140℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体を硝酸リチウムと1:1.03のモル比で完全に混合し、酸素ガスの雰囲気中で、820℃で12時間保持する。自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。   The precursor precipitate is filtered, washed and dried at 140 ° C. to obtain a multi-component material precursor. The precursor is thoroughly mixed with lithium nitrate at a molar ratio of 1: 1.03 and held at 820 ° C. for 12 hours in an oxygen gas atmosphere. Natural cooling, grinding and sieving are performed, thereby obtaining a spherical multi-component material having an inclined structure.

実施形態1の方法を用いて、正極は、本実施形態で調製されたリチウムイオン電池用の傾斜構造を有する多成分材料から製造され、かつ、この正極を角形のアルミニウムシェル電池053048に加工する。   Using the method of Embodiment 1, the positive electrode is manufactured from a multicomponent material having a graded structure for a lithium ion battery prepared in this embodiment, and this positive electrode is processed into a square aluminum shell battery 053048.

本実施形態で調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、LiNi0.672Co0.144Mn0.144Al0.02Mg0.02の組成を有し、粒状材料の中心におけるNi元素の含有量は70mol%であり、Ni元素の含有量は内側から外側に向かって連続的に減少し、粒状材料は球形である。試験すると、材料のメジアン径は6.5μm、タップ密度は2.21g/cm、比放電容量は175mAh/gであり、常温において、1CAで100回の充放電サイクル後の容量維持率は92%であり、45℃で100サイクル後の容量維持率は90%であり、85±2℃の高温で4時間保存後の電池厚みの増加率は8.6%であり、熱衝撃試験の結果は、150℃のホットオーブン中で60分以内に破裂または割れがおこらないことを示す。 The multi-component material having a graded structure for a lithium ion battery prepared in this embodiment has a composition of LiNi 0.672 Co 0.144 Mn 0.144 Al 0.02 Mg 0.02 O 2 and is granular. The content of Ni element at the center of the material is 70 mol%, the content of Ni element continuously decreases from the inside to the outside, and the granular material is spherical. When tested, the median diameter of the material is 6.5 μm, the tap density is 2.21 g / cm 3 , the specific discharge capacity is 175 mAh / g, and the capacity retention rate after 100 charge / discharge cycles at 1 C 5 A at room temperature Is 92%, the capacity retention rate after 100 cycles at 45 ° C. is 90%, the increase rate of the battery thickness after storage for 4 hours at a high temperature of 85 ± 2 ° C. is 8.6%, and the thermal shock test The results show that no bursting or cracking occurs within 60 minutes in a hot oven at 150 ° C.

実施形態6   Embodiment 6

1.5mol/Lの硫酸ニッケル溶液667Lを第1塩溶液R1として調製し、硫酸コバルト、硫酸マンガン、硝酸アルミニウム、硫酸マグネシウムおよび硝酸イットリウムを、0.375:0.375:0.1:0.1:0.05の金属モル比で溶解させて、1.5mol/Lの第2塩溶液R2を167L得、錯化剤Cとして1mol/Lのエチレンジアミン溶液を調製し、錯化剤C対総金属塩モル比は0.2:1であり;沈殿剤Dとして2mol/Lの炭酸ナトリウム溶液を調製し、沈殿剤D対総金属塩のモル比を1.1:1に制御し、撹拌機付き容器に第1塩溶液R1を入れる。   A 667 L of 1.5 mol / L nickel sulfate solution was prepared as the first salt solution R1, and cobalt sulfate, manganese sulfate, aluminum nitrate, magnesium sulfate and yttrium nitrate were added at 0.375: 0.375: 0.1: 0. 167 L of a 1.5 mol / L second salt solution R2 was obtained by dissolving at a metal molar ratio of 1: 0.05, and a 1 mol / L ethylenediamine solution was prepared as the complexing agent C. The metal salt molar ratio is 0.2: 1; a 2 mol / L sodium carbonate solution is prepared as the precipitant D, the molar ratio of the precipitant D to the total metal salt is controlled at 1.1: 1, and the stirrer Put the first salt solution R1 in the attached container.

混合塩溶液を得るために、第2塩溶液R2を第1塩溶液R1に流速4.18L/hで撹拌しながら添加し;次いで、混合塩溶液、沈殿剤Dおよび錯化剤Cを同時に反応器Aに添加して反応させ、ここで反応器Aに添加される混合塩溶液の流速は20.85L/hであり、この反応プロセスは図1に示されたとおりであり、反応液のpHを9.0、反応温度を45℃、反応時間を40時間に制御しながら、窒素雰囲気の保護下で反応させ、前駆体沈殿物を得る。   To obtain the mixed salt solution, the second salt solution R2 is added to the first salt solution R1 with stirring at a flow rate of 4.18 L / h; then the mixed salt solution, the precipitating agent D and the complexing agent C are reacted simultaneously. The flow rate of the mixed salt solution added to the reactor A is 20.85 L / h, and this reaction process is as shown in FIG. Is controlled under a nitrogen atmosphere while controlling the reaction temperature at 9.0, the reaction temperature at 45 ° C., and the reaction time at 40 hours to obtain a precursor precipitate.

前駆体沈殿物を濾過し、洗浄し、500℃で焼成することにより、多成分材料の前駆体を得る。前駆体を水酸化リチウムと1:1.04のモル比で完全に混合し、酸素ガスの雰囲気中に、750℃で15時間保持する。自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有するほぼ球形の多成分材料を得る。   The precursor precipitate is filtered, washed, and calcined at 500 ° C. to obtain a multi-component material precursor. The precursor is thoroughly mixed with lithium hydroxide at a molar ratio of 1: 1.04 and kept at 750 ° C. for 15 hours in an oxygen gas atmosphere. Natural cooling, pulverization and sieving are performed, thereby obtaining a substantially spherical multi-component material having an inclined structure.

実施形態1の方法を用いて、正極は、本実施形態で調製されたリチウムイオン電池用の傾斜構造を有する多成分材料から製造され、かつ、この正極を角形のアルミニウムシェル電池053048に加工する。   Using the method of Embodiment 1, the positive electrode is manufactured from a multicomponent material having a graded structure for a lithium ion battery prepared in this embodiment, and this positive electrode is processed into a square aluminum shell battery 053048.

本実施形態により製造されたリチウムイオン電池用の傾斜構造を有する多成分材料は、LiNi0.80Co0.075Mn0.075Al0.02Mg0.020.01の組成を有し、粒状材料の中心におけるNi元素の含有量が100mol%であり、Ni元素の含有量が内側から外側に向かって連続的に減少し、粒状材料は球形である。試験すると、メジアン径は24.5μm、タップ密度は2.73g/cm、比放電容量は184mAh/g、常温で、1CAで100回の充放電サイクル後の容量維持率は91%、45℃で100サイクル後の容量維持率は89%、85±2℃の高温で4時間保存後の電池厚みの増加率は8.0%であり、熱衝撃試験の結果は、150℃のホットオーブン中で60分以内に破裂または割れがおこらないことを示す。 The multi-component material having an inclined structure for a lithium ion battery manufactured according to the present embodiment has a composition of LiNi 0.80 Co 0.075 Mn 0.075 Al 0.02 Mg 0.02 Y 0.01 O 2 . And the content of Ni element at the center of the granular material is 100 mol%, the content of Ni element continuously decreases from the inside toward the outside, and the granular material is spherical. When tested, the median diameter was 24.5 μm, the tap density was 2.73 g / cm 3 , the specific discharge capacity was 184 mAh / g, and the capacity retention rate after 100 charge / discharge cycles at 1C 5 A at room temperature was 91%, The capacity retention rate after 100 cycles at 45 ° C. is 89%, the increase rate of the battery thickness after storage for 4 hours at a high temperature of 85 ± 2 ° C. is 8.0%, and the result of the thermal shock test is 150 ° C. hot Indicates no rupture or cracking within 60 minutes in oven.

実施形態7   Embodiment 7

塩化ニッケルと硫酸コバルトとを0.9:0.1の金属モル比で溶解し、金属モル比0.9:0.1で溶解して、1mol/Lの第1塩溶液R1を1000L得、硫酸コバルト、硫酸マンガン、硫酸マグネシウムおよび塩化カルシウムを0.2:0.6:0.1:0.1の金属モル比で溶解して1.0mol/Lの第2塩溶液R2を250L得、錯化剤Cとして1mol/Lの硝酸アンモニウム溶液を調製し、錯化剤C対総金属塩のモル比を0.2:1であり;沈殿剤Dとして3mol/Lの重炭酸アンモニウム溶液を調製し、沈殿剤D対総金属塩のモル比を1:1に制御し、第1塩溶液R1を撹拌機付き容器に入れる。   Nickel chloride and cobalt sulfate were dissolved at a metal molar ratio of 0.9: 0.1, and dissolved at a metal molar ratio of 0.9: 0.1 to obtain 1000 L of a 1 mol / L first salt solution R1. Cobalt sulfate, manganese sulfate, magnesium sulfate and calcium chloride were dissolved at a metal molar ratio of 0.2: 0.6: 0.1: 0.1 to obtain 250 L of a 1.0 mol / L second salt solution R2, A 1 mol / L ammonium nitrate solution is prepared as complexing agent C, the molar ratio of complexing agent C to total metal salt is 0.2: 1; a 3 mol / L ammonium bicarbonate solution is prepared as precipitating agent D. The molar ratio of the precipitating agent D to the total metal salt is controlled to 1: 1, and the first salt solution R1 is placed in a vessel with a stirrer.

混合塩溶液を得るために、第2塩溶液R2を第1塩溶液R1に、25L/hの流速で撹拌しながら添加し;次いで、混合塩溶液、沈殿剤Dおよび錯化剤Cを反応器Aに同時に添加して反応させ、ここで反応器Aに添加される混合塩溶液の流速は125L/hとであり、この反応プロセスは図1に示されたとおりであり、反応のpHを8.7、反応温度を40℃、反応時間を10時間に制御しながら、窒素雰囲気の保護下で反応させ、前駆体沈殿物を得る。   To obtain the mixed salt solution, the second salt solution R2 is added to the first salt solution R1 with stirring at a flow rate of 25 L / h; then the mixed salt solution, the precipitating agent D and the complexing agent C are added to the reactor. The mixed salt solution added to the reactor A is reacted at the same time, and the flow rate of the mixed salt solution is 125 L / h. The reaction process is as shown in FIG. .7, while controlling the reaction temperature to 40 ° C. and the reaction time to 10 hours, the reaction is performed under protection of a nitrogen atmosphere to obtain a precursor precipitate.

前駆体沈殿物を濾過し、洗浄し、600℃で焼成することにより、多成分材料の前駆体を得る。前駆体を水酸化リチウムと1:1.04のモル比で完全に混合し、酸素ガスの雰囲気中において温度800℃で16時間保持する。自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。   The precursor precipitate is filtered, washed, and calcined at 600 ° C. to obtain a multi-component material precursor. The precursor is thoroughly mixed with lithium hydroxide at a molar ratio of 1: 1.04 and kept at a temperature of 800 ° C. for 16 hours in an oxygen gas atmosphere. Natural cooling, grinding and sieving are performed, thereby obtaining a spherical multi-component material having an inclined structure.

本実施形態により調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、LiNi0.72Co0.12Mn0.12Mg0.02Ca0.02の組成を有し、粒状物質の中心におけるNi元素の含有量が90mol%であり、Ni元素は内側から外側に向かって連続的に減少し、粒状材料は球形である。試験すると、材料のメジアン径は7.3μm、タップ密度は2.33g/cm、比放電容量は177mAh/g、常温で、1CAで100回の充放電サイクル後の容量維持率は93%であり、45℃で100サイクル後の容量維持率は91%であり、85±2℃の高温で4時間保存後の電池厚みの増加率は7.4%であり、熱衝撃試験の結果は、150℃のホットオーブン中で60分以内に破裂または割れが起こらないことを示す。 The multi-component material having a graded structure for a lithium ion battery prepared according to the present embodiment has a composition of LiNi 0.72 Co 0.12 Mn 0.12 Mg 0.02 Ca 0.02 O 2 and is granular. The content of Ni element at the center of the substance is 90 mol%, Ni element continuously decreases from the inside to the outside, and the granular material is spherical. When tested, the median diameter of the material was 7.3 μm, the tap density was 2.33 g / cm 3 , the specific discharge capacity was 177 mAh / g, and the capacity retention rate after 100 charge / discharge cycles at 1C 5 A at room temperature was 93. The capacity retention rate after 100 cycles at 45 ° C. is 91%, the increase rate of the battery thickness after storage for 4 hours at a high temperature of 85 ± 2 ° C. is 7.4%, and the result of the thermal shock test Indicates no rupture or cracking within 60 minutes in a 150 ° C. hot oven.

実施形態8   Embodiment 8

第1塩溶液R1として1.5mol/Lの硫酸ニッケル溶液667Lを調製し、硫酸コバルト、硫酸マンガン、硝酸アルミニウム、硫酸マグネシウムおよび硝酸イットリウムを金属モル比0.375:0.375:0.1:0.1:0.05で溶解させて第2塩溶液R2を167L得、錯化剤Cとして5mol/Lのアンモニア水溶液を調製し、錯化剤C対総金属塩のモル比は0.95:1であり;沈殿剤Dとして8mol/L水酸化ナトリウム溶液を調製し、沈殿剤D対総金属塩のモル比を2.07:1に制御し、第1塩溶液R1を撹拌機付き容器に入れる。   A 667 L of a 1.5 mol / L nickel sulfate solution is prepared as the first salt solution R1, and the metal molar ratio of cobalt sulfate, manganese sulfate, aluminum nitrate, magnesium sulfate and yttrium nitrate is 0.375: 0.375: 0.1: 167 L of the second salt solution R2 was obtained by dissolving at 0.1: 0.05, and a 5 mol / L aqueous ammonia solution was prepared as the complexing agent C. The molar ratio of the complexing agent C to the total metal salt was 0.95. 1: 8 mol / L sodium hydroxide solution was prepared as the precipitating agent D, the molar ratio of the precipitating agent D to the total metal salt was controlled to 2.07: 1, and the first salt solution R1 was placed in a container equipped with a stirrer. Put in.

混合塩溶液を得るために、第2塩溶液R2を第1塩溶液R1に流速4.18L/hで撹拌しながら添加し;次いで、混合塩溶液、沈殿剤Dおよび錯化剤Cを同時に反応器Aに添加して反応させ、ここで、反応器Aに添加される混合塩溶液の流速は20.85L/hであり、この反応プロセスは図1に示されたとおりであり、反応のpHを12.1、反応温度を50℃、反応時間を40時間に制御しながら、窒素雰囲気の保護下で反応させて前駆体沈殿物を得る。   To obtain the mixed salt solution, the second salt solution R2 is added to the first salt solution R1 with stirring at a flow rate of 4.18 L / h; then the mixed salt solution, the precipitating agent D and the complexing agent C are reacted simultaneously. The mixed salt solution added to the reactor A is reacted at a flow rate of 20.85 L / h, and the reaction process is as shown in FIG. The precursor precipitate is obtained by reacting under the protection of nitrogen atmosphere while controlling the reaction temperature at 12.1, the reaction temperature at 50 ° C., and the reaction time at 40 hours.

前駆体沈殿物を濾過し、洗浄し、130℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体を水酸化リチウムと1:1.04のモル比で完全に混合し、酸素ガスの雰囲気中で温度760℃で15時間保持する。自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。   The precursor precipitate is filtered, washed and dried at 130 ° C. to obtain a multi-component material precursor. The precursor is thoroughly mixed with lithium hydroxide at a molar ratio of 1: 1.04 and held at a temperature of 760 ° C. for 15 hours in an oxygen gas atmosphere. Natural cooling, grinding and sieving are performed, thereby obtaining a spherical multi-component material having an inclined structure.

本実施形態により調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、LiNi0.8Co0.075Mn0.075Al0.02Mg0.020.01の組成を有し、粒状材料の中心におけるNi元素の含有量が100%であり、Ni元素の含有量が内側から外側に向かって連続的に減少し、粒状材料は球形である。試験すると、材料のメジアン径は12.2μm、タップ密度は2.60g/cm、比放電容量は187mAh/g、常温で、1CAで100回の充放電サイクル後の容量維持率は90%であり、45℃で100サイクル後の容量維持率は88%であり、85±2℃の高温で4時間保存後の電池厚みの増加率は8.4%であり、熱衝撃試験の結果は、150℃のホットオーブン中で60分以内に破裂または割れがおこらなかったことを示す。 The multi-component material having an inclined structure for a lithium ion battery prepared according to the present embodiment has a composition of LiNi 0.8 Co 0.075 Mn 0.075 Al 0.02 Mg 0.02 Y 0.01 O 2 . And the content of Ni element at the center of the granular material is 100%, the content of Ni element continuously decreases from the inside to the outside, and the granular material is spherical. When tested, the median diameter of the material was 12.2 μm, the tap density was 2.60 g / cm 3 , the specific discharge capacity was 187 mAh / g, and the capacity retention rate after 100 charge / discharge cycles at 1C 5 A at 90 ° C. was 90 The capacity retention rate after 100 cycles at 45 ° C. is 88%, and the increase rate of the battery thickness after storage for 4 hours at a high temperature of 85 ± 2 ° C. is 8.4%. Indicates that no rupture or cracking occurred within 60 minutes in a 150 ° C. hot oven.

比較例   Comparative example

硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを0.6:0.2:0.2の金属モル比で溶解し、1.5mol/Lの混合塩溶液500Lを得、錯化剤Cとして5.0mol/Lのアンモニア水溶液と、沈殿剤Dとしての8mol/Lの水酸化ナトリウム溶液を調製し、次いで、混合塩溶液、沈殿剤Dおよび錯化剤Cとを同時に反応器Aに添加して反応させ、ここで、添加される混合塩溶液の反応器Aへの流速は16.67L/hであり、反応は、反応のpHを11.3、反応温度を50℃、錯化剤アンモニア水対総金属塩のモル比を1:1、反応時間を30時間に制御しながら、窒素雰囲気の保護下で行われ、これにより前駆体沈殿物を得る。   Nickel sulfate, cobalt sulfate and manganese sulfate are dissolved at a metal molar ratio of 0.6: 0.2: 0.2 to obtain 500 L of a 1.5 mol / L mixed salt solution, and 5.0 mol / L as complexing agent C. An aqueous ammonia solution of L and an 8 mol / L sodium hydroxide solution as a precipitating agent D are prepared, and then the mixed salt solution, the precipitating agent D and the complexing agent C are simultaneously added to the reactor A and reacted. Here, the flow rate of the mixed salt solution to be added to the reactor A is 16.67 L / h, and the reaction is performed at a pH of 11.3, a reaction temperature of 50 ° C., a complexing agent ammonia water versus total metal. It is carried out under the protection of a nitrogen atmosphere while controlling the molar ratio of salt to 1: 1 and the reaction time to 30 hours, thereby obtaining a precursor precipitate.

前駆体沈殿物を濾過し、洗浄し、120℃で乾燥することにより、多成分材料の前駆体を得る。前駆体を水酸化リチウムと1:1.05のモル比で完全に混合し、空気雰囲気中、温度890℃で10時間保持する。自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。   The precursor precipitate is filtered, washed, and dried at 120 ° C. to obtain a multi-component material precursor. The precursor is thoroughly mixed with lithium hydroxide at a molar ratio of 1: 1.05 and held in an air atmosphere at a temperature of 890 ° C. for 10 hours. Natural cooling, grinding and sieving are performed, thereby obtaining a spherical multi-component material having an inclined structure.

実施形態1の方法を用いて、正極は、本実施形態で調製されたリチウムイオン電池用の傾斜構造を有する多成分材料から製造され、かつ、この正極を角形のアルミニウムシェル電池053048に加工する。   Using the method of Embodiment 1, the positive electrode is manufactured from a multicomponent material having a graded structure for a lithium ion battery prepared in this embodiment, and this positive electrode is processed into a square aluminum shell battery 053048.

本実施形態によって調製されたリチウムイオン電池用の傾斜構造を有する多成分材料は、LiNi0.6Co0.2Mn0.2の組成を有し、粒状物質は球形である。試験すると、メジアン径は15.6μm、タップ密度は2.56g/cm、比放電容量は170mAh/g、常温で、1CAでの100回の充放電サイクル後の容量維持率は85%、45℃で100サイクル後の容量維持率が70%であり、85±2℃の高温で4時間保存後の電池厚みの増加率は14.5%であり、熱衝撃試験の結果は、150℃のホットオーブン中で60分以内に破裂または割れを示さない。 The multi-component material having a graded structure for a lithium ion battery prepared according to the present embodiment has a composition of LiNi 0.6 Co 0.2 Mn 0.2 O 2 and the granular material is spherical. When tested, the median diameter is 15.6 μm, the tap density is 2.56 g / cm 3 , the specific discharge capacity is 170 mAh / g, and the capacity retention rate after 100 charge / discharge cycles at 1 C 5 A is 85% at room temperature. The capacity retention rate after 100 cycles at 45 ° C. is 70%, the rate of increase in battery thickness after storage for 4 hours at a high temperature of 85 ± 2 ° C. is 14.5%, and the result of the thermal shock test is 150 No bursting or cracking within 60 minutes in a hot oven at 0 ° C.

上記の試験データから、比較例により製造されたリチウムイオン電池用の傾斜構造を有する多成分材料は、明らかに低い比放電容量であり、常温での100回の充放電サイクル後の容量維持率は85%に達したに過ぎず、45℃での100サイクル後の容量維持率は70%であり、したがって、比較例の多成分材料の常温サイクル性能と高温サイクル性能は、いずれも、本願発明の実施形態により調製された材料より劣っていて、また、高温での貯蔵性能及び安全性能も劣っている。   From the above test data, the multi-component material having an inclined structure for a lithium ion battery manufactured according to the comparative example has a clearly low specific discharge capacity, and the capacity retention rate after 100 charge / discharge cycles at room temperature is The capacity retention rate after 100 cycles at 45 ° C. was only 70%. Therefore, the normal temperature cycle performance and the high temperature cycle performance of the multi-component material of the comparative example are both of the present invention. It is inferior to the material prepared according to the embodiment and also has poor storage and safety performance at high temperatures.

最後に、上記の実施形態は、本発明の技術的解決策を限定するのではなく、単に例示することを意図するものであり;本発明は上述の実施形態を参照して具体的に説明されたが、当業者であれば、前述の実施形態に記載された技術的解決策を依然として変更することができ、またはその中の技術的特徴の一部または全部を均等なものに置換でき;これらの変更およびこれらの置換は、対応する技術的解決策の本質を本発明の上記の実施形態における技術的解決策の範囲から逸脱するものではない。   Finally, the above embodiments are not intended to limit the technical solutions of the present invention, but are intended to be exemplary only; the present invention is specifically described with reference to the above embodiments. However, those skilled in the art can still change the technical solutions described in the above embodiments, or can replace some or all of the technical features therein with equivalents; These changes and their substitutions do not depart from the scope of the technical solutions in the above embodiments of the present invention from the essence of the corresponding technical solutions.

(式中、0.4≦x≦0.9,0≦y+z≦0.6,0≦d≦0.1,x+y+z+d=1,Gは、Li、Cr、Fe、Mg、Ca、Sr、Ba、B、Al、Y、Sm、Ti、Zn、Zr、V、Nb、Ta、Mo、W元素の1種以上である。)で示される平均組成を有し、多成分材料は粒子状であり、リチウムイオン電池用の傾斜構造を有する多成分材料において、Ni元素の含有量が粒子の中心から表面に向かって連続的に減少する。 (In the formula, 0.4 ≦ x ≦ 0.9, 0 ≦ y + z ≦ 0.6, 0 ≦ d ≦ 0.1, x + y + z + d = 1, G is Li, Cr, Fe, Mg, Ca, Sr, Ba , B, Al, Y, Sm, Ti, Zn, Zr, V, Nb, Ta, Mo, and W elements)), and the multi-component material is in the form of particles in multi-component material having a gradient structure for lithium ion batteries, continuously decreases toward the surface from the center of the content of Ni element particles.

本発明により提供されるリチウムイオン電池用の傾斜構造を有する多成分材料は、Ni、Co、MnおよびG元素の1種以上を含む金属塩をNi含有金属塩溶液に徐々に添加して、沈殿剤および錯化剤と沈殿反応させ、その後酸素ガスを含む雰囲気中で、沈殿反応の沈殿生成物とリチウム源とを焼結する。 The multi-component material having an inclined structure for a lithium ion battery provided by the present invention is obtained by gradually adding a metal salt containing one or more of Ni, Co, Mn and G elements to a Ni-containing metal salt solution, agent and precipitated reacts with the complexing agent and after that in an atmosphere containing oxygen gas, the precipitation buttocks product of the precipitation reaction and the lithium source for sintering.

(3)傾斜構造を有する多成分材料の前駆体とリチウム源とを均一に混合して混合物を得、空気または酸素ガスの反応雰囲気中で、500〜1100℃で4〜30時間該混合物を焼結し、好ましくは700〜1000℃で7〜20時間該混合物を焼結し、焼結体を得、該焼結体の粉砕を行い、リチウム電池用の傾斜構造を有する多成分材料を得る工程
を含む。
(3) the precursor of the multi-component material having an inclined structure and the lithium source were uniformly mixed to obtain a mixture, in a reaction atmosphere of air or oxygen gas, from 4 to 30 o'clock Ma該mixture at 500 to 1100 ° C. sintering, preferably sintering the 7-20 o'clock Ma該mixture at 700 to 1000 ° C., to obtain a sintered body performs pulverizng of sintered bodies, multi-component material having a gradient structure for a lithium battery The process of obtaining.

また、本発明は、リチウムイオン電池用の傾斜構造を有する上記多成分材料から調製されたリチウムイオン電池の正極を提供する。調製方法は、従来技術の方法を参照してよい。例えば、上記リチウムイオン電池用の傾斜構造を有する多成分材料を、カーボンブラックとポリフッ化ビニリデン(PVDF)と重量比94%:3%:3%でブレンドして、得られた混合物をコーティングして電極板を形成することで、リチウムイオン電池の正極を作製してもよい。 Moreover, this invention provides the positive electrode of the lithium ion battery prepared from the said multi-component material which has the inclination structure for lithium ion batteries. The preparation method may refer to a prior art method. For example, the multi-component material having a gradient structure for the lithium-ion battery, the weight ratio of 94% carbon black and polyvinylidene fluoride (PVDF): 3%: a blend with 3%, the resulting mixture was co Computing Then, the positive electrode of the lithium ion battery may be produced by forming an electrode plate.

前駆体沈殿物を濾過し、洗浄し、120℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体を水酸化リチウムと1:1.05のモル比で完全に混合して混合物を得、該混合物を、空気雰囲気中、890℃で10時間保持し、焼結体を得る。該焼結体の自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。 The precursor precipitate is filtered, washed and dried at 120 ° C. to obtain a multi-component material precursor. The precursor and lithium hydroxide were mixed thoroughly in a molar ratio of 1.05 to obtain a mixture, the mixture in air atmosphere, for 10 hours retained at 890 ° C., to obtain a sintered body. Natural cooling of the sintered body, and milling and sieving, thereby obtaining a multi-component material of spherical shape having an inclined structure.

上記のリチウムイオン電池用の傾斜構造を有する多成分材料を、カーボンブラックとポリフッ化ビニリデン(PVDF)と重量比94%:3%:3%でブレンドし、得られた混合物をコーティングして電極板を形成し、このように作製したリチウムイオン電池の正極、負極として人造黒鉛を用いた電極、正極と負極の間のセパレータを、ロールしてから電解液を注入して、角形のアルミニウムシェル電池053048を形成した。これは、具体的には先行技術の作製方法を参照することができる。 The multi-component material having a gradient structure for a lithium ion battery above, the weight ratio of 94% carbon black and polyvinylidene fluoride (PVDF): 3%: a blend with 3%, the resulting mixture was co computing electrodes A rectangular aluminum shell battery in which a plate is formed and a positive electrode of the lithium ion battery thus produced, an electrode using artificial graphite as a negative electrode, a separator between the positive electrode and the negative electrode is rolled, and then an electrolyte is injected. 053048 was formed. Specifically, reference can be made to a prior art manufacturing method.

前駆体沈殿物を濾過し、洗浄し、110℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体と水酸化リチウムとを1:1.05のモル比で完全に混合して混合物を得、該混合物を、酸素ガスの雰囲気中で890℃で10時間保持し、焼結体を得る。該焼結体の自然冷却、粉砕および篩い分けを行うことによって、傾斜構造を有する球状の多成分材料を得る。 The precursor precipitate is filtered, washed and dried at 110 ° C. to obtain a multi-component material precursor. Lithium hydroxide precursor 1 were mixed thoroughly in a molar ratio of 1.05 to obtain a mixture, the mixture was 10 hours hold at 890 ° C. in an atmosphere of oxygen gas, the sintered body obtain. Natural cooling of the sintered body by performing grinding and sieving to obtain a multi-component material of spherical shape having an inclined structure.

前駆体沈殿物を濾過し、洗浄し、80℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体を炭酸リチウムと1:0.52のモル比で完全に混合して混合物を得、該混合物を、酸素ガス雰囲気中、800℃で15時間保持し、焼結体を得る。該焼結体の自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。 The precursor precipitate is filtered, washed and dried at 80 ° C. to obtain a multi-component material precursor. The precursor and lithium carbonate were mixed 1: thoroughly in a molar ratio of 0.52 to obtain a mixture, the mixture, in oxygen atmosphere, for 15 hours retained at 800 ° C., to obtain a sintered body. Natural cooling of the sintered body, and milling and sieving, thereby obtaining a multi-component material of spherical shape having an inclined structure.

前駆体沈殿物を濾過し、洗浄し、100℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体を炭酸リチウムと1:0.525のモル比で完全に混合して混合物を得、該混合物を、空気中、950℃で16時間保持し、焼結体を得る。該焼結体の自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。 The precursor precipitate is filtered, washed and dried at 100 ° C. to obtain a multi-component material precursor. The precursor and lithium carbonate 1: thoroughly mixed in a molar ratio of 0.525 to obtain a mixture, the mixture in air for 16 hours retained at 950 ° C., to obtain a sintered body. Natural cooling of the sintered body, and milling and sieving, thereby obtaining a multi-component material of spherical shape having an inclined structure.

前駆体沈殿物を濾過し、洗浄し、140℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体を硝酸リチウムと1:1.03のモル比で完全に混合して混合物を得、該混合物を、酸素ガスの雰囲気中で、820℃で12時間保持し、焼結体を得る。該焼結体の自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。 The precursor precipitate is filtered, washed and dried at 140 ° C. to obtain a multi-component material precursor. The precursor and lithium nitrate were mixed 1: thoroughly in a molar ratio of 1.03 to obtain a mixture, the mixture, in an atmosphere of oxygen gas, and 12 hours hold at 820 ° C., to obtain a sintered body . Natural cooling of the sintered body, and milling and sieving, thereby obtaining a multi-component material of spherical shape having an inclined structure.

前駆体沈殿物を濾過し、洗浄し、500℃で焼成することにより、多成分材料の前駆体を得る。前駆体を水酸化リチウムと1:1.04のモル比で完全に混合して混合物を得、該混合物を、酸素ガスの雰囲気中に、750℃で15時間保持し、焼結体を得る。該焼結体の自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有するほぼ球形の多成分材料を得る。 The precursor precipitate is filtered, washed, and calcined at 500 ° C. to obtain a multi-component material precursor. The precursor and lithium hydroxide were mixed thoroughly in a molar ratio of 1.04 to obtain a mixture, the mixture, in an atmosphere of oxygen gas, and 15 hours hold at 750 ° C., the sintered body obtain. Natural cooling of the sintered body, and milling and sieving, thereby obtaining a substantially spherical multi-component material having a gradient structure.

前駆体沈殿物を濾過し、洗浄し、600℃で焼成することにより、多成分材料の前駆体を得る。前駆体を水酸化リチウムと1:1.04のモル比で完全に混合して混合物を得、該混合物を、酸素ガスの雰囲気中において温度800℃で16時間保持し、焼結体を得る。該焼結体の自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。 The precursor precipitate is filtered, washed, and calcined at 600 ° C. to obtain a multi-component material precursor. The precursor and lithium hydroxide were mixed thoroughly in a molar ratio of 1.04 to obtain a mixture, the mixture was 16 hours hold at temperature 800 ° C. in an atmosphere of oxygen gas, the sintered body obtain. Natural cooling of the sintered body, and milling and sieving, thereby obtaining a multi-component material of spherical shape having an inclined structure.

前駆体沈殿物を濾過し、洗浄し、130℃で乾燥させることにより、多成分材料の前駆体を得る。前駆体を水酸化リチウムと1:1.04のモル比で完全に混合して混合物を得、該混合物を、酸素ガスの雰囲気中で温度760℃で15時間保持し、焼結体を得る。該焼結体の自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。 The precursor precipitate is filtered, washed and dried at 130 ° C. to obtain a multi-component material precursor. The precursor and lithium hydroxide were mixed thoroughly in a molar ratio of 1.04 to obtain a mixture, the mixture for 15 hours retained at a temperature 760 ° C. in an atmosphere of oxygen gas, the sintered body obtain. Natural cooling of the sintered body, and milling and sieving, thereby obtaining a multi-component material of spherical shape having an inclined structure.

前駆体沈殿物を濾過し、洗浄し、120℃で乾燥することにより、多成分材料の前駆体を得る。前駆体を水酸化リチウムと1:1.05のモル比で完全に混合して混合物を得、該混合物を、空気雰囲気中、温度890℃で10時間保持し、焼結体を得る。該焼結体の自然冷却、粉砕および篩い分けを行い、それによって傾斜構造を有する球状の多成分材料を得る。 The precursor precipitate is filtered, washed, and dried at 120 ° C. to obtain a multi-component material precursor. The precursor and lithium hydroxide were mixed thoroughly in a molar ratio of 1.05 to obtain a mixture, the mixture in air atmosphere, for 10 hours retained at a temperature 890 ° C., to obtain a sintered body. Natural cooling of the sintered body, and milling and sieving, thereby obtaining a multi-component material of spherical shape having an inclined structure.

Claims (12)

リチウムイオン電池用の傾斜構造を有する多成分材料であって、多成分材料が式(I):
LiNiCoMn 式(I)
(式中、0.4≦x≦0.9,0≦y+z≦0.6,0≦d≦0.1,x+y+z+d=1、GはLi、Cr、Fe、Mg、Ca、Sr、Ba、B、Al、Y、Sm、Ti、Zn、Zr、V、Nb、Ta、Mo及びW元素の1種以上である。)
で示される平均組成を有し、
リチウムイオン電池用の傾斜構造を有する多成分材料中、Ni元素の含有量は粒子の中心から表面に向かって連続的に減少する、リチウムイオン電池用の傾斜構造を有する多成分材料。
A multicomponent material having an inclined structure for a lithium ion battery, wherein the multicomponent material is represented by the formula (I):
LiNi x Co y Mn z G d O 2 Formula (I)
(Wherein 0.4 ≦ x ≦ 0.9, 0 ≦ y + z ≦ 0.6, 0 ≦ d ≦ 0.1, x + y + z + d = 1, G is Li, Cr, Fe, Mg, Ca, Sr, Ba, B, Al, Y, Sm, Ti, Zn, Zr, V, Nb, Ta, Mo and one or more of W elements.)
Having an average composition represented by
A multi-component material having an inclined structure for a lithium-ion battery, wherein the content of Ni element continuously decreases from the center of the particle toward the surface in the multi-component material having an inclined structure for a lithium-ion battery.
リチウムイオン電池用の傾斜構造を有する多成分材料のメジアン径が3〜25μmであり、そのタップ密度が1.5〜3.0g/cmである、請求項1に記載のリチウムイオン電池用の傾斜構造を有する多成分材料。 The median diameter of the multicomponent material having an inclined structure for a lithium ion battery is 3 to 25 µm, and the tap density thereof is 1.5 to 3.0 g / cm 3 . A multi-component material having an inclined structure. 多成分材料が、Ni、Co、Mn及びG元素の1種以上を含む金属塩を、Ni含有金属塩溶液に徐々に添加して、沈殿剤および錯化剤との沈殿反応を経た後、沈殿生成物およびリチウム源を酸素ガス含有雰囲気中で焼成することにより得られる、請求項1に記載のリチウムイオン電池用の傾斜構造を有する多成分材料。   The multi-component material is gradually added with a metal salt containing one or more of Ni, Co, Mn and G elements to the Ni-containing metal salt solution, subjected to a precipitation reaction with a precipitating agent and a complexing agent, and then precipitated. The multi-component material having an inclined structure for a lithium ion battery according to claim 1, obtained by firing the product and the lithium source in an oxygen gas-containing atmosphere. 以下の工程:
(1)Ni含有金属塩を水に溶解して第1塩溶液を調製し、Ni、Co、MnおよびG元素の1種以上を含む金属塩を水に溶解して第2塩溶液を調製する工程;
(2)撹拌しながら第2塩溶液を第1塩溶液に徐々に添加して混合塩溶液を得、次いで、混合塩溶液、錯化剤および沈殿剤を反応器に同時に注入し、pH値を8〜13、反応温度を40〜80℃、反応時間を5〜50時間に制御することにより前駆体沈殿物を得、前駆体沈殿物を濾過、洗浄、熱処理した後、傾斜構造を有する多成分材料の前駆体を得る工程;
(3)傾斜構造を有する多成分材料の前駆体と、リチウム源とを均一に混合し、空気または酸素ガスの反応雰囲気中で500〜1100℃で4〜30時間焼成し、粉砕してリチウムイオン電池用の傾斜構造を有する多成分材料を得る工程
を含む、請求項1〜3のいずれか一項に記載のリチウムイオン電池用の傾斜構造を有する多成分材料の調製方法。
The following steps:
(1) A first salt solution is prepared by dissolving a Ni-containing metal salt in water, and a second salt solution is prepared by dissolving a metal salt containing one or more of Ni, Co, Mn and G elements in water. Process;
(2) The second salt solution is gradually added to the first salt solution with stirring to obtain a mixed salt solution, and then the mixed salt solution, complexing agent and precipitating agent are simultaneously injected into the reactor to adjust the pH value. 8-13, a precursor precipitate is obtained by controlling the reaction temperature to 40 to 80 ° C. and the reaction time to 5 to 50 hours, and after the precursor precipitate is filtered, washed and heat-treated, it has a multi-component having a gradient structure Obtaining a precursor of the material;
(3) A precursor of a multi-component material having an inclined structure and a lithium source are uniformly mixed, calcined at 500 to 1100 ° C. for 4 to 30 hours in a reaction atmosphere of air or oxygen gas, pulverized and lithium ions The preparation method of the multicomponent material which has the inclination structure for lithium ion batteries as described in any one of Claims 1-3 including the process of obtaining the multicomponent material which has the inclination structure for batteries.
混合塩溶液を反応器に添加する流速の0.1〜0.6倍の流速で第1塩溶液中に第2塩溶液を添加し、撹拌する、請求項4に記載の調製方法。   The preparation method according to claim 4, wherein the second salt solution is added to the first salt solution at a flow rate of 0.1 to 0.6 times the flow rate at which the mixed salt solution is added to the reactor and stirred. 傾斜構造を有する多成分材料の前駆体とリチウム源とを均一に混合し、空気または酸素ガスの反応雰囲気中、700〜1000℃で7〜20時間の熱処理を行い、粉砕して、傾斜構造を有する多成分材料を得る、請求項4に記載の調製方法。   A precursor of a multi-component material having an inclined structure and a lithium source are uniformly mixed, subjected to heat treatment at 700 to 1000 ° C. for 7 to 20 hours in a reaction atmosphere of air or oxygen gas, and pulverized to form an inclined structure. The preparation method according to claim 4, wherein a multi-component material is obtained. 金属塩が、硫酸塩、塩化物、硝酸塩および酢酸塩の1種以上である、請求項4に記載の調製方法。   The preparation method according to claim 4, wherein the metal salt is one or more of sulfate, chloride, nitrate and acetate. 錯化剤が、EDTA、アンモニア水、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、クエン酸アンモニウム、およびエチレンジアミンのうちの1種以上であり錯化剤対総金属塩のモル比が、0.1:1〜3.0:1である、請求項4に記載の調製方法。   The complexing agent is at least one of EDTA, aqueous ammonia, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium citrate, and ethylenediamine, and the molar ratio of the complexing agent to the total metal salt is 0.1: 1 to 3 The preparation method according to claim 4, which is 0.0: 1. 沈殿剤は、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、重炭酸アンモニウム、炭酸アンモニウム、重炭酸ナトリウムおよび炭酸ナトリウムのうちの1種以上であり、沈殿剤対総金属塩のモル比が、1.0:1〜2.5:1である、請求項4に記載の調製方法。   The precipitating agent is one or more of sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium bicarbonate, ammonium carbonate, sodium bicarbonate and sodium carbonate, and the molar ratio of the precipitating agent to the total metal salt is 1 The preparation method according to claim 4, which is 0.0: 1 to 2.5: 1. 正極の原料が、請求項1〜3のいずれか1項に記載のリチウムイオン電池用の傾斜構造を有する多成分材料を含む、リチウムイオン電池の正極。   The positive electrode of a lithium ion battery in which the raw material of a positive electrode contains the multicomponent material which has the inclination structure for lithium ion batteries of any one of Claims 1-3. 原料が、さらに、カーボンブラックとポリフッ化ビニリデンとを含む、請求項10に記載のリチウムイオン電池の正極。   The positive electrode of the lithium ion battery according to claim 10, wherein the raw material further contains carbon black and polyvinylidene fluoride. 請求項10に記載のリチウムイオン電池の正極を備える、リチウムイオン電池。
A lithium ion battery comprising the positive electrode of the lithium ion battery according to claim 10.
JP2017553292A 2014-12-31 2015-09-30 Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery Active JP6612356B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201410845715.7 2014-12-31
CN201410845856.9A CN105810931A (en) 2014-12-31 2014-12-31 Gradient-structured multi-element material used for lithium ion batteries
CN201410845856.9 2014-12-31
CN201410845715.7A CN105810930A (en) 2014-12-31 2014-12-31 Preparation method of gradient-structured multi-element material
PCT/CN2015/091179 WO2016107237A1 (en) 2014-12-31 2015-09-30 Lithium ion battery gradation structure multiple-element material and manufacturing method thereof, and lithium ion battery and anode thereof

Publications (2)

Publication Number Publication Date
JP2018503238A true JP2018503238A (en) 2018-02-01
JP6612356B2 JP6612356B2 (en) 2019-11-27

Family

ID=56284148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017553292A Active JP6612356B2 (en) 2014-12-31 2015-09-30 Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery

Country Status (4)

Country Link
JP (1) JP6612356B2 (en)
KR (1) KR20170102293A (en)
CN (1) CN107004851A (en)
WO (1) WO2016107237A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615868A (en) * 2018-05-17 2018-10-02 安徽同心化工有限公司 A kind of sphericity is high and the nickel-cobalt-manganese ternary material precursor and its preparation method and application of the low impurity of surface compact
CN110224123A (en) * 2019-06-13 2019-09-10 广东邦普循环科技有限公司 A kind of high voltage lithium cobalt oxide anode and its preparation method and application
JP2021520052A (en) * 2018-05-21 2021-08-12 エルジー・ケム・リミテッド Positive electrode for secondary battery and secondary battery including this
JP2022529760A (en) * 2020-03-27 2022-06-24 深▲セン▼市貝特瑞納米科技有限公司 Positive electrode material, its manufacturing method and lithium secondary battery

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190039393A (en) * 2016-12-16 2019-04-11 리오나노 인크. Electroactive materials for lithium-ion batteries and other applications
JP6578453B2 (en) * 2017-01-31 2019-09-18 エルジー・ケム・リミテッド Positive electrode active material for lithium secondary battery including lithium-cobalt oxide having core-shell structure, method for producing the same, and positive electrode and secondary battery including the positive electrode active material
CN107611384B (en) * 2017-08-30 2021-03-23 中国科学院过程工程研究所 High-performance concentration gradient high-nickel material, preparation method thereof and application thereof in lithium ion battery
KR102559218B1 (en) 2017-12-07 2023-07-25 에스케이온 주식회사 Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
KR102051714B1 (en) * 2017-12-27 2019-12-04 (주)이엠티 A Method for Preparing Precursor of Cathod Active Material for Lithium Ion Secondary Battery Using Polyamine as A Complex Agent
KR102571672B1 (en) * 2018-01-17 2023-08-25 에스케이온 주식회사 Lithium secondary battery
KR102472882B1 (en) * 2018-01-18 2022-11-30 에스케이온 주식회사 Lithium secondary battery
KR102485994B1 (en) 2018-06-20 2023-01-05 에스케이온 주식회사 Lithium secondary battery and method of manufacturing the same
CN109546123B (en) * 2018-11-23 2021-09-14 中南大学 Vanadium pentoxide-coated core-shell structure gradient nickel-cobalt-manganese positive electrode material and preparation method thereof
CN112310391B (en) * 2020-10-30 2021-09-17 桑顿新能源科技有限公司 Positive electrode material precursor, positive electrode material and preparation method thereof, lithium ion battery positive electrode, lithium ion battery and electric equipment
CN114644368B (en) * 2020-12-18 2024-03-26 中国石油化工股份有限公司 Positive electrode material precursor, preparation method thereof, positive electrode material and application thereof
CN114684871A (en) * 2020-12-28 2022-07-01 天津国安盟固利新材料科技股份有限公司 Method for reducing sulfur content of sulfate system lithium ion battery positive electrode material precursor
CN113735192B (en) * 2021-01-05 2023-06-16 厦门厦钨新能源材料股份有限公司 Lithium ion battery with low capacity loss
CN113422040A (en) * 2021-07-02 2021-09-21 青岛多元锂业有限公司 Preparation method of medium-high nickel ternary material subjected to pre-oxidation treatment of precursor and lithium salt
CN115043440B (en) * 2022-06-27 2024-03-15 当升科技(常州)新材料有限公司 Lithium ion battery positive electrode material precursor, preparation method and application thereof, lithium ion battery positive electrode material, preparation method and application thereof
CN115490274A (en) * 2022-08-22 2022-12-20 西南交通大学 Preparation method of LiNi0.6Co0.2Mn0.2O2 and electrochemical performance test method thereof
CN117457895B (en) * 2023-12-25 2024-04-12 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and sodium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525578A (en) * 2006-03-30 2009-07-09 インダスタトリー− ユニヴァーシティ コーポレイション ファウンデーション ハンヤン ユニヴァーシティ Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material
CN103078109A (en) * 2013-01-16 2013-05-01 中南大学 Gradient coated LiNiO2 material and preparation method
JP2013517599A (en) * 2010-01-14 2013-05-16 株式会社エコプロ Positive electrode active material precursor for lithium secondary battery having concentration gradient layer using batch reactor (BATCHREACTOR), method for producing positive electrode active material, and positive electrode active material precursor for lithium secondary battery produced thereby , Cathode active material
CN103904318A (en) * 2012-12-28 2014-07-02 惠州比亚迪电池有限公司 Lithium battery positive electrode material and preparation method thereof
WO2014104759A1 (en) * 2012-12-26 2014-07-03 한양대학교 산학협력단 Cathode active material for lithium secondary batteries

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339984B (en) * 2010-07-28 2015-03-25 北京当升材料科技股份有限公司 Preparation method of spherical material with multilayer coating structure
KR102157479B1 (en) * 2013-04-29 2020-10-23 한양대학교 산학협력단 Cathod active material for lithium rechargeable battery
KR20130059029A (en) * 2011-11-28 2013-06-05 에스케이씨 주식회사 Process for producing composite metal oxide
KR101521178B1 (en) * 2012-03-31 2015-05-19 한양대학교 산학협력단 Manufacturing method of positive active material precursor and positive active material precursor made by the same, and lithium metal composite oxides including the same
CN104201369B (en) * 2014-07-01 2016-04-06 宁波金和锂电材料有限公司 A kind of lithium ion battery gradient anode material presoma and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525578A (en) * 2006-03-30 2009-07-09 インダスタトリー− ユニヴァーシティ コーポレイション ファウンデーション ハンヤン ユニヴァーシティ Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material
JP2013517599A (en) * 2010-01-14 2013-05-16 株式会社エコプロ Positive electrode active material precursor for lithium secondary battery having concentration gradient layer using batch reactor (BATCHREACTOR), method for producing positive electrode active material, and positive electrode active material precursor for lithium secondary battery produced thereby , Cathode active material
WO2014104759A1 (en) * 2012-12-26 2014-07-03 한양대학교 산학협력단 Cathode active material for lithium secondary batteries
KR20140085347A (en) * 2012-12-26 2014-07-07 한양대학교 산학협력단 Positive-electrode active material for lithium rechargeable battery
CN103904318A (en) * 2012-12-28 2014-07-02 惠州比亚迪电池有限公司 Lithium battery positive electrode material and preparation method thereof
CN103078109A (en) * 2013-01-16 2013-05-01 中南大学 Gradient coated LiNiO2 material and preparation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615868A (en) * 2018-05-17 2018-10-02 安徽同心化工有限公司 A kind of sphericity is high and the nickel-cobalt-manganese ternary material precursor and its preparation method and application of the low impurity of surface compact
CN108615868B (en) * 2018-05-17 2020-12-04 安徽同心新材料科技有限公司 Nickel-cobalt-manganese ternary material precursor with high sphericity, compact surface and low impurities, and preparation method and application thereof
JP2021520052A (en) * 2018-05-21 2021-08-12 エルジー・ケム・リミテッド Positive electrode for secondary battery and secondary battery including this
JP7118477B2 (en) 2018-05-21 2022-08-16 エルジー・ケム・リミテッド Positive electrode for secondary battery and secondary battery including the same
US11909029B2 (en) 2018-05-21 2024-02-20 Lg Chem, Ltd. Positive electrode having lithium transition metal oxide containing nickel, cobalt and manganese for secondary battery and secondary battery including the same
CN110224123A (en) * 2019-06-13 2019-09-10 广东邦普循环科技有限公司 A kind of high voltage lithium cobalt oxide anode and its preparation method and application
JP2022529760A (en) * 2020-03-27 2022-06-24 深▲セン▼市貝特瑞納米科技有限公司 Positive electrode material, its manufacturing method and lithium secondary battery
JP7419381B2 (en) 2020-03-27 2024-01-22 深▲セン▼市貝特瑞納米科技有限公司 Positive electrode material, its manufacturing method, and lithium secondary battery

Also Published As

Publication number Publication date
KR20170102293A (en) 2017-09-08
JP6612356B2 (en) 2019-11-27
CN107004851A (en) 2017-08-01
WO2016107237A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP6612356B2 (en) Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery
US20200335784A1 (en) Full-gradient nickel cobalt manganese positive electrode material, ruthenium oxide coated material and preparation method thereof
KR101613862B1 (en) Method for manufacturing over-lithiated layered lithium metal composite oxide
JP5702289B2 (en) Method for producing nickel-cobalt-manganese multi-element positive electrode material for lithium ion battery
TWI401833B (en) Cathode active material for lithium ion batteries
JP5344146B2 (en) Anode active material for lithium secondary battery having core-shell layer structure, method for producing the same, and lithium secondary battery using the same
CN102763247B (en) Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
JP5458886B2 (en) Compound powder, its production method and its use in lithium secondary battery
JP4546937B2 (en) Cathode active material for non-aqueous electrolyte lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP5843753B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2020109771A (en) Positive-electrode active material for lithium secondary battery and lithium secondary battery having the same
WO2011108389A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
CN101997113A (en) Multicomponent material with multilayer coating structure for lithium ion battery and preparation method thereof
JPWO2002086993A1 (en) Positive electrode active material and method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US9786914B2 (en) Spinel-type lithium cobalt manganese-containing complex oxide
JP7034275B2 (en) Lithium-cobalt metal oxide powder, its preparation method, and method for determining the content of cobalt (II, III).
KR102152370B1 (en) Cathode active material and lithium secondary batteries comprising the same
WO2023184996A1 (en) Modified high-nickel ternary positive electrode material and preparation method therefor
KR20110108566A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
CN109461930B (en) Gradient-structured multi-component material for lithium ion battery and preparation method thereof
CN105810930A (en) Preparation method of gradient-structured multi-element material
JP2002279987A (en) Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material
CN103413928B (en) High-capacity high-compaction metal oxide anode material and preparation method thereof
KR20080088177A (en) Spinel type cathode active material for lithium secondary batteries and manufacturing method for the same
CN114804235B (en) High-voltage nickel cobalt lithium manganate positive electrode material and preparation method and application thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191030

R150 Certificate of patent or registration of utility model

Ref document number: 6612356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250