KR100224785B1 - Method of manufacturing transistor of semiconductor device - Google Patents

Method of manufacturing transistor of semiconductor device Download PDF

Info

Publication number
KR100224785B1
KR100224785B1 KR1019960080236A KR19960080236A KR100224785B1 KR 100224785 B1 KR100224785 B1 KR 100224785B1 KR 1019960080236 A KR1019960080236 A KR 1019960080236A KR 19960080236 A KR19960080236 A KR 19960080236A KR 100224785 B1 KR100224785 B1 KR 100224785B1
Authority
KR
South Korea
Prior art keywords
film
thin film
semiconductor device
forming
transistor
Prior art date
Application number
KR1019960080236A
Other languages
Korean (ko)
Other versions
KR19980060869A (en
Inventor
박보현
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019960080236A priority Critical patent/KR100224785B1/en
Publication of KR19980060869A publication Critical patent/KR19980060869A/en
Application granted granted Critical
Publication of KR100224785B1 publication Critical patent/KR100224785B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising silicides

Abstract

본 발명은 반도체소자의 트랜지스터 형성방법에 관한 것으로, 반도체 기판에 소자 분리막, 게이트 산화막, 게이트, 절연막 스페이서를 형성하고 비소 또는 불화붕소 이온을 이온주입하여 n+ 또는 p+타입의 소오스/드레인을 형성하고 상기 구조의 전 표면에 Fe 박막을 증착한 다음, 상기 Fe 박막 상부에 연속적으로 Co 각막을 증착하고 상기 반도체기판을 열처리하여 CoSi2막를 형성한 다음, 상기 열처리공정중 절연막 스페이서와 소자분리막 상부에 형성된 Fe-O-N 의 화합물을 선택적으로 식각하여 불순물 접합영역과 게이트 표면에 균일하고 얇은 두께의 실리사이드를 형성 함으로써 소자의 특성 및 신뢰성을 향상시키고 공정을 단순화시켜 반도체소자의 수율 및 생산성을 향상시키며 그에 따른 반도체소자의 고집적화를 가능하게 하는 기술이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a transistor of a semiconductor device, comprising forming a device isolation film, a gate oxide film, a gate, an insulating film spacer on a semiconductor substrate, and implanting arsenic or boron fluoride ions to form an n + or p + type source / drain. After depositing a thin Fe film on the entire surface of the structure, and subsequently depositing a Co corn film on top of the Fe thin film and heat-treating the semiconductor substrate to form a CoSi 2 film, Fe formed on the insulating film spacer and the device isolation film during the heat treatment process By selectively etching the compound of -ON to form a uniform and thin silicide in the impurity junction region and the gate surface, improve the characteristics and reliability of the device, simplify the process to improve the yield and productivity of the semiconductor device accordingly It is a technology that enables high integration.

Description

반도체소자의 트랜지스터 형성방법Transistor Formation Method of Semiconductor Device

본 발명은 반도체소자의 트랜지스터 형성방법에 관한 것으로, 특히 모스전계 효과 트랜지스터 ( MOSFET ) 를 제조하는데 있어서, 소오스/드레인 접합과 게이트 저항 값을 감소시켜 얕은 깊이의 접합을 형성할 수 있는 MOSFET 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a transistor of a semiconductor device, and more particularly to a MOSFET manufacturing method capable of forming a shallow depth junction by reducing a source / drain junction and a gate resistance value in manufacturing a MOSFET. It is about.

반도체 소자의 집적도 증가에 따른 얕은 깊이의 소오스/드레인 접합을 낮은 면저항을 갖도록 하는 것이 중요해지고 있다. 따라서 게이트와 소오스/드레인을 동시에 실리사이드(silicide)화하여 저 저항화하는 기술이 필수적이다.As the integration of semiconductor devices increases, it is important to make shallow source / drain junctions have low sheet resistance. Therefore, a technique for reducing resistance by silicideing the gate and the source / drain simultaneously is essential.

지금까지는 여러 금속 실리사이드 중에서 가장 비저항이 낮은 TiSi2가 주로 연구, 사용되어져 왔으나 앞으로 소자의 고밀도화가 더욱 진행되면 C49상에서 저 저항의 안정한 C54상으로 상전이가 어려워지는 점, 게이트와 소오스/드레인(S/D) 간의 스페이서 산화막 위에서 TiSi2가 브릿지 ( bridge ) 되어 전극들이 쉽게 단락되는 점, As, B 등의 도펀트 (dopant)와 화합물형성으로 인한 접촉저항의 상승, 선 폭이 좁아질 때 고온에서 쉽게 응집이 발생하는 점 등과 같은 문제가 발생한다.Until now, TiSi 2 , which has the lowest resistivity among the various metal silicides, has been mainly studied and used. However, in the future, as the device becomes more dense, phase transition becomes difficult from C 49 to low resistance C 54 , gate and source / drain ( TiSi 2 is bridged on the spacer oxide layer between S / D) and the electrodes are easily shorted, and the contact resistance is increased due to the formation of dopants and compounds such as As and B, and the line width is narrowed at high temperature. Problems such as aggregation easily occur.

그러나, TiSi2보다 상대적으로 많은 장점을 가진 CoSi2공정도 단일층으로 형성시킬 경우 Si의 소모가 너무 크고, 실리사이드 공정 중에 침투하는 산소나 Si 표면에 남아있는 산소에 의해 막질이 급격히 저하되는 점, 자연산화막을 환원시킬 수 없기 때문에 계면에서의 불균일한 반응으로 인하여 실리사이드/Si계면이 매우 거칠어져 접촉저항이 상승하는 점 등으로 양산 공정에의 적용이 걸림돌이 되고 있다. 이러한 Co 단일막에 의한 문제를 극복하기 위해서 여러가지로 모색되고 있는 해결책중에서 Co/Ti의 이중층구조를 통한 CoSi2형성이 제안된 바 있다. 여기서 Ti 은 Co의 확산을 제어하고 표면의 자연산화막을 제거하는 역할을 장점이 있는 반면, Ti 이 Co내에 고용되어 Co-Ti-Si의 삼성분계 화합물을 만들거나, 공정조건에 매우 민감하여 공정이 어렵다는 문제가 있다.However, the CoSi 2 process, which has more advantages than TiSi 2, is also consumed when Si is formed in a single layer, and the film quality is rapidly degraded by oxygen penetrating during the silicide process or oxygen remaining on the Si surface. Since the natural oxide film cannot be reduced, the silicide / Si interface becomes very rough due to the heterogeneous reaction at the interface, and thus the contact resistance increases, which impedes application to the mass production process. In order to overcome the problems caused by the Co monolayer, CoSi 2 formation through a double layer structure of Co / Ti has been proposed. Here, Ti has the advantage of controlling the diffusion of Co and removing the natural oxide film on the surface, whereas Ti is dissolved in Co to form a tertiary compound of Co-Ti-Si or very sensitive to process conditions. There is a problem that is difficult.

상기한 바와같이 종래기술에 따른 반도체소자의 트랜지스터 형성방법은, 많은 단점을 갖는 현상으로 인하여 소자의 특성 및 신뢰성을 저하시키고 반도체소자의 수율 및 생산성을 저하시키며 그에 따른 반도체소자의 고집적화를 어렵게 하는 문제점이 있다.As described above, the method of forming a transistor of a semiconductor device according to the prior art has a problem of degrading the characteristics and reliability of the device, lowering the yield and productivity of the semiconductor device due to a phenomenon having many disadvantages, and thereby making it difficult to integrate the semiconductor device. There is this.

본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, 소오스/드레인 접합과 게이트 저항 값을 감소시켜 얕은 깊이의 접합을 형성할 수 있도록 하되, 한번의 열처리공정만을 이용하여 실시함으로써 공정을 단순화시켜 반도체소자의 수율 및 생산성을 향상시키고 반도체소자의 특성 및 신뢰성을 향상시키며 그에 따른 반도체 소자의 고집적화를 가능하게 하는 반도체소자의 트랜지스터 형성방법을 제공하는데 그 목적이 있다.In order to solve the above problems of the prior art, the source / drain junction and the gate resistance value can be reduced to form a shallow depth junction, but the process is simplified using only one heat treatment process to simplify the semiconductor process. It is an object of the present invention to provide a method for forming a transistor of a semiconductor device, which improves the yield and productivity of the device, improves the characteristics and reliability of the semiconductor device, and thereby enables high integration of the semiconductor device.

제1a도 내지 제1d도는 본 발명의 실시예에 따른 반도체소자의 트랜지스터 형성방법을 도시한 단면도.1A to 1D are cross-sectional views showing a transistor forming method of a semiconductor device according to an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반도체기판 2 : 소자분리막1: semiconductor substrate 2: device isolation film

3 : 게이트산화막 4 : 게이트3: gate oxide film 4: gate

5 : 스페이서 산화막 6 : 소오스/드레인5 spacer oxide film 6 source / drain

7 : Fe 박막 8 : Co 박막7: Fe thin film 8: Co thin film

9 : CoSi2막 10 : Fe-O-N 의 화합물9: CoSi 2 film 10: Compound of Fe-ON

이상의 목적을 달성하기 위해 본 발명에 따른 반도체소자의 트랜지스터 형성 방법은, 반도체 기판에 소자 분리막, 게이트 산화막, 게이트, 절연막 스페이서를 형성 하고 비소 또는 불화붕소 이온을 이온주입하여 n+ 또는 p+타입의 소오스/드레인을 형성하는 단계와, 상기 구조의 전 표면에 Fe 박막을 증착하는 단계와, 상기 Fe 박막 상부에 연속적으로 Co 박막을 증착하는 단계와, 상기 반도체기판을 열처리하여 CoSi2막를 형성하는 단계와, 상기 열처리공정중 절연막 스페이서와 소자분리막 상부에 형성된 Fe-O-N의 화합물을 선택적으로 식각하는 단계를 포함하는 것을 특징으로한다.In order to achieve the above object, a method of forming a transistor of a semiconductor device according to the present invention comprises forming a device isolation film, a gate oxide film, a gate, an insulating film spacer on a semiconductor substrate, and implanting arsenic or boron fluoride ions to ion / n + or p + type source / Forming a drain, depositing a thin Fe film on the entire surface of the structure, depositing a Co thin film continuously on the Fe thin film, heat treating the semiconductor substrate to form a CoSi 2 film; And selectively etching the compound of Fe—ON formed on the insulating layer spacer and the device isolation layer during the heat treatment process.

한편, 이상의 목적을 달성하기 위한 본 발명의 원리는, Co 단일막에 의한 CoSi2형성에서 발생할 수 있는 문제를 극복하기 위해서, Co/내화물금속의 이중층 구조에서 내화물 금속으로 Ti 이 아닌 Fe 를 사용하는 것으로, Co/Fe 의 이중충에서 실리사이드 공정중 Fe는 Si 표면의 자연산화막을 환원시켜 제거함으로써 전 계면에 균일한 CoSi2반응이 일어나 매끈하고 평탄한 계면을 만들어 주며 중간에서 실리사이드 반응을 제거하여 Si의 지나친 소모를 방지하는 역할을 한다. 특히, Fe는 여러 내화물 금속 중에서도 산화 성향이 매우 커서 Si 표면의 자연산화막 제거 능력이 우수하고, Co 내부에 함유된 Fe의 고용동 ( solid solubilty )도 매우 낮아 Co-Fe-Si의 삼성분께 화합물을 형성하는 않을 뿐 아니라, FsSi2의 형성 온도는 CoSi2의 형성온도보다 높은 편이므로, Co/Fe의 츠역전을 통한 균일하고 얇은 CoSi2층 형성할 수 있다.On the other hand, the principle of the present invention for achieving the above object, in order to overcome the problems that may occur in the formation of CoSi 2 by the Co single layer, in the double layer structure of Co / refractory metal using Fe rather than Ti as refractory metal In the double charge of Co / Fe, Fe during the silicide process removes the natural oxide film on the Si surface to reduce the uniform CoSi 2 reaction at all interfaces to create a smooth and flat interface and remove the silicide reaction in the middle. It prevents excessive consumption. Particularly, Fe has a high oxidation tendency among various refractory metals, so it has excellent ability to remove the natural oxide film on the surface of Si, and has a very low solid solubilty of Fe contained in Co. In addition to forming, since the formation temperature of FsSi 2 is higher than that of CoSi 2 , a uniform and thin CoSi 2 layer can be formed through the reverse of Co / Fe.

이하, 첨부된 도면을 참고로 하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

제1a도 내지 제1d도는 본 발명의 실시예에 따른 반도체소자의 트랜지스터 형성방법을 도시한 단면도이다.1A to 1D are cross-sectional views showing a transistor forming method of a semiconductor device according to an embodiment of the present invention.

먼저, 반도체기판(1)의 소자 분리 영역에 소자 분리막(2)을 형성하고, 반도체 기판의 액티브(active)영역에 게이트산화막(3) 형성하고, 폴리 실리콘을 증착한 후 게이트 마스크(도시안됨)를 이용한 식각공정으로 식각하여 게이트(4)를 형성한다.First, the device isolation film 2 is formed in the device isolation region of the semiconductor substrate 1, the gate oxide film 3 is formed in the active region of the semiconductor substrate, the polysilicon is deposited, and then the gate mask (not shown). The gate 4 is formed by etching by using an etching process.

이하, 첨부된 도면을 참고로 하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

제1a 내지 제1d도는 본 발명이 실시예에 따른 반도체소자의 트랜지스터의 형성방법을 도시한 단면도이다.1A to 1D are cross-sectional views showing a method of forming a transistor of a semiconductor device according to an embodiment of the present invention.

먼저, 반도체기판(1)의 소자 분리 영역에 소자 분리막(2)을 형성하고, 반도체기판의 액티브(active)영역에 게이트산화막(3) 형성하고, 폴리 시리콘을 증착한 후 게이트 마스크(도시안됨)를 이용한 시가공정으로 식각하여 게이트(4)를 형성한다.First, the device isolation film 2 is formed in the device isolation region of the semiconductor substrate 1, the gate oxide film 3 is formed in the active region of the semiconductor substrate, the polysilicon is deposited, and then the gate mask (not shown). The gate 4 is formed by etching by using a cigar process.

그 다음, 상기 게이트(4)의 측벽에 산화막 스레이서(5)를 형성하고, 비소(As) 또는 불화붕소(BF2) 이온을 3E15/㎤ 이상의 농도로 주입하여 n+ 또는 p-타입의 소오스/드레인(6)을 형성한다.(제1a도)Then, an oxide film racer 5 is formed on the sidewall of the gate 4, and arsenic (As) or boron fluoride (BF 2 ) ions are implanted at a concentration of 3E15 / cm 3 or more so that the source of n + or p-type / The drain 6 is formed (FIG. 1a).

그리고, 상기 구조의 전 표면에 Fe박막(7)을 스퍼터링법이나 전자빔증착법을 이용하여 20∼300 Å 정도의 두께로 증착한다. 이때, 상기 스퍼터링법은 타겟을 고순도의 Fe 물질로 하되, N2(+Ar) 플라즈마상태에서 증착 압력은 1mTorr∼10Torr 정도로 하고, 기판 온도는 상온 ∼500℃가 되도록 하여 실시한다.Then, the Fe thin film 7 is deposited on the entire surface of the structure to a thickness of about 20 to 300 kPa by the sputtering method or the electron beam deposition method. At this time, the sputtering method is carried out by using a target of high purity Fe material, the deposition pressure in the N 2 (+ Ar) plasma state to about 1mTorr ~ 10Torr, the substrate temperature to room temperature ~ 500 ℃.

그 다음에, 상기 Fe박막(7) 증착 후에 공기중에 노출하지 않고 연속적으로 Co박막(8)을 80∼500 Å 정도의 두께 증착하되, 스퍼터링방법으로 증착하며 그 조 건은, 타겟을 고순도의 Co 로 하되, N2(+Ar) 플라즈마 상태에서 증착 압력은 1mTorr∼10 Torr 정도로 하며 기판 온도는 상온∼500℃ 정도가 되도록 한다.Subsequently, after the Fe thin film 7 is deposited, the Co thin film 8 is continuously deposited to a thickness of about 80 to 500 kPa without being exposed to air, but is deposited by a sputtering method. In the N 2 (+ Ar) plasma state, the deposition pressure is about 1 mTorr to 10 Torr and the substrate temperature is about room temperature to about 500 ° C.

한편, 상기 Fe박막(7)이나 Co박막(8)을 전자빔 증착법을 이용하여 실시하는 경우는 기저진공을 1×10-5Torr 이하로 유지하면서 Fe 와 Co 이중막을 연속적으로 형성한다. (제1b도)On the other hand, in the case where the Fe thin film 7 or the Co thin film 8 is carried out by the electron beam deposition method, the Fe and Co double films are continuously formed while the base vacuum is maintained at 1 × 10 −5 Torr or less. (Figure 1b)

그 다음에, 상기의 Co박막(8)을 500∼800℃ 정도의 온도에서 0∼60초 정도의 시간동안 RTA ( Rapid Thermal Anneal ) 를 0.1 Torr 이하의 압력, 질소 분위기에서 열처리하거나, 퍼니스 ( Furnace ) 를 사용하여 400∼700℃ 정도의 온도에서 0∼30 분 정도치 시간동안 질소분위기에서 열처리함으로써 소오스/드레인(6)과 게이트(4) 전극 위에만 선택적으로 CoSi2(9)를 형성한다.Then, the Co thin film 8 is heat-treated in a nitrogen atmosphere at a pressure of 0.1 Torr or less for RTA (Rapid Thermal Anneal) at a temperature of 500 to 800 ° C. for 0 to 60 seconds. CoSi 2 (9) is selectively formed only on the source / drain (6) and gate (4) electrodes by heat treatment in a nitrogen atmosphere at a temperature of about 400 to 700 ° C. for about 0 to 30 minutes.

이때, 상기 스페이서 산화막(5)이나 소자분리막(2)은 표면에 Fe-O-N(10)의 화합물이 존재하게 된다.(제1c도)In this case, a compound of Fe—O—N 10 is present on the surface of the spacer oxide film 5 or the device isolation film 2 (FIG. 1C).

그 다음에, 상기 Fe-O-N(10)의 화합물은 NH4OH : H2O : H2O = 1 : 1 : 5의 구성비를 갖는 SC-1 이나 HCl 과 H2O2의 혼합용액으로 20∼60분 정도의 시간동안 선택적으로 식각하여 상기 소오스/드레인(6)과 게이트(5)위에만 CoSi2가 형성되도록 한다. (제1d도)Subsequently, the compound of Fe-ON (10) was added as SC-1 or HCl and H 2 O 2 mixed solution having a composition ratio of NH 4 OH: H 2 O: H 2 O = 1: 1: 20. Selectively etching for a time of about 60 minutes so that CoSi 2 is formed only on the source / drain 6 and the gate 5. (Figure 1d)

이 후에 층간 절연막을 증착하여 평탄화시키고 콘택을 오픈한 후에 금속으로 콘택을 메꾸는 등의 기존의 반도체 공정 그대로 후속 공정을 진행한다.Thereafter, the interlayer insulating film is deposited to be planarized, the contact is opened, and then the contact is filled with metal, and the subsequent process is performed as it is.

이상에서 설명한 바와같이 본 발명에 따른 반도체소자의 트랜지스터 형성방법은, 여러 내화물 금속 중에서도 산화 성향이 매우 큰 Fe금속을 사용하여 Si 표면의 자연산화막을 환원시켜 제거함으로써 전 계면에 걸쳐 균일한 CoSi2반응이 일어나 매끈하고 평탄한 계면을 만들어 주며, Co 내의 고용도도 매우 낮아 Co-Fe-Si의 삼성분계 화합물을 형성하지 않는 Fe를 사용하여 CoSi2의 두께를 균일하게 형성할 수 있도록 하고, CoSi2의 형성온도보다 높은 FeSi2의 형성을 추구하여 형성공정시 Si의 소모량이 감소시킨다. 그리고, TiSi2형성공정시 사용되는 다단계의 열처리공정을 한단계의 열처리공정으로 감소하여 공정을 단순화시킨다. 상기와 같은 현상들로 인하여 본 발명은 반도체소자의 수율 및 생산성을 향상시키고 반도체소자의 특성 및 신뢰성을 향상시키며 그에 따른 반도체소자의 고집적화를 가능하게 하는 효과가 있다.As described above, in the method of forming a transistor of the semiconductor device according to the present invention, the CoSi 2 reaction is uniform over the entire interface by reducing and removing the natural oxide film on the surface of Si using Fe metal having a very high oxidation tendency among various refractory metals. gives the up and create a smooth, flat surface, and is also employed in the Co also uses Fe does not form a ternary compound of a very low Co-Fe-Si, and to uniformly form the thickness of the CoSi 2, the CoSi 2 The consumption of Si in the forming process is reduced by pursuing the formation of FeSi 2 higher than the forming temperature. In addition, the multi-stage heat treatment process used in the TiSi 2 formation process is reduced to a single heat treatment process to simplify the process. Due to the phenomena as described above, the present invention has the effect of improving the yield and productivity of the semiconductor device, improving the characteristics and reliability of the semiconductor device, and thereby enabling high integration of the semiconductor device.

Claims (12)

반도체 기판에 소자 분리막, 게이트 산화막(3), 게이트(4), 절연막 스페이서(5) 를 형성하고 비소 또는 불화붕소 이온을 이온주입하여 n+ 또는 p+타입의 소오스/드레인을 형성하는 단계와, 상기 구조의 전 표면에 Fe 박막(7)을 증착하는 단계와, 상기 Fe 박막(7) 상부에 연속적으로 Co 박막을 증착하는 단계와, 상기 반도체기판을 열처리하여 CoSi2막를 형성하는 단계와, 상기 열처리공정중 절연막 스페이서와 소자분리막 상qn에 형성된 Fe-O-N의 화합물을 선택적으로 식각하는 단계를 포함하는 반도체소자의 트랜지스터의 제조방법.Forming an isolation layer, a gate oxide layer (3), a gate (4), and an insulating layer spacer (5) on a semiconductor substrate and implanting arsenic or boron fluoride ions to form an n + or p + type source / drain; Depositing a Fe thin film 7 on the entire surface of the film, depositing a Co thin film on the Fe thin film 7 continuously, heat treating the semiconductor substrate to form a CoSi 2 film, and the heat treatment process And selectively etching the compound of Fe—ON formed on the insulating film spacer and the device isolation film qn. 청구항1에 있어서, 상기 Fe 박막은 스퍼터링방법이나 전자빔증착법으로 형성하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성방법.The method of claim 1, wherein the Fe thin film is formed by a sputtering method or an electron beam deposition method. 청구항2에 있어서, 상기 스퍼터링방법은 상기 Fe 박막층 20∼300 Å 정도의 두께로 증착하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성방법.The method for forming a transistor of a semiconductor device according to claim 2, wherein the sputtering method is deposited to a thickness of about 20 to 300 GPa of the Fe thin film layer. 청구항2에 있어서, 상기 스퍼터링방법은 타겟을 고순도의 Fe 금속으로 하되, N2(+Ar) 플라즈마 상태에서 증착 압력을 1 mTorr∼10 Torr 정도로 하고, 기판 온도는 상온 ∼ 500℃ 정도의 온도가 되도록 하여 실시하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성 방법.The method of claim 2, wherein the sputtering method uses a target of high purity Fe metal, and the deposition pressure is about 1 mTorr to 10 Torr in an N 2 (+ Ar) plasma state, and the substrate temperature is about room temperature to about 500 ° C. 4. And forming a transistor of the semiconductor device. 청구항1 또는 청구항2에 있어서, 상기 Fe 박막과 Co 박막은 전자빔증착법으로 기저진공을 1×10-5Torr 이하로 유지하면서 Fe 와 Co의 이중막을 연속적으로 형성하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성방법.The semiconductor thin film transistor according to claim 1 or 2, wherein the Fe thin film and the Co thin film continuously form a double film of Fe and Co while maintaining a basic vacuum of 1 × 10 -5 Torr or less by electron beam deposition. Way. 청구항1 에 있어서, 상기 Co 박막은 스퍼터링방법이나 전자빔증착법으로 형성하는 것를 특징으 로하는 반도체소자의 트랜치스터 형성방법.The method of claim 1, wherein the Co thin film is formed by a sputtering method or an electron beam deposition method. 청구항6에 있어서, 상기 스퍼터링방법은 80∼500 Å 정도의 두께로 Co 박막을 형성하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성방법.The method of forming a transistor of a semiconductor device according to claim 6, wherein the sputtering method forms a Co thin film with a thickness of about 80 to 500 mW. 청구항6에 있어서, 상기 스퍼터링방법은 타겟을 고순도의 Co 금속으로 하되, N2(+Ar) 플라즈마 상태에서 증착 압력은 1 mTorr∼10 Torr 정도로 하고, 기판 온도는 상온 ∼500℃ 정도의 온도가 되도록 하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성 방법.The method of claim 6, wherein the sputtering method uses a target of high purity Co metal, but the deposition pressure is about 1 mTorr to 10 Torr in an N 2 (+ Ar) plasma state, and the substrate temperature is about room temperature to about 500 ℃ A transistor forming method of a semiconductor device, characterized in that. 청구항1에 있어서, 상기 열처리공정은 Co 박막을 500∼800℃ 정도의 온도에서 0∼60 초 정도의 시간동안 RTA 를 실시하는 것을 특징으로하는 반도체소자의 트랜지스터 형성 방법.The method of claim 1, wherein the heat treatment is performed on the Co thin film at a temperature of about 500 ° C. to 800 ° C. for about 0 to 60 seconds. 청구항1 또는 청구항9에 있어서, 상기 RTA는 0.1 Torr 이하 압력의 질소 분위기에서 실시하는 것을 특징으 로하는 반도체소자의 트랜지스터 형성방법.The method of claim 1 or 9, wherein the RTA is performed in a nitrogen atmosphere at a pressure of 0.1 Torr or less. 청구항1에 있어서, 상기 열처리공정은 퍼니스를 사용하여 400∼700℃ 정도의 온도에서 0∼30분 정도의 시간동안 질소분위기에서 실시하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성방법.The method of claim 1, wherein the heat treatment is performed in a nitrogen atmosphere at a temperature of about 400 to 700 ° C. for about 0 to 30 minutes using a furnace. 청구항1에 있어어, 상기 Fe-O-N 의 화합물은 SC-1 이나 HCl 과 H2O2의 혼합용액으로 20∼60 분 정도의 시간동안 선택적으로 식각하는 것을 특징으로하는 반도체소자의 트랜지스터 형성방법.The method of claim 1, wherein the Fe-ON compound is selectively etched with SC-1 or a mixed solution of HCl and H 2 O 2 for about 20 to 60 minutes.
KR1019960080236A 1996-12-31 1996-12-31 Method of manufacturing transistor of semiconductor device KR100224785B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960080236A KR100224785B1 (en) 1996-12-31 1996-12-31 Method of manufacturing transistor of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960080236A KR100224785B1 (en) 1996-12-31 1996-12-31 Method of manufacturing transistor of semiconductor device

Publications (2)

Publication Number Publication Date
KR19980060869A KR19980060869A (en) 1998-10-07
KR100224785B1 true KR100224785B1 (en) 1999-10-15

Family

ID=19493489

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960080236A KR100224785B1 (en) 1996-12-31 1996-12-31 Method of manufacturing transistor of semiconductor device

Country Status (1)

Country Link
KR (1) KR100224785B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395776B1 (en) * 2001-06-28 2003-08-21 동부전자 주식회사 Method for manufacturing a silicide layer of semiconductor device
KR20040001455A (en) * 2002-06-28 2004-01-07 주식회사 하이닉스반도체 Method for forming mask pattern of semiconductor device

Also Published As

Publication number Publication date
KR19980060869A (en) 1998-10-07

Similar Documents

Publication Publication Date Title
US5880500A (en) Semiconductor device and process and apparatus of fabricating the same
JP3285934B2 (en) Method for manufacturing semiconductor device
KR100271009B1 (en) Mis transistor and method for fabricating the same
US5849634A (en) Method of forming silicide film on silicon with oxygen concentration below 1018 /cm3
US7666786B2 (en) Methods of fabricating semiconductor devices having a double metal salicide layer
JPH0878361A (en) Manufacture of semiconductor device
JPH08250451A (en) Manufacture of semiconductor device
KR100224785B1 (en) Method of manufacturing transistor of semiconductor device
KR100444492B1 (en) Method for fabricating semiconductor device
JPS6276560A (en) Manufacture of semiconductor device
KR100403321B1 (en) Method for manufacturing semiconductor device
KR100696763B1 (en) Forming method for gate electrode of semiconductor device
KR100224784B1 (en) Method of manufacturing semiconductor device
KR100920038B1 (en) Gate of semiconductor device and method for forming the same
KR100440075B1 (en) Method for fabricating transistor of semiconductor device for forming easily silicide and restraining parasitic resistance
KR100197996B1 (en) Method of manufacturing semiconductor device
KR100510442B1 (en) A method for forming double layered-silicide and a mos transistor having self-aligned silicide
JP2003022984A (en) Production method for semiconductor device
KR101024634B1 (en) Method of manufacturing semiconductor device
KR100400288B1 (en) Method for manufacturing transistor of semiconductor device
KR100505398B1 (en) Method for forming gate electrode in semiconductor device
KR100512059B1 (en) Method of manufacturing a semiconductor device
KR20020048692A (en) manufacturing method of semiconductor device
KR100273272B1 (en) Fabricating method of silicide
JPH0669156A (en) Manufacture of semiconductor integrated circuit

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100624

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee