KR100429294B1 - Multilayer coated powder - Google Patents

Multilayer coated powder Download PDF

Info

Publication number
KR100429294B1
KR100429294B1 KR10-1998-0710096A KR19980710096A KR100429294B1 KR 100429294 B1 KR100429294 B1 KR 100429294B1 KR 19980710096 A KR19980710096 A KR 19980710096A KR 100429294 B1 KR100429294 B1 KR 100429294B1
Authority
KR
South Korea
Prior art keywords
film
powder
layer
titania
coated powder
Prior art date
Application number
KR10-1998-0710096A
Other languages
Korean (ko)
Other versions
KR20000016510A (en
Inventor
가쯔또 나까쯔까
다까후미 아따라시
Original Assignee
닛데츠 고교 가부시키가이샤
나까쯔까, 까쯔또
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛데츠 고교 가부시키가이샤, 나까쯔까, 까쯔또 filed Critical 닛데츠 고교 가부시키가이샤
Priority to KR10-1998-0710096A priority Critical patent/KR100429294B1/en
Publication of KR20000016510A publication Critical patent/KR20000016510A/en
Application granted granted Critical
Publication of KR100429294B1 publication Critical patent/KR100429294B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • C09C1/3054Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0021Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • C09C1/003Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer
    • C09C1/0033Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer consisting of a metal or an alloy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • C09C1/0048Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one optically active layer with at least one organic material layer, e.g. liquid crystal polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0051Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index
    • C09C1/0057Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one light-absorbing layer
    • C09C1/006Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one light-absorbing layer consisting of a metal or an alloy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0051Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index
    • C09C1/0075Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one optically active layer with at least one organic material layer, e.g. liquid crystal polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0078Pigments consisting of flaky, non-metallic substrates, characterised by a surface-region containing free metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1062Interference pigments characterized by the core material the core consisting of an organic compound, e.g. Liquid Crystal Polymers [LCP], Polymers or natural pearl essence
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1062Interference pigments characterized by the core material the core consisting of an organic compound, e.g. Liquid Crystal Polymers [LCP], Polymers or natural pearl essence
    • C09C2200/1066Interference pigments characterized by the core material the core consisting of an organic compound, e.g. Liquid Crystal Polymers [LCP], Polymers or natural pearl essence comprising at least one metal layer adjacent to the core material, e.g. core-M, M-core-M
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/302Thickness of a layer with high refractive material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/303Thickness of a layer with low refractive material

Abstract

염료나 안료를 사용하지 않고도, 가벼운 기본 분말체에 착색하여 유체 중에 분산해서 청, 녹, 황색 등의 단색의 컬러 잉크용 안료 및 플라스틱·종이용 충전재를 설계할 수 있으며, 안정된 색조의 안료 분말체를 제공하는 것, 또, 마스카라나 아이 브로우 펜슬 등의 단색의 착색 분말체를 설계할 수 있고, 또한 피부에 유해한 자외선이나 적외선을 흡수할 수 있는 색조 화장품 원료 분말체를 제공하는 것, 더욱이 유체 중에 분산하여 전기 레올로지 유체 원료로 할 수 있는 가벼운 분말체, 특히 컬러 유체 원료로 할 수 있는 착색 분말체를 제공하는 것을 목적으로 하는 것이다.It is possible to design pigments for monochromatic color inks such as blue, green, and yellow, and plastic and paper fillers by coloring them in light basic powders without using dyes or pigments, and stable pigment powders. It is also possible to design monochromatic colored powders, such as mascara and eye brow pencil, and to provide color cosmetic raw material powders that can absorb ultraviolet rays or infrared rays harmful to the skin, and furthermore, An object of the present invention is to provide a light powder that can be dispersed and used as an electric rheological fluid raw material, particularly a colored powder that can be used as a color fluid raw material.

아크릴 수지 입자나 무기 중공 입자 등의 비중 0.1∼10.5의 분말체 핵 입자(1)의 표면에 복수의 굴절율이 다른 피막층(이산화 티탄막, 티타니아막, 폴리스티렌막, 금속 은 막 등) (2, 3)을 갖는 것을 특징으로 하는 다층막 피복 분말체.Coating layers having different refractive indices on the surface of the powdered core particles 1 having a specific gravity of 0.1 to 10.5 such as acrylic resin particles or inorganic hollow particles (titanium dioxide film, titania film, polystyrene film, metal silver film, etc.) (2, 3 ), A multilayer film-coated powder.

Description

다층막 피복 분말체 {MULTILAYER COATED POWDER}Multilayer Coating Powder {MULTILAYER COATED POWDER}

본 발명은 다층막 피복 분말체 및 그를 이용한 안료 및 화장품 원료에 관한 것으로, 상세하게는 컬러 잉크용 및 플라스틱·종이용 충전재(filler)로서 이용되는 안료 분말체, 가벼운 분말체의 색조 화장품 원료에 이용되는 분말체에 관한 것이다.BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a multilayer coating powder, a pigment and a cosmetic raw material using the same, and in particular, a pigment powder used as a color ink and a filler for plastics and paper, and a color powder raw material of a light powder. It relates to a powder.

본 발명자들은 앞서, 금속 입자 또는 금속 화합물 입자만이 갖춘 성질 이외에 다른 성질을 겸비하고, 복합적인 기능을 가진 분말체를 제공하기 위해, 금속 또는 금속 화합물의 기본 입자의 표면에, 균일한 0.01 내지 20㎛ 두께의, 상기 기본 입자를 구성하는 금속과는 다른 종류의 금속을 성분으로 하는 금속 산화물 막을 갖는 분말체를 발명하였다(일본 특허공개공보 평성6-228604호). 또한, 본 발명자들은 상기 분말체를 더욱 개량하여, 금속 산화물 막 단독이 아니라, 금속 산화물 막과 금속막을 교대로 다수의 층을 갖도록 한 분말체도 발명하였다(일본 특허공개공보 평성 7-90310호).The inventors of the present invention described above have a uniform 0.01 to 20 on the surface of the base particles of the metal or metal compound, in order to provide a powder having a complex function and having other properties in addition to the properties possessed only by the metal particles or metal compound particles. A powder having a metal oxide film containing a metal of a kind different from the metal constituting the basic particles having a thickness of µm was invented (Japanese Patent Laid-Open Publication No. Hei 6-228604). In addition, the present inventors further improved the powder, and not only the metal oxide film but also the powder body in which the metal oxide film and the metal film alternately have a plurality of layers (Japanese Patent Laid-Open No. 7-90310).

이러한 분말체를 제조하려면, 기본 입자 위에 균일한 두께의 금속 산화물 막을 다수의 층으로 형성시킬 필요가 있는데, 이를 위해서는, 금속염 수용액으로부터 금속 산화물 또는 그 전구체인 금속 화합물을 침전시키기가 어렵기 때문에, 본 발명자들은 금속 알콕시드 용액 중에 상기 기본 입자를 분산하여, 이 금속 알콕시드를 가수분해함으로써, 상기 기본 입자 위에 금속 산화물 막을 생성시키는 방법을 개발하여, 이 방법에 의해 얇고 균일한 두께의 금속 산화물 막을 형성할 수 있게 되고, 특히 다층의 금속 산화물 막을 형성할 수 있게 되었다.In order to produce such a powder, it is necessary to form a metal oxide film having a uniform thickness in a plurality of layers on the basic particles, because it is difficult to precipitate the metal oxide or a metal compound thereof as a precursor from an aqueous metal salt solution. The inventors have developed a method of dispersing the base particles in a metal alkoxide solution and hydrolyzing the metal alkoxides to form a metal oxide film on the base particles, thereby forming a thin and uniform thickness metal oxide film. In particular, it is possible to form a multi-layer metal oxide film.

이들 다층막 피복 분말체는 어느 기본 입자만이 갖춘 성질 이외에 다른 성질을 겸비하고, 복합적인 기능을 가진 분말체로서, 주로 안료, 화장품용 원료용 분말체 등에 등에 이용하는 것이 시도되었다.These multilayer film-coated powders have a combination of properties other than those possessed by only basic particles, and have a complex function, and have been mainly used for pigments, powders for raw materials for cosmetics, and the like.

그러나, 금속이나 금속 화합물을 기본 재료로 하는 분말체는 잉크에 사용할 경우, 비중이 커서 사용전에 액 중에서 침강하기 쉽기 때문에, 분산이 용이하지 않아 균일화되기 어려운 문제가 있다. 또한, 잉크용 분말체나 플라스틱용 충전재 등에 사용하기 위해서는, 착색이 필요한데, 기계화학(mechanochemical)법에서는 안료 자체도 분쇄되기 때문에, 안료 입자직경이 작아지고 색이 흐려지므로 염료 등으로 착색할 필요가 있게 된다. 또한, 플라스틱용 충전재로서 수지 중에 분산시키기 위해 혼합반죽할 때에 기계화학법으로 형성된 외피로부터 분말체 입자가 박리되고, 이로 인해 색이 변하는 경우가 있다고 하는 문제가 있다.However, powders based on metals or metal compounds, when used in ink, have a high specific gravity and easily settle in the liquid before use, so that dispersion is not easy and is difficult to homogenize. In addition, in order to be used for ink powders, plastic fillers, etc., coloring is required, but in the mechanochemical method, since the pigment itself is also pulverized, the pigment particle diameter becomes smaller and the color becomes blurred, so it is necessary to color it with a dye or the like. do. Moreover, when mixing and mixing in order to disperse | distribute in resin as a plastic filler, there exists a problem that powder particle may peel from the outer skin formed by the mechanical chemistry method, and a color may change by this.

화장품 원료, 특히 유액상의 화장품 원료에 대해서도 사용하기 힘들다고 하는 문제가 있다. 또한, 예를 들어 수지분말체 표면에 산화 티탄 등의 입자를 부착시킨 경우, 사용중에 표면의 피복 외피로부터 분말체 입자가 박리되고, 이로 인해 색이 변하는 경우가 있다고 하는 문제가 있다.There is a problem that it is difficult to use even cosmetic raw materials, especially latex cosmetic raw materials. In addition, for example, when particles such as titanium oxide are adhered to the surface of the resin powder, powder particles are peeled off from the surface coating coating during use, which may cause a color change.

따라서, 본 발명의 목적은, 이러한 문제를 해소하고, 염료나 안료를 이용하지 않고도, 가벼운 기본 분말체에 착색하여 유체 중에 분산시켜 청, 녹, 황색 등의 단색의 컬러 잉크용 안료 및 플라스틱·종이용 충전재를 설계할 수 있으며, 안정적인 색조의 안료 분말체를 제공하는 것, 또한, 마스카라나 아이 브로우 펜슬 등의 단색의 착색 분말체를 설계할 수 있으며, 또한 피부에 유해한 자외선이나 적외선을 흡수할 수 있는 색조 화장품 원료로 할 수 있는 착색 분말체를 제공하는 것을 목적으로 하는 것이다.Accordingly, an object of the present invention is to solve such a problem and to disperse it in a light basic powder without dispersing it in a fluid, and to disperse it in a fluid. It is possible to design the filler to be used, to provide a pigment powder of stable color tone, and to design a monochromatic colored powder such as mascara or eye brow pencil, and to absorb ultraviolet rays or infrared rays that are harmful to the skin. An object of the present invention is to provide a colored powder which can be used as a color cosmetic raw material.

도 1은, 본 발명의 다층막 피복 분말체의 개념적 구조를 나타내는 단면도로서, 부호 1은 기본 입자, 2는 피복층, 3은 피복층을 나타낸다. 도 2는, 백색으로 착색된 분말체의 다층막을 구성하는 각 단위 피막의 반사 강도의 분광 파형을 나타내는 그래프이다. 도 3은 단색으로 착색된 분말체의 다층막을 구성하는 각 단위 피막의 반사 강도의 분광 파형을 나타낸 그래프이다.BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the conceptual structure of the multilayer film coating powder of this invention, 1 is a basic particle, 2 is a coating layer, and 3 is a coating layer. Fig. 2 is a graph showing the spectral waveforms of the reflection intensities of each unit film constituting the multilayer film of powder colored in white. 3 is a graph showing the spectral waveforms of the reflection intensities of each unit film constituting a multilayer film of a powder colored in a single color.

본 발명자들은, 예의 연구를 진행한 결과, 분말체 표면에 굴절율이 다른 다층의 박막을 형성함으로써 다층막의 반사광 간섭 파형을 조정하고, 염료나 안료를 이용하지 않고도 청, 녹, 황색 등의 안정적인 색조의 착색 분말체를 얻을 수 있음을 발견하여, 본 발명을 완성하기에 이르렀다.As a result of earnestly researching the present inventors, by forming a multilayer thin film having different refractive indices on the powder surface, the reflected light interference waveform of the multilayer film is adjusted, and stable color tone such as blue, green, and yellow can be obtained without using dyes or pigments. It discovered that a colored powder could be obtained and came to complete this invention.

즉, 본 발명은 하기의 수단에 의해 달성할 수 있다.That is, this invention can be achieved by the following means.

(1) 비중 0.1 내지 10.5의 기본 입자의 표면에 굴절율이 상이한 다수의 피막층을 가짐을 특징으로 하는 다층막 피복 분말체.(1) A multilayer film-coated powder comprising a plurality of coating layers having different refractive indices on the surface of the basic particles having a specific gravity of 0.1 to 10.5.

(2) 기본 입자가 구상 또는 파쇄 형상의 입자임을 특징으로 하는 상기 (1)의 다층막 피복 분말체.(2) The multilayer film-coated powder according to the above (1), wherein the basic particles are spherical or crushed particles.

(3) 다수의 피막층중 하나 이상의 층이 무기 금속 화합물 층임을 특징으로 하는 상기 (1)의 다층막 피복 분말체.(3) The multilayer film-coated powder of (1) above, wherein at least one of the plurality of coating layers is an inorganic metal compound layer.

(4) 상기 무기 금속 화합물 층이 금속 산화물 막 층임을 특징으로 하는 상기 (2)의 다층막 피복 분말체.(4) The multilayer film-coated powder of (2), wherein the inorganic metal compound layer is a metal oxide film layer.

(5) 다수의 피막층중 하나 이상의 층이 금속 알콕시드의 가수분해에 의해 형성됨을 특징으로 하는 상기 (4)의 다층막 피복 분말체.(5) The multilayer film-coated powder according to the above (4), wherein at least one of the plurality of coating layers is formed by hydrolysis of a metal alkoxide.

(6) 금속 산화물 막의 하나 이상의 층이 금속염 수용액의 반응에 의해 형성됨을 특징으로 하는 상기 (4)의 다층막 피복 분말체.(6) The multilayer film-coated powder of (4) above, wherein at least one layer of the metal oxide film is formed by the reaction of an aqueous metal salt solution.

(7) 다수의 피막층중 하나 이상의 층이 금속층 또는 합금층임을 특징으로 하는 상기 (1)의 다층막 피복 분말체. (7) The multilayer film-coated powder according to the above (1), wherein at least one of the plurality of coating layers is a metal layer or an alloy layer.

(8) 다수의 피막층중 하나 이상의 층이 유기물 층임을 특징으로 하는 상기 (1)의 다층막 피복 분말체.(8) The multilayer film-coated powder of (1), wherein at least one of the plurality of coating layers is an organic layer.

(9) 기본 막 두께가 하기 식 (1)을 만족시키도록 하고, 굴절율의 흡광 계수(κ)에 의한 위상 이동, 막 계면에서의 위상 이동, 및 굴절율의 분산 및 입자 형상에 의존하는 피크 이동으로 이루어진 함수로부터, 각 단위 피막층이 특정한 동일 파장에서 간섭 반사 피크(reflection peak) 또는 간섭 투과 바닥(transmission bottom)을 갖도록, 각 단위 피막층의 실제 막 두께를 보정하므로써 각 단위 피막층의 막 두께가 보정됨을 특징으로 하는 상기 (1)의 다층막 피복 분말체:(9) The film thickness satisfies the following formula (1), and the phase shift by the extinction coefficient (κ) of the refractive index, the phase shift at the film interface, and the peak shift depending on the dispersion and particle shape of the refractive index From the function made, the film thickness of each unit film layer is corrected by correcting the actual film thickness of each unit film layer so that each unit film layer has an interference reflection peak or an interference transmission bottom at a specific same wavelength. The multilayer film-coated powder of (1) described above:

N x d = M x λ/4 (1)N x d = M x λ / 4 (1)

상기 식에서, Where

N은 복소 굴절율이며, 식 (2) N = n + iκ(여기서, n은 각 단위 피막층의 굴절율, i는 복소수, κ는 감쇠계수를 나타냄)로 규정되며,N is a complex refractive index, defined by the formula (2) N = n + iκ (where n is the refractive index of each unit coating layer, i is a complex number, κ is an attenuation coefficient),

d는 기본 막 두께이며, d is the base film thickness,

m은 정수(자연수)이고, m is an integer (natural number),

λ는 상기 간섭 반사 피크 또는 간섭 투과 바닥의 파장을 나타낸다.λ represents the wavelength of the interference reflection peak or interference transmission bottom.

(10) 상기 (1) ~ (8)중 어느 하나의 다층막 피복 분말체를 이용한 안료 분말체.(10) The pigment powder body using the multilayer film coating powder in any one of said (1)-(8).

(11) 상기 (1) ~ (8)중 어느 하나의 다층막 피복 분말체를 이용한 화장품용 원료. (11) The raw material for cosmetics using the multilayer film coating powder in any one of said (1)-(8).

본 발명에 있어서, 다층막 피복 분말체의 기본 재료를 구성하는 비중 0.1 내지 10.5의 기본 입자는 특별히 한정되지 않으며, 유기물이든 무기물이든 상관없다. 이 경우, 기본 재료의 비중은 유동성, 부유성의 면에서 0.1 내지 5.5가 바람직하며, 보다 바람직하게는 0.1 내지 2.8의 범위이다. 기본 재료의 비중이 0.1 미만이면, 액체내에서의 부력이 너무 커서, 막을 다층으로 하거나 매우 두껍게 할 필요가 있어서, 비경제적이다. 한편, 비중이 10.5를 넘으면, 부유시키기 위한 막이 두꺼워져서, 마찬가지로 비경제적이며, 더욱이 화장품 등의 경우, 입자 직경이 너무 크면 까칠까칠한 촉감이 있어 부적합하다.In the present invention, the basic particles having a specific gravity of 0.1 to 10.5 constituting the basic material of the multilayer film-coated powder are not particularly limited and may be organic or inorganic. In this case, the specific gravity of the base material is preferably 0.1 to 5.5 in terms of fluidity and floatability, and more preferably in the range of 0.1 to 2.8. If the specific gravity of the base material is less than 0.1, the buoyancy in the liquid is so large that it is necessary to make the film multilayer or very thick, which is uneconomical. On the other hand, if the specific gravity exceeds 10.5, the membrane for floating is thickened, which is similarly uneconomical. Moreover, in the case of cosmetics and the like, when the particle diameter is too large, there is an unpleasant touch and is unsuitable.

안료 분말체, 화장품용 원료 분말체에 있어서는, 후술하는 피복막 제조 공정에서 소성시의 열에 의한 영향을 받지 않는다는 점에서 무기물이 바람직하다.In a pigment powder and a cosmetic raw material powder, an inorganic substance is preferable at the point which is not influenced by the heat at the time of baking in the coating film manufacturing process mentioned later.

수지 입자의 구체적인 예로서는, 셀룰로오스 파우더, 셀룰로오스 아세테이트 파우더, 폴리아미드, 에폭시 수지, 폴리에스테르, 멜라민 수지, 폴리우레탄, 비닐아세테이트 수지, 규소 수지, 아크릴산 에스테르, 메타아크릴산 에스테르, 스티렌, 에틸렌, 프로필렌 및 이들 유도체의 중합 또는 공중합에 의해 얻어지는 구상 또는 파쇄된 입자 등을 들 수 있다. 특히 바람직한 수지 입자는 아크릴산 또는 메타아크릴산 에스테르의 중합에 의해 얻어지는 구상의 아크릴 수지 입자이다.Specific examples of the resin particles include cellulose powder, cellulose acetate powder, polyamide, epoxy resin, polyester, melamine resin, polyurethane, vinyl acetate resin, silicon resin, acrylic acid ester, methacrylic acid ester, styrene, ethylene, propylene and derivatives thereof. And spherical or crushed particles obtained by polymerization or copolymerization thereof. Especially preferable resin particle is spherical acrylic resin particle obtained by superposition | polymerization of acrylic acid or methacrylic acid ester.

무기물로서는 시라스 벌룬(중공 규산 입자) 등의 무기 중공 입자, 미세 탄소 중공구(크레카스페어), 용융 알루미나 버블, 에어로질, 화이트 카본, 실리카 미세 중공구, 탄산칼슘 미세 중공구, 탄산칼슘, 펄라이트, 활석(talc), 벤토나이트, 고령토(kaoline) 등을 사용할 수 있다.Inorganic materials include inorganic hollow particles such as siras balloons (hollow silicate particles), fine carbon hollow spheres (crecas spares), fused alumina bubbles, aerosols, white carbon, silica fine hollow spheres, calcium carbonate hollow hollow spheres, calcium carbonate, pearlite , Talc, bentonite, kaoline, and the like can be used.

본 발명의 다층막 피복 분말체에 있어서, 비중 0.1 내지 10.5의 기본 입자의 표면에 형성되는 다수의 피막층은, 그것들의 굴절율이 서로 다를 필요가 있으며, 그 피막층들을 구성하는 재료는 무기 금속 화합물, 금속 또는 합금 및 유기물 중에서 임의로 선택하는 것이 바람직하다.In the multilayer film-coated powder of the present invention, the plurality of coating layers formed on the surface of the basic particles having a specific gravity of 0.1 to 10.5 need to have their refractive indices different from each other, and the material constituting the coating layers is an inorganic metal compound, a metal or It is preferable to select arbitrarily from an alloy and an organic substance.

이 다수의 피막층은, 모두 치밀하고 연속적인 막이기 때문에, 그 특성을 뛰어나게 할 수 있다.Since many of these coating layers are all dense and continuous films, their characteristics can be excellent.

피막층을 구성하는 무기 금속 화합물로서는, 그 대표적인 것으로 금속 산화물을 들 수 있으며, 구체예로서 예를 들어 철, 니켈, 크롬, 티탄, 알루미늄, 규소, 칼슘, 마그네슘, 바륨 등의 산화물, 혹은 티탄산 바륨, 티탄산 납 등과, 이들의 복합 산화물을 들 수 있다. 더욱이, 금속 산화물 이외의 금속 화합물로서는 플루오르화 마그네슘, 플루오르화 칼슘 등의 금속 플루오르화물, 철 질화물 등의 금속 질화물, 황화 아연, 황화 카드뮴 등의 금속 황화물, 탄산 칼슘 등의 금속 탄산염, 인산 칼슘 등의 금속 인산염, 금속 탄화물 등을 들 수 있다. 특히, 실리카 등은, 다층막 피복 분말체로서의 특성을 좋게 부여하는 것이다.Examples of the inorganic metal compound constituting the coating layer include metal oxides, and specific examples thereof include oxides such as iron, nickel, chromium, titanium, aluminum, silicon, calcium, magnesium and barium, or barium titanate, Lead titanate etc. and these composite oxides are mentioned. Further, as metal compounds other than metal oxides, metal fluorides such as magnesium fluoride and calcium fluoride, metal nitrides such as iron nitride, metal sulfides such as zinc sulfide and cadmium sulfide, metal carbonates such as calcium carbonate and metals such as calcium phosphate Phosphates, metal carbides and the like. In particular, silica or the like gives the characteristics as a multilayer film-coated powder well.

