KR20020020282A - Method of preparing a carbon nanotube under a vapor-phase condition - Google Patents
Method of preparing a carbon nanotube under a vapor-phase condition Download PDFInfo
- Publication number
- KR20020020282A KR20020020282A KR1020000053277A KR20000053277A KR20020020282A KR 20020020282 A KR20020020282 A KR 20020020282A KR 1020000053277 A KR1020000053277 A KR 1020000053277A KR 20000053277 A KR20000053277 A KR 20000053277A KR 20020020282 A KR20020020282 A KR 20020020282A
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- present
- carbon nanotube
- carbon nanotubes
- under
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 23
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims description 12
- 239000012808 vapor phase Substances 0.000 title description 2
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 11
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 11
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 11
- 238000001308 synthesis method Methods 0.000 claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 31
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000001294 propane Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000002071 nanotube Substances 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 3
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 3
- 239000011949 solid catalyst Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명은 탄소 나노튜브의 기상 합성방법에 관한 것으로서, 500 내지 3,000torr의 압력 하에서 촉매 및 탄화수소 가스를 함유하는 반응기 내에 고전압 방전시켜 플라즈마를 발생시키는 본 발명의 탄소 나노튜브 기상 합성방법에 의하면, 온화한 반응 조건하에서 탄소 나노튜브를 대량으로 간단하게 합성할 수 있다.The present invention relates to a gas phase synthesis method of carbon nanotubes, and according to the carbon nanotube gas phase synthesis method of the present invention, which generates plasma by high voltage discharge in a reactor containing a catalyst and a hydrocarbon gas under a pressure of 500 to 3,000 torr, Under the reaction conditions, carbon nanotubes can be simply synthesized in large quantities.
Description
본 발명은 탄소 나노튜브의 기상 합성방법에 관한 것으로, 구체적으로는 상압 근방에서 고전압 방전에 의해 플라즈마를 발생시켜 탄소 나노튜브를 대량으로합성할 수 있는 기상 합성방법에 관한 것이다.The present invention relates to a gas phase synthesis method of carbon nanotubes, and more particularly, to a gas phase synthesis method capable of synthesizing carbon nanotubes in large quantities by generating a plasma by high voltage discharge in the vicinity of atmospheric pressure.
나노튜브는 1991년 최초로 발견된 나노 미터의 직경을 갖는 신소재로서, 여러 가지 독특한 전기적 특성 및 기계적 특성을 가지고 있어 전자 장치, 수소 저장장치, 필터 등에 폭넓게 응용될 것으로 생각되고 있다.Nanotubes, a new material with a diameter of nanometers first discovered in 1991, have many unique electrical and mechanical properties and are expected to be widely applied to electronic devices, hydrogen storage devices, and filters.
나노튜브를 합성하는 방법으로는 아크 방전에 의한 합성법, 레이저 증착법, 화학 증착법 및 열분해법 등이 사용되어 왔다. 종래의 아크 방전에 의한 합성법 및 레이저 증착법에 따르면 고품질의 나노튜브를 만들 수는 있으나, 아크 방전의 경우 진공조건하에서 탄소 전극에 비교적 저전압의 직류(DC) 방전을 수행하여 전극에 나노튜브를 미량으로 생성시키고 있기 때문에 나노튜브를 대량으로 합성하기 어렵고, 레이저 증착법의 경우 장치 제작비가 비싸고 역시 나노튜브의 양산이 어렵다는 문제를 갖는다. 또한, 화학 증착법은 가장 널리 사용되는 방법으로(대한민국 특허공개공보 제 99-73589 호 및 제 99-73590 호 참조) 대면적의 기재에 대해 나노튜브의 성장을 적용하기가 용이하다는 장점은 있으나, 긴 시간이 소요되고 650℃ 이상의 고온을 필요로 하는 문제를 갖는다.As a method for synthesizing nanotubes, synthesis by arc discharge, laser deposition, chemical vapor deposition, and pyrolysis have been used. According to the conventional arc discharge synthesis method and laser deposition method, high quality nanotubes can be produced, but in the case of arc discharge, a relatively low voltage direct current (DC) discharge is performed on the carbon electrode under vacuum conditions, and the nanotubes are applied to the electrode in a small amount. It is difficult to synthesize a large amount of nanotubes because of the production, and in the case of laser deposition, the manufacturing cost of the device is expensive and the production of nanotubes is difficult. In addition, chemical vapor deposition is the most widely used method (see Korean Patent Laid-Open Publication Nos. 99-73589 and 99-73590), but it is easy to apply the growth of nanotubes to a large-area substrate. It takes time and requires a high temperature of 650 DEG C or higher.
따라서, 나노튜브를 신소재로서 광범위하게 사용하기 위한 나노튜브 대량 합성법의 개발이 요구되었고, 미국의 스몰리(Smalley) 팀은 900℃ 이상의 온도 및 1 내지 10기압의 압력 조건하에서 일산화탄소 가스를 촉매 기체와 반응시켜 탄소 나노튜브를 대량으로 합성하는 방법을 개발한 바 있다(문헌["Advances in Cutting Edge Applications & Scalable Production of Carbon Nanotube", Proceedings, April 10&11(2000)] 참조). 그러나, 이 방법은 고온 및 고압 조건하에서 반응을수행하여야 하는 단점을 갖는다.Therefore, the development of large-scale synthesis of nanotubes for the widespread use of nanotubes as a new material has been required, and the US Smalley team has reacted carbon monoxide gas with a catalyst gas at a temperature of 900 ° C. or higher and a pressure of 1 to 10 atm. Has been developed to synthesize carbon nanotubes in large quantities (see "Advances in Cutting Edge Applications & Scalable Production of Carbon Nanotube", Proceedings, April 10 & 11 (2000)). However, this method has the disadvantage that the reaction must be carried out under high temperature and high pressure conditions.
이에 본 발명자들은 예의 연구를 계속한 결과, 고전압 방전에 의해 플라즈마를 발생시켜 탄화수소 가스의 반응성을 높임으로써 상압 근방 및 저온 하에서 탄소 나노튜브를 대량으로 간단하게 합성할 수 있음을 발견하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have intensively researched and found that carbon nanotubes can be easily synthesized in large quantities under atmospheric pressure and under low temperature by generating plasma by high voltage discharge to increase the reactivity of hydrocarbon gas. Was done.
본 발명의 목적은 탄소 나노튜브를 온화한 조건하에서 대량으로 합성할 수 있는 기상 합성방법을 제공하는 것이다.It is an object of the present invention to provide a gas phase synthesis method capable of synthesizing carbon nanotubes in large quantities under mild conditions.
도 1은 본 발명에 사용되는 탄소 나노튜브 기상 합성 장치의 개략도이고,1 is a schematic diagram of a carbon nanotube gas phase synthesis apparatus used in the present invention,
도 2 및 3은 각각 본 발명의 실시예에 따라 합성된 탄소 나노튜브를 3,000배 및 60,000배로 확대한 주사 전자 현미경(SEM) 사진이다.2 and 3 are scanning electron microscopy (SEM) photographs of 3,000 and 60,000 times the carbon nanotubes synthesized according to the embodiment of the present invention, respectively.
[도면부호에 대한 간단한 설명][Brief Description of Drawings]
1a, 1b 및 1c : 투입량 조절기(Mass Flow Controller)1a, 1b and 1c: Mass Flow Controller
2 : 항온조(water bath) 3 : 온도 판독기2: water bath 3: temperature reader
4 : 석영 반응기 5 : 전극4: quartz reactor 5: electrode
6 : 교류(AC) 전원 7 : 촉매6 AC power 7 Catalyst
상기 목적을 달성하기 위하여 본 발명에서는, 500 내지 3,000torr의 압력 하에서 촉매 및 탄화수소 가스를 함유하는 반응기 내에 고전압 방전시켜 플라즈마를 발생시키는 것을 포함하는, 탄소 나노튜브의 기상 합성방법을 제공한다.In order to achieve the above object, the present invention provides a gas phase synthesis method of carbon nanotubes, including generating a plasma by high-voltage discharge in a reactor containing a catalyst and a hydrocarbon gas under a pressure of 500 to 3,000 torr.
이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 탄소 나노튜브 기상 합성에 사용되는 장치의 개략도가 도 1에 도시된다. 도 1의 장치에 의하면, 투입량 조절기 중 (1a)를 통해 세척용 가스를 흘려 보낸 후 (1b) 및/또는 (1c)를 통해 기상의 탄화수소원을 흘려 보내는데, 이때 탄화수소원은 항온조(2)를 거치면서 불순물이 제거되어 반응기(4)로 투입된다. 한편, 이 반응기(4)에는 미리 고체 촉매(7)를 넣어 두고, 탄화수소 가스의 투입과 함께 히터(도시하지 않음)를 이용하여 반응기를 260 내지 600℃의 온도로 가열하여 촉매를 기상 상태로 만든다. 촉매가 충분히 기상 상태로 존재함이 확인되면, 500 내지 3,000torr의 압력 하에서 반응기와 연결된 전극(5)에 10 내지 20KV의 교류 전압을 인가하여 탄화수소 가스에 플라즈마를 발생시켜 탄소 나노튜브를 합성한다.A schematic of the device used in the carbon nanotube gas phase synthesis of the present invention is shown in FIG. 1. According to the apparatus of FIG. 1, the washing gas is flowed through (1a) of the input regulator, and then the hydrocarbon source in the gas phase is flowed through (1b) and / or (1c), where the hydrocarbon source is a thermostat (2). The impurities are removed while passing through the reactor (4). On the other hand, in the reactor 4, the solid catalyst 7 is put in advance, and the reactor is heated to a temperature of 260 to 600 DEG C using a heater (not shown) with the addition of hydrocarbon gas to bring the catalyst into a gaseous state. . When it is confirmed that the catalyst is present in a sufficiently gaseous state, a plasma of hydrocarbon gas is generated by applying an alternating voltage of 10 to 20 KV to the electrode 5 connected to the reactor under a pressure of 500 to 3,000 torr to synthesize carbon nanotubes.
플라즈마 방전은 주파수가 높아질수록 쉽게 일어나므로, 필요에 따라, 상기 교류 고전압 방전 대신에, 100W 내지 100KW의 RF(1MHz 내지 1GHz) 또는 마이크로웨이브(1 내지 10GHz) 플라즈마 발생 장치를 사용할 수 있다. 또한, 필요에 따라, 전극의 경우 직선형 외에도 평면, 곡면 및 코일과 같은 여러 형태로 변형될 수 있는 등, 본 발명의 합성 장치는 당 분야의 통상의 지식을 가진 자에 의해 변형 또는 개량될 수 있다.Since plasma discharge easily occurs as the frequency increases, an RF (1 MHz to 1 GHz) or microwave (1 to 10 GHz) plasma generator of 100 W to 100 KW may be used instead of the AC high voltage discharge as necessary. In addition, if necessary, the electrode of the present invention can be modified or improved by those skilled in the art, such as in the case that the electrode can be modified in various forms such as flat, curved and coil in addition to the straight. .
본 발명의 방법에 따른 탄화수소원으로는 메탄, 아세틸렌, 프로판 또는 벤젠 가스, 또는 이들과 수소 또는 헬륨 가스와의 혼합물 등을 사용할 수 있다.As the hydrocarbon source according to the method of the present invention, methane, acetylene, propane or benzene gas, or a mixture of these and hydrogen or helium gas may be used.
본 발명의 방법에 따른 고체 촉매로는 Fe, Co 또는 Ni, 또는 이들을 함유하는 금속 착체(예: 페로센(FeC10H10) 및 펜타카보닐 철(Fe(CO)5)) 등을 사용할 수 있다.As the solid catalyst according to the method of the present invention, Fe, Co or Ni, or a metal complex containing them (eg, ferrocene (FeC 10 H 10 ) and pentacarbonyl iron (Fe (CO) 5 )) may be used. .
본 발명에 따른 탄소 나노튜브 기상 합성방법은, 기존의 플라즈마 합성에 요구되는 진공 장치나 대량 생산을 위한 기상 합성에 요구되는 고압 장치가 불필요함으로써, 상압 근방 및 저온 조건하에서 탄소 나노튜브를 대량으로 합성할 수 있는 획기적인 방법일 뿐만 아니라 저온 기상 합성이 가능해짐에 따라 유리 또는 플라스틱과 같은 고분자 물질을 기재로서 사용하는 분야를 포함하는 다양한 분야에 응용될 수 있다.The carbon nanotube gas phase synthesis method according to the present invention does not require a vacuum device required for conventional plasma synthesis or a high pressure device required for gas phase synthesis for mass production, thereby synthesizing a large amount of carbon nanotubes under atmospheric pressure and under low temperature conditions. Not only is it a breakthrough method that can be achieved, but as low-temperature gas phase synthesis becomes possible, it can be applied to various fields including the field of using a polymer material such as glass or plastic as a substrate.
이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
실시예Example
도 1에 도시된 본 발명에 따른 탄소 나노튜브 기상 합성 장치를 사용하여 탄소 나노튜브를 합성하였다.Carbon nanotubes were synthesized using the carbon nanotube gas phase synthesis apparatus according to the present invention shown in FIG. 1.
먼저, 고체 촉매로서 페로센(7)을 작은 스푼에 담아 반응기(4) 안에 넣고, 투입량 조절기 중 (1a)를 통해 H2가스를 흘려 보내 장치 전체를 세척하였다. 이어, (1b) 및 (1c)를 통해 아세틸렌 가스 및 헬륨 가스를 흘려 보내 아세틸렌 가스와 헬륨 가스의 혼합물을 반응기 내로 투입하면서, 반응기를 260℃로 가열하였다. 촉매가 충분히 기상 상태로 존재함을 확인한 다음, 대기압 하에서 반응기와 연결된 전극(5)에 15KV의 전압을 인가하여 탄화수소 가스에 플라즈마를 발생시켰다. 이때, 교류 전원(6)에는 15.7KHz 및 20mA가 사용되었다.First, the ferrocene (7) was put in a small spoon into the reactor (4) as a solid catalyst, and the entire apparatus was washed by flowing H 2 gas through (1a) in the input regulator. Subsequently, the reactor was heated to 260 ° C while flowing acetylene gas and helium gas through (1b) and (1c) to introduce a mixture of acetylene gas and helium gas into the reactor. After confirming that the catalyst was present in a sufficiently gaseous state, a plasma of hydrocarbon gas was generated by applying a voltage of 15 KV to the electrode 5 connected to the reactor under atmospheric pressure. At this time, 15.7 KHz and 20 mA were used for the AC power supply 6.
반응기 내에 다량으로 생성된 검은색의 합성물의 3,000배 및 60,000배 SEM 사진을 도 2 및 3에 각각 나타내었는데, 이로부터 상기 반응을 통해 탄소 나노튜브가 합성되었음을 확인할 수 있다.SEM photographs of 3,000 and 60,000 times of the black compound produced in a large amount in the reactor are shown in FIGS. 2 and 3, respectively, from which the carbon nanotubes were synthesized.
본 발명의 방법에 따르면, 상압 근방 및 저온 조건하에서 탄소 나노튜브를 대량으로 간편하게 합성할 수 있다. 또한, 본 발명의 방법은, 탄소 나노튜브의 저온 기상 합성이 가능해짐에 따라 유리 또는 플라스틱과 같은 고분자 물질을 기재로서 사용하는 분야를 포함하는 다양한 분야에 응용될 수 있다.According to the method of the present invention, carbon nanotubes can be easily synthesized in large quantities under atmospheric pressure and under low temperature conditions. In addition, the method of the present invention can be applied to various fields including the field of using a polymer material such as glass or plastic as a substrate as low temperature vapor phase synthesis of carbon nanotubes becomes possible.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0053277A KR100385633B1 (en) | 2000-09-08 | 2000-09-08 | Method of preparing a carbon nanotube under a vapor-phase condition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0053277A KR100385633B1 (en) | 2000-09-08 | 2000-09-08 | Method of preparing a carbon nanotube under a vapor-phase condition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020020282A true KR20020020282A (en) | 2002-03-15 |
KR100385633B1 KR100385633B1 (en) | 2003-05-27 |
Family
ID=19688094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0053277A KR100385633B1 (en) | 2000-09-08 | 2000-09-08 | Method of preparing a carbon nanotube under a vapor-phase condition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100385633B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020090976A (en) * | 2002-10-30 | 2002-12-05 | 이영희 | A method for carbon nanotube synthesis using arc gun |
KR100376202B1 (en) * | 2000-10-02 | 2003-03-15 | 일진나노텍 주식회사 | Apparatus of vapor phase-synthesis for carbon nanotubes or carbon nanofibers and synthesizing method of using the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2546511B2 (en) * | 1993-08-26 | 1996-10-23 | 日本電気株式会社 | Method for synthesizing fullerene and carbon nanotube |
JP2737736B2 (en) * | 1996-01-12 | 1998-04-08 | 日本電気株式会社 | Method for producing carbon single-walled nanotube |
JPH10203810A (en) * | 1997-01-21 | 1998-08-04 | Canon Inc | Production of carbon nanotube |
KR19990073590A (en) * | 1999-07-27 | 1999-10-05 | 이철진 | Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition. |
-
2000
- 2000-09-08 KR KR10-2000-0053277A patent/KR100385633B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100376202B1 (en) * | 2000-10-02 | 2003-03-15 | 일진나노텍 주식회사 | Apparatus of vapor phase-synthesis for carbon nanotubes or carbon nanofibers and synthesizing method of using the same |
KR20020090976A (en) * | 2002-10-30 | 2002-12-05 | 이영희 | A method for carbon nanotube synthesis using arc gun |
Also Published As
Publication number | Publication date |
---|---|
KR100385633B1 (en) | 2003-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7824649B2 (en) | Apparatus and method for synthesizing a single-wall carbon nanotube array | |
Tomai et al. | Carbon materials syntheses using dielectric barrier discharge microplasma in supercritical carbon dioxide environments | |
Mohsenian et al. | Hydrogen and carbon black nano-spheres production via thermal plasma pyrolysis of polymers | |
US20070087121A1 (en) | Apparatus and method for synthesizing chiral carbon nanotubes | |
BRPI0618737B1 (en) | Fullerene-functionalized carbon nanotube, a method for producing one or more fullerene-functionalized carbon nanotubes, functional material, thick or thin film, a line, wire or layered or three-dimensional structure, and device | |
EP3567130B1 (en) | Reactor for fabrication of graphene | |
JPS61158899A (en) | Production of diamond film | |
KR100385633B1 (en) | Method of preparing a carbon nanotube under a vapor-phase condition | |
JP2002069643A (en) | Method for producing carbon nanotube | |
JPH05214533A (en) | Burning flame-type cvd diamond deposition process aided by microwave or alternating current/direct current discharge | |
KR100372334B1 (en) | Method of synthesizing carbon nanotubes using plasma-enhanced chemical vapor deposition | |
Zajíčková et al. | Synthesis of carbon nanotubes by plasma-enhanced chemical vapor deposition in an atmospheric-pressure microwave torch | |
JP2007145674A (en) | Method for manufacturing fibrous carbon material | |
JP3088784B2 (en) | C60 manufacturing method | |
JP2007247014A (en) | Plasma cvd apparatus, and film deposition method | |
KR100372335B1 (en) | Synthesis method for controlling diameter of carbonnanotubes using catalytic metal fine patterns | |
JP4930918B2 (en) | Diamond manufacturing method | |
Koinuma et al. | Synthesis of carbon clusters and thin films by low temperature plasma chemical vapor deposition under atmospheric pressure | |
KR20090019533A (en) | Carbon nanotube synthesis apparatus using plasma chemical vapor deposition | |
KR100478144B1 (en) | Method for Manufacturing Carbon Nanotube | |
JP2005281110A (en) | Method and apparatus for producing functional nanocarbon | |
JPH0448757B2 (en) | ||
JP2009046325A (en) | Carbon nanotube and method for producing the same | |
Hiramatsu et al. | Preparation Methods | |
JP2003238124A (en) | Method for manufacturing carbon nanotube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20000908 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20020926 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20030224 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20030516 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20030519 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20060517 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20070517 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20080519 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20090519 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20090519 Start annual number: 7 End annual number: 7 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |