JP2009078211A - photocatalyst - Google Patents

photocatalyst Download PDF

Info

Publication number
JP2009078211A
JP2009078211A JP2007248294A JP2007248294A JP2009078211A JP 2009078211 A JP2009078211 A JP 2009078211A JP 2007248294 A JP2007248294 A JP 2007248294A JP 2007248294 A JP2007248294 A JP 2007248294A JP 2009078211 A JP2009078211 A JP 2009078211A
Authority
JP
Japan
Prior art keywords
photocatalyst
visible light
present
light
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007248294A
Other languages
Japanese (ja)
Inventor
Zhiguo Yi
志国 易
Kinka Yo
金花 葉
Tetsuya Kako
哲也 加古
Naoki Kikukawa
直樹 菊川
Shuxin Ouyang
スーシン オウヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007248294A priority Critical patent/JP2009078211A/en
Publication of JP2009078211A publication Critical patent/JP2009078211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

【課題】光を照射することによって有害物質を酸化、還元、分解する、有害物質の無害化処理、あるいは汚れの清浄化さらには抗菌特性を供する光触媒とこの触媒を用いた有害物質の無害化処理方法、あるいは汚れ物質分解清浄化方法さらには抗菌方法を提供する。
【解決手段】可視光領域に光吸収端を有する複合酸化物からなる光触媒であって、前記複合酸化物が下記式1で示されるものであることを特徴とする光触媒。(式1)AgPO(2.8≦x≦3.2、3.8≦y≦4.2、x/y= 0.66〜0.84)
【選択図】なし
[PROBLEMS] To oxidize, reduce, and decompose harmful substances by irradiating light, to detoxify harmful substances, or to clean dirt and to provide antibacterial properties, and to detoxify harmful substances using this catalyst. The present invention provides a method, a method for decomposing and cleaning dirt substances, and an antibacterial method.
A photocatalyst comprising a composite oxide having a light absorption edge in the visible light region, wherein the composite oxide is represented by the following formula 1. (Formula 1) Ag x PO y (2.8 ≦ x ≦ 3.2, 3.8 ≦ y ≦ 4.2, x / y = 0.66 to 0.84)
[Selection figure] None

Description

本発明は、光照射下において酸化・還元能を発揮する光触媒に関するものである。   The present invention relates to a photocatalyst that exhibits oxidation and reduction ability under light irradiation.

20世紀の急激な経済成長がもたらした負の遺産である地球環境問題は、深刻になりつつある。ダイオキシンなどの環境ホルモン物質は勿論のこと、水中や大気中の農薬や悪臭物質、さらには、居住空間でのシックハウス症候群など健康被害の原因になっている化学物質なども人類の安全で、快適な生活を脅かしている。
これらの有害物質の発生を抑え、また既に発生してしまったものについて素早く取り除く技術開発が求められている。
The global environmental problem, a negative legacy brought about by the rapid economic growth of the 20th century, is becoming more serious. Not only environmental hormone substances such as dioxins, but also pesticides and malodorous substances in the water and the atmosphere, and chemical substances that cause health damage such as sick house syndrome in living spaces are safe and comfortable for humanity. It threatens life.
There is a need for technology development that suppresses the generation of these harmful substances and quickly removes those that have already occurred.

この課題を解決する手段として光触媒が注目されている。光触媒は、そのバンドギャップ以上のエネルギーを有する光が照射されると価電子帯の電子が伝導帯に励起され、伝導帯、価電子帯にそれぞれ電子、ホールを生成する。これらは強い酸化、還元力を持つため、周りの化学物質を酸化、あるいは還元することができる。近年、光触媒の応用研究として、光触媒を有害化学物質の分解に使用することが広く検討され、有効な環境浄化材として期待されている。水中や大気中の農薬や悪臭物質などの有機物の分解や触媒を塗布した固体表面のセルフクリーニング、抗菌・除菌などの応用例が研究、提言されているが、その大部分はアナターゼ型の二酸化チタンを用いたものである。   A photocatalyst has attracted attention as a means for solving this problem. When the photocatalyst is irradiated with light having energy greater than its band gap, electrons in the valence band are excited to the conduction band, and electrons and holes are generated in the conduction band and the valence band, respectively. Since these have strong oxidizing and reducing power, they can oxidize or reduce surrounding chemical substances. In recent years, as an applied research of photocatalysts, the use of photocatalysts for the decomposition of harmful chemical substances has been widely studied and is expected as an effective environmental purification material. Researches and proposals have been made on the application of decomposition of organic substances such as pesticides and odorous substances in water and air, self-cleaning of solid surfaces coated with catalysts, antibacterial and sterilization, etc. Titanium is used.

二酸化チタンはバンドギャップが3.2eVあるため、390nmより短い紫外光線の照射下でのみ活性を示す。しかし、太陽光や蛍光灯に含まれている紫外線の量は、僅か2〜4%しかなく、そのため、従来の二酸化チタン光触媒技術では光の利用効率が極端に低く、特に光の絶対量が少ない、室内においては光触媒技術・材料がほとんど利用されるまでに至っていない。   Since titanium dioxide has a band gap of 3.2 eV, it exhibits activity only under irradiation with ultraviolet rays shorter than 390 nm. However, the amount of ultraviolet rays contained in sunlight and fluorescent lamps is only 2 to 4%, so that the conventional titanium dioxide photocatalyst technology has extremely low light utilization efficiency, especially the absolute amount of light. In the room, photocatalyst technology and materials are hardly used.

一方、太陽光や室内照明の蛍光灯の大部分は可視光で占められており、これら自然環境にふんだんにある可視光を利用できる光触媒の開発は、使用しうる波長領域が広がった分、効率が格段に向上するだけでなく、従来の二酸化チタンでは機能できなかった屋内環境における実用を可能にし、光触媒技術の応用市場を大幅に拡大することができる。   On the other hand, most of the fluorescent lights for sunlight and indoor lighting are occupied by visible light, and the development of photocatalysts that can use visible light abundantly in these natural environments is efficient because the usable wavelength range has expanded. Not only can it be improved dramatically, it can be used in indoor environments that could not function with conventional titanium dioxide, and the application market for photocatalytic technology can be greatly expanded.

それゆえ、近年、可視光領域の波長に対しても活性を示す各種光触媒が提案され、盛んに研究開発がおこなわれている。   Therefore, in recent years, various photocatalysts that exhibit activity even at wavelengths in the visible light region have been proposed and are actively researched and developed.

たとえば、その一つに、酸化チタンにCrやVなどの金属イオンをドープすることによって、可視光に対しても触媒活性を発現しうる触媒が提案されている(非特許文献1)。この提案によるとCrやVなどの金属イオンがドープされることによって、酸化チタンの伝導帯と価電子帯の間にエネルギー準位が新たに作り出され、その結果、バンドギャップが狭くなり、確かに可視光を吸収することができるようになる。しかしながら、金属イオンのドープによって導入されたエネルギー準位は電子とホールの再結合準位にもなりえ、活性の上昇を期待できない場合が多い。   For example, as one of the catalysts, a catalyst that can exhibit catalytic activity even for visible light by doping titanium oxide with metal ions such as Cr and V has been proposed (Non-patent Document 1). According to this proposal, by doping metal ions such as Cr and V, a new energy level is created between the conduction band and the valence band of titanium oxide, and as a result, the band gap is narrowed. Visible light can be absorbed. However, the energy level introduced by doping metal ions can also be a recombination level of electrons and holes, and in many cases, an increase in activity cannot be expected.

さらに、酸化チタンに窒素などのアニオンをドープすることによって可視光応答型光触媒を作製することが提案されている(特許文献1)。この提案による酸化チタン光触媒は、金属イオンドープ型光触媒よりも確かに可視光照射下における活性は上昇するが、窒素をドープすることによって酸化チタン内部に酸素欠陥が作製され、光触媒活性が低下してしまうという欠点があった。また、何れにしてもドープという手法を用いることによって作製された可視光応答型光触媒は、現段階ではその活性はまだ不十分であり、更に一段と高いレベルの光触媒活性を発現しうる材料が求められている。   Furthermore, it has been proposed to produce a visible light responsive photocatalyst by doping titanium oxide with an anion such as nitrogen (Patent Document 1). The titanium oxide photocatalyst produced by this proposal certainly increases the activity under visible light irradiation than the metal ion doped photocatalyst, but doping with nitrogen creates an oxygen defect inside the titanium oxide, reducing the photocatalytic activity. There was a drawback of end. In any case, the visible light responsive photocatalyst produced by using the dope method is still insufficient at the present stage, and a material that can express a higher level of photocatalytic activity is required. ing.

これに対し、非ドープ型の光触媒は有効な材料であることが報告されている。最近では、酸化チタン以外の酸化物を利用した可視光応答型光触媒を作製する試みもなされている。たとえば、BiVOは可視光照射下において硝酸銀水溶液から酸素を高活性に生成する光触媒であると報告されている(非特許文献2)。しかし、この材料は有機物に対する酸化力が不足しており、4−ノニルフェノールといった有機物を分解して二酸化炭素にまで完全に酸化分解することができない(非特許文献3)。すなわち、価電子帯のトップのポテンシャルが小さすぎて、有機物を完全に酸化分解することができないことを示唆している。 In contrast, undoped photocatalysts have been reported to be effective materials. Recently, an attempt has been made to produce a visible light responsive photocatalyst using an oxide other than titanium oxide. For example, BiVO 4 is reported to be a photocatalyst that generates oxygen with high activity from an aqueous silver nitrate solution under visible light irradiation (Non-patent Document 2). However, this material has insufficient oxidizing power for organic matter, and cannot decompose organic matter such as 4-nonylphenol and completely oxidize and decompose it to carbon dioxide (Non-patent Document 3). In other words, it suggests that the potential of the top of the valence band is too small to completely oxidize and decompose organic matter.

このような状況の下で、本発明者らの研究グループにおいてもこれまで鋭意研究を重ね、一連の光触媒の開発を行ってきた。そして、その成果の一部についてこれを特許出願してきた(特許文献2〜14参照、ただし、特許文献10から14はまだ公開前につき公開文献番号未定)。これらの可視光応答性光触媒は太陽光などに含まれる紫外線のみにとどまらず、可視光成分の光に対しても感応し、これまでの紫外光領域に依存してきた光触媒に比し、光エネルギーの利用率は紫外光部分は勿論、可視光部分についても利用可能となったことから、触媒作用は大きく向上し、貢献大なるものがあったが、さらに触媒設計のしやすい、しかも効率のいいものが求められていることは当然である。とりわけ、有害物質に対して高度に作用し、分解性に優れたものが求められている。
しかし、いずれの先行技術においても、量子収率では数%を超えるものが無く、光エネルギーを効率よく利用できる触媒が切望されていた。
Under such circumstances, the present inventors' research group has repeatedly conducted intensive research and developed a series of photocatalysts. A patent application has been filed for a part of the results (see Patent Documents 2 to 14, however, Patent Documents 10 to 14 are still unpublished document numbers before publication). These visible light responsive photocatalysts are sensitive not only to the ultraviolet rays contained in sunlight, but also to the light of visible light components, compared to the photocatalysts that have relied on the ultraviolet light region so far, The utilization rate is not only for the ultraviolet light part but also for the visible light part, so the catalytic action has greatly improved and contributed greatly, but the catalyst design is easier and more efficient. It is natural that is required. In particular, there is a demand for a substance that is highly effective against harmful substances and excellent in degradability.
However, none of the prior arts has a quantum yield exceeding several percent, and a catalyst that can efficiently use light energy has been desired.

E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti and M. Visca: J. Am. Chem. Soc. Vol 104 No.11 2996−3002. American Chemical Society Publications、(1982)E. Borgarello, J.A. Kiwi, M.M. Gratzel, E .; Pelizetti and M.M. Visca: J.M. Am. Chem. Soc. Vol 104 No. 11 2996-3002. American Chemical Society Publications, (1982) A.Kudo、K.Omori、H.Kato J Am Chem Soc Vol 121 11459−11467. American Chemical Society Publications、 (1999)A. Kudo, K. et al. Omori, H .; Kato J Am Chem Soc Vol 121 11459-11467. American Chemical Society Publications, (1999) S.Kohtani,S.Makino,A.Kudo,K.Tokumura,Y.Ishigaki,T.Matsunaga,O.Nikaido,K.Hayakawa andR.Nakagaki Chem.Lett 660−661 The Chemical Society of Japan、(2002)S. Kohtani, S .; Makino, A .; Kudo, K .; Tokumura, Y. et al. Ishigaki, T .; Matsunaga, O .; Nikaido, K .; Hayaka and R.H. Nakagaki Chem. Lett 660-661 The Chemical Society of Japan, (2002) 特開2004−988号公報Japanese Patent Laid-Open No. 2004-988 特許第3718710号Japanese Patent No. 3718710 特許第3735711号Japanese Patent No. 3735711 特許第3834625号Japanese Patent No. 3834625 特許第3890414号Patent No. 3890414 特許第3903179号Japanese Patent No. 3903179 特許第3837548号Japanese Patent No. 38337548 特許第3870267号Japanese Patent No. 3870267 特許第4000378号Patent No. 4000378 特開2005−199134公報JP 2005-199134 A 特開2006−255525公報JP 2006-255525 A 特開2007−222761公報JP 2007-222761 A 特許願2006−177194Patent application 2006-177194 特許願2006−176599Patent application 2006-176599 特開2002−104909公報JP 2002-104909 A

本発明は、この要請に応えようというものである。さらに、光を照射することによって有害物質を酸化、還元、分解する、有害物質の無害化処理、あるいは汚れの清浄化さらには抗菌特性を供する光触媒とこの触媒を用いた有害物質の無害化処理方法、あるいは汚れ物質分解清浄化方法さらには抗菌方法を提供しようと云うものである。   The present invention seeks to meet this need. Furthermore, a harmful substance is oxidized, reduced, or decomposed by irradiating light, the harmful substance is detoxified, or the dirt is cleaned, and a photocatalyst that provides antibacterial properties and a detoxifying process for the harmful substance using the catalyst. Alternatively, it is intended to provide a method for decomposing and cleaning dirt substances and an antibacterial method.

本発明者等においては、様々な材料について鋭意研究を重ねてきた。その結果、これまでに提案されてきた一連の光触媒とは組成的に全く異なる新規な触媒を開発することに成功したものである。本発明は、この成功に基づいてなされたものである。すなわち、上記課題は下記(1)に記載の手段により解決し、達成することに成功したものである。   The inventors have conducted extensive research on various materials. As a result, the inventors succeeded in developing a novel catalyst that is completely different in composition from the series of photocatalysts proposed so far. The present invention has been made based on this success. That is, the above-described problem has been solved and achieved by the means described in (1) below.

(1)可視光領域に光吸収端を有する複合酸化物からなる光触媒であって、前記複合酸化物が下記式1で示されるものであることを特徴とする光触媒。
(式1)AgPO
(2.8≦x≦3.2、3.8≦y≦4.2、x/y= 0.66〜0.84)
(1) A photocatalyst comprising a composite oxide having a light absorption edge in the visible light region, wherein the composite oxide is represented by the following formula 1.
(Formula 1) Ag x PO y
(2.8 ≦ x ≦ 3.2, 3.8 ≦ y ≦ 4.2, x / y = 0.66 to 0.84)

本発明は、銀とリン、酸素とからなる複合酸化物半導体からなる光触媒であって、バンドギャップは約2.3〜2.5evである。すなわち、紫外光から560nm程度までの可視光領域の波長のスペクトルを十分に吸収することができる。ゆえに、これまで実用化されてきた酸化チタンをベースとした紫外光応答型光触媒に比して、極めて優位性を持つ光触媒である。   The present invention is a photocatalyst composed of a composite oxide semiconductor composed of silver, phosphorus and oxygen, and has a band gap of about 2.3 to 2.5 ev. That is, the spectrum of the wavelength in the visible light region from ultraviolet light to about 560 nm can be sufficiently absorbed. Therefore, it is a photocatalyst having a significant advantage over the ultraviolet light-responsive photocatalyst based on titanium oxide that has been put into practical use.

なお、燐酸銀系の触媒としては、特許文献15に示されたものが知られているが、これは多孔質無機担体に含浸された燐酸塩結晶に銀を化学反応させて得られた物であり、多孔質無機担体の表面に存在する銀固有の殺菌作用の発現による滅菌効果が確認されているに過ぎず、多孔質無機担体内に存在している以上、この銀燐酸化合物は光との接触による機能を発揮するものではないものであり、光触媒ではない。   As a silver phosphate-based catalyst, the one shown in Patent Document 15 is known, which is obtained by chemically reacting silver with a phosphate crystal impregnated in a porous inorganic carrier. Yes, only the sterilization effect due to the expression of the bactericidal action inherent to silver present on the surface of the porous inorganic carrier has been confirmed, and as long as it exists in the porous inorganic carrier, this silver phosphate compound is It does not perform the function due to contact and is not a photocatalyst.

本発明の光触媒は、バンド構造計算の結果、価電子帯のトップがAg4d軌道とO2p軌道の混成軌道から構成されるため、価電子帯の位置が押し上げられ、可視光に応答できるような比較的に狭いバンドギャップになったことが分かった。また価電子帯、伝導帯のいずれも非常に拡散的な特徴を持つことが見られ、そのため、光励起により生成した電子・ホールの表面への移動が早く、高い光触媒活性に繋がったと考えられる。これらの特徴は、本発明の光触媒がCrやNをドープした酸化チタン材料や、前述した既存可視光応答性光触媒に比しても、格段に高い光触媒活性の裏付けとなる。
本発明によれば、紫外光のみならず、可視光を利用して、工業廃水の中で多く含まれる各種色素や、工場などで最もよく利用されているVOCの1種、2−プロピルアルコール(IPA)を効率よく分解できる効果を有している。この光触媒の特性はこれだけにとどまらず、光を照射することによってその他の有害ガス、たとえば、シックハウス症候群の原因ガスの1つであるアルデヒドガスや環境ホルモンなどの様々な有害物質を分解、除去することができる能力を有している。また、ウィルスや細菌に対しても抗ウィルス、抗菌効果を期待できる。
さらに、現在人工光合成を模倣したZスキームによる水分解が水素エネルギーの革新的な製造法として注目されているが、本発明の光触媒は非常に強い酸化力を持つため、Zスキームに必要不可欠な酸素発生光触媒に用いることができる。さらに、本発明の光触媒は可視光照射下での酸素発生において90%と非常に高い量子収率を持つため、半導体光電極として用い、太陽電池などから得られる電気でバイアスをかけることによって、高効率な太陽光エネルギー変換システムを提供することもできる。
本発明の複合酸化物半導体光触媒は、可視光、紫外光領域に対して活性を有することは上記の通りであり、その特性の故、前示した使用例以外にも多様な用途に利用できることが期待され、今後その果たす役割は、非常に大きいものと考えられる。
In the photocatalyst of the present invention, as a result of the band structure calculation, the top of the valence band is composed of a hybrid orbital of Ag4d orbit and O2p orbit, so that the position of the valence band is pushed up and can respond relatively to visible light. It turned out that it became a narrow band gap. In addition, it can be seen that both the valence band and the conduction band have very diffusive characteristics. Therefore, it is considered that the electrons and holes generated by photoexcitation move to the surface quickly, leading to high photocatalytic activity. These characteristics support the photocatalytic activity that is much higher than the titanium oxide material in which the photocatalyst of the present invention is doped with Cr or N or the above-described existing visible light responsive photocatalyst.
According to the present invention, not only ultraviolet light but also visible light is used, various dyes contained in industrial wastewater, and one of VOCs most commonly used in factories, such as 2-propyl alcohol ( IPA) can be efficiently decomposed. This photocatalyst is not limited to this, but it also decomposes and removes other harmful gases, such as aldehyde gas and environmental hormones, which are one of the cause gases of sick house syndrome, by irradiating light. Has the ability to Antiviral and antibacterial effects can also be expected against viruses and bacteria.
Furthermore, water splitting by the Z scheme that mimics artificial photosynthesis is currently attracting attention as an innovative method for producing hydrogen energy. However, the photocatalyst of the present invention has a very strong oxidizing power, so that oxygen essential for the Z scheme is required. It can be used as a generated photocatalyst. Furthermore, since the photocatalyst of the present invention has a very high quantum yield of 90% in oxygen generation under visible light irradiation, it can be used as a semiconductor photoelectrode, and by applying a bias with electricity obtained from a solar cell or the like, An efficient solar energy conversion system can also be provided.
As described above, the composite oxide semiconductor photocatalyst of the present invention has activity in the visible light and ultraviolet light regions, and because of its characteristics, it can be used in various applications other than the use examples shown above. Expected and expected to play a very important role in the future.

本発明の光触媒は原料となるNaHPOとAgNOを化学当量比で配合し、常温常圧で機械的に混合したのち、洗浄し、乾燥することによって得られているが、合成手法はこれに限られたものではない。原料となる各金属成分は酸化物あるいは金属炭酸塩あるいは金属硝酸塩あるいは金属硫酸塩、あるいは金属塩化物を用いることもできる。また、目的組成の比率で混合し、常圧下空気中で焼成することによって合成することができる。昇華し易い原料ではその分を見込み少し多めに加える必要がある。また、上記合成手法以外に金属アルコキシドや金属塩を原料とした各種ゾルゲル法、共沈法、錯体重合法など様々な方法も用いられる。その中には酸化物前駆体を調製し、焼成することで合成することも含み、本発明はこれらの態様を排除する特段の理由はなく、当然のこととして含むものである。 The photocatalyst of the present invention is obtained by blending raw material Na 2 HPO 4 and AgNO 3 at a chemical equivalent ratio, mechanically mixing at normal temperature and normal pressure, washing and drying. It is not limited to this. Each metal component used as a raw material can be an oxide, a metal carbonate, a metal nitrate, a metal sulfate, or a metal chloride. Moreover, it can synthesize | combine by mixing by the ratio of the target composition and baking in air under normal pressure. For raw materials that are easily sublimated, it is necessary to add a little more to that amount. In addition to the above synthetic methods, various methods such as various sol-gel methods, coprecipitation methods, and complex polymerization methods using metal alkoxides and metal salts as raw materials are also used. Among them, an oxide precursor is prepared and synthesized by firing, and the present invention includes, as a matter of course, no particular reason for excluding these aspects.

本発明の光触媒の形状は、光を有効に利用するために微粒子で表面積の大きいことが望ましい。固相反応法で調製した場合に粒子が大きく表面積が小さいが、ボールミルなどで粉砕を行うことでさらに粒子径を小さくすることができる。一般には粒子の大きさは1×10nm〜2×10μm、好ましくは1μm以下である。また微粒子を成型して板状を始め種々の形状に成形し、使用することもできる。他の適宜形状をした担体に担持させて使用することも一つの態様であり、さらには薄膜状にコーティングして使用することもできる。 The shape of the photocatalyst of the present invention is preferably fine particles and has a large surface area in order to effectively use light. When prepared by the solid phase reaction method, the particles are large and the surface area is small, but the particle size can be further reduced by grinding with a ball mill or the like. In general, the size of the particles is 1 × 10 nm to 2 × 10 2 μm, preferably 1 μm or less. Further, the fine particles can be molded into various shapes including a plate shape and used. It is also one embodiment to use it by supporting it on another appropriately shaped carrier, and it can also be used by coating it in a thin film.

本発明の光触媒の結晶性はよいほうが望ましく、また、電荷分離を促進し、光触媒反応を加速させるためにPtやPd、Agなどの貴金属を数%以下程度、光触媒に担持させてもよい。   It is desirable that the photocatalyst of the present invention has good crystallinity. Further, in order to promote charge separation and accelerate the photocatalytic reaction, a precious metal such as Pt, Pd, or Ag may be supported on the photocatalyst by about several percent or less.

本発明の光触媒の光触媒反応により分解あるいは酸化あるいは還元反応により除去できる有害物質としては環境ホルモン、農薬、殺虫剤、カビ、細菌、ウィルス、藻類、環境汚染物質、フロンガス、炭化水素、アルコール、アルデヒド、ケトン、カルボン酸、一酸化炭素、アミン、油、芳香族化合物、有機ハロゲン化合物、窒素化合物、硫黄化合物、有機リン化合物、蛋白質などが挙げられる。さらに身の回りの汚れの原因となっている石鹸や油、手垢、茶渋、台所のシンクなどのぬめりなどもこの光触媒の光触媒反応により分解できる。   Hazardous substances that can be decomposed or removed by oxidation or reduction reaction by the photocatalytic reaction of the photocatalyst of the present invention include environmental hormones, agricultural chemicals, insecticides, molds, bacteria, viruses, algae, environmental pollutants, chlorofluorocarbons, hydrocarbons, alcohols, aldehydes, Examples include ketones, carboxylic acids, carbon monoxide, amines, oils, aromatic compounds, organic halogen compounds, nitrogen compounds, sulfur compounds, organic phosphorus compounds, and proteins. In addition, soaps and oils, dirt, tea sinks, and slimes such as kitchen sinks that cause personal contamination can be decomposed by the photocatalytic reaction of this photocatalyst.

以下、本発明を具体的な実施例と図面に基づいて詳細に説明するが、これらは本発明を限定するものではない。以下の実施例においては、一般式;AgPOで示される複合酸化物半導体光触媒を実施例として開示し、これをメカノケミカル合成法で合成した場合の実施例である。本発明は、この実施例によって限定されるものでない。 Hereinafter, although the present invention is explained in detail based on a concrete example and a drawing, these do not limit the present invention. In the following examples, a composite oxide semiconductor photocatalyst represented by the general formula: Ag 3 PO 4 is disclosed as an example, and this is an example in which this is synthesized by a mechanochemical synthesis method. The invention is not limited by this example.

AgPO光触媒の作製方法は次のとおりである。白い色のNaHPOとAgNO3をAgPOに対応する組成比どおり秤量し、ボールミルや乳鉢などの粉砕混合器具を利用して色が黄色に変わるまで十分に混合した。その後、蒸留水等で混合物を十分に洗浄した。最後に大気圧空気雰囲気下で70℃にて一晩乾燥し、黄色の粉末試料を得た。
得られたこの粉末のX線回折パターンを測定したところ(図1)、AgPOの単相であることを確認した。また、吸収スペクトルの測定から上記の材料は可視光の540nmまでの光に対して吸収を持ち、可視光領域に光吸収端を持つことがわかった(図2)。また、この材料の比表面積は0.98m/gであった。
The production method of the Ag 3 PO 4 photocatalyst is as follows. White color Na 2 HPO 4 and AgNO 3 were weighed according to the composition ratio corresponding to Ag 3 PO 4 , and mixed well using a pulverizing and mixing device such as a ball mill or a mortar until the color turned yellow. Thereafter, the mixture was sufficiently washed with distilled water or the like. Finally, it was dried overnight at 70 ° C. under an atmospheric pressure air atmosphere to obtain a yellow powder sample.
When the X-ray diffraction pattern of the obtained powder was measured (FIG. 1), it was confirmed to be a single phase of Ag 3 PO 4 . Moreover, it was found from the measurement of the absorption spectrum that the above materials absorb visible light up to 540 nm and have a light absorption edge in the visible light region (FIG. 2). The specific surface area of this material was 0.98 m 2 / g.

実施例1で作製した光触媒0.5gを用いて、濃度3.1gL−1の硝酸銀水溶液の分解試験を行った。光源には300W Xeランプを用い、カットオフフィルターを利用して、420nm以上の可視光を反応容器に照射した。生成した酸素の定量はガスクロマトグラフィー(検出器はTCD)で行った。その結果(図3)、酸素は1時間で約636μmol生成することが確認された。以上のことからこの材料は可視光照射下において極めて強い酸化力を持つ光触媒であることがわかった。 Using 0.5 g of the photocatalyst prepared in Example 1, a decomposition test of a silver nitrate aqueous solution having a concentration of 3.1 gL −1 was performed. A 300 W Xe lamp was used as a light source, and a visible light of 420 nm or more was irradiated to the reaction vessel using a cutoff filter. The produced oxygen was quantified by gas chromatography (detector was TCD). As a result (FIG. 3), it was confirmed that about 636 μmol of oxygen was generated in 1 hour. From the above, it was found that this material is a photocatalyst having extremely strong oxidizing power under visible light irradiation.

実施例1で作製した光触媒0.5gを用いて、この材料の酸素発生量子収率の可視光波長依存性を調べた。濃度3.1gL−1の硝酸銀水溶液の分解試験を行った。光源には300W Xeランプを用い、特定な波長のみを透過させる金属干渉フィルター(日本真空)を利用して、420nm、430nm、440nm、460nm、480nm、500nm、520nm、および540nmを中心とする光を反応容器に入射させた。照射した光の光子数は光度計で測った。また、生成した酸素の定量はガスクロマトグラフィー(検出器はTCD)で行った。その結果(図4)、540nmの可視光照射下においても酸素を発生することができた。特に420nmの光に対しては量子収率が90%という驚異的に高い値に達した。従来知られた可視光応答型材料の量子収率が数%〜10%しかないことから、本発明の材料は極めて酸化力が高く、光触媒活性が非常に高い材料であることが明白になった。 Using 0.5 g of the photocatalyst prepared in Example 1, the dependency of the oxygen generation quantum yield of this material on the visible light wavelength was examined. A decomposition test of an aqueous silver nitrate solution having a concentration of 3.1 gL −1 was performed. Using a 300W Xe lamp as a light source and using a metal interference filter (Nihon Vacuum) that transmits only a specific wavelength, light centered at 420 nm, 430 nm, 440 nm, 460 nm, 480 nm, 500 nm, 520 nm, and 540 nm Incident into the reaction vessel. The number of photons irradiated was measured with a photometer. The produced oxygen was quantified by gas chromatography (detector was TCD). As a result (FIG. 4), oxygen could be generated even under irradiation with visible light of 540 nm. Especially for 420 nm light, the quantum yield reached a surprisingly high value of 90%. Since the quantum yield of conventionally known visible light responsive materials is only a few percent to 10%, it became clear that the material of the present invention has a very high oxidizing power and a very high photocatalytic activity. .

実施例1で作製した光触媒0.3gを用いて、15.3mg/lのメチレンブルー色素を含む水溶液100mlに懸濁しメチレンブルーの光分解反応をさせた。マグネチックスターラーで攪拌しながら外部から光を照射した。光源には300WXeランプを用い、反応セルとしてはパイレックスガラス(コーニング社の登録商標)製のものを用いた。可視光における光触媒反応を調べるため、ランプと反応セルの間に420nmより波長の短い光をカットするカットオフフィルターを挿入し、420nmより長い波長のみを照射させた。また、熱効果を取り除くため、冷却水フィルターをカットオフフィルターの前に挿入し、赤外線を除去するようにした。メチレンブルーの光分解による濃度変化は紫外−可視吸収スペクトル測定により調べた。
その結果、420nmのフィルターを通した可視光照射下において、僅か3分間で青色のメチレンブルー溶液が完全に脱色し、無色透明になることがわかった。また、全有機炭素量分析計を用いて可視光照射5分後の溶液中に残される全有機炭素量を測ったところ、初期量の42%にまで減少したことが明かとなった。僅か5分の可視光照射によって、半分以上のメチレンブルー色素が二酸化炭素にまで完全に酸化され、無機化したため、溶液中の全有機炭素量が大きく減少したことを意味する。
Using 0.3 g of the photocatalyst prepared in Example 1, it was suspended in 100 ml of an aqueous solution containing 15.3 mg / l of methylene blue dye and subjected to a photodecomposition reaction of methylene blue. Light was irradiated from the outside while stirring with a magnetic stirrer. A 300 WXe lamp was used as the light source, and a Pyrex glass (registered trademark of Corning) was used as the reaction cell. In order to examine the photocatalytic reaction in visible light, a cut-off filter for cutting light having a wavelength shorter than 420 nm was inserted between the lamp and the reaction cell, and only a wavelength longer than 420 nm was irradiated. In order to remove the thermal effect, a cooling water filter was inserted in front of the cutoff filter to remove infrared rays. Changes in concentration due to photolysis of methylene blue were examined by measuring UV-visible absorption spectra.
As a result, under visible light irradiation through a 420 nm filter, it was found that the blue methylene blue solution was completely decolorized and became colorless and transparent in only 3 minutes. Further, when the total amount of organic carbon remaining in the solution 5 minutes after irradiation with visible light was measured using a total organic carbon amount analyzer, it was revealed that the total amount of carbon was reduced to 42% of the initial amount. It means that the amount of total organic carbon in the solution was greatly reduced because more than half of the methylene blue dye was completely oxidized to carbon dioxide and mineralized by irradiation with visible light for only 5 minutes.

実施例1で作製した光触媒0.3gを用いて、15.3mg/lのローダミンB色素を含む水溶液100mlに懸濁しローダミンB色素の光分解反応をさせた。実験条件は実施例4に述べたメチレンブルー色素の分解実験と同じであった。
その結果、420nmのフィルターを通した可視光照射下で僅か10分間でピンク色のローダミンB溶液が完全に脱色し、無色透明になることがわかった。また、全炭素分析計を用いて可視光照射10分後の溶液中に残される全有機炭素量を測ったところ、初期量の34.4%にまで減少したことが明かとなった。僅か10分の可視光照射によって、2/3ほどのローダミンB色素が二酸化炭素にまで完全に酸化され、無機化したため、溶液中の全有機炭素量が大幅に減少したことを意味する。
Using 0.3 g of the photocatalyst prepared in Example 1, it was suspended in 100 ml of an aqueous solution containing 15.3 mg / l rhodamine B dye and subjected to a photodecomposition reaction of rhodamine B dye. The experimental conditions were the same as the methylene blue dye decomposition experiment described in Example 4.
As a result, it was found that the pink rhodamine B solution completely decolored and became colorless and transparent in only 10 minutes under irradiation of visible light through a 420 nm filter. Further, when the total amount of organic carbon remaining in the solution 10 minutes after irradiation with visible light was measured using a total carbon analyzer, it was revealed that the total amount of carbon was reduced to 34.4% of the initial amount. By irradiation with visible light for only 10 minutes, about 2/3 of the rhodamine B dye was completely oxidized to carbon dioxide and mineralized, which means that the total amount of organic carbon in the solution was greatly reduced.

実施例1で作製した光触媒0.3gを用いて、15.3mg/lのオレンジII色素を含む水溶液100mlに懸濁しローダミンB色素の光分解反応をさせた。実験条件は実施例4に述べたメチレンブルー色素の分解実験と同じであった。
その結果、420nmのフィルターを通した可視光照射下で僅か16分間でピンク色のローダミンB溶液が完全に脱色し、無色透明になることがわかった。また、全炭素分析計を用いて可視光照射16分後の溶液中に残される全有機炭素量を測ったところ、初期量の91.7%にまで減少したことが明かとなった。
なお、表1は、実施例4,5,6の本発明の光触媒および比較例2の窒素ドープ二酸化チタン光触媒によるによる各色素の分解活性を示した表である。
Using 0.3 g of the photocatalyst prepared in Example 1, it was suspended in 100 ml of an aqueous solution containing 15.3 mg / l Orange II dye, and the photodecomposition reaction of rhodamine B dye was carried out. The experimental conditions were the same as the methylene blue dye decomposition experiment described in Example 4.
As a result, it was found that the pink rhodamine B solution completely decolored and became colorless and transparent in only 16 minutes under irradiation with visible light through a 420 nm filter. Further, when the total amount of organic carbon remaining in the solution 16 minutes after irradiation with visible light was measured using a total carbon analyzer, it was revealed that the total carbon content was reduced to 91.7% of the initial amount.
Table 1 is a table showing the decomposition activity of each dye by the photocatalyst of the present invention in Examples 4, 5, and 6 and the nitrogen-doped titanium dioxide photocatalyst of Comparative Example 2.

実施例1で得られた光触媒0.3gを用いて、2−プロピルアルコール(約420ppm)の分解試験を行った。光源には300W Xeランプを用い、カットオフフィルターを利用して、400nmから520nmの可視光(光量:1.6mWcm−2)を反応容器に照射した。2−プロピルアルコール、中間生成物のアセトン、と終生成物の二酸化炭素の検出及び定量はメタナイザー付ガスクロマトグラフィー(検出器はFID)を用い調査した(図5)。その結果、可視光照射に伴い、2−プロピルアルコールが酸化され、中間生成物のアセトンを経て、二酸化炭素にまで酸化分解されていることが分かった。 Using 0.3 g of the photocatalyst obtained in Example 1, a decomposition test of 2-propyl alcohol (about 420 ppm) was conducted. A 300 W Xe lamp was used as the light source, and the reaction vessel was irradiated with visible light (light amount: 1.6 mWcm −2 ) from 400 nm to 520 nm using a cutoff filter. The detection and quantification of 2-propyl alcohol, the intermediate product acetone, and the final product carbon dioxide were investigated using gas chromatography with a methanizer (detector is FID) (FIG. 5). As a result, it was found that 2-propyl alcohol was oxidized with visible light irradiation, and oxidatively decomposed to carbon dioxide through acetone as an intermediate product.

比較例Comparative example

比較例1;
これまで報告された可視光応答型光触媒の中、酸素発生活性が最も高いとされるBiVO4材料を用いて、硝酸銀水溶液の分解の比較試験を行った(図3)。用いた試料は0.5g、硝酸銀水溶液の濃度は3.1gL−1であった。光源には300W Xeランプを用い、カットオフフィルターを利用して、420nm以上の可視光を反応容器に照射した。生成した酸素の定量はガスクロマトグラフィー(検出器はTCD)で行った。その結果、酸素は1時間で約220μmol生成することが確認された。本発明の材料のより大きく劣った。
Comparative Example 1;
Among the visible light responsive photocatalysts reported so far, a comparative test of decomposition of an aqueous silver nitrate solution was performed using a BiVO4 material that has the highest oxygen generation activity (FIG. 3). The sample used was 0.5 g, and the concentration of the aqueous silver nitrate solution was 3.1 gL- 1 . A 300 W Xe lamp was used as a light source, and a visible light of 420 nm or more was irradiated to the reaction vessel using a cutoff filter. The produced oxygen was quantified by gas chromatography (detector was TCD). As a result, it was confirmed that about 220 μmol of oxygen was generated in 1 hour. The material of the present invention was much worse.

比較例2;
代表的な可視光応答型光触媒である窒素ドープTiOを利用して種々色素の可視光照射下における光分解反応を行った。実験の詳細は実施例4と同じである。
その結果、420nmのフィルターを通した可視光照射下でメチレンブルー色素の光分解においては30分の照射で青色のメチレンブルー溶液が35.7%まで減衰し、溶液中の全有機炭素量が69%までに減少した。しかし、ピンク色のローダミンB色素の光分解においては30分の照射で72%ものローダミンBの分子が未だ溶液に残っていたし、溶液中の全有機炭素量も照射前の97%にとどまっていた。さらにオレンジII色素の光分解においては180分の長時間照射でオレンジII溶液が漸く57.6%にまでに減衰し、溶液中の全有機炭素量は95%にと僅か微減した。本発明材料と比較して、窒素ドープTiOの活性が遙かに及ばないことが明かである。
Comparative Example 2;
Using a nitrogen-doped TiO 2 which is a typical visible light responsive photocatalyst, photodecomposition reaction of various dyes under visible light irradiation was performed. The details of the experiment are the same as in Example 4.
As a result, in the photodegradation of methylene blue dye under visible light irradiation through a 420 nm filter, the blue methylene blue solution decays to 35.7% after 30 minutes of irradiation, and the total organic carbon content in the solution decreases to 69%. Decreased. However, in the photolysis of the pink rhodamine B dye, 72% of rhodamine B molecules still remained in the solution after 30 minutes of irradiation, and the total amount of organic carbon in the solution remained at 97% before irradiation. . Furthermore, in the photodegradation of the orange II dye, the orange II solution was gradually attenuated to 57.6% after prolonged irradiation for 180 minutes, and the total organic carbon content in the solution slightly decreased to 95%. It is clear that the activity of nitrogen-doped TiO 2 is far less than that of the inventive material.