피막층을 구성하는 금속 단체로서는 금속 은, 금속 코발트, 금속 니켈, 금속 철 등을 들 수 있고, 금속 합금으로서는 철·니켈 합금, 철·코발트 합금, 철·니켈 합금 질화물, 철·니켈·코발트 합금 질화물 등을 들 수 있다.Metal silver, metal cobalt, metal nickel, metal iron etc. which comprise a film layer are mentioned, As a metal alloy, iron, nickel alloy, iron, cobalt alloy, iron, nickel alloy nitride, iron, nickel, cobalt alloy nitride Etc. can be mentioned.

피막층을 구성하는 유기물로서는, 기본 재료를 구성하는 상기 유기물과 동일하거나 상이해도 무관하며, 특별히 한정되지는 않지만, 수지가 바람직하다. 수지의 구체예로서는, 셀룰로오스, 셀룰로오스 아세테이트, 폴리아미드, 에폭시 수지, 폴리에스테르, 멜라민 수지, 폴리우레탄, 비닐 아세테이트 수지, 규소 수지, 아크릴산 에스테르, 메타아크릴산 에스테르, 스티렌, 에틸렌, 프로필렌 및 이들 유도체의 중합체 또는 공중합체 등을 들 수 있다.The organic substance constituting the coating layer may be the same as or different from the organic substance constituting the base material, and is not particularly limited, but a resin is preferable. Specific examples of the resin include cellulose, cellulose acetate, polyamide, epoxy resin, polyester, melamine resin, polyurethane, vinyl acetate resin, silicon resin, acrylic acid ester, methacrylic acid ester, styrene, ethylene, propylene and polymers of these derivatives or And copolymers.

이와 같이, 피막층을 구성하는 재료로서 여러 가지 재료를 사용할 수 있으나, 그러한 재료의 조합은 각 피막층의 굴절율을 고려한 다음, 안료나 도료의 종류, 목적, 피도포물 등에 따라 적당히 선택할 필요가 있다.As described above, various materials may be used as the material constituting the coating layer. However, the combination of such materials needs to be appropriately selected depending on the refractive index of each coating layer, the type, the purpose, and the coated object.

분말체가 화장품 원료용인 경우, 당연히 가장 바깥층의 피막층을 구성하는 재료는 생체에 대해 불활성이거나, 적어도 악영향을 미치지 않는 것이여야만 한다. 그와 같은 재료의 대표예로서 이산화 티탄을 들 수 있다. In the case where the powder is for cosmetic raw materials, the material constituting the outermost coating layer must of course be inert to the living body or at least have no adverse effect. Titanium dioxide is mentioned as a representative example of such a material.

또한, 이산화 티탄은, UV파를 특이하게 흡수하는 성질을 지닌 점에서도, 유효하다고 할 수 있다. 또한, 금속막과 산화 티탄막을 사용하여, 막 두께를 적당히 제어함으로써, 적외선 영역 전체에 있어서 높은 반사율을 갖는 분말체로 할 수 있으며, UV 및 IR 차단 화장품 재료로 할 수도 있다.In addition, titanium dioxide can be said to be effective also in the point which has the characteristic which absorbs a UV wave specifically. Further, by controlling the film thickness appropriately by using a metal film and a titanium oxide film, it can be made into a powder having a high reflectance in the entire infrared region, and can also be a UV and IR blocking cosmetic material.

피복층에 유기물을 이용할 경우, 다른 층에 대해서는, 금속 산화물 막으로 이루어진 것이 바람직하다.When using an organic substance for a coating layer, it is preferable that it consists of a metal oxide film about another layer.

본 발명에 있어서, 피복되는 유기물 분말체의 형상은 어떠한 형상이라도 상관없다. 예를 들어 분쇄물과 같은 부정형이어도 피복 및 착색은 가능하지만, 특히 구상의 것이 바람직하다.In the present invention, the shape of the organic powder to be coated may be any shape. For example, although coating and coloring are possible even if it is an amorphous form like a pulverized material, spherical thing is especially preferable.

본 발명의 다층막 피복 분말체의 입자 직경은, 특별히 한정되지 않으며, 목적에 따라서 적당히 조정할 수 있으나, 통상은 0.01㎛ 내지 수 mm의 범위이다. 단, 컬러의 경우에는 가시광 간섭을 이용한 색재로 할 경우에는, 입자 직경을 0.06 내지 1000㎛로 하는 것이 바람직하다.The particle diameter of the multilayer film-coated powder of the present invention is not particularly limited and may be appropriately adjusted depending on the purpose, but is usually in the range of 0.01 μm to several mm. However, in the case of color, when using it as a color material using visible light interference, it is preferable to make particle diameter into 0.06-1000 micrometers.

상기 다수의 피막층을 구성하는 각 단위 피막층은, 특정한 동일 파장의 간섭 반사 피크 또는 간섭 투과 바닥을 갖도록 각 단위 피막층의 막 두께를 설정하는 것이 바람직하다. 더욱 바람직하게는, 기본 막 두께가 하기 식 (1)을 만족시키도록 하고, 굴절율의 흡광 계수(κ)에 의한 위상 이동, 막 계면에서의 위상 이동, 및 굴절율의 분산 및 입자 형상에 의존하는 피크 이동으로 이루어진 함수로부터, 각 단위 피막층이 특정한 동일 파장에서 간섭 반사 피크(reflection peak) 또는 간섭 투과 바닥(transmission bottom)을 갖도록, 각 단위 피막층의 실제 막 두께를 보정하므로써 각 단위 피막층의 막 두께가 보정되는 것이다:It is preferable to set the film thickness of each unit coating layer so that each unit coating layer which comprises the said several coating layer has an interference reflection peak or an interference transmission bottom of a specific same wavelength. More preferably, the basic film thickness satisfies the following formula (1), and the peak depends on the phase shift by the extinction coefficient κ of the refractive index, the phase shift at the film interface, and the dispersion and particle shape of the refractive index. From the function of the shift, the film thickness of each unit coat layer is corrected by correcting the actual film thickness of each unit coat layer so that each unit coat layer has an interference reflection peak or a transmission bottom at a specific same wavelength. Would be:

N x d = M x λ/4 (1)N x d = M x λ / 4 (1)

상기 식에서, Where

N은 복소 굴절율이며, 식 (2) N = n + iκ(여기서, n은 각 단위 피막층의 굴절율, i는 복소수, κ는 감쇠계수를 나타냄)로 규정되며,N is a complex refractive index, defined by the formula (2) N = n + iκ (where n is the refractive index of each unit coating layer, i is a complex number, κ is an attenuation coefficient),

d는 기본 막 두께이며, d is the base film thickness,

m은 정수(자연수)이고, m is an integer (natural number),

λ는 상기 간섭 반사 피크 또는 간섭 투과 바닥의 파장을 나타낸다.λ represents the wavelength of the interference reflection peak or interference transmission bottom.

막의 형성방법으로서는, 그 형성하는 물질에 따라 다음과 같은 방법을 들 수 있는데, 그 외의 방법을 사용할 수도 있다.As a method of forming a film, the following methods may be mentioned depending on the material to be formed, but other methods may be used.

(1) 유기물 막(수지막)을 형성하는 경우(1) In the case of forming an organic film (resin film)

a. 액상중에서의 중합법a. Polymerization in Liquid Phase

기본 물질이 되는 입자를 분산시켜서 유화 중합시킴으로써, 그 입자 위에 수지막을 형성시키는 방법 등을 사용할 수 있다.The method of forming a resin film on the particle | grains, etc. can be used by disperse | distributing and emulsion-polymerizing the particle used as a base material.

b. 기상중에서의 막 제조법(CVD)(PVD)b. Film Preparation in the Gas Phase (CVD) (PVD)

(2) 무기 금속 화합물 막을 형성하는 경우(2) In case of forming inorganic metal compound film

a. 액상중에서의 고체상 석출법a. Solid Phase Precipitation in Liquid Phase

기본 물질이 되는 입자를 금속 알콕시드 용액 중에 분산하여, 금속 알콕시드를 가수분해함으로써, 그 입자 위에 금속 산화물 막을 형성하는 방법이 바람직하며, 조밀한 금속 산화물 막을 형성할 수 있다. 또한, 금속염 수용액의 반응에 의해 입자 위에 금속 산화물 막 등을 형성할 수 있다.The method of forming a metal oxide film on the particle | grains by disperse | distributing the particle used as a base material in a metal alkoxide solution and hydrolyzing a metal alkoxide is preferable, and can form a dense metal oxide film. Moreover, a metal oxide film etc. can be formed on particle | grains by reaction of metal salt aqueous solution.

b. 기상중에서의 막 제조법(CVD) (PVD)b. Membrane Manufacturing in the Gas Phase (CVD) (PVD)

(3) 금속막 혹은 합금막을 형성하는 경우(3) When forming a metal film or an alloy film

a. 액상중에서의 금속염의 환원법a. Reduction of Metal Salts in Liquid Phase

금속염 수용액 중에서 금속염을 환원하여 금속을 석출시켜서 금속막을 형성하는, 소위 화학 도금법이 사용된다.A so-called chemical plating method is used in which a metal salt is reduced to precipitate a metal to form a metal film in an aqueous metal salt solution.

b. 기상중에서의 막 제조법(CVD) (PVD)b. Membrane Preparation in the Gas Phase (PVD)

금속의 진공 증착 등에 의해, 입자의 표면에 금속막을 형성할 수 있다.The metal film can be formed on the surface of the particles by vacuum deposition of metal or the like.

