KR100578044B1 - A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide - Google Patents

A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide Download PDF

Info

Publication number
KR100578044B1
KR100578044B1 KR1020050061896A KR20050061896A KR100578044B1 KR 100578044 B1 KR100578044 B1 KR 100578044B1 KR 1020050061896 A KR1020050061896 A KR 1020050061896A KR 20050061896 A KR20050061896 A KR 20050061896A KR 100578044 B1 KR100578044 B1 KR 100578044B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
photocatalyst
tungsten oxide
visible
visible light
Prior art date
Application number
KR1020050061896A
Other languages
Korean (ko)
Inventor
강철현
이완인
이형호
Original Assignee
(주)켐웰텍
강철현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)켐웰텍, 강철현 filed Critical (주)켐웰텍
Priority to KR1020050061896A priority Critical patent/KR100578044B1/en
Application granted granted Critical
Publication of KR100578044B1 publication Critical patent/KR100578044B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

본 발명은 이산화티탄과 텅스텐 산화물이 복합화 된 가시광 광촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 이산화티탄과 텅스텐 산화물이 나노 단위의 접합(Junction) 구조를 형성하므로서, 전자와 정공(正孔) 이동을 통하여 자외선 영역뿐만 아니라 가시광선 영역에서도 매우 우수한 광활성을 나타내는 광촉매를 제조하는 방법을 제공하는 것이다. The present invention relates to a method for producing a visible light photocatalyst in which titanium dioxide and tungsten oxide are complexed. Through the present invention to provide a method for producing a photocatalyst exhibiting a very good photoactivity in the visible region as well as the ultraviolet region.

Description

이산화티탄과 텅스텐 산화물이 복합화 된 가시광 광촉매의 제조방법{A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide}A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide}

도 1은 WO3와 TiO2가 접합된 구조의 에너지 준위 모식도이고,1 is a schematic diagram of energy levels of a structure in which WO 3 and TiO 2 are bonded to each other,

도 2는 WO3(작은 구형)와 TiO2(큰 구형)가 접합된 구조를 나타낸 도면이다. 2 is a view showing a structure in which WO 3 (small sphere) and TiO 2 (large sphere) are bonded.

본 발명은 이산화티탄과 텅스텐 산화물이 복합화 된 가시광 광촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 이산화티탄과 텅스텐 산화물이 나노 단위의 접합(Junction) 구조를 형성 하므로서, 전자와 정공(正孔) 이동을 통하여 자외선 영역뿐만 아니라 가시광선 영역에서도 매우 우수한 광활성을 나타내는 광촉매를 제조하는 방법을 제공하는 것이다.The present invention relates to a method for producing a visible light photocatalyst in which titanium dioxide and tungsten oxide are complexed. More specifically, titanium and tungsten oxide form a junction structure of nano units, and thus electron and hole transfer. Through the present invention to provide a method for producing a photocatalyst exhibiting a very good photoactivity in the visible region as well as the ultraviolet region.

광촉매(Photocatalyst)란 빛을 받아서 화학반응을 촉진시키는 촉매를 말하며, 식물의 광합성을 행하는 엽록소나 이산화티탄(TiO2) 등이 광촉매의 일종이다. 산업적으로 가장 널리 사용되는 광촉매인 이산화티탄은 유해물질을 산화 분해하는 기능, 대기나 수질, 토양 등에 대한 환경 정화기능, 탈취, 항균 및 항오 작용을 가지며, 물체의 표면에 초(超)친수성을 가지게 하는 특성이 있어서 이러한 기능을 이용하는 여러 가지 환경관련 제품들이 개발되어 있다. A photocatalyst is a catalyst that receives light to promote a chemical reaction. Chlorophyll or titanium dioxide (TiO 2 ), which performs photosynthesis of plants, is a kind of photocatalyst. Titanium dioxide, the most widely used photocatalyst industrially, has the function of oxidatively decomposing harmful substances, purifying the environment of air, water and soil, deodorizing, antibacterial and anti-fouling action, and having super hydrophilicity on the surface of an object. Many environmental products have been developed that use these features.

그런데 순수한 이산화티탄은 파장이 380 nm 이하의 자외선에서는 매우 우수한 광촉매 활성을 나타내지만, 태양광의 대부분을 차지하는 400 nm 이상의 가시광 하에서는 광촉매 활성을 갖지 못하는 한계가 있다. 그래서 종래에도 가시광 하에서도 활성을 갖는 광촉매를 개발하려는 연구가 다양하게 진행되고 있으며, 현재 부분적인 성공을 이루고 있다. By the way, pure titanium dioxide shows a very good photocatalytic activity in the ultraviolet light of wavelength less than 380 nm, but there is a limit that does not have a photocatalytic activity under visible light of 400 nm or more, which occupies most of the sunlight. Thus, various studies have been conducted to develop photocatalysts that are active even under visible light, and have achieved partial success.

이러한 노력의 일환으로 아사히(Asahi) 등은 이온주입법에 의해 이산화티탄에다 질소(N)를 도핑하여 가시광에서 작동하는 광촉매를 제조하였다[Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science (2001), 293, 269.]. 다른 일부 그룹은 이산화티탄에 탄소(C)를 도핑하여 마찬가지로 가시광에서 작동하는 광촉매를 제조하기도 하였다. 이리한 연구의 기본 개념은 산소 2p 밴드로부터 형성된 이산화티탄의 가전자대를 N 2p 또는 C 2p 준위를 도입하여 가전자대의 위치를 상승시켜 밴드 갭(Band gap)을 가시광 영역으로 축소시키고자 하는 것이다. 그러나 이러한 방법으로 제조된 광촉매는 장시간 동안 빛이 조사되면, 도핑된 질소 또는 탄소가 이탈되는 안정성의 문제점이 존재한다. 또한, 가시광에서는 비교적 효율적인 활성을 나타내지만 자외선 하에서는 광촉매 효율이 순수한 이산화티탄에 비해 효율이 낮은 단점이 존재한다.As a part of this effort, Asahi et al. Prepared a photocatalyst that operates in visible light by doping titanium (N) with titanium dioxide by ion implantation [Asahi, R .; Morikawa, T .; Ohwaki, T .; Aoki, K .; Taga, Y. “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science (2001), 293, 269.]. Some other groups have doped titanium dioxide with carbon to produce photocatalysts that also operate in visible light. The basic idea of this study is to reduce the band gap to the visible region by increasing the position of the valence band by introducing N 2p or C 2p levels in the valence band of titanium dioxide formed from the oxygen 2p band. However, the photocatalyst prepared by this method has a problem of stability in which doped nitrogen or carbon is released when light is irradiated for a long time. In addition, although visible activity is relatively efficient in visible light, there is a disadvantage that the efficiency of photocatalyst is lower than that of pure titanium dioxide under ultraviolet light.

또한, 다양한 전이금속 이온을 도핑하여 이산화티탄 전도대의 위치를 낮추므로서 밴드 갭을 가시광 영역으로 축소시키고자 하는 다수의 시도가 있었다. 즉, Cr, V, Mn, Nd, Sb, Sn를 비롯한 전이원소를 이산화티탄 격자에 도핑시켜, 가시광에서 작동하는 광촉매를 제조하는 방법이 보고된 바 있다[Anpo, M.; Kishiguchi, S.; Ichihashi, Y.; Takeuchi, M.; Yamashita, H.; Ikeue, K.; Morin, B.; Davidson, A.; Che, M. "The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method." Research on Chemical Intermediates (2001), 27, 459.]. 그러나 이러한 방법에서는 이산화티탄의 전도대 위치가 수소의 표준 환원전위 보다 낮아지므로, 일부 제한적 광촉매 반응에서만 우수한 가시광 활성을 보이는 한계가 있다. In addition, many attempts have been made to reduce the band gap into the visible region by lowering the position of the titanium dioxide conduction band by doping various transition metal ions. That is, a method for producing a photocatalyst that operates in visible light by doping titanium dioxide lattice, including Cr, V, Mn, Nd, Sb, Sn, has been reported [Anpo, M .; Kishiguchi, S .; Ichihashi, Y .; Takeuchi, M .; Yamashita, H .; Ikeue, K .; Morin, B .; Davidson, A .; Che, M. "The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method." Research on Chemical Intermediates (2001), 27, 459.]. However, in this method, since the position of the conduction band of titanium dioxide is lower than the standard reduction potential of hydrogen, there is a limit to showing excellent visible light activity only in some limited photocatalytic reactions.

이외에도 삼산화텅스텐을 이산화티탄 격자에 도핑시키거나, 이산화티탄의 표면에 담지 시킨 연구가 종종 보고되고 있다[Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do Y. R. "Photocatalytic Behavior of WO3-loaded TiO2 for the Oxidation Reaction," Journal of Catalysis. 2000, 191, 192.]. 삼산화텅스텐은 높은 표면산도를 가지며, 아민, 비극성 유기화합물 등에 높은 흡착성을 보이므로 자외선 하에서 광촉매 활성을 향상시킨다. 하지만, 이산화티탄에 담지된 삼산화텅스텐은 자체 밴드(Band)를 갖는 크기의 구조가 아니기 때문에 가시광에서 작동하는 광촉매의 역할은 수행하지 못한다. In addition, studies on doping tungsten trioxide into the titanium dioxide lattice or on the surface of the titanium dioxide are often reported [Kwon, YT; Song, KY; Lee, WI; Choi, GJ; Do YR "Photocatalytic Behavior of WO 3 -loaded TiO 2 for the Oxidation Reaction," Journal of Catalysis. 2000, 191, 192.]. Tungsten trioxide has high surface acidity and shows high adsorption property to amines, nonpolar organic compounds and the like, thereby improving photocatalytic activity under ultraviolet light. However, since tungsten trioxide supported on titanium dioxide is not a structure having its own band, it does not play a role of a photocatalyst that operates in visible light.

본 발명의 목적은 이산화티탄과 텅스텐 산화물이 나노 단위의 접합(Junction) 구조를 형성 하므로서, 전자와 정공(正孔) 이동을 통하여 자외선 영역뿐만 아니라 가시광선 영역에서도 매우 우수한 광활성을 나타내는 광촉매를 제조하는 방법을 제공하는 것이다.An object of the present invention is to prepare a photocatalyst having a very good photoactivity in the visible region as well as the ultraviolet region through the electron and hole movement by forming a junction structure of titanium dioxide and tungsten oxide nano-units (junction) structure To provide a way.

본 발명은 가) 직경이 1.0~1000 nm 인 WOx 나노입자, 또는 직경이 1.0~100 nm 인 WOx 나노막대를 합성하는 단계(여기서, x 의 범위는 2.0~3.0 이고, 나노막대는 길이가 직경의 10배 이상인 것을 의미한다.), 나) 상기 WOx 나노입자 또는 나노막대를 TiO2 나노입자와 함께 수용액에 분산시키거나, 또는 졸겔법(Sol-gel)으로 제조된 TiO2 용액에 분산시켜 충분히 교반하는 단계, 다) 상기 혼합용액에서 용매를 건조하고, 100~800 oC 온도로 열처리 하는 단계; 로 이루어지는 것을 특징으로 하는 이산화티탄과 텅스텐 산화물이 복합화 된 가시광 광촉매의 제조방법이다.The present invention comprises the steps of: (a) synthesizing WO x nanoparticles having a diameter of 1.0 to 1000 nm, or WO x nanorods having a diameter of 1.0 to 100 nm (wherein x ranges from 2.0 to 3.0, It means that at least 10 times the diameter.), B) WO x Dispersing the nanoparticles or nanorods with TiO 2 nanoparticles in an aqueous solution, or dispersing in a TiO 2 solution prepared by sol-gel method (Sol-gel) and thoroughly stirring; c) Drying the solvent in the mixed solution Heat-treating to 100-800 o C temperature; It is a method for producing a visible light photocatalyst comprising titanium dioxide and tungsten oxide complex.

이하, 본 발명을 좀 더 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명은 이산화티탄과 텅스텐 산화물이 복합화 된 가시광 광촉매의 제조방법으로서 다음 가) 내지 다) 단계로 이루어진다. The present invention is a method for producing a visible light photocatalyst in which titanium dioxide and tungsten oxide are complexed, and comprises the following steps a) to c).

먼저 가) 단계는 직경이 1.0~1000 nm 인 WOx 나노입자, 또는 직경이 1.0~100 nm인 WOx 나노막대를 합성하는 것이다. 여기서, x 의 범위는 2.0~3.0 이고, 나노막대는 직경에 비해서 길이가 10배 이상 긴 것을 의미한다. WOx 나노입자는 예컨대, 텅스텐산을 물과 암모니아수에 용해하고, 여기에 과산화수소를 첨가한 후 가열 반응시켜서 제조된다. 이때, 상기 물과 암모니아수의 첨가비율 및 반응 조작방법에 따라 WOx 나노입자의 직경을 조절할 수 있는데, 직경이 1.0 nm 이하인 입자는 현실적으로 제조가 매우 곤란하고, 직경이 1000 nm 이상이면 광활성 효과가 거의 나타나지 않는다. 바람직하기로는 직경이 3~20 nm 인 것을 사용하는 것이 가장 좋다.First, a) comprises the steps of: a diameter of the nanoparticles WO x 1.0 ~ 1000 nm, or a diameter of 1.0 ~ 100 nm of WO x Synthesis of nanorods. Here, the range of x is 2.0-3.0, and a nanorod means that a length is 10 times or more long compared with a diameter. WO x nanoparticles are produced, for example, by dissolving tungstic acid in water and ammonia water, adding hydrogen peroxide thereto and then heating the reaction. In this case, the diameter of the WO x nanoparticles can be adjusted according to the addition ratio of the water and the ammonia water and the reaction operation method. Particles having a diameter of 1.0 nm or less are very difficult to manufacture in reality, and the photoactive effect is almost impossible when the diameter is 1000 nm or more. Does not appear Preferably, it is best to use a diameter of 3 to 20 nm.

또한, WOx 나노막대는 예컨대, W(OEt)5를 에탄올에 용해하고, 여기에 2,4-펜탄디온을 첨가한 다음, 다시 물과 진한 질산을 첨가한 후 가열 반응 시켜서 제조된다. 이때, 용매의 첨가량 및 반응 조작방법에 따라서 WOx 나노막대의 직경을 조절할 수 있는데, 직경이 1.0 nm 이하인 입자는 현실적으로 제조가 매우 곤란하고, 직경이 100 nm 이상이면 광활성 효과가 거의 나타나지 않는다. 바람직하기로는 직경이 5~10 nm 인 것을 사용하는 것이 가장 좋다. In addition, WO x nanorods are prepared by, for example, dissolving W (OEt) 5 in ethanol, adding 2,4-pentanedione to it, followed by addition of water and concentrated nitric acid, followed by heating. At this time, the diameter of the WO x nanorods can be adjusted according to the amount of solvent added and the reaction operation method. Particles having a diameter of 1.0 nm or less are very difficult to be manufactured in reality, and when the diameter is 100 nm or more, the photoactive effect is hardly exhibited. Preferably, it is best to use a diameter of 5 ~ 10 nm.

다음으로 나) 단계는 상기 WOx 나노입자 또는 나노막대를 TiO2 나노입자와 함께 수용액에 분산시키거나, 또는 졸겔법(Sol-gel process)에 의해서 제조된 TiO2 용액에 분산시켜 충분히 교반하는 것이다. Next b) step is said WO x The nanoparticles or nanorods are dispersed in an aqueous solution together with the TiO 2 nanoparticles, or dispersed in a TiO 2 solution prepared by a sol-gel process and sufficiently stirred.

마지막으로 다) 단계는 상기 나) 단계에서 얻어진 혼합용액에서 용매를 건조하고, 100~800 oC 온도로 열처리 하여 이산화티탄과 텅스텐 산화물을 서로 접합(Jnction) 시키는 것이다. 이때, 상기 열처리 온도가 100 oC 이하이면, 용매가 충분히 건조되지 않아서 좋지 않고, 반대로 800 oC 이상이면 제조된 광촉매의 광분해능이 저하될 우려가 있어서 좋지 않다. 바람직하기로는 300~500 oC에서 열처리 하는 것이 가장 좋다.Finally, step c) is to dry the solvent in the mixed solution obtained in step b), and heat-treat it at a temperature of 100 to 800 ° C. to bond the titanium dioxide and tungsten oxide to each other. At this time, if the heat treatment temperature is 100 ° C or less, the solvent is not good enough to dry, on the contrary, 800 ° C or more is not good because there is a fear that the photo resolution of the produced photocatalyst is lowered. Preferably it is best to heat treatment at 300 ~ 500 ° C.

본 발명에 따라 제조되는 가시광 광촉매는 다음과 같은 작용기전을 갖는다. 먼저 이산화티탄은 도 1 에 나타낸 바와 같이, 밴드 갭이 3.2 eV 이므로 파장이 380 nm 이하의 자외선에서는 매우 우수한 광촉매 활성을 나타내지만, 태양빛의 대부분을 차지하는 400 nm 이상의 가시광 하에서는 광촉매 활성이 없다. 반면에 삼산화텅스텐은 밴드 갭이 2.8 eV 이므로 파장이 440 nm 부근인 보라색 계통의 빛에 의해 들뜰 수 있게 된다. 또한, W18O49 와 같은 산소결함 구조의 경우, 더 작은 밴드 갭을 가지므로 가시광에서 쉽게 들뜰 수 있게 된다. 본 발명의 가시광 광촉매는 이러한 텅스텐 산화물과 이산화티탄을 섞어 놓고 열처리하여 서로 접합시킨 것이다.The visible light photocatalyst prepared according to the present invention has the following mechanism of action. First, as shown in FIG. 1, since titanium dioxide has a band gap of 3.2 eV, the titanium dioxide shows very good photocatalytic activity in ultraviolet rays having a wavelength of 380 nm or less, but no photocatalytic activity under visible light of 400 nm or more, which occupies most of sunlight. Tungsten trioxide, on the other hand, has a band gap of 2.8 eV, which can be excited by the violet light having a wavelength of around 440 nm. In addition, W 18 O 49 Oxygen-deficient structures, such as, have a smaller band gap and can be easily excited in visible light. In the visible light photocatalyst of the present invention, such a tungsten oxide and titanium dioxide are mixed and thermally bonded to each other.

본 발명에 따라 제조된 가시광 광촉매에 가시광을 조사하면 텅스텐산화물에서 전자가 들뜨고 가전자대에는 정공(正孔)이 생성된다. 한편, 이산화티탄 쪽에서는 전혀 전자가 들뜨는 일이 발생되지 않지만 텅스텐 산화물과 접합을 이루고 있으므로 도 2에 설명한 바와 같이 텅스텐산화물 가전자대의 정공이 이산화티탄의 가전자대 쪽으로 일부가 이동이 된다. 결과적으로 이산화티탄 가전자대에 정공이 형성되고 이것이 이산화티탄 표면에 흡착된 OH- 또는 H2O와 반응하여 ?OH 라디칼을 형성하며, 유기물질의 분해반응에 이용되는 것이다.When visible light is irradiated on the visible light photocatalyst prepared according to the present invention, electrons are excited from tungsten oxide and holes are generated in the valence band. On the other hand, electrons are not lifted up at all on the titanium dioxide side, but since it forms a junction with tungsten oxide, a hole in the tungsten oxide valence band moves to the valence band of titanium dioxide as described in FIG. As a result, holes are formed in the titanium dioxide valence band, which reacts with OH - or H 2 O adsorbed on the titanium dioxide surface to form? OH radicals, which are used for the decomposition reaction of organic materials.

이하, 실시예에 의하여 본 발명을 상세하게 설명한다. 단, 하기 실시예는 본 발명을 구체적으로 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are only illustrative of the present invention specifically, the scope of the present invention is not limited by the following examples.

< < 실시예Example 1 > 이산화티탄과 텅스텐산화물 나노입자 간의 접합을 통한 가시광 광촉매의 합성 1> Synthesis of Visible Photocatalyst through Bonding between Titanium Dioxide and Tungsten Oxide Nanoparticles

먼저 텅스텐산(H2WO4, 알드리치사) 0.03 몰을 200 ㎖ 비커에 첨가하고, 물과 진한 암모니아수를 각각 50 ㎖를 가하여 텅스텐산을 용해시킨다. 여기에 과산화수소 0.3 몰을 첨가하고 1시간 가량 교반한 다음, 이 용액을 수열반응기에 넣고 240 oC에서 4시간 동안 반응시켜 크기 3~20 nm의 WO3 나노입자를 제조한다. First, 0.03 mol of tungstic acid (H 2 WO 4 , Aldrich) is added to a 200 ml beaker, and 50 ml of water and concentrated ammonia water are added to dissolve the tungstic acid. 0.3 mol of hydrogen peroxide was added thereto, stirred for about 1 hour, and then the solution was placed in a hydrothermal reactor for 4 hours at 240 ° C. to prepare WO 3 nanoparticles having a size of 3 to 20 nm.

이렇게 하여 제조된 WO3 나노입자 0.10 g와 이산화티탄(Degussa P25) 0.20~3.0 g을 함께 수용액에 넣고, 초음파를 이용하여 분산시킨 후 용매를 건조시킨다. 얻어진 나노 입자 혼합물을 300~500℃로 열처리하여 이산화티탄과 텅스텐산화물을 서로 접합시킨다. 0.10 g of the WO 3 nanoparticles prepared in this way and 0.20 to 3.0 g of titanium dioxide (Degussa P25) are put together in an aqueous solution, dispersed using ultrasonic waves, and the solvent is dried. The obtained nanoparticle mixture is heat treated at 300 to 500 ° C. to bond titanium dioxide and tungsten oxide to each other.

< < 실시예Example 2 > 텅스텐산화물 나노입자 표면에 티탄산화물 코팅을 통한 가시광 광촉매의 합성 2> Synthesis of Visible Photocatalyst by Titanium Oxide Coating on Tungsten Oxide Nanoparticle Surface

알드리치사 Ti(O i Pr)4 0.3~1.0 g을 20 ml 에탄올에 녹이고, 여기에 물 5 ml와 진한 질산 용액을 첨가하여 pH를 1.5로 조절한다. 이렇게 한 후 2시간 동안 교반시켜 투명한 용액을 얻고, 이 용액에다 미리 합성해 둔 크기 3-20 nm 의 WO3 나노입자 0.10g을 첨가하여 잘 분산 시킨다. 0.3-1.0 g of Aldrich Ti (O i Pr) 4 is dissolved in 20 ml ethanol, and the pH is adjusted to 1.5 by adding 5 ml of water and concentrated nitric acid solution. After doing this, the mixture was stirred for 2 hours to obtain a clear solution, which was dispersed well by adding 0.10 g of WO 3 nanoparticles having a size of 3-20 nm previously synthesized.

상기 용액을 교반하면서 50℃의 물중탕에서 가열하여 용매를 완전히 증발시킨다. 이렇게 하면 Ti 전구체가 WO3 나노입자 표면을 둘러싸게 된다. 이후 얻어진 혼합물을 300~500℃로 열처리하여 텅스텐 산화물의 표면에 이산화티탄이 접합된 가시광 광촉매를 얻는다. The solution is heated in a water bath at 50 ° C. with stirring to completely evaporate the solvent. This allows the Ti precursor to surround the surface of the WO 3 nanoparticles. The resulting mixture is then heat treated at 300 to 500 ° C. to obtain a visible light photocatalyst in which titanium dioxide is bonded to the surface of tungsten oxide.

< < 실시예Example 3 > 텅스텐산화물  3> tungsten oxide 나노막대Nanorod 표면에 티탄산화물 코팅을 통한 가시광  Visible light through titanium oxide coating on the surface 광촉 매의Photocatalytic 합성 synthesis

0.01 몰의 W(OEt)5(알드리치사)을 25 ml의 에탄올에 용해시키고, 0.02몰의 2,4-펜탄디온(알드리치사)을 가한다. 여기에 0.05몰의 물과 진한 질산을 넣어 pH를 1 로 맞춘다. 만들어진 투명한 용액을 수열 반응기에 넣고 250 oC에서 4시간 동안 반응시켜 W18O49의 나노막대를 얻는다. 이렇게 하여 합성된 나노막대는 통상 직경이 5~10 nm이고, 길이가 50~100 nm이다. 상기 나노막대를 에탄올에 분산시키고 여러 번 씻어준 후 건조시킨다.0.01 mol of W (OEt) 5 (Aldrich) is dissolved in 25 ml of ethanol and 0.02 mol of 2,4-pentanedione (Aldrich) is added. Add 0.05 mole of water and concentrated nitric acid to adjust pH to 1. The prepared transparent solution is placed in a hydrothermal reactor and reacted at 250 ° C. for 4 hours to obtain a nanorod of W 18 O 49 . The nanorods thus synthesized are usually 5-10 nm in diameter and 50-100 nm in length. The nanorods are dispersed in ethanol, washed several times and dried.

한편으로 Ti(O i Pr)4 (알드리치사) 0.3~1.0 g 을 20 ml 에탄올에 녹인다. 여기에 물 5 ml와 진한질산 용액을 첨가하여 pH 를 1.5로 조절한다. 이렇게 한 후 2시간 동안 교반시켜 투명한 용액을 얻고, 이 용액에 앞서 합성한 W18O49 의 나노막대 0.10 g 을 첨가하여 잘 분산 시킨다. 만들어진 용액을 교반시키는 가운데 50℃의 물중탕에서 가열하여 용매를 완전히 증발시킨다. 이렇게 하면 Ti 전구체가 W18O49의 나노막대 표면을 둘러싸게 된다. 이후 얻어진 혼합물을 300~500℃로 열처리하여 텅스텐산화물의 표면에 이산화티탄이 접합된 가시광 광촉매를 얻는다.On the other hand, 0.3-1.0 g of Ti (O i Pr) 4 (Aldrich) is dissolved in 20 ml ethanol. To this was added 5 ml of water and concentrated nitric acid solution to adjust the pH to 1.5. After doing this, the mixture was stirred for 2 hours to obtain a clear solution, which was dispersed well by adding 0.10 g of the nanorod of W 18 O 49 synthesized above. The resulting solution is stirred and heated in a water bath at 50 ° C. to completely evaporate the solvent. This allows the Ti precursor to surround the nanorod surface of W 18 O 49 . The resulting mixture is then heat treated at 300 to 500 ° C. to obtain a visible light photocatalyst in which titanium dioxide is bonded to the surface of tungsten oxide.

가시광 Visible light 광촉매의Photocatalyst 효율평가 Efficiency evaluation

상기 실시예 1,2,3에서 제조된 각각의 시료를 물에 분산시키고, 크기가 2.5 X 2.5㎝ 인 파이렉스(Pyrex) 유리에 도포하였다. 이때, 각각의 파이렉스 유리에는 광촉매 시료 0.010 g이 코팅 되도록 제어한다. 이와 같이 제조된 박막상 시료에 대하여 다음과 같은 방법으로 기체에 대한 가시광 광촉매 활성을 측정하였다. Each sample prepared in Examples 1,2,3 was dispersed in water and applied to a Pyrex glass of size 2.5 × 2.5 cm. At this time, each Pyrex glass is controlled so that 0.010 g of a photocatalyst sample is coated. Visible photocatalytic activity of the gas was measured for the thin film sample prepared as described above in the following manner.

1. 시험방법 ; 2-프로판올이 1000 ppm 농도로 채워진 반응기에 광촉매 박막이 코팅된 2.5 X 2.5㎝ 크기의 시료를 넣는다. 그리고 여기에 300 W Xe 램프에서 400 nm 이하의 파장을 제거한 빛을 조사하여 광촉매 반응에 의해 2-프로판올을 분해하였다. 가시광조사 30분 후에 기체 크로마토그래피로 2-프로판올이 분해되고 남은 농도를 측정하였다. 1. Test method; In a reactor filled with 1000 ppm of 2-propanol, a 2.5 x 2.5 cm sized sample coated with a photocatalyst thin film is placed. Then, light was removed from the wavelength of 400 nm or less in a 300 W Xe lamp to decompose 2-propanol by a photocatalytic reaction. After 30 minutes of visible light irradiation, 2-propanol was decomposed by gas chromatography to measure the remaining concentration.

2. 시험결과 ; 다음 표 1에 나타낸 것처럼 실시예 1, 2, 3의 모든 시료에서 2-프로판올의 분해속도가 비교예인 순수한 TiO2 시료에 비해 5배 이상인 것으로 나타났다. 여기서, 순수한 TiO2 시료는 실시예 1,2,3의 방법에서 각각 텅스텐산화물을 넣지 않고 제조한 시료로서, 이들을 각각 비교예 1,2,3으로 하였다. 결과적으로, 본 발명의 방법에 따라 제조된 이산화티탄과 텅스텐산화물 간의 접합구조 광촉매는 종래의 TiO2 광촉매에 비해 가시광에서 광촉매 활성이 크게 향상된 것을 알 수 있다.2. Test result; As shown in Table 1, pure TiO 2 having a decomposition rate of 2-propanol in all samples of Examples 1, 2, and 3 as a comparative example It was found to be five times more than the sample. Where pure TiO 2 The samples were prepared without adding tungsten oxide in the methods of Examples 1, 2 and 3, respectively, and these were used as Comparative Examples 1, 2 and 3, respectively. As a result, the junction structure photocatalyst between titanium dioxide and tungsten oxide prepared according to the method of the present invention is a conventional TiO 2 It can be seen that the photocatalytic activity is greatly improved in visible light compared to the photocatalyst.

< 표 1 > 가시광 광촉매 효율 비교표<Table 1> Comparison table of visible light photocatalyst efficiency

시 료sample 2-propnanol 분해율(%)2-propnanol decomposition rate (%) 실시예 1Example 1 8.58.5 비교예 1Comparative Example 1 1.71.7 실시예 2Example 2 7.87.8 비교예 2Comparative Example 2 0.950.95 실시예 3Example 3 9.19.1 비교예 3Comparative Example 3 0.950.95

한편, 가시광 뿐만 아니라 자외선이 혼합된 광선을 이용하여 광촉매 활성을 평가하였다. 즉, 300 W Xe 램프에서 방출되는 빛을 그대로 광촉매 반응에 이용하여 실시예 1, 2, 3의 시료에 대한 광촉매 효율을 평가하였다. 그 결과, 다음 표 2에 나타낸 것처럼 실시예 1, 2, 3 의 시료 모두 2-프로판올 분해속도가 비교예의 시료, 즉 순수한 TiO2 광촉매에 비해 1.5배 이상인 것으로 나타났다. 따라서 본 발명은 가시광선 뿐만 아니라 자외선을 포함한 경우에도 우수한 효과를 나타낸다는 사실을 알 수 있다.On the other hand, photocatalytic activity was evaluated by using not only visible light but also ultraviolet light mixed with light. That is, the photocatalytic efficiency of the samples of Examples 1, 2, and 3 was evaluated using the light emitted from the 300 W Xe lamp as it was in the photocatalytic reaction. As a result, as shown in Table 2 below, the samples of Examples 1, 2, and 3 showed a 2-propanol decomposition rate of the sample of the comparative example, that is, pure TiO 2. It was found to be 1.5 times more than the photocatalyst. Therefore, it can be seen that the present invention exhibits excellent effects in the case of including not only visible light but also ultraviolet light.

표 2. 가시광/자외선 혼합광원 하에서의 광촉매 효율 비교표 Table 2. Comparison of Photocatalytic Efficiency Under Visible / Ultraviolet Mixed Light Sources

시 료sample 2-propnanol 분해율(%)2-propnanol decomposition rate (%) 실시예 1Example 1 39.539.5 비교예 1Comparative Example 1 26.226.2 실시예 2Example 2 35.235.2 비교예 2Comparative Example 2 20.720.7 실시예 3Example 3 36.936.9 비교예 3Comparative Example 3 20.720.7

이상에서 살펴본 바와 같이, 본 발명에서는 이산화티탄과 텅스텐 산화물 사이에 나노 단위의 접합 구조를 형성 하므로서, 전자와 정공(正孔) 이동을 통하여 자외선 영역뿐만 아니라 가시광선 영역에서도 우수한 광활성을 갖는 광촉매를 제조할 수 있다. 본 발명에 따른 광촉매는 텅스텐 산화물에서 전자가 들뜨게 되면 가전자대에 정공이 형성되고, 이는 이산화티탄 표면으로 전달되어 광촉매 분해반응이 일어나게 된다. 또한 이렇게 만들어진 광촉매는 자외선 하에서도 광촉매 효율이 순수한 TiO2에 비해 훨씬 높다. 이는 텅스텐 산화물의 표면 산도가 높아져서 유기물의 흡착이 용이하기 때문이다. As described above, in the present invention, by forming a nano-structured junction structure between titanium dioxide and tungsten oxide, a photocatalyst having excellent photoactivity is produced not only in the ultraviolet region but also in the visible region through electron and hole movement. can do. In the photocatalyst according to the present invention, when electrons are lifted from the tungsten oxide, holes are formed in the valence band, which is transferred to the titanium dioxide surface to cause the photocatalytic decomposition reaction. In addition, the photocatalyst thus produced is much higher in photocatalytic efficiency than pure TiO 2 even under ultraviolet light. This is because the surface acidity of the tungsten oxide is increased to facilitate the adsorption of organic materials.

Claims (2)

가) 직경이 1.0 ~ 1000 nm인 WOx 나노입자, 또는 직경이 1.0 ~ 100 nm인 WOx 나노막대를 합성하는 단계(여기서, x 의 범위는 2.0~3.0 이고, 나노막대는 길이가 직경의 10배 이상인 것을 의미한다.), A) synthesizing WO x nanoparticles having a diameter of 1.0 to 1000 nm, or WO x nanorods having a diameter of 1.0 to 100 nm (wherein x ranges from 2.0 to 3.0 and the length of the nanorods is 10 Means more than twice), 나) 상기 WOx 나노입자 또는 나노막대를 TiO2 나노입자와 함께 수용액에 분산시키거나, 또는 졸겔법(Sol-gel process)에 의해서 제조된 TiO2 용액에 분산시켜 충분히 교반하는 단계, B) the above WO x Dispersing the nanoparticles or nanorods together with the TiO 2 nanoparticles in an aqueous solution or in a TiO 2 solution prepared by a Sol-gel process, followed by sufficient stirring, 다) 상기 혼합용액에서 용매를 건조하고, 100 ~ 800 oC 온도로 열처리 하는 단계; 로 이루어지는 것을 특징으로 하는 이산화티탄과 텅스텐 산화물이 복합화 된 가시광 광촉매의 제조방법.C) drying the solvent in the mixed solution and heat-treating at a temperature of 100 to 800 ° C .; A method for producing a visible light photocatalyst comprising titanium dioxide and tungsten oxide complexed. 제 1항에 있어서, 가) 단계에서 나노입자는 직경이 3 ~ 20 nm 이고, 나노막대는 직경이 5 ~ 10 nm 인 것을 사용하고, 다) 단계에서의 열처리는 300 ~ 500 oC 의 온도에서 실시하는 것을 특징으로 하는 방법.The method of claim 1, wherein the nanoparticles in the step a) is 3 to 20 nm in diameter, the nanorods are used 5 to 10 nm in diameter, c) the heat treatment in the step is carried out at a temperature of 300 ~ 500 o C The method characterized in that the implementation.
KR1020050061896A 2005-07-08 2005-07-08 A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide KR100578044B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050061896A KR100578044B1 (en) 2005-07-08 2005-07-08 A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050061896A KR100578044B1 (en) 2005-07-08 2005-07-08 A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide

Publications (1)

Publication Number Publication Date
KR100578044B1 true KR100578044B1 (en) 2006-05-11

Family

ID=37181338

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050061896A KR100578044B1 (en) 2005-07-08 2005-07-08 A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide

Country Status (1)

Country Link
KR (1) KR100578044B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010054357A2 (en) * 2008-11-10 2010-05-14 University Of Georgia Research Foundation, Inc. Photocatalytic structures, methods of making photocatalytic structures, and methods of photocatalysis
EP2188048A4 (en) * 2007-09-21 2012-08-08 Chemwelltech Co Ltd Photocatalytic composition for anti-reflection and the glass substrate coated with the composition
CN113337149A (en) * 2021-06-17 2021-09-03 莱西市邦宁建筑产业科技院 Environment-friendly air purification coating
KR20220095952A (en) 2020-12-30 2022-07-07 주식회사 비엔큐브 Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
CN115106078A (en) * 2022-06-24 2022-09-27 北京化工大学常州先进材料研究院 Modified TiO (titanium dioxide) 2 Method for preparing photocatalyst
KR102466111B1 (en) * 2021-11-25 2022-11-14 주식회사 제이앤켐텍 Photocatalyst Composition and the Fabrication Method Thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990063369A (en) * 1997-12-26 1999-07-26 가노 다다오 Photocatalysts, Lamps and Lighting Fixtures
JP2005138008A (en) 2003-11-05 2005-06-02 National Institute For Materials Science Visible light responding type titanium oxide composite photocatalyst and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990063369A (en) * 1997-12-26 1999-07-26 가노 다다오 Photocatalysts, Lamps and Lighting Fixtures
JP2005138008A (en) 2003-11-05 2005-06-02 National Institute For Materials Science Visible light responding type titanium oxide composite photocatalyst and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2188048A4 (en) * 2007-09-21 2012-08-08 Chemwelltech Co Ltd Photocatalytic composition for anti-reflection and the glass substrate coated with the composition
WO2010054357A2 (en) * 2008-11-10 2010-05-14 University Of Georgia Research Foundation, Inc. Photocatalytic structures, methods of making photocatalytic structures, and methods of photocatalysis
WO2010054357A3 (en) * 2008-11-10 2010-08-19 University Of Georgia Research Foundation, Inc. Photocatalytic structures, methods of making photocatalytic structures, and methods of photocatalysis
US20110245074A1 (en) * 2008-11-10 2011-10-06 Wilson Smith Photocatalytic structures, methods of making photocatalytic structures, and methods of photocatalysis
US8975205B2 (en) 2008-11-10 2015-03-10 University Of Georgia Research Foundation, Inc. Photocatalytic structures, methods of making photocatalytic structures, and methods of photocatalysis
KR20220095952A (en) 2020-12-30 2022-07-07 주식회사 비엔큐브 Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
CN113337149A (en) * 2021-06-17 2021-09-03 莱西市邦宁建筑产业科技院 Environment-friendly air purification coating
KR102466111B1 (en) * 2021-11-25 2022-11-14 주식회사 제이앤켐텍 Photocatalyst Composition and the Fabrication Method Thereof
CN115106078A (en) * 2022-06-24 2022-09-27 北京化工大学常州先进材料研究院 Modified TiO (titanium dioxide) 2 Method for preparing photocatalyst

Similar Documents

Publication Publication Date Title
Jin et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst
Asahi et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
KR101334970B1 (en) Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and appatarus for preparation of oxidizing agent
US20100193449A1 (en) Materials and methods for removing arsenic from water
Li et al. Treatment of coliphage MS2 with palladium-modified nitrogen-doped titanium oxide photocatalyst illuminated by visible light
JP5537858B2 (en) Photocatalyst material and method for producing the same
JP2009078211A (en) Photocatalyst
JPWO2006064799A1 (en) Composite metal oxide photocatalyst with visible light response
KR100578044B1 (en) A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide
CN109759110A (en) A kind of N doping porous carbon loaded titanium dioxide photocatalyst and the preparation method and application thereof
US20020077251A1 (en) Photocatalyst, process for producing the same and photocatalyst coating composition comprising the same
CN102202789A (en) Photocatalytic material, method of decomposing organic substance, interior member, air cleaner, and device for producing oxidizing agent
JP4871325B2 (en) PHOTOCATALYST AGENT HAVING TITANIUM OXIDE / IRON TITANATE JOINT STRUCTURE AND METHOD FOR PRODUCING THE SAME
JP5591683B2 (en) Metal ion-supported titanium oxide particles having an exposed crystal face and method for producing the same
CN113893884A (en) Efficient and environment-friendly visible light photocatalyst and preparation method and application thereof
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
KR101993236B1 (en) Method for manufacturing visible-light active titanium dioxide photocatalyst by using chemicasurface modification
JPWO2007097220A1 (en) Visible light responsive photocatalyst
JP5750319B2 (en) Method for producing brookite type titanium oxide
KR101532718B1 (en) Transition metal-doped titanium dioxide nonphotocatalyst solution for radon removal and preparation method thereof
Li et al. Nanostructured visible-light photocatalysts for water purification
KR100489219B1 (en) Manufacturing process of Titanium Dioxide Photocatalysts supporting Silicagel
Khan Fundamentals and principles of photocatalysis
KR101242576B1 (en) Photocatalyst having a tin oxide with metal ion and titanium dioxide composite structure and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140501

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170502

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181001

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190430

Year of fee payment: 14