以上の結果について、図1―5、表1に示していることは、前述したとおりである。
すなわち、銀とリン酸からなる複合酸化物半導体は高活性な可視光応答型光触媒であり、前述の目的に沿う光触媒の開発に成功したことを示している。これによって、照射される光の波長に対して、利用効率が高まり、光触媒反応に一層有効に利用され、寄与するものと期待される。また、この材料の比表面積は1m−1であるにもかかわらず、既に活性が既存材料を大幅に上回り、担体の利用や微粒子化によって、比表面積を広げることにより、光触媒活性がさらに向上することは想像されるに容易である。以上のことから、この材料が可視光において光触媒特性を示すことは明らかであり、新規の有望な可視光応答型の光触媒であるといえる。
The above results are shown in FIGS. 1-5 and Table 1 as described above.
That is, a complex oxide semiconductor composed of silver and phosphoric acid is a highly active visible light responsive photocatalyst, indicating that the development of a photocatalyst that meets the above-mentioned purpose has been successful. As a result, the use efficiency is increased with respect to the wavelength of the irradiated light, and it is expected to be more effectively utilized and contribute to the photocatalytic reaction. In addition, even though the specific surface area of this material is 1 m 2 g −1 , the activity is already much higher than that of existing materials, and the photocatalytic activity is further improved by expanding the specific surface area by using carriers and making fine particles. It is easy to imagine. From the above, it is clear that this material exhibits photocatalytic properties in visible light, and it can be said that this material is a new promising visible light responsive photocatalyst.

以上説明してきたように、本発明は、一般式AgPO(2.8≦x≦3.2、3.8≦y≦4.2、x/y= 0.66〜0.84)をもつ半導体光触媒は、紫外光のみならず、十分に可視光まで吸収できる。本発明によって、これまでの実用光触媒、TiOが、紫外光領域でのみ機能していたことを考えると、有効利用できる波長領域を大きく広げることができたという意義は極めて大きい。また、可視光領域においても既存材料の中、最も活性が高いとされるBiVO、さらに窒素ドープTiOよりも活性が格段に高い。本発明によれば、可視光を利用して各種有害な化合物、例えば、環境ホルモンや細菌等いわゆる有害物質に作用し、これらを殺菌、分解、除去等無害化するのに使用される環境対策技術を始めとして各種化学反応に大いに利用され、産業の発展に寄与するものと期待される。また、本発明の材料は極めて高い量子収率を有するため、人工光合成を模倣した2段階水分解光触媒或いは半導体光電極の形態として用い、高効率な太陽光エネルギー変換システムの構築にも利用できる。以上本発明の複合酸化物半導体光触媒は、光の広い領域に対して活性を有すること如上の通りであり、その特性の故、前示使用例以外にも多様な用途に使われることが期待され、今後その果たす役割は、非常に大きいと考えられる。 As described above, the present invention is based on the general formula Ag x PO y (2.8 ≦ x ≦ 3.2, 3.8 ≦ y ≦ 4.2, x / y = 0.66 to 0.84). A semiconductor photocatalyst having can absorb not only ultraviolet light but also visible light. Considering that the present practical photocatalyst, TiO 2 , functioned only in the ultraviolet light region according to the present invention, it is extremely significant that the wavelength region that can be effectively used can be greatly expanded. Also, in the visible light region, the activity is much higher than BiVO 4 , which is considered to be the most active among the existing materials, and further nitrogen-doped TiO 2 . According to the present invention, environmental countermeasure technology used to act on various harmful compounds using visible light, for example, so-called harmful substances such as environmental hormones and bacteria, and to sterilize, decompose, remove, etc. It is expected to contribute to the development of industry by being used for various chemical reactions. Moreover, since the material of the present invention has an extremely high quantum yield, it can be used as a two-stage water-splitting photocatalyst or semiconductor photoelectrode that mimics artificial photosynthesis, and can be used to construct a highly efficient solar energy conversion system. As described above, the composite oxide semiconductor photocatalyst of the present invention is active for a wide region of light, and because of its characteristics, it is expected to be used in various applications other than the above-described use examples. The role to play in the future is considered to be very large.

本発明の光触媒のX線回折パターンX-ray diffraction pattern of the photocatalyst of the present invention 本発明の光触媒の吸収スペクトルを示す図The figure which shows the absorption spectrum of the photocatalyst of this invention 本発明の光触媒および比較例1の既存材料BiVOを用いた硝酸銀溶液から酸素を発生する光触媒活性Photocatalytic activity for generating oxygen from a silver nitrate solution using the photocatalyst of the present invention and the existing material BiVO 4 of Comparative Example 1 本発明の光触媒の硝酸銀溶液から酸素を発生する量子収率の波長依存性Wavelength dependence of quantum yield for generating oxygen from silver nitrate solution of photocatalyst of the present invention 本発明の光触媒による可視光照射下における2−プロピルアルコールの分解活性Decomposition activity of 2-propyl alcohol under visible light irradiation by the photocatalyst of the present invention

Claims (1)

可視光領域に光吸収端を有する複合酸化物からなる光触媒であって、前記複合酸化物が下記式1で示されるものであることを特徴とする光触媒。
(式1)AgPO
(2.8≦x≦3.2、3.8≦y≦4.2、x/y= 0.66〜0.84)
A photocatalyst comprising a composite oxide having a light absorption edge in the visible light region, wherein the composite oxide is represented by the following formula 1.
(Formula 1) Ag x PO y
(2.8 ≦ x ≦ 3.2, 3.8 ≦ y ≦ 4.2, x / y = 0.66 to 0.84)
JP2007248294A 2007-09-26 2007-09-26 photocatalyst Pending JP2009078211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248294A JP2009078211A (en) 2007-09-26 2007-09-26 photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248294A JP2009078211A (en) 2007-09-26 2007-09-26 photocatalyst

Publications (1)

Publication Number Publication Date
JP2009078211A true JP2009078211A (en) 2009-04-16

Family

ID=40653371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248294A Pending JP2009078211A (en) 2007-09-26 2007-09-26 photocatalyst

Country Status (1)

Country Link
JP (1) JP2009078211A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101940937A (en) * 2010-10-21 2011-01-12 武汉理工大学 High-efficiency visible light catalyst silver phosphate and preparation method thereof
CN102151577A (en) * 2011-01-28 2011-08-17 东华大学 A kind of Ag3PO4/Mg-Al LDO visible light composite photocatalyst and its preparation and application
CN102600874A (en) * 2012-04-10 2012-07-25 华中农业大学 Visible-light photocatalyst Mo modified silver phosphate and preparation method thereof
CN102626647A (en) * 2012-03-30 2012-08-08 常州大学 Synthesizing method of playgouskite-loaded silver orthophosphate photochemical catalyst
CN102631939A (en) * 2012-03-28 2012-08-15 江苏大学 Graphene/silver phosphate composite visible light photocatalyst and preparation method thereof
CN102698782A (en) * 2012-06-25 2012-10-03 武汉理工大学 Dendrite silver phosphate visible light catalyst and preparation method thereof
CN102698780A (en) * 2012-06-15 2012-10-03 桂林理工大学 Silver halide/ silver phosphate heterojunction membrane visible photo-catalysis material and preparation method thereof
CN102698781A (en) * 2012-06-15 2012-10-03 桂林理工大学 A kind of preparation method of Ag/Ag3PO4 composite photocatalyst
CN102716758A (en) * 2012-06-25 2012-10-10 武汉理工大学 Composite visible-light-driven photocatalyst Ag3PO4 and Zn3(PO4)2 and preparation method thereof
CN102910608A (en) * 2012-10-25 2013-02-06 常州大学 Preparation method of porous silver phosphate catalyst
CN102921438A (en) * 2012-11-06 2013-02-13 武汉理工大学 Preparation for silver phosphate nano ball-graphene composite material and photocatalysis application
CN103007973A (en) * 2012-12-14 2013-04-03 陕西科技大学 Silver/silver phosphate composite material and preparation method thereof
CN103071496A (en) * 2013-02-05 2013-05-01 湖南科技大学 Visible-light-driven photocatalyst and preparation method and application thereof
JP2013103145A (en) * 2011-11-10 2013-05-30 Sharp Corp Photocatalyst apparatus and water purification apparatus
CN103263937A (en) * 2013-06-17 2013-08-28 南京信息工程大学 Method for preparing tetrahedral silver phosphate photocatalyst
CN103272622A (en) * 2013-06-20 2013-09-04 南京信息工程大学 Preparation method of silver phosphate photocatalyst
CN103272625A (en) * 2013-06-26 2013-09-04 青岛农业大学 Phosphate nanofiber photocatalyst and preparation method thereof
CN103272621A (en) * 2013-06-07 2013-09-04 南京信息工程大学 Novel overlapping four fork type silver phosphate photocatalyst preparation method
CN103316700A (en) * 2013-05-29 2013-09-25 武汉理工大学 Preparation method of high-efficiency Cu(II)/silver compound composite visible light photocatalyst
KR20130120314A (en) * 2012-04-25 2013-11-04 삼성전자주식회사 Visible light sensitive photocatalyst, method of producing the same, electrochemical water decomposition cell, and organic material decomposition system comprising the same
CN103506142A (en) * 2013-10-08 2014-01-15 江苏大学 A kind of molybdenum disulfide/silver phosphate composite visible light photocatalytic material and preparation method thereof
CN103537307A (en) * 2012-07-16 2014-01-29 中国科学院理化技术研究所 Graphene-silver phosphate composite photocatalyst and preparation method and application thereof
CN103551173A (en) * 2013-11-06 2014-02-05 上海电力学院 Silver phosphate/molybdenum disulfide compound visible-light-driven photocatalyst and preparation method thereof
CN103626146A (en) * 2013-12-13 2014-03-12 扬州大学 Preparation method of polyhedral silver phosphate
JP2014116261A (en) * 2012-12-12 2014-06-26 Kuraray Co Ltd Semiconductor electrode, photoelectric conversion element, and solar battery
CN103990481A (en) * 2014-06-04 2014-08-20 常州大学 Preparation method of metavanadic silver/silver/silver phosphate composite catalyst
CN104043464A (en) * 2014-07-04 2014-09-17 常州大学 Preparation method for high-dispersion loaded silver phosphate photo-catalyst
CN104368369A (en) * 2014-10-09 2015-02-25 济南大学 Preparation method of silver phosphate-cadmium sulfide composite visible light photocatalyst
KR20150101151A (en) * 2014-02-26 2015-09-03 엘지전자 주식회사 Coating composition comprising photocatalyst for visible rays and articles comprising same
JP2016059881A (en) * 2014-09-18 2016-04-25 愛媛県 Visible light-responsive photocatalytic composite, and method for producing visible light-responsive photocatalytic composite
JP2016059878A (en) * 2014-09-18 2016-04-25 国立大学法人 筑波大学 Photocatalyst, coating and sterilization device
CN105642362A (en) * 2016-01-27 2016-06-08 华南师范大学 Silver-phosphate-based visible light compound photocatalyst
CN105688957A (en) * 2016-04-01 2016-06-22 南京大学 CNTs-Ag3PO4 catalyst with visible light catalytic activity and preparation method thereof
CN105709831A (en) * 2016-01-27 2016-06-29 华南师范大学 Silver phosphate and conjugated polymer visible light composite photocatalyst
CN107837814A (en) * 2016-09-18 2018-03-27 天津工业大学 Polyphosphoric acid lead/silver orthophosphate catalysis material and its synthetic method
CN107837815A (en) * 2016-09-18 2018-03-27 天津工业大学 Fluorine/silver orthophosphate catalysis material and its synthetic method
CN108187754A (en) * 2017-12-16 2018-06-22 河西学院 A kind of support type Ag/Ag3PO4Photochemical catalyst and preparation method thereof
CN108722482A (en) * 2018-06-07 2018-11-02 湖南大学 A kind of preparation method being total to modified phosphate silver composite photo-catalyst using carbon nanotube and polyaniline
JP2019155270A (en) * 2018-03-13 2019-09-19 太平洋セメント株式会社 photocatalyst
US11612673B2 (en) 2020-08-31 2023-03-28 Promethium Limited Photoactivated semiconductor photocatalytic air purification
US11623018B2 (en) 2020-08-31 2023-04-11 Promethium Limited Photoactivated semiconductor photocatalytic air purification
JP7584139B2 (en) 2021-03-15 2024-11-15 学校法人 龍谷大学 Visible light responsive photocatalyst and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033990A (en) * 1996-05-20 1998-02-10 Agency Of Ind Science & Technol Photocatalyst for removal of nitrogen oxide and removal of nitrogen oxide using this catalyst
JPH11123332A (en) * 1997-10-20 1999-05-11 Toagosei Co Ltd Hydroxylation catalyst and production of compound containing hydroxyl group by using it
JP2005034716A (en) * 2003-07-18 2005-02-10 National Institute For Materials Science Bismuth composite oxide visible light responsive photocatalyst of alkali metal and Ag and method for decomposing and removing harmful chemicals using the same
JP2007090341A (en) * 2005-09-05 2007-04-12 Tokyo Institute Of Technology Photocatalyst using oxyapatite structure and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033990A (en) * 1996-05-20 1998-02-10 Agency Of Ind Science & Technol Photocatalyst for removal of nitrogen oxide and removal of nitrogen oxide using this catalyst
JPH11123332A (en) * 1997-10-20 1999-05-11 Toagosei Co Ltd Hydroxylation catalyst and production of compound containing hydroxyl group by using it
JP2005034716A (en) * 2003-07-18 2005-02-10 National Institute For Materials Science Bismuth composite oxide visible light responsive photocatalyst of alkali metal and Ag and method for decomposing and removing harmful chemicals using the same
JP2007090341A (en) * 2005-09-05 2007-04-12 Tokyo Institute Of Technology Photocatalyst using oxyapatite structure and production method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011069310; TENNAKONE, K. et al: 'Photocleavage of water with silver phosphate' Journal of the Chemical Society, Chemical Communications No.7, 19880401, 496-498 *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101940937A (en) * 2010-10-21 2011-01-12 武汉理工大学 High-efficiency visible light catalyst silver phosphate and preparation method thereof
CN102151577A (en) * 2011-01-28 2011-08-17 东华大学 A kind of Ag3PO4/Mg-Al LDO visible light composite photocatalyst and its preparation and application
JP2013103145A (en) * 2011-11-10 2013-05-30 Sharp Corp Photocatalyst apparatus and water purification apparatus
CN102631939A (en) * 2012-03-28 2012-08-15 江苏大学 Graphene/silver phosphate composite visible light photocatalyst and preparation method thereof
CN102626647A (en) * 2012-03-30 2012-08-08 常州大学 Synthesizing method of playgouskite-loaded silver orthophosphate photochemical catalyst
CN102600874A (en) * 2012-04-10 2012-07-25 华中农业大学 Visible-light photocatalyst Mo modified silver phosphate and preparation method thereof
CN102600874B (en) * 2012-04-10 2013-09-11 华中农业大学 Visible-light photocatalyst Mo modified silver phosphate and preparation method thereof
KR20130120314A (en) * 2012-04-25 2013-11-04 삼성전자주식회사 Visible light sensitive photocatalyst, method of producing the same, electrochemical water decomposition cell, and organic material decomposition system comprising the same
CN102698780A (en) * 2012-06-15 2012-10-03 桂林理工大学 Silver halide/ silver phosphate heterojunction membrane visible photo-catalysis material and preparation method thereof
CN102698781A (en) * 2012-06-15 2012-10-03 桂林理工大学 A kind of preparation method of Ag/Ag3PO4 composite photocatalyst
CN102716758A (en) * 2012-06-25 2012-10-10 武汉理工大学 Composite visible-light-driven photocatalyst Ag3PO4 and Zn3(PO4)2 and preparation method thereof
CN102698782A (en) * 2012-06-25 2012-10-03 武汉理工大学 Dendrite silver phosphate visible light catalyst and preparation method thereof
CN103537307A (en) * 2012-07-16 2014-01-29 中国科学院理化技术研究所 Graphene-silver phosphate composite photocatalyst and preparation method and application thereof
CN102910608A (en) * 2012-10-25 2013-02-06 常州大学 Preparation method of porous silver phosphate catalyst
CN102910608B (en) * 2012-10-25 2014-07-09 常州大学 Preparation method of porous silver phosphate catalyst
CN102921438A (en) * 2012-11-06 2013-02-13 武汉理工大学 Preparation for silver phosphate nano ball-graphene composite material and photocatalysis application
JP2014116261A (en) * 2012-12-12 2014-06-26 Kuraray Co Ltd Semiconductor electrode, photoelectric conversion element, and solar battery
CN103007973A (en) * 2012-12-14 2013-04-03 陕西科技大学 Silver/silver phosphate composite material and preparation method thereof
CN103007973B (en) * 2012-12-14 2014-10-29 陕西科技大学 Silver/silver phosphate composite material and preparation method thereof
CN103071496A (en) * 2013-02-05 2013-05-01 湖南科技大学 Visible-light-driven photocatalyst and preparation method and application thereof
CN103071496B (en) * 2013-02-05 2014-10-15 湖南科技大学 Visible-light-driven photocatalyst and preparation method and application thereof
CN103316700B (en) * 2013-05-29 2015-05-27 武汉理工大学 Preparation method of high-efficiency Cu(II)/silver compound composite visible light photocatalyst
CN103316700A (en) * 2013-05-29 2013-09-25 武汉理工大学 Preparation method of high-efficiency Cu(II)/silver compound composite visible light photocatalyst
CN103272621A (en) * 2013-06-07 2013-09-04 南京信息工程大学 Novel overlapping four fork type silver phosphate photocatalyst preparation method
CN103263937A (en) * 2013-06-17 2013-08-28 南京信息工程大学 Method for preparing tetrahedral silver phosphate photocatalyst
CN103263937B (en) * 2013-06-17 2015-03-25 南京信息工程大学 Method for preparing tetrahedral silver phosphate photocatalyst
CN103272622B (en) * 2013-06-20 2015-03-11 南京信息工程大学 Preparation method of silver phosphate photocatalyst
CN103272622A (en) * 2013-06-20 2013-09-04 南京信息工程大学 Preparation method of silver phosphate photocatalyst
CN103272625A (en) * 2013-06-26 2013-09-04 青岛农业大学 Phosphate nanofiber photocatalyst and preparation method thereof
CN103506142A (en) * 2013-10-08 2014-01-15 江苏大学 A kind of molybdenum disulfide/silver phosphate composite visible light photocatalytic material and preparation method thereof
CN103551173A (en) * 2013-11-06 2014-02-05 上海电力学院 Silver phosphate/molybdenum disulfide compound visible-light-driven photocatalyst and preparation method thereof
CN103626146A (en) * 2013-12-13 2014-03-12 扬州大学 Preparation method of polyhedral silver phosphate
KR102265903B1 (en) * 2014-02-26 2021-06-16 엘지전자 주식회사 Coating composition comprising photocatalyst for visible rays and articles comprising same
KR20150101151A (en) * 2014-02-26 2015-09-03 엘지전자 주식회사 Coating composition comprising photocatalyst for visible rays and articles comprising same
CN103990481A (en) * 2014-06-04 2014-08-20 常州大学 Preparation method of metavanadic silver/silver/silver phosphate composite catalyst
CN104043464A (en) * 2014-07-04 2014-09-17 常州大学 Preparation method for high-dispersion loaded silver phosphate photo-catalyst
JP2016059881A (en) * 2014-09-18 2016-04-25 愛媛県 Visible light-responsive photocatalytic composite, and method for producing visible light-responsive photocatalytic composite
JP2016059878A (en) * 2014-09-18 2016-04-25 国立大学法人 筑波大学 Photocatalyst, coating and sterilization device
CN104368369A (en) * 2014-10-09 2015-02-25 济南大学 Preparation method of silver phosphate-cadmium sulfide composite visible light photocatalyst
CN105709831A (en) * 2016-01-27 2016-06-29 华南师范大学 Silver phosphate and conjugated polymer visible light composite photocatalyst
CN105642362A (en) * 2016-01-27 2016-06-08 华南师范大学 Silver-phosphate-based visible light compound photocatalyst
CN105688957A (en) * 2016-04-01 2016-06-22 南京大学 CNTs-Ag3PO4 catalyst with visible light catalytic activity and preparation method thereof
CN107837814A (en) * 2016-09-18 2018-03-27 天津工业大学 Polyphosphoric acid lead/silver orthophosphate catalysis material and its synthetic method
CN107837815A (en) * 2016-09-18 2018-03-27 天津工业大学 Fluorine/silver orthophosphate catalysis material and its synthetic method
CN108187754A (en) * 2017-12-16 2018-06-22 河西学院 A kind of support type Ag/Ag3PO4Photochemical catalyst and preparation method thereof
JP2019155270A (en) * 2018-03-13 2019-09-19 太平洋セメント株式会社 photocatalyst
JP7005394B2 (en) 2018-03-13 2022-01-21 太平洋セメント株式会社 photocatalyst
CN108722482A (en) * 2018-06-07 2018-11-02 湖南大学 A kind of preparation method being total to modified phosphate silver composite photo-catalyst using carbon nanotube and polyaniline
US11612673B2 (en) 2020-08-31 2023-03-28 Promethium Limited Photoactivated semiconductor photocatalytic air purification
US11623018B2 (en) 2020-08-31 2023-04-11 Promethium Limited Photoactivated semiconductor photocatalytic air purification
JP7584139B2 (en) 2021-03-15 2024-11-15 学校法人 龍谷大学 Visible light responsive photocatalyst and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2009078211A (en) photocatalyst
Xu et al. Isolated Pt single atomic sites anchored on nanoporous TiO2 film for highly efficient photocatalytic degradation of low concentration toluene
KR101334970B1 (en) Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and appatarus for preparation of oxidizing agent
CN104039450B (en) Photocatalytic metal oxide nanomaterials, manufacturing method by H2-plasma treatment, use for purification of organic waste in water
KR100385301B1 (en) Novel titania photocatalyst and its manufacturing method
KR100945035B1 (en) Visible Light Responsive Photocatalyst Composition Using Tungsten Oxide and Manufacturing Method Thereof
JP2019508225A (en) Photocatalytic composite for decomposing air pollutants
JPH09262482A (en) Photocatalyst, method for producing photocatalyst, and method for photocatalytic reaction
JP2007216223A (en) Photocatalytic substance having semiconductor characteristics and method for producing and using the same
Truong et al. A critical innovation of photocatalytic degradation for toxic chemicals and pathogens in air
Soni et al. Abatement of formaldehyde with photocatalytic and catalytic oxidation: A review
US6365007B1 (en) Photocatalysts for the degradation of organic pollutants
Barrocas et al. Enhanced photocatalytic degradation of psychoactive substances using amine-modified elongated titanate nanostructures
Melcher et al. Comparing photocatalytic activities of commercially available iron-doped and iron-undoped aeroxide TiO 2 P25 powders
Qu et al. H2O2 assisted photocatalysis over Fe‐MOF modified BiOBr for degradation of RhB
JP4997627B2 (en) Visible light responsive photocatalyst
Nguyen Thi Thuy et al. Kinetics of photocatalytic degradation of gaseous p‐xylene on UiO‐66‐NH2 and LaFeO3 thin films under combined illumination of ultraviolet and visible lights
JP4000378B2 (en) Visible light responsive complex oxide photocatalyst and method for decomposing and removing harmful chemicals using the same
Lee et al. Surface modified Ti-based hydroperoxo complex for photocatalytic oxidation of volatile organic compounds under visible-light
KR100489219B1 (en) Manufacturing process of Titanium Dioxide Photocatalysts supporting Silicagel
CN1321742C (en) Visible light response photocatalyst and application thereof
KR100578044B1 (en) Manufacturing method of visible light photocatalyst compounded with titanium dioxide and tungsten oxide
JP2008006328A (en) Photocatalyst composed of visible light responsive complex oxide semiconductor
JP3440295B2 (en) Novel semiconductor photocatalyst and photocatalytic reaction method using the same
Kikugawa et al. Photoinduced degradation of organic dye over LiBiO3 under illumination of white fluorescent light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002