다음에 일례로서, 높은 굴절율의 금속 산화물과 낮은 굴절율의 금속 산화물의 교대 다층막을 형성하는 방법에 대해 구체적으로 설명하겠다. 우선, 티탄 혹은 지르코늄 등의 알콕시드의 알코올 용액에 기본 입자를 분산시키고, 교반시키면서 물과 알코올 및 촉매의 혼합 용액을 적가하여, 상기 알콕시드를 가수분해함으로써, 기본 입자 표면에 고 굴절율 막으로서 산화 티탄막 혹은 산화 지르코늄막을 형성시킨다. 그 후, 고체/액체 분리하고, 건조 후, 열처리 시킨다. 건조수단으로서는, 진공가열건조, 진공건조, 자연건조로부터 선택된 임의의 수단일 수 있다. 또한, 분위기 조정하면서 불활성 분위기 중에서 분무 건조기 등의 장치를 이용하는 것도 가능하다. 열 처리는, 산화되지 않는 피막 조성물은 공기중에서, 산화되기 쉬운 피막 조성물은 불활성 분위기하에서, 150 내지 1100℃(기본 입자가 무기 분말체인 경우) 또는 150 내지 500℃(기본 입자가 무기 분말체 이외인 경우)에서 1분 내지 3시간 열처리한다. 그 후, 고 굴절율 막이 형성된 입자를 금속 알콕시드의 알코올 용액에 분산시켜 규소 알콕시드, 알루미늄 알콕시드 등의 굴절율이 낮은 금속 산화물을 제공하였다. 물과 알코올 및 촉매의 혼합 용액을 생성된 분산액에 교반시키면서 적가하여 알콕시드를 가수분해함으로써, 기본 입자 표면에 저 굴절율 막으로서 산화 규소 또는 산화 알루미늄의 막을 형성시킨다. 그 후, 분말체를 고체/액체 분리하여, 진공 건조시킨 후, 상기와 같은 방식으로 열처리를 수행한다. 이러한 조작에 의해, 기본 입자의 표면에 2층의, 고 굴절율의 금속 산화물 막과 저 굴절율의 금속 산화물 막을 갖는 분말체가 얻어진다. 더욱이, 이 금속 산화물 막을 형성하는 조작을 반복함으로써, 다층의 금속 산화물 막을 그 표면상에 갖는 분말체가 얻어진다. 이 때, 상기한 바와 같이, 고 굴절율의 금속 산화물 막과 저 굴절율의 금속 산화물 막이 교대로 형성되어 있는 분말체로 함으로써, 높은 반사율을 가진 분말체가 얻어지고, 백색도가 높은 분말체가 된다.Next, as an example, a method of forming an alternating multilayer film of a high refractive index metal oxide and a low refractive index metal oxide will be described in detail. First, by dispersing the base particles in an alcohol solution of an alkoxide such as titanium or zirconium, dropwise adding a mixed solution of water, an alcohol and a catalyst while stirring, and hydrolyzing the alkoxide to oxidize as a high refractive index film on the surface of the base particle. A titanium film or zirconium oxide film is formed. Thereafter, the solid / liquid separation, drying and heat treatment. The drying means may be any means selected from vacuum heating drying, vacuum drying and natural drying. Moreover, it is also possible to use apparatuses, such as a spray dryer, in inert atmosphere, adjusting atmosphere. The heat treatment is carried out in the air in which the coating composition which is not oxidized is in the air, and the coating composition which is easy to be oxidized in an inert atmosphere is 150 to 1100 ° C (when the basic particles are inorganic powder) or 150 to 500 ° C (the basic particles are other than the inorganic powder Heat) for 1 minute to 3 hours. Thereafter, the particles on which the high refractive index film was formed were dispersed in the alcohol solution of the metal alkoxide to provide metal oxides having a low refractive index such as silicon alkoxide and aluminum alkoxide. A mixed solution of water, alcohol and catalyst is added dropwise to the resulting dispersion with hydrolysis to form a film of silicon oxide or aluminum oxide as a low refractive index film on the surface of the basic particles. Thereafter, the powder is subjected to solid / liquid separation, vacuum drying, and heat treatment in the same manner as described above. By this operation, a powder having two layers of a high refractive index metal oxide film and a low refractive index metal oxide film is obtained on the surface of the basic particles. Furthermore, by repeating the operation of forming the metal oxide film, a powder having a multilayer metal oxide film on its surface is obtained. At this time, as described above, a powder having a high refractive index metal oxide film and a low refractive index metal oxide film is formed alternately, whereby a powder having a high reflectance is obtained, thereby obtaining a powder having a high whiteness.

기본 입자 또는 금속 산화물 막의 표면에 금속막을 형성하는 수단으로서는, 상기 무전해 도금법에 의한 것 이외에, 접촉 전기 도금법에 의해 형성할 수도 있고, 또한 스퍼터링법에 의해 형성할 수도 있다. 그러나, 접촉 전기 도금법에서는 분말체가 전극에 접촉하지 않을 때에는 도금되지 않고, 스퍼터링법에 있어서는 분말체에 금속 증기가 균일하게 쐬어지지 않아, 어떤 방법이든지 각 분말체마다 피복되는 막 두께가 다르다. 이에 대해, 무전해 도금에 의한 피막 형성법에서는 치밀하고 균일한 막을 형성할 수 있으며, 또한 막 두께를 조절하기 쉽기 때문에 바람직하다. 또한, 금속막은 금속 산화물 막과 마찬가지로 피막 형성후에 가열 처리하는 것이 바람직하다.As a means for forming a metal film on the surface of a base particle or a metal oxide film, it can be formed by the contact electroplating method other than the said electroless plating method, and can also be formed by the sputtering method. However, in the contact electroplating method, the powder is not plated when it is not in contact with the electrode, and in the sputtering method, the metal vapor is not uniformly flowed into the powder, and the film thickness to be coated for each powder is different in any method. On the other hand, in the film formation method by electroless plating, since a dense and uniform film | membrane can be formed and film thickness is easy to adjust, it is preferable. Moreover, it is preferable to heat-process a metal film after film formation similarly to a metal oxide film.

이하, 도면을 참조하면서 본 발명을 더욱 상세히 설명한다. 도 1은 본 발명의 다층막 피복 분말체의 개념적 구조를 나타내는 단면도로서, 비중 0.1 내지 10.5의 기본 입자(1)를 핵으로 하여, 그 표면에 2층의, 굴절율이 다른 피막층(2, 3)이 각각 형성되어 있다.Hereinafter, the present invention will be described in more detail with reference to the drawings. 1 is a cross-sectional view showing a conceptual structure of a multilayer film-coated powder of the present invention, wherein the coating particles 2 and 3 having different refractive indices are formed on the surface of the base particles 1 having a specific gravity of 0.1 to 10.5 as a nucleus. Each is formed.

또한, 기본 입자의 표면에 형성하는 굴절율이 상이한 교대 피복막의 각 층의 두께를 조정함으로써 특별한 기능을 부여할 수 있다. 예를 들어, 기본 입자의 표면에, 굴절율이 다른 교대 피복층을, 다음의 식(1)을 만족시키도록, 피막을 형성하는 물질의 굴절율(n)과 가시광 파장의 4분의 1의 정수(m) 배에 상당하는 두께(d)를 갖는 교대막을 적당한 두께와 매수로 형성하면, 특정한 파장(λ)의 빛(프레넬의 간섭 반사를 이용한 것)이 반사 또는 흡수된다.Moreover, a special function can be provided by adjusting the thickness of each layer of the alternating coating film which differs in the refractive index formed in the surface of a basic particle. For example, an alternating coating layer having a different refractive index on the surface of the base particle has an index (m) of the refractive index (n) of the material forming the film and a quarter of the visible wavelength (m) so as to satisfy the following formula (1). When an alternating film having a thickness d corresponding to the thickness is formed in an appropriate thickness and the number of sheets, light having a specific wavelength λ (using Fresnel's interference reflection) is reflected or absorbed.

nd = mλ/4 (1)nd = mλ / 4 (1)

이 작용을 이용하여, 기본 입자의 표면에 목표가 되는 가시광의 파장에 대해 식(1)을 만족시키는 막의 두께와 굴절율을 갖는 산화물 막을 제조하며, 또다시 그 위에 굴절율이 다른 산화물 막을 피복하는 것을 한 번 또는 그 이상 교대로 반복함으로써 가시광 영역에 특유의 반사 또는 흡수 파장 폭을 갖는 막이 형성된다. 이 때, 막을 제조하는 물질의 순서는 다음과 같이 정한다. 먼저, 기본 물질의 굴절율이 높을 때는, 제 1 층을 굴절율이 낮은 막으로 하고, 반대의 관계인 경우에는 제 1 층을 굴절율이 높은 막으로 하는 것이 바람직하다.Using this action, an oxide film having a thickness and a refractive index of a film satisfying Equation (1) for a target wavelength of visible light on the surface of a base particle is produced, and again covering the oxide film having a different refractive index thereon. Alternatively, the film having a specific reflection or absorption wavelength width in the visible light region is formed by alternately repeating the above. At this time, the order of materials for producing the membrane is determined as follows. First, when the refractive index of a base material is high, it is preferable to make a 1st layer into a film with a low refractive index, and, in a reverse relationship, to make a 1st layer into a film with a high refractive index.

막 두께는, 막 굴절율과 막 두께의 곱인 광학 막 두께의 변화를 분광 광도계 등으로 반사 파형으로서 측정, 제어하는데, 반사 파형이 최종적으로 필요한 파형이 되도록 각 층의 막 두께를 설계한다. 예를 들어, 도 2에 도시하는 바와 같이, 다층막을 구성하는 각 단위 피막의 반사 파형의 피크 위치가 어긋난 경우에 백색의 분말체가 되며, 한편 도 3에 도시하는 바와 같이 각 단위 피막의 반사 파형의 피크 위치를 정밀하게 맞추면, 염료나 안료를 사용하지 않고도 청, 녹, 황색 등의 단색의 착색 분말체로 만들 수 있다.The film thickness measures and controls the change of the optical film thickness, which is the product of the film refractive index and the film thickness, as a reflection waveform with a spectrophotometer or the like. The film thickness of each layer is designed so that the reflection waveform becomes a finally required waveform. For example, as shown in FIG. 2, when the peak position of the reflection waveform of each unit film which comprises a multilayer film shifts, it becomes a white powder body, On the other hand, as shown in FIG. If the peak position is precisely adjusted, it can be made into a monochromatic colored powder such as blue, green or yellow without using dyes or pigments.

단, 실제의 분말체인 경우, 분말체의 입자 직경, 형상, 막 물질 및 기본 입자 물질의 상호 계면에서의 위상 어긋남 및 굴절율의 파장 의존도에 따른 피크 시프트 등을 고려하여 설계할 필요가 있다. 기본 물질 위에 형성하는 막의 두께에 대해, 알 기 쉽게 설명하면, 평행 평면에 형성되는 평행 막에 의한 프레넬 간섭은 상기 식(1)의 n을 다음 식(2)의 N으로 치환한 조건으로 설계한다. 평행 평판면에 평행 막을 형성하는 경우라도 금속막이 포함되는 경우에는, 식(2)의 금속의 굴절율(N)에 감쇠계수(κ)가 포함된다. 또한, 투명 산화막(유전체)의 경우에는 κ가 매우 작아서 무시할 수 있다.However, in the case of the actual powder, it is necessary to design in consideration of the particle diameter, shape of the powder, the phase shift at the interface between the film material and the basic particle material, and the peak shift depending on the wavelength dependence of the refractive index. In terms of the thickness of the film formed on the base material, the Fresnel interference by the parallel film formed in the parallel plane is designed under the condition that n in Equation (1) is replaced by N in Equation (2). do. Even when a parallel film is formed on the parallel plate surface, when a metal film is included, the attenuation coefficient? Is included in the refractive index N of the metal of the formula (2). In the case of the transparent oxide film (dielectric), κ is very small and can be ignored.

N = n + iκ (i는 복소수를 나타낸다) (2)N = n + iκ (i represents a complex number) (2)

이 감쇠계수(κ)가 크면, 막 물질 및 기본 입자 물질의 상호 계면에서의 위상 어긋남이 커지고, 더욱이 다층막의 모든 층에 위상 어긋남에 따른 간섭 최적 막 두께에 영향을 미친다.If the attenuation coefficient κ is large, the phase shift at the mutual interface between the film material and the basic particle material becomes large, and further affects the optimum film thickness due to the phase shift to all the layers of the multilayer film.

이에 따라, 기하학적인 막 두께만큼을 합쳐도 피크 위치가 어긋나기 때문에, 특히 단색으로 착색할 때 색이 옅어진다. 이를 방지하기 위해서는, 모든 막에 대한 위상 어긋남의 영향을 가미하여, 컴퓨터 시뮬레이션으로 미리 막 두께의 조합이 최적의 상태가 되도록 설계한다.As a result, the peak position is shifted even if the geometric film thickness is combined, so that the color becomes pale, especially when colored in a single color. In order to prevent this, the effects of phase shift on all the films are taken into account, and the computer film is designed in advance so that the combination of the film thicknesses is optimal.

더욱이, 금속 표면에 있는 산화물 층을 위한 위상 어긋남이나, 굴절율의 파장 의존성에 의한 피크 시프트가 있다. 이들을 보정하기 위해서는, 분광 광도계 등으로, 반사 피크나 흡수 피크가 최종 목적의 막 수에서 목표 파장이 되도록 최적의 조건을 찾아낼 필요가 있다.Furthermore, there is a phase shift for the oxide layer on the metal surface or a peak shift due to the wavelength dependence of the refractive index. In order to correct these, it is necessary to find out the optimum conditions by using a spectrophotometer or the like so that the reflection peak and the absorption peak become the target wavelength at the final target film number.

