JP2000211922A - Production of lithium manganese spinel oxide particle powder - Google Patents

Production of lithium manganese spinel oxide particle powder

Info

Publication number
JP2000211922A
JP2000211922A JP11015392A JP1539299A JP2000211922A JP 2000211922 A JP2000211922 A JP 2000211922A JP 11015392 A JP11015392 A JP 11015392A JP 1539299 A JP1539299 A JP 1539299A JP 2000211922 A JP2000211922 A JP 2000211922A
Authority
JP
Japan
Prior art keywords
manganese
lithium
powder
spinel oxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11015392A
Other languages
Japanese (ja)
Inventor
Tatsuya Nakamura
龍哉 中村
Akihisa Kajiyama
亮尚 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP11015392A priority Critical patent/JP2000211922A/en
Publication of JP2000211922A publication Critical patent/JP2000211922A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a lithium manganese spinel oxide particle powder having a large particle diameter, a narrow distribution of the particle size and a large charge and discharge capacity with slight cycle deterioration and useful especially as an active material of a positive pole of a lithium cell or battery. SOLUTION: A powder of manganese oxalate or manganese acetate is thermally decomposed at 350-500 deg.C in an oxygen-containing gas to prepare a manganese oxide particle powder. The resultant particle powder is further mixed with a lithium compound and 1-10 wt.% of moisture is then contained. The prepared mixture is further compression formed to prepare a formed compact having >=2 g/cc forming density. The formed compact is baked at 800-920 deg.C in an oxygen-containing gas to produce a lithium manganese spinel oxide. The formed compact is then heat-treated at 300-500 deg.C in a hermetically sealed container under >1 and <=10 atm oxygen pressure and subsequently pulverized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムマンガン
スピネル酸化物粒子粉末の製造方法に関し、更に詳しく
は、粒子径が大きく、粒度分布が狭く、かつ、充放電容
量が大きく、サイクル劣化が少ない、特にリチウム電池
の正極活物質として有用なリチウムマンガンスピネル酸
化物粒子粉末の製造方法に関するものである。
The present invention relates to a method for producing lithium manganese spinel oxide particles, and more particularly, to a method for producing lithium manganese spinel oxide particles having a large particle size, a narrow particle size distribution, a large charge / discharge capacity, and a small cycle deterioration. In particular, the present invention relates to a method for producing lithium manganese spinel oxide particles useful as a positive electrode active material of a lithium battery.

【0002】[0002]

【従来の技術】近年、パーソナルコンピューター、携帯
電話等のポータブル機器の開発に伴って、その電源とし
ての電池の需要が高まっている。特に、リチウム電池
は、リチウムが原子量が小さく、かつ、イオン化エネル
ギーが大きい物質であることに起因して、起電力が高
く、高エネルギー密度化が可能な電池が期待できること
から各方面で盛んに研究が行われている。
2. Description of the Related Art In recent years, with the development of portable devices such as personal computers and mobile phones, demand for batteries as power sources has been increasing. In particular, lithium batteries have been actively studied in various fields because lithium is a substance with a small atomic weight and a large ionization energy, and a battery with high electromotive force and high energy density can be expected. Has been done.

【0003】リチウム電池に用いられる正極活物質とし
ては、4V程度の高電圧を発生させることが可能なリチ
ウムコバルト層状岩塩型酸化物、リチウムニッケル層状
岩塩型酸化物、リチウムマンガンスピネル酸化物等の研
究が盛んに行われている。これらのリチウムコバルト層
状岩塩型酸化物、リチウムニッケル層状岩塩型酸化物、
リチウムマンガンスピネル酸化物等の化合物は、それぞ
れコバルト、ニッケル、マンガンを含む酸化物原料粉末
とリチウム化合物粉末を混合し、焼成することにより得
られている。特にリチウムマンガンスピネル酸化物は、
リチウムコバルト層状岩塩型酸化物、リチウムニッケル
層状岩塩型酸化物と違ってコバルト、ニッケルといった
稀少金属を含んでいないため、資源的に豊富で経済的、
工業的であるので、盛んに研究が行われている。これら
の正極活物質は、その粉末をバインダー中に分散させ
て、銅などの金属板に塗布・乾燥させて電池の正極とし
て用いるものであるが、塗膜中での粒子粉末の充填度が
高い程、電池の容量が高くなることから、粒子径が大き
く、さらには粒子形状、粒度が揃っていることが重要で
ある。
As a positive electrode active material used in a lithium battery, a lithium cobalt layered rock salt type oxide, a lithium nickel layered rock salt type oxide, and a lithium manganese spinel oxide capable of generating a high voltage of about 4 V have been studied. Is being actively conducted. These lithium cobalt layered rock salt type oxide, lithium nickel layered rock salt type oxide,
Compounds such as lithium manganese spinel oxide are obtained by mixing an oxide raw material powder containing cobalt, nickel, and manganese with a lithium compound powder and firing the mixture. In particular, lithium manganese spinel oxide
Unlike lithium cobalt layered rock salt type oxide and lithium nickel layered rock salt type oxide, they do not contain rare metals such as cobalt and nickel, so they are resource-rich and economical,
Since it is industrial, research is being actively conducted. These positive electrode active materials are used as a positive electrode of a battery by dispersing the powder in a binder, coating and drying on a metal plate such as copper, and the like, and the filling degree of the particle powder in the coating film is high. As the capacity of the battery increases, it is important that the particle size is large and that the particle shape and particle size are uniform.

【0004】また、リチウムマンガンスピネル酸化物で
は、充放電の電極反応時にマンガンが溶出することが知
られており、この溶出が電池特性のサイクル劣化、高温
における特性の低下と関係していることが知られてい
る。溶出は電極活物質と電解液の界面で起きるものであ
ることを考えると、界面の面積が少ないもの、即ち、粒
子径の大きいものほど溶出が抑制されると考えられ、実
際に、そのような結果も報告されている(Journal of t
he Materials Science Society of Japan, 34 (1997) 2
30−235; J. Electrochem. Soc., Vol. 144, No.12, (1
997) 4186 −4194) 。
[0004] It is known that manganese elutes in the lithium manganese spinel oxide during the electrode reaction of charge and discharge, and this elution is related to cycle deterioration of battery characteristics and deterioration of characteristics at high temperatures. Are known. Considering that elution occurs at the interface between the electrode active material and the electrolytic solution, it is thought that elution is suppressed as the interface area is smaller, that is, as the particle size is larger, Results have also been reported (Journal of t
he Materials Science Society of Japan, 34 (1997) 2
30-235; J. Electrochem.Soc., Vol. 144, No. 12, (1
997) 4186-4194).

【0005】また、さらにリチウムマンガンスピネル酸
化物においては、その正極の充放電特性が作成条件によ
って大きく変化することが知られている(Journal of P
owerSources 24 (1998) 24 −28; J. Electrochem. So
c., Vol. 145, No.2, (1998)459−465)。500℃程度
の低温にて焼成して作成されたものでは、粒子成長が十
分でないため粒子径は小さく、初期の充放電容量は比較
的低いもののサイクルによる劣化は小さい。一方、90
0℃程度の高温にて焼成して作成されたものでは、粒子
成長により大きな粒子径を示し、初期の充放電容量は比
較的大きいもののサイクルによる劣化が激しい。
[0005] Further, it is known that the charge and discharge characteristics of the positive electrode of lithium manganese spinel oxide vary greatly depending on the preparation conditions (Journal of P.J.
owerSources 24 (1998) 24 −28; J. Electrochem. So
c., Vol. 145, No. 2, (1998) 459-465). In the case of firing at a low temperature of about 500 ° C., the particle diameter is small due to insufficient particle growth, and the initial charge / discharge capacity is relatively low, but the deterioration due to the cycle is small. On the other hand, 90
In the case of a material prepared by firing at a high temperature of about 0 ° C., a large particle size is exhibited due to particle growth, and although the initial charge / discharge capacity is relatively large, deterioration due to cycles is severe.

【0006】以上のような背景から、正極活物質用材料
粉末として作用するリチウムマンガンスピネル酸化物粒
子として、粒子径が大きく、粒度分布が狭く、かつ、充
放電容量が大きく、サイクル劣化の少ないリチウムマン
ガンスピネル酸化物粒子粉末が求められている。
[0006] From the above background, lithium manganese spinel oxide particles acting as a material powder for a positive electrode active material have a large particle diameter, a narrow particle size distribution, a large charge / discharge capacity, and a small cycle deterioration. There is a need for manganese spinel oxide particle powder.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記実情に
鑑み、粒子径が大きく、粒度分布が狭く、かつ、充放電
容量が大きく、サイクル劣化の少ないリチウムマンガン
スピネル酸化物粒子粉末の製造方法を提供することを課
題とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a method for producing lithium manganese spinel oxide particles having a large particle size, a narrow particle size distribution, a large charge / discharge capacity, and little cycle deterioration. The task is to provide

【0008】[0008]

【課題を解決するための手段】即ち、本発明の第1は、
蓚酸マンガン又は酢酸マンガンの粉末を酸素含有気体中
350〜500℃で熱分解してマンガン酸化物粒子粉末
を調製し、このマンガン酸化物粒子粉末とリチウム化合
物とを混合した後、この混合粉末に1〜10重量%の水
分を含有させて圧縮成型し成型密度2g/cc以上の成型体
を作成し、この成型体を酸素含有気体中800〜920
℃にて焼成してリチウムマンガンスピネル酸化物を生成
させ、得られたリチウムマンガンスピネル酸化物成型体
を密閉容器中で1〜10気圧の酸素圧下、300〜50
0℃で熱処理した後粉砕することを特徴とするリチウム
マンガンスピネル酸化物粒子粉末の製造方法を内容とす
る。
The first aspect of the present invention is as follows.
Manganese oxalate or manganese acetate powder is pyrolyzed in an oxygen-containing gas at 350 to 500 ° C. to prepare manganese oxide particle powder, and the manganese oxide particle powder is mixed with a lithium compound. A compression molded article having a moisture density of 2 g / cc or more is prepared by adding water to 10 to 10% by weight of water, and the molded article is 800 to 920 in an oxygen-containing gas.
C. to produce a lithium manganese spinel oxide, and the obtained lithium manganese spinel oxide molded product was sealed in a closed vessel under an oxygen pressure of 1 to 10 atm.
A method for producing lithium manganese spinel oxide particles, which is characterized in that it is heat-treated at 0 ° C. and then pulverized, is described.

【0009】また、本発明の第2は、蓚酸マンガン又は
酢酸マンガンの粉末を酸素含有気体中350〜500℃
で熱分解してマンガン酸化物粒子粉末を調製し、このマ
ンガン酸化物粒子粉末とリチウム化合物とを混合した
後、この混合粉末に1〜10重量%の水分を含有させて
圧縮成型し成型密度2g/cc以上の成型体を作成し、この
成型体を酸素含有気体中800〜920℃にて焼成して
リチウムマンガンスピネル酸化物を生成させた後粉砕
し、得られたリチウムマンガンスピネル酸化物粒子粉末
を密閉容器中で1気圧より大きく10気圧以下の酸素圧
下、300〜500℃で熱処理することを特徴とするリ
チウムマンガンスピネル酸化物粒子粉末の製造方法を内
容とする。
A second aspect of the present invention is that a powder of manganese oxalate or manganese acetate is placed in an oxygen-containing gas at 350 to 500 ° C.
To prepare a manganese oxide particle powder. The manganese oxide particle powder is mixed with a lithium compound, and the mixed powder is made to contain 1 to 10% by weight of water and compression-molded to give a molding density of 2 g. / cc or more molded body, this molded body is fired in an oxygen-containing gas at 800 to 920 ° C. to generate lithium manganese spinel oxide, and then pulverized to obtain lithium manganese spinel oxide particle powder Is subjected to a heat treatment in an airtight container at 300 to 500 ° C. under an oxygen pressure of more than 1 atm and 10 atm or less.

【0010】[0010]

【発明の実施の形態】本発明に用いられるマンガン酸化
物粒子粉末は、蓚酸マンガン又は酢酸マンガンの粉末を
酸素含有気体中、好ましくは空気中350〜500℃で
熱分解させたものであることが重要である。熱分解温度
が350℃未満では蓚酸マンガン又は酢酸マンガンの粉
末の熱分解が不十分であり均一な組成のマンガン酸化物
粒子粉末が得られにくく、一方、500℃を越えると得
られるマンガン酸化物粒子粉末の反応性が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION The manganese oxide particle powder used in the present invention may be obtained by thermally decomposing manganese oxalate or manganese acetate powder in an oxygen-containing gas, preferably in air at 350 to 500 ° C. is important. When the thermal decomposition temperature is lower than 350 ° C., the thermal decomposition of the manganese oxalate or manganese acetate powder is insufficient, so that it is difficult to obtain a manganese oxide particle powder having a uniform composition. The reactivity of the powder is reduced.

【0011】蓚酸マンガン又は酢酸マンガンの製造方法
は特に制限されないが、蓚酸マンガンについては、例え
ばマンガン塩水溶液と蓚酸水溶液とを反応させて蓚酸マ
ンガンの沈澱物を生成させ、濾別、水洗、乾燥すること
により得る方法が、純度の高い蓚酸マンガンが得られる
点で好ましい。マンガン塩としては、硫酸塩、硝酸塩、
酢酸塩、塩化物等の水溶性のものが好ましく、これらは
単独又は2種以上組み合わせて用いられる。マンガン塩
水溶液の濃度は特に制限されないが、操作性と経済性の
観点から通常10〜30重量%程度が好ましい。また蓚
酸水溶液の濃度も、同様に、操作性と経済性の観点から
通常10〜30重量%程度が好ましい。蓚酸水溶液はマ
ンガン塩水溶液に対して当量以上、好ましくは当量〜2
当量である。また、酢酸マンガンについては、酢酸マン
ガン水溶液を噴霧乾燥する方法が好都合である。酢酸マ
ンガン水溶液の濃度は特に制限されないが、操作性と経
済性の点から通常10〜30重量%程度が好ましい。噴
霧乾燥は特に制限されず常法で行えばよい。
The method for producing manganese oxalate or manganese acetate is not particularly limited. For manganese oxalate, for example, a manganese salt aqueous solution is reacted with an oxalic acid aqueous solution to form a manganese oxalate precipitate, which is separated by filtration, washed with water, and dried. This method is preferable in that manganese oxalate with high purity can be obtained. Manganese salts include sulfates, nitrates,
Water-soluble substances such as acetates and chlorides are preferred, and these are used alone or in combination of two or more. The concentration of the manganese salt aqueous solution is not particularly limited, but is preferably about 10 to 30% by weight from the viewpoint of operability and economy. Similarly, the concentration of the aqueous oxalic acid solution is usually preferably about 10 to 30% by weight from the viewpoint of operability and economy. The aqueous solution of oxalic acid is at least equivalent to the aqueous solution of manganese salt, preferably at least 2 equivalents.
Is equivalent. For manganese acetate, a method of spray-drying an aqueous manganese acetate solution is convenient. Although the concentration of the manganese acetate aqueous solution is not particularly limited, it is usually preferably about 10 to 30% by weight from the viewpoint of operability and economy. Spray drying is not particularly limited and may be performed by a conventional method.

【0012】次に、マンガン酸化物粒子粉末とリチウム
化合物とを混合する。リチウム化合物とマンガン酸化物
粒子粉末の混合比は、リチウムとマンガンのモル比(L
i/Mn)で0.50〜0.65の範囲が好ましい。リ
チウムが上記範囲よりも少ない場合は、目的とするリチ
ウムマンガンスピネル酸化物の他に正極活物質でないマ
ンガン酸化物が残存し、このマンガン酸化物を除去する
ことは極めて困難であるため、これを含む粒子粉末を用
いて正極を構成した場合、良好な電池特性、即ち、リチ
ウムイオン導電性を有する電解液中の電気化学的活性が
得られにくい。一方、リチウムが該範囲よりも多い場合
は、リチウムマンガンスピネル酸化物の他に正極活物資
でない炭酸リチウム、或いはLi2MnO3 が存在し、これら
の炭酸リチウム、Li2MnO3 も除去することが極めて困難
であるため、この粉末を用いて正極を構成した場合、同
様に良好な電池特性、電気化学的活性が得られにくい。
Next, the manganese oxide particles and the lithium compound are mixed. The mixing ratio of the lithium compound and the manganese oxide particle powder is the molar ratio of lithium and manganese (L
(i / Mn) is preferably in the range of 0.50 to 0.65. When lithium is less than the above range, manganese oxide that is not a positive electrode active material remains in addition to the intended lithium manganese spinel oxide, and it is extremely difficult to remove this manganese oxide, and therefore, lithium is included. When the positive electrode is formed using the particle powder, it is difficult to obtain good battery characteristics, that is, electrochemical activity in an electrolyte having lithium ion conductivity. On the other hand, when lithium is larger than the range, lithium carbonate or Li 2 MnO 3 which is not a positive electrode active material is present in addition to the lithium manganese spinel oxide, and these lithium carbonate and Li 2 MnO 3 may also be removed. Since it is extremely difficult, when a positive electrode is formed using this powder, similarly, good battery characteristics and electrochemical activity are hardly obtained.

【0013】本発明に用いられるリチウム化合物として
は、炭酸リチウム、酸化リチウム、水酸化リチウム、水
酸化リチウム1水和物等が挙げられ、これらは単独又は
2種以上組み合わせて用いられる。
The lithium compound used in the present invention includes lithium carbonate, lithium oxide, lithium hydroxide, lithium hydroxide monohydrate, and the like, and these may be used alone or in combination of two or more.

【0014】次に、マンガン酸化物粒子粉末とリチウム
化合物との混合粉末に対して1〜10重量%の水分を含
有させて、この混合粉末を押出成型機、ローラーコンパ
クター、ディスクペレッター等により圧縮成型し、成型
密度2g/cc以上の成型体を作成した後に、酸素含有気
体中、例えば空気中にて焼成する。混合粉末に対して水
分の量が1重量%未満であると、成型体の強度が十分で
ないためハンドリングしにくい上に、成型体中での圧縮
密度にバラツキが生じるため、これが原因となって焼成
後に粉砕して得られるリチウムマンガンスピネル酸化物
粒子粉末の粒度分布が広くなる。一方、水分が10重量
%を越えると水溶性のリチウム化合物が流出しやすく、
組成が変化し、リチウムマンガンスピネル酸化物粒子粉
末の品質の安定さに欠ける。
Next, 1 to 10% by weight of water is contained in the mixed powder of the manganese oxide particle powder and the lithium compound, and the mixed powder is compressed by an extruder, a roller compactor, a disk pelleter or the like. After molding and forming a molded body having a molding density of 2 g / cc or more, firing is performed in an oxygen-containing gas, for example, in air. If the amount of water is less than 1% by weight with respect to the mixed powder, it is difficult to handle because the strength of the molded body is not sufficient, and the compression density in the molded body varies. The particle size distribution of the lithium manganese spinel oxide particles obtained by pulverizing later becomes wider. On the other hand, when the water content exceeds 10% by weight, the water-soluble lithium compound easily flows out,
The composition changes and the lithium manganese spinel oxide particles lack stability in quality.

【0015】また、成型密度が2g/cc未満の成型体を
焼成した場合には、リチウムマンガンスピネル酸化物の
粒成長が十分でないため、塗布膜としたときの膜中の充
填度が十分な物が得られない。成型密度の上限は特に制
限されないが、余り大きくなると製造が困難となるの
で、通常3.5g/cc、好ましくは2.5g/cc程度で
ある。
Further, when a molded body having a molding density of less than 2 g / cc is fired, since the lithium manganese spinel oxide particles do not grow sufficiently, the filling degree in the coating film is insufficient. Can not be obtained. The upper limit of the molding density is not particularly limited, but if it is too large, the production becomes difficult. Therefore, it is usually about 3.5 g / cc, preferably about 2.5 g / cc.

【0016】上記成型体は酸素含有気体中、好ましくは
空気中で焼成される。焼成温度は、800〜920℃の
範囲であり、その焼成時間は通常5〜20時間、好まし
くは5〜10時間である。焼成温度が800℃未満の場
合、リチウムマンガンスピネル単相を得るのに長時間の
焼成が必要となる。また結晶性の良い粒子が得られず、
このため十分な電池特性を示さない。また焼成温度が9
20℃を越える場合、リチウムマンガンスピネル酸化物
以外にLi2 MnO3 等の化合物が生成・混入するた
め、十分な電池特性を示す粒子粉末が得られない。
The compact is fired in an oxygen-containing gas, preferably in air. The firing temperature is in the range of 800 to 920 ° C, and the firing time is usually 5 to 20 hours, preferably 5 to 10 hours. When the firing temperature is lower than 800 ° C., it takes a long time to obtain a lithium manganese spinel single phase. Also, particles with good crystallinity could not be obtained,
For this reason, sufficient battery characteristics are not shown. The firing temperature is 9
When the temperature exceeds 20 ° C., a compound such as Li 2 MnO 3 other than the lithium manganese spinel oxide is generated and mixed, so that a particle powder exhibiting sufficient battery characteristics cannot be obtained.

【0017】焼成した成型体は、そのまま又は粉砕して
リチウムマンガンスピネル酸化物粒子粉末とされた後、
熱処理に供される。粉砕方法は特に制限されず、通常の
粉砕方法が用いられる。
The fired molded body is directly or pulverized into lithium manganese spinel oxide particles,
Provided for heat treatment. The grinding method is not particularly limited, and a usual grinding method is used.

【0018】熱処理は、密閉容器中で1気圧より大きく
10気圧以下の酸素圧、300〜500℃、好ましくは
300〜400℃の温度で行われる。
The heat treatment is performed in an airtight container at an oxygen pressure of more than 1 atm and 10 atm or less, at a temperature of 300 to 500 ° C., preferably 300 to 400 ° C.

【0019】この熱処理により、後記するように、リチ
ウムマンガンスピネル酸化物の酸素欠損状態を、結晶格
子中に酸素を導入することにより解消し、マンガンの価
数を高くすることで、粒子径、粒度分布を保持したまま
充放電容量を高くできるとともに、サイクル劣化を少な
くする効果が奏されるものと考えられる。酸素圧が1気
圧以下では上記効果が十分でなく、一方、10気圧を越
えると、危険性が増すとともに装置コストが上昇する。
また、温度は300℃未満でも、500℃を越えても、
十分な効果が得られない。成型体のままで熱処理を施し
た場合は、熱処理の後、成型体は粉砕され、リチウムマ
ンガンスピネル酸化物粒子粉末とされる。
By this heat treatment, as described later, the oxygen deficiency state of the lithium manganese spinel oxide is eliminated by introducing oxygen into the crystal lattice, and the valence of manganese is increased to increase the particle diameter and particle size. It is considered that the charge / discharge capacity can be increased while maintaining the distribution, and the effect of reducing the cycle deterioration is exerted. When the oxygen pressure is 1 atm or less, the above effect is not sufficient. On the other hand, when the oxygen pressure exceeds 10 atm, the risk increases and the cost of the apparatus increases.
Also, even if the temperature is less than 300 ° C. or exceeds 500 ° C.,
A sufficient effect cannot be obtained. When the heat treatment is performed on the molded body as it is, after the heat treatment, the molded body is pulverized into lithium manganese spinel oxide particles.

【0020】[0020]

【作用】本発明において最も重要な点は、蓚酸マンガン
又は酢酸マンガン粉末を酸素含有気体中350〜500
℃で熱分解してマンガン酸化物粒子粉末を調製し、この
マンガン酸化物粒子粉末とリチウム化合物とを混合した
後、この混合粉末に1〜10重量%の水分を含有させて
圧縮成型し成型密度2g/cc以上の成型体を作成し、この
成型体を酸素含有気体中800〜920℃にて焼成して
リチウムマンガンスピネル酸化物を生成させ、得られた
リチウムマンガンスピネル酸化物成型体又はこれを粉砕
した粒子粉末を密閉容器中で1気圧より大きく10気圧
以下の酸素圧下、300〜500℃で熱処理し、前記成
型体を熱処理した場合はこれを粉砕することにより、目
的とする粒子径が大きく、粒度分布が狭く、かつ、充放
電容量が大きくサイクル劣化の少ないリチウムマンガン
スピネル酸化物粒子粉末を生成させることができるとい
う事実である。
The most important point in the present invention is that manganese oxalate or manganese acetate powder is mixed with an oxygen-containing gas at 350-500.
Manganese oxide particle powder is prepared by pyrolysis at ℃, and the manganese oxide particle powder is mixed with a lithium compound. A molded body of 2 g / cc or more is prepared, and the molded body is fired in an oxygen-containing gas at 800 to 920 ° C. to generate a lithium manganese spinel oxide, and the obtained lithium manganese spinel oxide molded body or The pulverized particle powder is heat-treated at 300 to 500 ° C. in an airtight container under an oxygen pressure of more than 1 atm and 10 atm or less, and when the molded body is heat-treated, the target particle diameter is increased by pulverizing the molded body. This is the fact that lithium manganese spinel oxide particles having a narrow particle size distribution, a large charge / discharge capacity and a small cycle deterioration can be produced.

【0021】一般に焼成時の固相反応は、原料粉末粒子
同士の接点での相互拡散によって進行するものと考えら
れる。本発明者らは、リチウム化合物とマンガン酸化物
の場合、リチウムの融点がマンガン酸化物の融点より大
幅に低く、リチウムの拡散の方がマンガン等の遷移金属
の拡散よりも容易であり、主にリチウムがマンガン酸化
物粒子の中へ拡散することで反応が進行するものと考え
ている。この考えに基づけば、リチウム化合物よりも、
マンガン酸化物粒子の選択が重要であり、これによっ
て、目的とする粒子径が大きく粒度分布の揃ったリチウ
ムマンガンスピネル酸化物を生成させることができるも
のと考えた。
In general, it is considered that the solid phase reaction at the time of firing proceeds by mutual diffusion at the contact point between the raw material powder particles. The present inventors have found that in the case of a lithium compound and a manganese oxide, the melting point of lithium is significantly lower than the melting point of the manganese oxide, and diffusion of lithium is easier than diffusion of a transition metal such as manganese. It is believed that the reaction proceeds as lithium diffuses into the manganese oxide particles. Based on this idea, rather than lithium compounds,
The selection of manganese oxide particles was important, and it was thought that lithium manganese spinel oxide having a large target particle size and a uniform particle size distribution could be generated.

【0022】そして、種々検討の結果、蓚酸マンガン或
いは酢酸マンガンの粉末を空気中350〜500℃で熱
分解して、マンガン酸化物粒子粉末を調製し、このマン
ガン酸化物粒子粉末をマンガン原料として用いることに
より、焼成時にリチウムとの反応が速やかに進行し、即
ちマンガン原料の反応性が向上し、粒子径が大きく粒度
分布の揃ったリチウムマンガンスピネル酸化物を生成さ
せることができた。蓚酸マンガン或いは酢酸マンガン粉
末を空気中350〜500℃での熱分解によって調製し
たマンガン酸化物粒子粉末をマンガン原料として用いる
ことによって、焼成時にリチウムとの反応が速やかに進
行し、即ちマンガン原料の反応性が向上し、粒子径が大
きく、粒度分布の揃ったリチウムマンガンスピネル酸化
物を生成させることができる理由については未だ明確に
なっていないが、この方法によって調製されたマンガン
酸化物粒子粉末が、極めて純度が高く、アルカリ金属、
アルカリ土類金属等の不純物濃度が著しく低いことに起
因しているものと考えられる。
As a result of various studies, manganese oxalate or manganese acetate powder was pyrolyzed in air at 350 to 500 ° C. to prepare manganese oxide particle powder, and this manganese oxide particle powder was used as a manganese raw material. As a result, the reaction with lithium rapidly progressed during firing, that is, the reactivity of the manganese raw material was improved, and a lithium manganese spinel oxide having a large particle size and a uniform particle size distribution could be produced. By using a manganese oxide particle powder prepared by pyrolyzing manganese oxalate or manganese acetate powder in air at 350 to 500 ° C. as a manganese raw material, the reaction with lithium proceeds rapidly during firing, that is, the reaction of the manganese raw material It is not yet clear why the lithium manganese spinel oxide with improved particle size and uniform particle size distribution can be produced, but the manganese oxide particles prepared by this method are Extremely high purity, alkali metal,
This is considered to be due to the extremely low concentration of impurities such as alkaline earth metals.

【0023】また、原料粉末が反応性に富んでいること
と、混合粉末に対して1〜10重量%の水分を含有させ
て、この粉末を圧縮成型し成型密度2g/cc以上の成型体
を作成し焼成することで、粒度分布の揃ったリチウムマ
ンガンスピネル酸化物粒子が生成するものと考えられ
る。圧縮成型の際に、水分を含まないドライの粉末では
粒子粉末が滑りにくく、従って系全体に圧縮圧力が均一
に伝達しにくいため、成型体の圧縮密度にバラツキが生
じる。系内に特定量の水分を含ませることで粒子粉末が
滑りやすくなり、系全体に圧縮圧力が均一に伝達し均一
な圧縮密度の成型体ができるため、それを焼成した後、
粉砕して得られるリチウムマンガンスピネル酸化物粒子
の粒度分布が揃ったものとなるものと考えられる。
Also, the raw material powder is rich in reactivity, and 1 to 10% by weight of water is contained in the mixed powder, and this powder is compression-molded to obtain a molded body having a molding density of 2 g / cc or more. It is considered that lithium manganese spinel oxide particles having a uniform particle size distribution are produced by forming and firing. At the time of compression molding, dry powder containing no water makes the particle powder less slippery, and hence it is difficult to uniformly transmit the compression pressure to the entire system, so that the compression density of the molded body varies. By including a specific amount of water in the system, the particle powder becomes slippery, and the compression pressure is transmitted uniformly to the entire system to form a molded body with uniform compression density.
It is considered that the lithium manganese spinel oxide particles obtained by the pulverization have a uniform particle size distribution.

【0024】しかし、この得られたリチウムマンガンス
ピネル酸化物粒子粉末は高温で焼成されているものであ
ることに起因して、初期の充放電容量は比較的大きいも
ののサイクルによる劣化が激しいものである。そこで、
この得られたリチウムマンガンスピネル酸化物粒子粉末
を密閉容器中で、酸素圧が1気圧より大きく10気圧以
下、温度が300〜500℃で熱処理を行うことによ
り、その粒子径、粒度分布を保ったまま、比較的大きい
充放電容量を示し、しかもサイクルによる充放電特性の
劣化が小さいリチウムマンガンスピネル酸化物粒子粉末
を得ることができた。
However, since the obtained lithium manganese spinel oxide particles are fired at a high temperature, the initial charge / discharge capacity is relatively large, but the deterioration due to the cycle is severe. . Therefore,
The obtained lithium manganese spinel oxide particles were subjected to a heat treatment in an airtight container at an oxygen pressure of more than 1 atm and 10 atm or less at a temperature of 300 to 500 ° C. to maintain the particle diameter and particle size distribution. As a result, a lithium manganese spinel oxide particle powder having a relatively large charge / discharge capacity and showing little deterioration in charge / discharge characteristics due to cycling was obtained.

【0025】その理由については未だ完全には解明でき
ていないが、リチウムマンガンスピネル酸化物中の欠陥
構造と関係があるものと考えられる。即ち、低温で作成
された、充放電容量は比較的低いもののサイクルによる
劣化の小さいリチウムマンガンスピネル酸化物では、焼
成温度が低温であることに起因して焼成時の酸素の活性
度が高く、そのためマンガンの酸化数が大きく、カチオ
ン欠損状態にあるものと思われる。逆に、高温焼成で作
成された、初期の充放電容量は比較的大きいもののサイ
クルによる劣化が激しいリチウムマンガンスピネル酸化
物では、焼成温度が高温であることに起因して焼成時の
酸素の活性度が低く、そのためマンガンの酸化数が小さ
く、カチオン欠損が少なくむしろ酸素欠損状態にあるも
のと思われる。そこで、高温で作成された粒子径の大き
な、酸素欠損状態にあるリチウムマンガンスピネル酸化
物を、比較的低温の高酸素圧下で熱処理することによ
り、結晶格子中に酸素を導入し、マンガンの価数を高く
することで、充放電容量を高くし、しかもサイクル劣化
を少ないものにすることができるものと考られる。
Although the reason has not been completely elucidated yet, it is considered to be related to the defect structure in the lithium manganese spinel oxide. That is, in the lithium manganese spinel oxide prepared at a low temperature and having a relatively low charge / discharge capacity but a small deterioration due to cycles, the oxygen activity during firing is high due to the low firing temperature. It is considered that the oxidation number of manganese is large and the manganese is in a cation-deficient state. Conversely, in lithium manganese spinel oxides produced by high-temperature sintering, whose initial charge / discharge capacity is relatively large but severely deteriorates due to cycles, the oxygen activity during sintering is high due to the high sintering temperature. Therefore, the oxidation number of manganese is small, and there is little cation deficiency. Therefore, heat treatment of a lithium manganese spinel oxide in a state of oxygen deficiency with a large particle diameter created at a high temperature under a relatively low temperature and a high oxygen pressure introduces oxygen into the crystal lattice, and the valence of manganese is increased. It is considered that the charge / discharge capacity can be increased and the cycle deterioration can be reduced by increasing the value.

【0026】[0026]

【実施例】以下、本発明を実施例及び比較例に基づいて
更に詳細に説明するが、これらは本発明の範囲を何ら限
定するものではない。なお、反応生成物粉末の同定、そ
の結晶構造は、X線回折(RIGAKU, Mn-filtered Fe-Ka,
40kV and 20mA)により調べた。また、粒子の形態は走
査型電子顕微鏡観察により観察した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but these do not limit the scope of the present invention. The identification of the reaction product powder and its crystal structure were performed by X-ray diffraction (RIGAKU, Mn-filtered Fe-Ka,
40kV and 20mA). The morphology of the particles was observed by scanning electron microscopy.

【0027】実施例1 <リチウムマンガンスピネル酸化物の製造>硫酸マンガ
ン水溶液(濃度=10重量%)に1.5当量の蓚酸水溶
液(濃度=10重量%)を滴下し、蓚酸マンガンの沈澱
物を生成させ、これを濾別、水洗、乾燥した後、該乾燥
粉末を空気中400℃で熱分解させて、マンガン酸化物
粒子粉末を調製した。このマンガン酸化物粒子粉末と水
酸化リチウム1水和物〔Li(OH)H2O 〕をモル比 Li/Mnが
0.505となるように秤量して機械的に混合し、得ら
れた混合粉末に対して5重量%の水分を噴霧した。この
混合粉末をローラーコンパクターにより圧縮成型し、成
型密度2.2g/ccの成型体を作成した。この成型体を電
気炉に入れて850℃に加熱し10時間焼成反応させ
た。得られた成型体を再度乳鉢にて粉砕し、黒色粉末を
得た。得られた黒色粉末は、図1のX線回折図に示すと
おり、リチウムマンガンスピネル酸化物粒子粉末であ
り、良好な結晶性を有しており、その粒子は図2の走査
型電子顕微鏡写真に示すように、平均粒子径2.5μm
で粒度の揃ったものであった。このリチウムマンガンス
ピネル酸化物粒子粉末をオートクレーブに入れ、酸素圧
5気圧、温度400℃にて10時間加熱処理を行った
後、自然冷却した。得られた黒色粉末は、X線回折の結
果、リチウムマンガンスピネル酸化物であり、良好な結
晶性を有しており、その粒子は走査型電子顕微鏡観察の
結果、粒子径、粒度分布は熱処理前のものと変化がなか
った。
Example 1 <Production of lithium manganese spinel oxide> 1.5 equivalents of an aqueous oxalic acid solution (concentration = 10 wt%) was dropped into an aqueous manganese sulfate solution (concentration = 10 wt%), and the precipitate of manganese oxalate was removed. After being filtered, washed with water and dried, the dried powder was thermally decomposed in air at 400 ° C. to prepare manganese oxide particle powder. This manganese oxide particle powder and lithium hydroxide monohydrate [Li (OH) H 2 O] were weighed and mechanically mixed so that the molar ratio Li / Mn became 0.505, and the resulting mixture was obtained. 5% by weight of water was sprayed on the powder. This mixed powder was compression-molded by a roller compactor to prepare a molded body having a molding density of 2.2 g / cc. This molded body was placed in an electric furnace, heated to 850 ° C., and fired for 10 hours. The obtained molded body was pulverized again in a mortar to obtain a black powder. The obtained black powder is a lithium manganese spinel oxide particle powder and has good crystallinity, as shown in the X-ray diffraction diagram of FIG. 1, and the particles are shown in the scanning electron micrograph of FIG. As shown, the average particle size is 2.5 μm
And the particle size was uniform. This lithium manganese spinel oxide particle powder was placed in an autoclave, subjected to a heat treatment at an oxygen pressure of 5 atm and a temperature of 400 ° C. for 10 hours, and then cooled naturally. The obtained black powder was a lithium manganese spinel oxide as a result of X-ray diffraction, and had good crystallinity. The particles were analyzed by scanning electron microscopy. There was no change from the ones.

【0028】<電気化学特性評価法>次に、以上のよう
にして得られたリチウムマンガンスピネル酸化物の電極
活物質としてのその電気化学特性を評価した。測定用正
極電極として、リチウムマンガンスピネル酸化物粒子粉
末に、バインダーとしてポリテトラフルオロエチレンを
5重量%、導電材としてケッチェンブラックを重量比で
20重量%混合し、この混合物を0.1g秤量し、集電
体としてチタンのメッシュに充填し、作用電極とした。
負極電極として、金属リチウム箔をステンレス鋼メッシ
ュに充填した。更に参照電極としてはリチウム金属を用
いた。LiClO4を、プロピレンカルボネート、ジメトキシ
エタンを体積比で1:1に混合した溶媒中に1Mの濃度
で溶解させたものを電解液として用いた。以上の測定用
正極作用電極、負極、参照電極、電解液を用いて電気化
学測定セルを構成した。この電気化学セルを用い、金属
リチウム電極基準で3.0〜4.5Vの電位範囲、電流
0.5mA/cm2にて充放電曲線を調べた。このリチウムマ
ンガンスピネル酸化物の電気化学的活性の指標として、
この充放電の電気容量を求めたところ、初期容量120
mAh/g と大きく、10サイクル後の容量も120mAh/g
でサイクル劣化はほとんど認められなかった。
<Electrochemical Characteristics Evaluation Method> Next, the lithium manganese spinel oxide obtained as described above was evaluated for its electrochemical characteristics as an electrode active material. As a positive electrode for measurement, 5% by weight of polytetrafluoroethylene as a binder and 20% by weight of Ketjen black as a conductive material were mixed with lithium manganese spinel oxide particle powder, and 0.1 g of this mixture was weighed. Then, a titanium mesh was filled as a current collector to form a working electrode.
As a negative electrode, a metal lithium foil was filled in a stainless steel mesh. Further, lithium metal was used as a reference electrode. A solution obtained by dissolving LiClO 4 at a concentration of 1 M in a solvent in which propylene carbonate and dimethoxyethane were mixed at a volume ratio of 1: 1 was used as an electrolytic solution. An electrochemical measurement cell was constructed using the above-described positive working electrode for measurement, negative electrode, reference electrode, and electrolytic solution. Using this electrochemical cell, a charge / discharge curve was examined in a potential range of 3.0 to 4.5 V and a current of 0.5 mA / cm 2 based on a metal lithium electrode. As an indicator of the electrochemical activity of this lithium manganese spinel oxide,
When the electric capacity of this charge / discharge was determined, the initial capacity was 120
As large as mAh / g, the capacity after 10 cycles is also 120 mAh / g
And no cycle deterioration was observed.

【0029】実施例2〜4 焼成条件及び熱処理条件を表1に示す如く変更した以外
は、実施例1と同様にしてリチウムマンガンスピネル酸
化物粒子粉末を得、更に実施例1と同様にして反応生成
物の粒子径及び充放電電気容量を測定した。結果を表1
に示す。
Examples 2 to 4 Lithium manganese spinel oxide particles were obtained in the same manner as in Example 1, except that the firing conditions and heat treatment conditions were changed as shown in Table 1. The particle size and charge / discharge electric capacity of the product were measured. Table 1 shows the results
Shown in

【0030】実施例5〜7 酢酸マンガン水溶液(濃度=10重量%)をスプレード
ライヤーで噴霧乾燥して得られた酢酸マンガン粉末をマ
ンガン酸化物原料として用い、焼成条件及び熱処理条件
を表1に示す如く変更した以外は、実施例1と同様にし
てリチウムマンガンスピネル酸化物粒子粉末を得、更に
実施例1と同様にして反応生成物の粒子径及び充放電電
気容量を測定した。結果を表1に示す。
Examples 5 to 7 The manganese acetate powder obtained by spray-drying a manganese acetate aqueous solution (concentration = 10% by weight) with a spray drier is used as a manganese oxide raw material. A lithium manganese spinel oxide particle powder was obtained in the same manner as in Example 1 except for the change, and the particle size and charge / discharge electric capacity of the reaction product were measured in the same manner as in Example 1. Table 1 shows the results.

【0031】比較例1〜3 焼成条件及び熱処理条件を表1に示す如く変更した以外
は、実施例1と同様にしてリチウムマンガンスピネル酸
化物粒子粉末を得、更に実施例1と同様にして反応生成
物の粒子径及び充放電電気容量を測定した。結果を表1
に示す。
Comparative Examples 1 to 3 Lithium manganese spinel oxide particles were obtained in the same manner as in Example 1, except that the firing conditions and heat treatment conditions were changed as shown in Table 1. The particle size and charge / discharge electric capacity of the product were measured. Table 1 shows the results
Shown in

【0032】[0032]

【表1】 [Table 1]

【0033】実施例1〜7で得られた粒子粉末はいずれ
も、リチウムマンガンスピネル酸化物の構造を有してお
り、表1の結果から明らかなように、粒子径が大きく、
粒度分布が揃っている粒子からなることが認められた。
また充放電の電気容量は、大きな値を示しており、さら
には充放電特性のサイクル劣化が少ないリチウムマンガ
ンスピネル酸化物が得られることがわかる。一方、比較
例1で得られた粉末は、リチウムマンガンスピネル酸化
物ではあるものの粒子成長が不十分であった。また比較
例2〜3で得られた粉末は、リチウムマンガンスピネル
酸化物の構造を有しており、粒子径が大きく、粒度分布
が揃っている粒子からなることが認められたが、充放電
の電気容量は、初期は比較的大きな値を示しているが、
サイクル劣化が大きいものであった。
Each of the particle powders obtained in Examples 1 to 7 has a structure of lithium manganese spinel oxide, and as apparent from the results in Table 1, has a large particle diameter.
It was confirmed that the particles consisted of particles having a uniform particle size distribution.
In addition, the electric capacity of charge and discharge shows a large value, and it can be seen that a lithium manganese spinel oxide with less cycle deterioration of charge and discharge characteristics can be obtained. On the other hand, although the powder obtained in Comparative Example 1 was a lithium manganese spinel oxide, the particle growth was insufficient. The powders obtained in Comparative Examples 2 and 3 had a structure of lithium manganese spinel oxide, and were confirmed to be composed of particles having a large particle size and a uniform particle size distribution. Initially, the electric capacity shows a relatively large value,
The cycle deterioration was large.

【0034】[0034]

【発明の効果】本発明によれば、粒子径が大きく、粒度
分布が狭く、かつ、充放電容量が大きくサイクル劣化の
少ないリチウムマンガンスピネル酸化物粒子粉末を供給
することが可能である。また、本発明によって得られた
リチウムマンガンスピネル酸化物粉末粒子は、リチウム
電池の正極活物質として作用し、起電力が高く、高エネ
ルギー密度化が可能なリチウム電池の正極活物質用材料
として有用である。
According to the present invention, it is possible to supply lithium manganese spinel oxide particles having a large particle diameter, a narrow particle size distribution, a large charge / discharge capacity, and little cycle deterioration. Further, the lithium manganese spinel oxide powder particles obtained according to the present invention act as a positive electrode active material of a lithium battery, have a high electromotive force, and are useful as a material for a positive electrode active material of a lithium battery capable of increasing energy density. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたリチウムマンガンスピネル
酸化物のX線回折図である。
FIG. 1 is an X-ray diffraction diagram of a lithium manganese spinel oxide obtained in Example 1.

【図2】実施例1で得られたリチウムマンガンスピネル
酸化物の走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph of the lithium manganese spinel oxide obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB05 AC06 AD03 AD06 AE08 5H003 AA02 AA04 BA01 BA03 BA04 BA05 BB05 BC01 BC06 BD01 BD04 BD05 5H014 AA01 BB01 BB05 BB06 EE10 HH01 HH08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G048 AA04 AB05 AC06 AD03 AD06 AE08 5H003 AA02 AA04 BA01 BA03 BA04 BA05 BB05 BC01 BC06 BD01 BD04 BD05 5H014 AA01 BB01 BB05 BB06 EE10 HH01 HH08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蓚酸マンガン又は酢酸マンガンの粉末を
酸素含有気体中350〜500℃で熱分解してマンガン
酸化物粒子粉末を調製し、このマンガン酸化物粒子粉末
とリチウム化合物とを混合した後、この混合粉末に1〜
10重量%の水分を含有させて圧縮成型し成型密度2g/
cc以上の成型体を作成し、この成型体を酸素含有気体中
800〜920℃にて焼成してリチウムマンガンスピネ
ル酸化物を生成させ、得られたリチウムマンガンスピネ
ル酸化物成型体を密閉容器中で1気圧より大きく10気
圧以下の酸素圧下、300〜500℃で熱処理した後粉
砕することを特徴とするリチウムマンガンスピネル酸化
物粒子粉末の製造方法。
1. Manganese oxalate or manganese acetate powder is pyrolyzed at 350 to 500 ° C. in an oxygen-containing gas to prepare a manganese oxide particle powder, and after mixing the manganese oxide particle powder and a lithium compound, 1 to this mixed powder
Compression molding containing 10% by weight of water and molding density 2g /
cc or more molded body, this molded body is fired in an oxygen-containing gas at 800 to 920 ° C. to generate lithium manganese spinel oxide, and the obtained lithium manganese spinel oxide molded body is sealed in a closed container. A method for producing lithium manganese spinel oxide particles, comprising heat-treating at 300 to 500 ° C. under an oxygen pressure of more than 1 atm and not more than 10 atm, followed by pulverization.
【請求項2】 蓚酸マンガン又は酢酸マンガンの粉末を
酸素含有気体中350〜500℃で熱分解してマンガン
酸化物粒子粉末を調製し、このマンガン酸化物粒子粉末
とリチウム化合物とを混合した後、この混合粉末に1〜
10重量%の水分を含有させて圧縮成型し成型密度2g/
cc以上の成型体を作成し、この成型体を酸素含有気体中
800〜920℃にて焼成してリチウムマンガンスピネ
ル酸化物を生成させた後粉砕し、得られたリチウムマン
ガンスピネル酸化物粒子粉末を密閉容器中で1気圧より
大きく10気圧以下の酸素圧下、300〜500℃で熱
処理することを特徴とするリチウムマンガンスピネル酸
化物粒子粉末の製造方法。
2. Manganese oxalate or manganese acetate powder is pyrolyzed in an oxygen-containing gas at 350 to 500 ° C. to prepare manganese oxide particles, and after mixing the manganese oxide particles with a lithium compound, 1 to this mixed powder
Compression molding containing 10% by weight of water and molding density 2g /
cc or more molded body is produced, and the molded body is baked in an oxygen-containing gas at 800 to 920 ° C. to produce lithium manganese spinel oxide, and then pulverized. A method for producing lithium manganese spinel oxide particles, wherein the heat treatment is performed at 300 to 500 ° C. in an airtight container under an oxygen pressure of more than 1 atm and 10 atm or less.
JP11015392A 1999-01-25 1999-01-25 Production of lithium manganese spinel oxide particle powder Withdrawn JP2000211922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11015392A JP2000211922A (en) 1999-01-25 1999-01-25 Production of lithium manganese spinel oxide particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11015392A JP2000211922A (en) 1999-01-25 1999-01-25 Production of lithium manganese spinel oxide particle powder

Publications (1)

Publication Number Publication Date
JP2000211922A true JP2000211922A (en) 2000-08-02

Family

ID=11887473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11015392A Withdrawn JP2000211922A (en) 1999-01-25 1999-01-25 Production of lithium manganese spinel oxide particle powder

Country Status (1)

Country Link
JP (1) JP2000211922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591139B1 (en) 2005-11-08 2006-06-20 장상구 Lithium-ion-cell lithium-manganese-oxide powder and production
WO2011002074A1 (en) * 2009-07-03 2011-01-06 三井金属鉱業株式会社 Method for producing lithium transition metal oxide
KR101475513B1 (en) * 2012-11-06 2014-12-23 주식회사 포스코이에스엠 Manufacturing method of high strength spinel structure lithium manganese complex oxide, high strength spinel structure lithium manganese complex oxide made by the same, and lithium rechargeable batteries comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591139B1 (en) 2005-11-08 2006-06-20 장상구 Lithium-ion-cell lithium-manganese-oxide powder and production
WO2011002074A1 (en) * 2009-07-03 2011-01-06 三井金属鉱業株式会社 Method for producing lithium transition metal oxide
JP4673451B2 (en) * 2009-07-03 2011-04-20 三井金属鉱業株式会社 Method for producing lithium transition metal oxide
KR101475513B1 (en) * 2012-11-06 2014-12-23 주식회사 포스코이에스엠 Manufacturing method of high strength spinel structure lithium manganese complex oxide, high strength spinel structure lithium manganese complex oxide made by the same, and lithium rechargeable batteries comprising the same

Similar Documents

Publication Publication Date Title
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
JP2000281354A (en) Layer rock salt type oxide particulate powder and its production
JP5617417B2 (en) Garnet-type lithium ion conductive oxide and process for producing the same
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
JP5199522B2 (en) Spinel-type lithium / manganese composite oxide, its production method and use
Kim et al. Amorphous manganese oxyiodides exhibiting high lithium intercalation capacity at higher current density
CN109075337A (en) The manufacturing method and positive electrode active material for lithium ion secondary battery and lithium ion secondary battery of positive electrode active material for lithium ion secondary battery
TW201236976A (en) Lithium titanium mixed oxide
JP3775552B2 (en) Positive electrode active material and non-aqueous secondary battery
JP2001213623A (en) Process of producing lithium titanate, lithium ion battery and electrode thereof
JP5686459B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery including the positive electrode
WO2001027032A1 (en) Lithium-cobalt composite oxide, method for preparing the same, positive electrode for lithium secondary cell and lithium secondary cell using the same
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP2012166966A (en) B type titanium oxide and method of manufacturing the same, and lithium ion battery using the same
JPH0986933A (en) Spinel type lithium manganese oxide, its production and use
JP2000264636A (en) Lithium manganese spinel oxide particle powder and its production
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2001114521A (en) Trimanganese tetraoxide and method for its production
JP3651022B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP2000211922A (en) Production of lithium manganese spinel oxide particle powder
JPH04198028A (en) Lithium manganese double oxide, its production and use
JP4714978B2 (en) Lithium manganese oxide, method for producing the same, and secondary battery using the same
JPH1179751A (en) Production of lithium-nickel oxide particulate powder
JPH1027613A (en) Positive electrode active substance for nonaqueous electrolyte secondary battery and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404