구상 분말체 등의 곡면에 형성된 막의 간섭은, 평판과 마찬가지로 일어나며, 기본적으로는 프레넬의 간섭 원리에 따른다. 따라서, 착색 방법도 도 2 및 도 3과 같이 백색 및 단색으로 설계할 수 있다. 단, 곡면의 경우에는 분말체에 입사하여 반사된 빛이 복잡하게 간섭을 일으킨다. 이들의 간섭 파형은 막 수가 적은 경우에는 평판과 거의 동일하다. 그러나, 총 합계가 늘어나면 다층막 내부에서의 간섭이 더욱 복잡해진다. 다층막의 경우도 프레넬 간섭에 의거하여, 반사 분광 곡선을 컴퓨터 시뮬레이션으로 미리 막 두께의 조합이 최적이 되도록 설계할 수 있다. 특히, 기본 입자 표면으로의 피막 형성의 경우, 기본 입자 표면과 모든 막에 대한 위상 어긋남의 영향을 가미하여, 컴퓨터 시뮬레이션으로 미리 막 두께의 조합이 최적이 되도록 설계한다. 더욱이, 기본 입자 표면에 있는 산화물 층을 위한 피크 시프트나 굴절율의 파장 의존성에 의한 피크 시프트도 가미한다. 실제의 샘플 제조에서는 설계한 분광 곡선을 참고로 하여, 실제의 막에 있어서 이들을 보정하기 위해, 분광 광도계 등으로 반사 피크나 흡수 피크가 최종 목적의 막의 수에서 목표 파장이 되도록 막 두께를 변화시키면서 최적의 조건을 찾아내지 않으면 안된다. 부정 형상의 분말에 착색하는 경우도 다층막에 의한 간섭이 일어나, 구형상의 분말체의 간섭 다층막의 조건을 참고하여 기본적인 막 설계를 행한다. 상기 다층막을 구성하는 각 단위 피막의 피크 위치는 각 층의 막 두께에 의해 조정할 수 있으며, 막 두께는 용액 조성 및 반응 시간 및 원료의 첨가 회수에 따라 조정할 수 있어 원하는 색으로 착색할 수 있다. 이상과 같이, 반사 피크나 흡수 피크가 최종 목적하는 막 수에서 목표 파장이 되도록 막 형성 용액 등의 막 제조 조건을 변화시키면서 최적의 조건을 찾아냄으로써, 백색 및 단색의 분말체를 얻을 수 있다. 또한, 다층막을 구성하는 물질의 조합 및 각 단위 피막의 막 두께를 제어함으로써 다층막 간섭에 의한 발색을 조정할 수 있다. 이로써, 염료나 안료를 사용하지 않아도 분말체를 원하는 색으로 선명하게 착색할 수 있다.The interference of the film formed on the curved surface of the spherical powder or the like occurs like a flat plate, and basically follows the interference principle of Fresnel. Therefore, the coloring method can also be designed in white and monochrome as shown in Figs. However, in the case of a curved surface, the light incident on and reflected from the powder causes complex interference. These interference waveforms are almost the same as flat plates when the number of films is small. However, as the total sum increases, the interference inside the multilayer film becomes more complicated. In the case of a multilayer film, based on Fresnel interference, the reflection spectral curve can be designed to optimize the combination of film thicknesses in advance by computer simulation. In particular, in the case of film formation on the basic particle surface, the combination of the film thicknesses is designed in advance by computer simulation in consideration of the effect of phase shift on the basic particle surface and all the films. Moreover, the peak shift for the oxide layer on the surface of the base particle or the wavelength shift due to the wavelength dependence of the refractive index is also included. In actual sample preparation, in order to correct these in the actual film by referring to the designed spectral curve, it is optimal to change the film thickness such that the reflection peak or the absorption peak is a target wavelength at the number of the final target film with a spectrophotometer or the like. You must find condition of. In the case of coloring the amorphous powder, interference by the multilayer film occurs, and basic film design is performed by referring to the conditions of the interference multilayer film of the spherical powder. The peak position of each unit film constituting the multilayer film can be adjusted by the film thickness of each layer, and the film thickness can be adjusted according to the solution composition, the reaction time, and the number of additions of the raw materials, and can be colored in a desired color. As described above, white and monochromatic powders can be obtained by finding the optimum conditions while changing the film production conditions such as the film forming solution so that the reflection peak and the absorption peak become the target wavelength at the final target film number. In addition, by controlling the combination of materials constituting the multilayer film and the film thickness of each unit film, the color development due to the multilayer film interference can be adjusted. Thereby, a powder can be vividly colored to a desired color, without using a dye or a pigment.

이하, 본 발명을 실시예에 의해 보다 구체적으로 설명하겠다. 단, 본 발명은 본 실시예에만 한정되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, this invention is not limited only to a present Example.

실시예 1Example 1

용도 : 안료 분말체Use: Pigment Powder

(제 1층의 티타니아 코팅)(Titania coating of the first layer)

아크릴 분말체(평균 입경 1.5㎛, 비중 1.4) 10g을 에탄올 250ml에 분산시키고, 용기를 유욕(oil bath)으로 가열하여 액의 온도를 55℃로 유지시켰다. 여기에 티탄 이소프로폭시드 3.5g을 첨가하고, 교반시켰다. 추가로, 에탄올 30ml와 물 3.5g의 혼합액을 60분에 걸쳐 적가한 후, 2시간 반응시키고, 충분한 양의 에탄올로 희석 세정한 후, 진공 건조기로 180℃에서 8시간 동안 건조시켰다. 건조 후, 티타니아 코팅 분말체(A1)를 수득하였다. 수득된 티타니아 코팅 분말체(A1)는 분산성이 좋고, 각각 단립자였다. 또한, 이 분말체(A1)의 분광 반사 곡선의 피크 파장은 455nm이며, 피크 파장에서의 반사율은 32%이며, 옅은 청색이었다.10 g of the acrylic powder (average particle size 1.5 mu m, specific gravity 1.4) was dispersed in 250 ml of ethanol, and the vessel was heated in an oil bath to maintain the temperature of the liquid at 55 deg. 3.5 g of titanium isopropoxide was added thereto and stirred. Further, a mixture of 30 ml of ethanol and 3.5 g of water was added dropwise over 60 minutes, and then reacted for 2 hours, diluted and washed with a sufficient amount of ethanol, and then dried in a vacuum dryer at 180 ° C. for 8 hours. After drying, titania-coated powder A 1 was obtained. The obtained titania coated powder (A 1 ) had good dispersibility and were single particles, respectively. Further, the peak wavelength of the spectral reflectance curve of the powder (A 1) is 455nm, the reflectance at the peak wavelength is 32%, was a light blue.

(제 2층의 실리카 코팅)(Silica coating of the second layer)

티타니아 코팅 분말체(A1) 10g을 에탄올 100ml에 분산시키고, 용기를 유욕으로 가열하여 액의 온도를 55℃로 유지시켰다. 여기에 실리콘 에톡시드 6g, 암모니아수(29%) 및 물 8g을 첨가하고, 교반하면서 3시간 동안 반응시켰다. 반응후, 충분한 양의 에탄올로 희석 세정하고, 여과시키고, 진공 건조기로 180℃에서 8시간 동안 건조시켰다. 건조 후, 실리카-티타니아 코팅 분말체(A2)를 수득하였다. 수득된 실리카-티타니아 코팅 분말체(A2)의 분산성은 매우 양호하였다.10 g of titania-coated powder (A 1 ) was dispersed in 100 ml of ethanol, and the vessel was heated with an oil bath to maintain the temperature of the liquid at 55 ° C. 6 g of silicon ethoxide, aqueous ammonia (29%) and 8 g of water were added thereto, and reacted for 3 hours with stirring. After the reaction, the reaction was diluted with a sufficient amount of ethanol, filtered, and dried in a vacuum drier at 180 ° C. for 8 hours. After drying, silica-titania-coated powder A 2 was obtained. The dispersibility of the obtained silica-titania coated powder (A 2 ) was very good.

(제 3층의 티타니아 코팅)(Titania coating of the third layer)

실리카-티타니아 코팅 분말체(A2) 10g을 에탄올 250ml에 분산시키고, 용기를 유욕으로 가열하여 액의 온도를 55℃로 유지시켰다. 여기에 티탄 이소프로폭시드 3.4g을 첨가하고, 교반시켰다. 추가로 에탄올 30ml와 물 3.4g의 혼합액을 60분에 걸쳐 적가한 후, 2시간 동안 반응시키고, 충분한 양의 에탄올로 희석 세정한 후, 진공 건조기로 180℃에서 8시간 동안 건조시켰다. 건조 후, 티타니아-실리카 코팅 분말체(A)를 수득하였다. 수득된 티타니아-실리카 코팅 분말체(A)는 분산성이 좋고, 각각 단립자였다. 또한, 이 분말체(A)의 분광 반사 곡선의 피크 파장은 448nm이고, 피크 파장에서의 반사율은 45%이며, 청색이었다.10 g of silica-titania-coated powder (A 2 ) was dispersed in 250 ml of ethanol, and the vessel was heated with an oil bath to maintain the temperature of the liquid at 55 ° C. 3.4 g of titanium isopropoxide was added thereto and stirred. Further, a mixture of 30 ml of ethanol and 3.4 g of water was added dropwise over 60 minutes, and then reacted for 2 hours, diluted and washed with a sufficient amount of ethanol, and then dried in a vacuum dryer at 180 ° C. for 8 hours. After drying, titania-silica-coated powder A was obtained. The obtained titania-silica coated powder (A) had good dispersibility and was single grains, respectively. In addition, the peak wavelength of the spectral reflection curve of this powder body A was 448 nm, the reflectance at the peak wavelength was 45% and was blue.

상기 제 1 내지 제 3층의 굴절율 및 막 두께를 표 1에 나타내었다.The refractive indices and film thicknesses of the first to third layers are shown in Table 1.

표 1Table 1

피막층Film layer 굴절율Refractive index 막 두께(nm)Film thickness (nm) 제 1층 티타니아막The first layer titania film 2.32.3 5050 제 2층 실리카막2nd layer silica film 1.451.45 9999 제 3층 티타니아막3rd layer titania film 2.32.3 4949

실시예 2Example 2

용도 : 안료 분말체Use: Pigment Powder

(제 1층의 티타니아 코팅)(Titania coating of the first layer)

알칼리성 분말체(평균 입경 55㎛, 비중 1.5) 100g을 저 진공의 회전 교반기에서 교반하면서, 미리 교반기내의 상부에 설치한 텅스텐 도가니(crucible)에 충분한 양의 티타니아 분말을 넣어 두고, 이 도가니를 가열함으로써 티타니아를 증발시켰다. 회전 교반기내의 분말체가 티타니아로 피복되어, 티타니아 코팅 분말체(B1)를 수득하였다. 수득된 티타니아 코팅 분말체(B1)는 분산성이 좋고, 각각 단립자였다. 또한, 이 분말체(B1)의 분광 반사 곡선의 피크 파장은 545nm이며, 피크 파장에서의 반사율은 78%이고, 옅은 녹색이었다.While stirring 100 g of alkaline powder (average particle diameter: 55 µm, specific gravity: 1.5) in a rotary stirrer with a low vacuum, a sufficient amount of titania powder was placed in a tungsten crucible previously installed in the upper part of the stirrer, and the crucible was heated by heating. Titania was evaporated. The powder in the rotary stirrer was covered with titania to obtain a titania coated powder (B 1 ). The obtained titania-coated powder (B 1 ) had good dispersibility and was discrete particles, respectively. In addition, the powder, and the peak wavelength of a spectral reflection curve (B 1) is 545nm, the reflectance at the peak wavelength is 78%, was pale green.

(제 2층의 플루오르화 마그네슘 코팅)(Magnesium Fluoride Coating of Second Layer)

티타니아 코팅 분말체(B1) 80g을 마찬가지로 저 진공의 회전 교반기에서 교반하면서, 미리 교반기내의 상부에 설치한 텅스텐 도가니에 충분한 양의 플루오르화 마그네슘 분말을 넣어 두고, 이 도가니를 가열함으로써 플루오르화 마그네슘을 증발시켰다. 회전 교반기내의 분말체가 플루오르화 마그네슘으로 피복되어, 플루오르화 마그네슘-티타니아 코팅 분말체(B2)를 수득하였다. 수득된 플루오르화 마그네슘-티타니아 코팅 분말체(B2)는 분산성이 좋고, 각각 단립자이었다.While stirring the 80 g of titania-coated powder (B 1 ) in a rotary stirrer with a low vacuum, a sufficient amount of magnesium fluoride powder is placed in a tungsten crucible previously set in the upper part of the stirrer, and the crucible is heated by heating the crucible. Evaporated. The powder in the rotary stirrer was coated with magnesium fluoride to obtain magnesium fluoride-titania coated powder (B 2 ). The obtained magnesium fluoride-titania-coated powder (B 2 ) had good dispersibility and was discrete particles, respectively.

(제 3층의 티타니아 코팅)(Titania coating of the third layer)

플루오르화 마그네슘-티타니아 코팅 분말체(B2) 100g을 저 진공의 회전 교반기에서 교반하면서, 미리 교반기내의 상부에 설치한 텅스텐 도가니에 충분한 양의 티타니아 분말을 넣어 두고, 이 도가니를 가열함으로써 티타니아를 증발시켰다. 회전 교반기내의 분말체가 티타니아로 피복되고, 티타니아-플루오르화 마그네슘 코팅 분말체(B)를 수득하였다. 수득된 티타니아-플루오르화 마그네슘 코팅 분말체(B)는 분산성이 좋고, 각각 단립자이었다. 또한, 이 분말체(B)의 분광 반사 곡선의 피크 파장은 500nm이며, 피크 파장에서의 반사율은 88%이고, 청록색이었다.While stirring 100 g of magnesium fluoride-titania-coated powder (B 2 ) with a low vacuum rotary stirrer, a sufficient amount of titania powder was placed in a tungsten crucible previously installed in the upper part of the stirrer, and the crucible was heated to evaporate titania. I was. The powder in the rotary stirrer was covered with titania to obtain a titania-magnesium fluoride coated powder (B). The obtained titania-magnesium fluoride coated powder (B) had good dispersibility and was single grains, respectively. In addition, the peak wavelength of the spectral reflection curve of this powder body B was 500 nm, the reflectance at the peak wavelength was 88% and was blue-green.

상기 제 1 내지 제 3층의 굴절율 및 막 두께를 표 2에 나타내었다.The refractive indices and film thicknesses of the first to third layers are shown in Table 2.

표 2TABLE 2

피막층Film layer 굴절율Refractive index 막 두께(nm)Film thickness (nm) 제 1층 티타니아막The first layer titania film 2.32.3 5252 제 2층 플루오르화 마그네슘막2nd layer magnesium fluoride film 1.381.38 101101 제 3층 티타니아막3rd layer titania film 2.62.6 4848

실시예 3Example 3

용도 : 화장품 원료용 분말체Use: Powder for cosmetic raw materials

(제 1층의 티타니아 코팅)(Titania coating of the first layer)

아크릴 분말체(평균 입경 1.5㎛, 비중 1.4) 10g을 에탄올 250ml에 분산시키고, 용기를 유욕으로 가열하여 액의 온도를 55℃로 유지시켰다. 여기에 티탄 이소프로폭시드 3.5g을 첨가하고, 교반시켰다. 추가로 에탄올 30ml와 물 3.5g의 혼합액을 60분에 걸쳐 적가한 후, 2시간 동안 반응시키고, 충분한 양의 에탄올로 희석 세정한 후, 진공 건조기로 180℃에서 8시간 동안 건조시켰다. 건조 후, 티타니아 코팅 분말체(C1)를 수득하였다. 수득된 티타니아 코팅 분말체(C1)는 분산성이 좋고, 각각 단립자였다. 또한, 이 분말체(A1)의 분광 반사 곡선의 피크 파장은 455nm이며, 피크 파장에서의 반사율은 32%이며, 옅은 청색이었다.10 g of acrylic powder (average particle size: 1.5 mu m, specific gravity 1.4) was dispersed in 250 ml of ethanol, and the vessel was heated with an oil bath to maintain the temperature of the liquid at 55 deg. 3.5 g of titanium isopropoxide was added thereto and stirred. Further, a mixture of 30 ml of ethanol and 3.5 g of water was added dropwise over 60 minutes, and then reacted for 2 hours, diluted and washed with a sufficient amount of ethanol, and then dried in a vacuum dryer at 180 ° C. for 8 hours. After drying, titania-coated powder C 1 was obtained. The obtained titania-coated powder (C 1 ) had good dispersibility and was discrete particles, respectively. Further, the peak wavelength of the spectral reflectance curve of the powder (A 1) is 455nm, the reflectance at the peak wavelength is 32%, was a light blue.

(제 2층의 폴리스티렌 코팅)(Polystyrene coating of the second layer)

증류수 600g에 스티렌 단량체 100g을 첨가하고, 70℃까지 가열 교반하면서 라우릴 황산나트륨을 첨가하여 유화시켰다. 여기에 티타니아 코팅 분말체(C1) 25g을 혼합하고, 고속 교반하여 충분히 혼합하였다. 여기에 과황산 암모늄 수용액 10%를 첨가하여, 중합 반응을 개시시키고, 4시간 동안 교반하여 반응시켰다. 반응 종료 후, 증류수 2리터로 희석하고, 경사 세정으로 상청액을 버리고 침전물을 모았다. 침전물을 여과지 위에서 건조시켜, 폴리스티렌-티타니아 코팅 분말체(C2)를 수득하였다. 수득된 폴리스티렌-티타니아 코팅 분말체(C2)는 분산성이 좋고, 각각 단립자였다.100 g of styrene monomer was added to 600 g of distilled water, and sodium lauryl sulfate was added to emulsify while heating and stirring to 70 ° C. 25 g of titania-coated powder (C 1 ) was mixed therein, followed by high speed stirring to sufficiently mix. 10% of aqueous ammonium persulfate solution was added thereto to initiate the polymerization reaction, followed by stirring for 4 hours. After completion of the reaction, the mixture was diluted with 2 liters of distilled water, and the supernatant was discarded by decanting, and the precipitate was collected. The precipitate was dried on a filter paper to obtain a polystyrene-titania coated powder (C 2 ). The obtained polystyrene-titania-coated powder (C 2 ) had good dispersibility and was discrete particles, respectively.

(제 3층의 티타니아 코팅)(Titania coating of the third layer)

폴리스티렌-티타니아 코팅 분말체(C2) 10g을 에탄올 250ml에 분산시키고, 용기를 유욕에 의해 가열하여 액의 온도를 55℃로 유지시켰다. 여기에 티탄 이소프로폭시드 3.4g을 첨가하고, 교반시켰다. 추가로 에탄올 30ml와 물 3.4g의 혼합액을 60분에 걸쳐 적가한 후, 2시간 동안 반응시키고, 충분한 양의 에탄올로 희석 세정한 후, 진공 건조기로 180℃에서 8시간 동안 건조시켰다. 건조 후, 티타니아-폴리스티렌 코팅 분말체(C)를 수득하였다. 수득된 티타니아-폴리스티렌 코팅 분말체(C)는 분산성이 좋고, 각각 단립자였다. 또한, 이 분말체(C)의 분광 반사 곡선의 피크 파장은 448nm이고, 피크 파장에서의 반사율은 45%이며, 청색이었다.10 g of polystyrene-titania-coated powder (C 2 ) was dispersed in 250 ml of ethanol, and the vessel was heated by an oil bath to maintain the temperature of the liquid at 55 ° C. 3.4 g of titanium isopropoxide was added thereto and stirred. Further, a mixture of 30 ml of ethanol and 3.4 g of water was added dropwise over 60 minutes, and then reacted for 2 hours, diluted and washed with a sufficient amount of ethanol, and then dried in a vacuum dryer at 180 ° C. for 8 hours. After drying, titania-polystyrene-coated powder C was obtained. The obtained titania-polystyrene coated powder (C) had good dispersibility and was discrete particles, respectively. In addition, the peak wavelength of the spectral reflection curve of this powder (C) was 448 nm, the reflectance at the peak wavelength was 45% and was blue.

상기 제 1 내지 제 3층의 굴절율 및 막 두께를 표 3에 나타내었다.The refractive indices and film thicknesses of the first to third layers are shown in Table 3.

표 3TABLE 3

피막층Film layer 굴절율Refractive index 막 두께(nm)Film thickness (nm) 제 1층 티타니아막The first layer titania film 2.32.3 5050 제 2층 폴리스티렌막2nd layer polystyrene film 1.51.5 7575 제 3층 티타니아막3rd layer titania film 2.32.3 4949

실시예 4Example 4

용도 : 화장품 원료용 분말체Use: Powder for cosmetic raw materials

(제 1층의 티타니아 코팅)(Titania coating of the first layer)

아크릴 분말체(평균 입경 1.5㎛, 비중 1.4) 10g을 에탄올 250ml에 분산시키고, 용기를 유욕으로 가열하여 액의 온도를 55℃로 유지시켰다. 여기에 티탄 이소프로폭시드 4.5g을 첨가하고, 교반시켰다. 추가로 에탄올 30ml와 물 4.5g의 혼합액을 60분에 걸쳐 적가한 후, 2시간 동안 반응시키고, 충분한 양의 에탄올로 희석 세정한 후, 진공 건조기로 180℃에서 8시간 동안 건조시켰다. 건조 후, 티타니아 코팅 분말체(D1)를 수득하였다. 수득된 티타니아 코팅 분말체(D1)는 분산성이 좋고, 각각 단립자였다. 또한, 이 분말체(D1)의 분광 반사 곡선의 피크 파장은 545nm이며, 피크 파장에서의 반사율은 31%이며, 녹색이었다.10 g of acrylic powder (average particle size: 1.5 mu m, specific gravity 1.4) was dispersed in 250 ml of ethanol, and the vessel was heated with an oil bath to maintain the temperature of the liquid at 55 deg. 4.5 g of titanium isopropoxide was added thereto and stirred. Further, a mixture of 30 ml of ethanol and 4.5 g of water was added dropwise over 60 minutes, reacted for 2 hours, diluted and washed with a sufficient amount of ethanol, and dried at 180 ° C. for 8 hours using a vacuum dryer. After drying, titania-coated powder D 1 was obtained. The obtained titania coated powder (D 1 ) had good dispersibility and were discrete particles, respectively. Further, the peak wavelength of the spectral reflectance curve of the powder (D 1) is 545nm, the reflectance at the peak wavelength is 31%, it was green.

(제 2층의 폴리스티렌 코팅)(Polystyrene coating of the second layer)

증류수 600g에 스티렌 단량체 127g을 첨가하고, 70℃까지 가열 교반하면서 라우릴 황산나트륨을 첨가하여 유화시켰다. 여기에 티타니아 코팅 분말체(D1) 25g을 혼합하여, 고속 교반하여 충분히 혼합하였다. 여기에 과황산 암모늄 수용액 10%를 첨가하여, 중합 반응을 개시시키고, 4시간 동안 교반하여 반응시켰다. 반응 종료후, 증류수 2리터로 희석하고, 경사 세정으로 상청액을 버리고 침전물을 모았다. 침전물을 여과지 위에서 건조시켜, 폴리스티렌-티타니아 코팅 분말체(D2)를 수득하였다. 수득된 폴리스티렌-티타니아 코팅 분말체(D2)는 분산성이 좋고, 각각 단립자였다.127 g of styrene monomer was added to 600 g of distilled water, followed by emulsification by adding sodium lauryl sulfate while heating and stirring to 70 ° C. 25 g of titania-coated powder (D 1 ) was mixed therein, followed by high speed stirring to sufficiently mix. 10% of aqueous ammonium persulfate solution was added thereto to initiate the polymerization reaction, followed by stirring for 4 hours. After the reaction was completed, the mixture was diluted with 2 liters of distilled water, and the supernatant was discarded by decanting, and the precipitate was collected. The precipitate was dried on filter paper to obtain polystyrene-titania coated powder (D 2 ). The obtained polystyrene-titania-coated powder (D 2 ) had good dispersibility and was single grains, respectively.

(제 3층의 티타니아 코팅)(Titania coating of the third layer)

폴리스티렌-티타니아 코팅 분말체(D2) 10g을 에탄올 250ml에 분산시키고, 용기를 유욕으로 가열하여 액의 온도를 55℃로 유지시켰다. 여기에 티탄 이소프로폭시드 4.5g을 첨가하고, 교반시켰다. 추가로 에탄올 30ml와 물 4.5g의 혼합액을 60분에 걸쳐 적가한 후, 2시간 동안 반응시키고, 충분한 양의 에탄올로 희석 세정한 후, 진공 건조기로 180℃에서 8시간 동안 건조시켰다. 건조 후, 티타니아-폴리스티렌 코팅 분말체(D3)를 수득하였다. 수득된 티타니아-폴리스티렌 코팅 분말체(D3)는 분산성이 좋고, 각각 단립자였다. 또한, 이 분말체(D3)의 분광 반사 곡선의 피크 파장은 544nm이고, 피크 파장에서의 반사율은 43%이며, 녹색이었다.10 g of polystyrene-titania-coated powder (D 2 ) was dispersed in 250 ml of ethanol, and the vessel was heated with an oil bath to maintain the temperature of the liquid at 55 ° C. 4.5 g of titanium isopropoxide was added thereto and stirred. Further, a mixture of 30 ml of ethanol and 4.5 g of water was added dropwise over 60 minutes, reacted for 2 hours, diluted and washed with a sufficient amount of ethanol, and dried at 180 ° C. for 8 hours using a vacuum dryer. After drying, titania-polystyrene coated powder (D 3 ) was obtained. The obtained titania-polystyrene-coated powder (D 3 ) had good dispersibility and was discrete particles, respectively. In addition, the peak wavelength of the spectral reflectance curve of the powder (D 3) is 544nm, the reflectance at the peak wavelength is 43%, it was green.

(제 4층의 폴리스티렌 코팅)(Polystyrene coating of the fourth layer)

증류수 600g에 스티렌 단량체 127g을 첨가하고, 70℃까지 가열 교반하면서 라우릴 황산나트륨을 첨가하여 유화시켰다. 여기에 티타니아-폴리스티렌 코팅 분말체(D3) 25g을 혼합하여, 고속 교반하여 충분히 혼합하였다. 여기에 과황산 암모늄 수용액 10%를 첨가하여, 중합 반응을 개시시키고, 4시간 동안 교반하여 반응시켰다. 반응 종료 후, 증류수 2리터로 희석하고, 경사 세정으로 상청액을 버리고 침전물을 모았다. 침전물을 여과지 위에서 건조시켜, 폴리스티렌-티타니아 코팅 분말체(D4)를 수득하였다. 수득된 폴리스티렌-티타니아 코팅 분말체(D4)는 분산성이 좋고, 각각 단립자였다.127 g of styrene monomer was added to 600 g of distilled water, followed by emulsification by adding sodium lauryl sulfate while heating and stirring to 70 ° C. 25 g of titania-polystyrene-coated powder (D 3 ) was mixed therein, followed by high speed stirring to sufficiently mix. 10% of aqueous ammonium persulfate solution was added thereto to initiate the polymerization reaction, followed by stirring for 4 hours. After completion of the reaction, the mixture was diluted with 2 liters of distilled water, and the supernatant was discarded by decanting, and the precipitate was collected. The precipitate was dried on filter paper to obtain polystyrene-titania-coated powder D 4 . The obtained polystyrene-titania-coated powder (D 4 ) had good dispersibility and was discrete particles, respectively.

(제 5층의 티타니아 코팅)(Titania coating of the fifth layer)

폴리스티렌-티타니아 코팅 분말체(D4) 10g을 에탄올 250ml에 분산시키고, 용기를 유욕으로 가열하여 액의 온도를 55℃로 유지시켰다. 여기에 티탄 이소프로폭시드 4.5g을 첨가하고, 교반시켰다. 추가로 에탄올 30ml와 물 4.5g의 혼합액을 60분에 걸쳐 적가한 후, 2시간 동안 반응시키고, 충분한 양의 에탄올로 희석 세정한 후, 진공 건조기로 180℃에서 8시간 동안 건조시켰다. 건조 후, 티타니아-폴리스티렌 코팅 분말체(D)를 수득하였다. 수득된 티타니아-폴리스티렌 코팅 분말체(D)는 분산성이 좋고, 각각 단립자였다. 또한, 이 분말체(D)의 분광 반사 곡선의 피크 파장은 552nm이고, 피크 파장에서의 반사율은 58%이며, 녹색이었다. 더욱이, 티타니아막에 의해 300nm이하의 자외광선은 흡수되어, 반사율은 이 영역에서 1% 이하였다.10 g of polystyrene-titania-coated powder (D 4 ) was dispersed in 250 ml of ethanol, and the vessel was heated with an oil bath to maintain the temperature of the liquid at 55 ° C. 4.5 g of titanium isopropoxide was added thereto and stirred. Further, a mixture of 30 ml of ethanol and 4.5 g of water was added dropwise over 60 minutes, reacted for 2 hours, diluted and washed with a sufficient amount of ethanol, and dried at 180 ° C. for 8 hours using a vacuum dryer. After drying, titania-polystyrene-coated powder D was obtained. The obtained titania-polystyrene coated powder (D) had good dispersibility and was discrete particles, respectively. In addition, the peak wavelength of the spectral reflection curve of this powder body D was 552 nm, the reflectance at the peak wavelength was 58% and green. Moreover, ultraviolet light of 300 nm or less was absorbed by the titania film, and the reflectance was 1% or less in this region.

상기 제 1 내지 제 5층의 굴절율 및 막 두께를 표 4에 나타내었다.The refractive indices and film thicknesses of the first to fifth layers are shown in Table 4.

표 4Table 4

피막층Film layer 굴절율Refractive index 막 두께(nm)Film thickness (nm) 제 1층 티타니아막The first layer titania film 2.32.3 5959 제 2층 폴리스티렌막2nd layer polystyrene film 1.51.5 9292 제 3층 티타니아막3rd layer titania film 2.32.3 5959 제 4층 폴리스티렌막4th layer polystyrene film 1.51.5 9393 제 5층 티타니아막5th layer Titania film 2.32.3 6060

실시예 5Example 5

용도 : 화장품용 원료용 분말체Use: Powder for cosmetic raw materials

(제 1층의 티타니아 코팅)(Titania coating of the first layer)

아크릴 분말체(평균 입경 1.5㎛, 비중 1.4) 10g을 에탄올 250ml에 분산시키고, 용기를 유욕으로 가열하여 액의 온도를 55℃로 유지시켰다. 여기에 티탄 이소프로폭시드 4.5g을 첨가하고, 교반시켰다. 추가로 에탄올 30ml와 물 5.5g의 혼합액을 60분에 걸쳐 적가한 후, 2시간 동안 반응시키고, 충분한 양의 에탄올로 희석 세정한 후, 진공 건조기로 180℃에서 8시간 동안 건조시켰다. 건조 후, 티타니아 코팅 분말체(E1)를 수득하였다. 수득된 티타니아 코팅 분말체(E1)는 분산성이 좋고, 각각 단립자였다.10 g of acrylic powder (average particle size: 1.5 mu m, specific gravity 1.4) was dispersed in 250 ml of ethanol, and the vessel was heated with an oil bath to maintain the temperature of the liquid at 55 deg. 4.5 g of titanium isopropoxide was added thereto and stirred. Further, a mixture of 30 ml of ethanol and 5.5 g of water was added dropwise over 60 minutes, reacted for 2 hours, diluted and washed with a sufficient amount of ethanol, and dried at 180 ° C. for 8 hours with a vacuum dryer. After drying, titania-coated powder E 1 was obtained. The obtained titania-coated powder (E 1 ) had good dispersibility and was discrete particles, respectively.

(제 2층의 금속 은 코팅)(Metal silver coating of the second layer)

티타니아 코팅 분말체(E1) 20g을 미리 준비한 은 용액 중에 교반하면서 분산시켰다. 교반 분산시키면서 환원액 600ml를 투입하여 30분간 교반하였다. 그 결과, 분산성이 좋은 금속 은-티타니아 코팅 분말체(E2)가 얻어졌다. 또한, 상기 은 용액 및 환원액은 다음과 같이 제조하였다. 은 용액에 있어서, 질산 은 8.75g을 증류수 300ml에 용해하였다. 여기에 산화은 침전물이 생겼기 때문에, 침전물이 착이온(complex ion)화할 때까지 암모니아수(29%)를 첨가하였다. 그 후, 미리 준비한 수산화나트륨을 증류수 300ml에 용해한 용액을 첨가하였다. 다시 산화은 침전물이 생성되었기 때문에, 침전물이 착이온화할 때까지 암모니아수(29%)를 첨가해 은 용액으로 만들었다. 환원액은 물 1리터에 대해 글루코스 45g을 용해하고, 다시 주석산 4g을 첨가해서 용해시켜, 5분간 끓였다. 냉각후, 에탄올 100ml를 가해 환원액으로 만들었다.20 g of titania-coated powder (E 1 ) was dispersed with stirring in a silver solution prepared in advance. While stirring and dispersing, 600 ml of a reducing solution was added and stirred for 30 minutes. As a result, a metal silver-titania-coated powder E 2 having good dispersibility was obtained. In addition, the silver solution and the reducing solution were prepared as follows. In the silver solution, 8.75 g of silver nitrate was dissolved in 300 ml of distilled water. Since silver oxide precipitate formed here, aqueous ammonia (29%) was added until the precipitate became complex ion. Then, the solution which melt | dissolved the sodium hydroxide prepared previously in 300 ml of distilled water was added. Again, a silver oxide precipitate formed, which was then ammonia water (29%) added until the precipitate ionized into a silver solution. The reducing solution dissolved 45 g of glucose per 1 liter of water, added 4 g of tartaric acid to dissolve, and boiled for 5 minutes. After cooling, 100 ml of ethanol was added to form a reducing solution.

(제 3층의 티타니아 코팅)(Titania coating of the third layer)

금속 은-티타니아 코팅 분말체(E2) 10g을 에탄올 250ml 중에 분산하고, 용기를 유욕으로 가열하여 액의 온도를 55℃로 유지시켰다. 여기에 티탄 이소프로폭시드 4.5g을 첨가하고, 교반시켰다. 추가로 에탄올 30ml와 물 5.5g의 혼합액을 60분에 걸쳐 적가한 후, 2시간 동안 반응시키고, 충분한 양의 에탄올로 희석 세정한 후, 진공 건조기로 180℃에서 8시간 동안 건조시켰다. 건조 후, 티타니아-금속 은 코팅 분말체(E)를 수득하였다. 수득된 티타니아-금속 은 코팅 분말체(E)는 분산성이 우수하였고, 각각 단립자였다. 또한, 이 분말체(D)의 분광 반사 곡선의 바닥 파장은 585nm이고, 양측을 향해 반사율이 상승되었다. 최대 반사율은 45%이고, 붉은 보라색이었다. 게다가, 적외선 영역에서는 은 막에 의한 반사로 인해 780∼910nm이며 반사율은 계속 상승하여, 최대 반사율은 60%이었다. 그러나, 자외선 영역에서는 은 막 및 티타니아 막에 의해 300nm이하의 자외광선이 흡수되어, 반사율은 이 영역에서 5% 이하였다.10 g of the metal silver-titania-coated powder (E 2 ) was dispersed in 250 ml of ethanol, and the vessel was heated with an oil bath to maintain the temperature of the liquid at 55 ° C. 4.5 g of titanium isopropoxide was added thereto and stirred. Further, a mixture of 30 ml of ethanol and 5.5 g of water was added dropwise over 60 minutes, reacted for 2 hours, diluted and washed with a sufficient amount of ethanol, and dried at 180 ° C. for 8 hours with a vacuum dryer. After drying, the titania-metal silver coating powder (E) was obtained. The obtained titania-metal silver coating powder (E) was excellent in dispersibility, and each was a single particle. Moreover, the bottom wavelength of the spectral reflection curve of this powder body D was 585 nm, and the reflectance rose toward both sides. The maximum reflectance was 45% and reddish purple. In addition, in the infrared region, the reflectance by the silver film was 780 to 910 nm and the reflectance continued to increase, with a maximum reflectance of 60%. However, in the ultraviolet region, ultraviolet rays of 300 nm or less were absorbed by the silver film and the titania film, and the reflectance was 5% or less in this region.

상기 제 1 내지 제 3층의 굴절율 및 막 두께를 표 5에 나타내었다.The refractive indices and film thicknesses of the first to third layers are shown in Table 5.

표 5Table 5

피막층Film layer 굴절율Refractive index 막 두께(nm)Film thickness (nm) 제 1층 티타니아막The first layer titania film 2.32.3 6464 제 2층 폴리스티렌막2nd layer polystyrene film 0.1+3.50.1 + 3.5 2020 제 3층 티타니아막3rd layer titania film 2.32.3 6464

이상 설명한 바와 같이, 본 발명에 따르면, 염료나 안료를 사용하지 않고도, 가벼운 기본 분말체에 착색하여 유체 중에 분산시키므로써, 청, 녹, 황색 등의 단색의 컬러 잉크용 안료 및 플라스틱·종이용 충전재를 설계할 수 있고, 장기 보존에 있어서도 안정된 색조의 안료 분말체를 제공할 수 있다.As described above, according to the present invention, pigments for monochromatic color inks such as blue, green, and yellow, and plastic and paper fillers are prepared by coloring them in a light base powder and dispersing them in a fluid without using dyes or pigments. Can be designed and the pigment powder of the stable hue can also be provided also in long term storage.

또한, 마스카라나 아이 브로우 펜슬 등의 원료로서 청, 녹, 황색 등의 단색의 착색 분말체를 설계할 수 있다. 이 화장품 원료용 분말체는 염료나 안료를 사용하지 않기 때문에, 염료나 안료의 결핍, 변질에 의한 색 바램이 없고, 장기간에 걸쳐 선명한 색을 유지할 수 있다. 또한, 착색뿐만 아니라, 예를 들어 UV차단(썬 블록) 크림이나 파운데이션 등의 원료로서 자외선이나 적외선 등 유해한 파장의 전자파를 흡수하여 피부에 도달하지 않도록 하는 다층막 구조의 분말체를 설계할 수도 있다.Further, as a raw material such as mascara or eye brow pencil, monochromatic colored powders such as blue, green and yellow can be designed. Since the powder for cosmetic raw materials does not use dyes or pigments, there is no color fading due to lack of dyes or pigments or alteration, and it is possible to maintain a vivid color for a long time. In addition to coloring, for example, a powder having a multi-layered film structure that absorbs electromagnetic waves of harmful wavelengths such as ultraviolet rays or infrared rays and does not reach the skin as a raw material such as UV blocking cream or foundation.

Claims (10)

비중이 0.1 내지 10.5인 기본 입자의 표면에 굴절율이 상이한 다수의 피막층을 가지며, 다수의 피막층중 하나 이상의 층이 유기물 층임을 특징으로 하는 다층막 피복 분말체.A multilayer film-coated powder having a plurality of coating layers having different refractive indices on the surface of the basic particles having a specific gravity of 0.1 to 10.5, wherein at least one of the plurality of coating layers is an organic layer. 제 1 항에 있어서, 다수의 피막층중 하나 이상의 층이 무기 금속 화합물 층임을 특징으로 하는 다층막 피복 분말체.The multilayer film-coated powder according to claim 1, wherein at least one of the plurality of coating layers is an inorganic metal compound layer. 제 2 항에 있어서, 무기 금속 화합물 층이 금속 산화물 막 층임을 특징으로 하는 다층막 피복 분말체.The multilayer film-coated powder according to claim 2, wherein the inorganic metal compound layer is a metal oxide film layer. 제 1 항에 있어서, 다수의 피막층중의 하나 이상의 층이 금속층 또는 합금층임을 특징으로 하는 다층막 피복 분말체.The multilayer film-coated powder according to claim 1, wherein at least one of the plurality of coating layers is a metal layer or an alloy layer. 제 1 항 내지 제 4 항중의 어느 한 항에 따른 다층막 피복 분말체가 사용된 안료 분말체.The pigment powder which used the multilayer membrane coating powder as described in any one of Claims 1-4. 제 1 항 내지 제 4 항중의 어느 한 항에 따른 다층막 피복 분말체가 사용된 화장품용 원료.The raw material for cosmetics which used the multilayer membrane coating powder as described in any one of Claims 1-4. 제 1 항에 있어서, 기본 입자가 구상 또는 파쇄 입자임을 특징으로 하는 다층막 피복 분말체.The multilayer film-coated powder according to claim 1, wherein the basic particles are spherical or crushed particles. 제 1 항에 있어서, 금속 산화물 막의 하나 이상의 층이 금속 알콕시드의 가수분해에 의해 형성됨을 특징으로 하는 다층막 피복 분말체.The multilayer film-coated powder according to claim 1, wherein at least one layer of the metal oxide film is formed by hydrolysis of the metal alkoxide. 제 1 항에 있어서, 금속 산화물 막의 하나 이상의 층이 금속염 수용액의 반응에 의해 형성됨을 특징으로 하는 다층막 피복 분말체.The multilayer film-coated powder according to claim 1, wherein at least one layer of the metal oxide film is formed by reaction of an aqueous metal salt solution. 제 1 항에 있어서, 기본 막 두께가 하기 식 (1)을 만족시키도록 하고, 굴절율의 흡광 계수(κ)에 의한 위상 이동, 막 계면에서의 위상 이동, 및 굴절율의 분산 및 입자 형상에 의존하는 피크 이동으로 이루어진 함수로부터, 각 단위 피막층이 특정한 동일 파장에서 간섭 반사 피크(reflection peak) 또는 간섭 투과 바닥(transmission bottom)을 갖도록, 각 단위 피막층의 실제 막 두께를 보정하므로써 각 단위 피막층의 막 두께가 보정됨을 특징으로 하는 다층막 피복 분말체.:The method according to claim 1, wherein the basic film thickness satisfies the following formula (1), and depends on the phase shift by the extinction coefficient κ of the refractive index, the phase shift at the film interface, and the dispersion and particle shape of the refractive index. From the function of the peak shift, the film thickness of each unit coat layer is corrected by correcting the actual film thickness of each unit coat layer so that each unit coat layer has a reflection reflection peak or an interference transmission bottom at a specific wavelength. Multilayer film coating powder, characterized in that: N x d = M x λ/4 (1)N x d = M x λ / 4 (1) 상기 식에서, Where N은 복소 굴절율이며, 식 (2) N = n + iκ(여기서, n은 각 단위 피막층의 굴절율, i는 복소수, κ는 감쇠계수를 나타냄)로 규정되며,N is a complex refractive index, defined by the formula (2) N = n + iκ (where n is the refractive index of each unit coating layer, i is a complex number, κ is an attenuation coefficient), d는 기본 막 두께이며, d is the base film thickness, m은 정수(자연수)이고, m is an integer (natural number), λ는 상기 간섭 반사 피크 또는 간섭 투과 바닥의 파장을 나타낸다.λ represents the wavelength of the interference reflection peak or interference transmission bottom.
KR10-1998-0710096A 1996-06-10 1997-06-06 Multilayer coated powder KR100429294B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0710096A KR100429294B1 (en) 1996-06-10 1997-06-06 Multilayer coated powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1996-147417 1996-06-10
JP1996-147418 1996-06-10
JP1996-147421 1996-06-10
KR10-1998-0710096A KR100429294B1 (en) 1996-06-10 1997-06-06 Multilayer coated powder

Publications (2)

Publication Number Publication Date
KR20000016510A KR20000016510A (en) 2000-03-25
KR100429294B1 true KR100429294B1 (en) 2005-06-16

Family

ID=43664338

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0710096A KR100429294B1 (en) 1996-06-10 1997-06-06 Multilayer coated powder

Country Status (1)

Country Link
KR (1) KR100429294B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101266947B1 (en) * 2006-03-14 2013-05-30 주식회사 케이씨씨 Whitening pigment with multi stage structures and method of preparing the same
KR101309969B1 (en) * 2005-06-29 2013-10-14 메르크 파텐트 게엠베하 Pigments

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230394A (en) * 1992-02-19 1993-09-07 Kao Corp Complex extender pigment and cosmetic containing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230394A (en) * 1992-02-19 1993-09-07 Kao Corp Complex extender pigment and cosmetic containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309969B1 (en) * 2005-06-29 2013-10-14 메르크 파텐트 게엠베하 Pigments
KR101266947B1 (en) * 2006-03-14 2013-05-30 주식회사 케이씨씨 Whitening pigment with multi stage structures and method of preparing the same

Also Published As

Publication number Publication date
KR20000016510A (en) 2000-03-25

Similar Documents

Publication Publication Date Title
TWI305219B (en) Color shifting pigment flakes and foils,method of fabricating color shifting pigment flakes and color shifting foil device
EP0913432B1 (en) Multilayer coated powder
AU772097B2 (en) White powder and method for production thereof
US6310118B1 (en) Coloring material composition
CA2477956A1 (en) Coated powder, coating composition, and coated article
WO1998007791A1 (en) Additive pigment powder
JP3052193B2 (en) Color ink composition
JP3652786B2 (en) Pigment powder
KR100429294B1 (en) Multilayer coated powder
JP3782317B2 (en) Multilayer coating powder and method for producing the same
JP3874600B2 (en) Catalyst powder, coating composition and coating
US7566499B2 (en) Light interference multi-layered film-coated powder design method, manufacturing method, and light interference multi-layered film-coated powder
JP4804720B2 (en) Titanium oxide film-coated powder and method for producing the same
JPH1112490A (en) Green colorant and its production
JP3652787B2 (en) Cosmetic raw material powder
JP4233295B2 (en) Method for producing powder coated with titanium oxide film
JP3670546B2 (en) Blue color material composition and method for producing the same
JP3698414B2 (en) Titanium oxide film-coated powder and method for producing the same
JP3627908B2 (en) Blue powder and method for producing the same
JPH1121467A (en) Fuchsine color-based pigment and its production
JPH1112488A (en) Yellow pigment and production thereof
JP4241004B2 (en) Multilayer interference pigment
JPH10330644A (en) Blue color-based pigment and its production
JP3670548B2 (en) Green color material composition and method for producing the same
JPH10168352A (en) Heat-resistant coating composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee