JPWO2019093411A1 - Fire extinguishing electrolyte and secondary battery containing the electrolyte - Google Patents

Fire extinguishing electrolyte and secondary battery containing the electrolyte Download PDF

Info

Publication number
JPWO2019093411A1
JPWO2019093411A1 JP2019552370A JP2019552370A JPWO2019093411A1 JP WO2019093411 A1 JPWO2019093411 A1 JP WO2019093411A1 JP 2019552370 A JP2019552370 A JP 2019552370A JP 2019552370 A JP2019552370 A JP 2019552370A JP WO2019093411 A1 JPWO2019093411 A1 JP WO2019093411A1
Authority
JP
Japan
Prior art keywords
secondary battery
electrolytic solution
battery according
lithium
amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019552370A
Other languages
Japanese (ja)
Inventor
山田 淳夫
淳夫 山田
裕貴 山田
裕貴 山田
ワン・ジェンフイ
拡嗣 高田
拡嗣 高田
栄一 中村
栄一 中村
シャン・ルイ
ゼン・キフェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Publication of JPWO2019093411A1 publication Critical patent/JPWO2019093411A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】 発火リスクに対応し得る安全性を有し、かつ優れた電池特性を提供可能な二次電池用電解液を提供することを課題とする。【解決手段】 消火性を有する二次電池用電解液であって、非水溶媒とアルカリ金属塩を含み、前記アルカリ金属塩1molに対して前記非水溶媒の量が4mol以下であり、前記電解液の沸点よりも低い温度領域に引火点を有しないことを特徴とする、該電解液。PROBLEM TO BE SOLVED: To provide an electrolytic solution for a secondary battery which has safety that can cope with the risk of ignition and can provide excellent battery characteristics. An electrolytic solution for a secondary battery having fire extinguishing properties, which contains a non-aqueous solvent and an alkali metal salt, and the amount of the non-aqueous solvent is 4 mol or less with respect to 1 mol of the alkali metal salt, and the electrolysis. The electrolytic solution, which does not have a flammable point in a temperature region lower than the boiling point of the liquid.

Description

本発明は、消火性を有する二次電池用電解液、及び当該電解液を含む二次電池に関する。 The present invention relates to an electrolytic solution for a secondary battery having fire extinguishing properties and a secondary battery containing the electrolytic solution.

高いエネルギー密度を有するリチウムイオン電池は、携帯電話やノートパソコンなどの小型携帯機器用途に加えて、電気自動車や電力蓄電用途などの大型蓄電池としての大規模な普及が期待されている。近年は、低コストで製造できる二次電池が求められるようになっている。 Lithium-ion batteries with high energy density are expected to be widely used as large storage batteries for electric vehicles and power storage applications, in addition to small portable devices such as mobile phones and notebook computers. In recent years, there has been a demand for secondary batteries that can be manufactured at low cost.

そのため、二次電池の高エネルギー密度化を目指し、リチウムイオン電池の派生型や次世代型を含むさまざまな二次電池の研究が活発に行われている。例えば、ナトリウムイオン電池は、レアメタルに分類されるリチウムと比較して安価で資源が豊富なナトリウムを用いることから、リチウムイオン二次電池よりも大幅に低コスト化の可能性が期待されるため、次世代蓄電池の有力な候補とされている(例えば、特許文献1)。しかし、かかるナトリウムイオン電池では、充放電サイクル安定性(可逆性)が低く、及び安全性も十分ではないという課題があった。 Therefore, with the aim of increasing the energy density of secondary batteries, research on various secondary batteries, including derivative types and next-generation types of lithium-ion batteries, is being actively conducted. For example, sodium-ion batteries use sodium, which is cheaper and more resource-rich than lithium, which is classified as a rare metal, and is expected to be significantly cheaper than lithium-ion secondary batteries. It is considered to be a promising candidate for next-generation storage batteries (for example, Patent Document 1). However, such a sodium ion battery has problems that the charge / discharge cycle stability (reversibility) is low and the safety is not sufficient.

一方で、従来、リチウムイオン電池やナトリウムイオン電池等の二次電池では、実用に耐えうる電池特性を得るために可燃性の有機電解液を用いなければならなかった。かかる可燃性の有機電解液の使用に起因するリチウムイオン電池の発火・爆発事故が多く報告され、二次電池の市場・用途拡大の大きな阻害要因となっている。また、ナトリウムイオン電池では、過充電等によってナトリウム金属が生成し得るが、かかるナトリウム金属は、極めて反応性が高く発火等の危険性が懸念されている。 On the other hand, conventionally, in secondary batteries such as lithium ion batteries and sodium ion batteries, flammable organic electrolytes have to be used in order to obtain battery characteristics that can withstand practical use. Many ignition and explosion accidents of lithium-ion batteries due to the use of such flammable organic electrolytes have been reported, which is a major obstacle to the expansion of the secondary battery market and applications. Further, in a sodium ion battery, sodium metal may be generated by overcharging or the like, but such sodium metal is extremely reactive and there is a concern about a risk of ignition or the like.

更なる高エネルギー密度化や大型化は必然的に発火リスクを高めることになるため、従来技術の延長線上にはない新たな発想による二次電池の安全対策が強く求められている。しかしながら、そのような発火等を生じさせない安全で、かつ優れた電池特性を両立し得る電解液は、これまでに実現されていないのが現状である。加えて、電気自動車やスマートグリッド用電池には10年以上の長寿命が要求されるため、数年の製品寿命を前提とした現状の携帯機器用の電池技術では十分に対応できない。 Further increasing the energy density and size will inevitably increase the risk of ignition, so there is a strong demand for safety measures for secondary batteries based on new ideas that are not an extension of conventional technology. However, the current situation is that an electrolytic solution that is safe and can achieve both excellent battery characteristics without causing such ignition has not been realized so far. In addition, since batteries for electric vehicles and smart grids are required to have a long life of 10 years or more, the current battery technology for mobile devices, which is premised on a product life of several years, cannot sufficiently cope with it.

特開2009−266821JP-A-2009-266821

そこで、本発明は、発火リスクに対応し得る安全性を有し、かつ優れた電池特性を提供可能な二次電池用電解液を提供することを課題とするものである。 Therefore, it is an object of the present invention to provide an electrolytic solution for a secondary battery which has safety that can cope with the risk of ignition and can provide excellent battery characteristics.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、電界液を構成する有機溶媒と高濃度のアルカリ金属塩として特定の組合せを用いることによって、優れた電池特性を提供でき、かつ難燃性に加えて消火機能を有する、安全性の極めて高い二次電池用電解液が得られることを新たに見出し、本発明を完成するに至った。そして、かかる電解液を用いることで、これまでトレードオフの関係とされてきたエネルギー密度と安全性を両立する二次電池を提供できることも見出した。 As a result of diligent studies to solve the above problems, the present inventors have been able to provide excellent battery characteristics by using a specific combination of an organic solvent constituting an electric field solution and a high-concentration alkali metal salt. The present invention has been completed by newly discovering that an electrolytic solution for a secondary battery having extremely high safety, which has a fire extinguishing function in addition to flame retardancy, can be obtained. They also found that by using such an electrolytic solution, it is possible to provide a secondary battery that has both energy density and safety, which have been considered to be a trade-off relationship.

すなわち、本発明は、一態様において
<1>消火性を有する二次電池用電解液であって、非水溶媒とアルカリ金属塩を含み、前記アルカリ金属塩1molに対して前記非水溶媒の量が4mol以下であり、前記電解液の沸点よりも低い温度領域に引火点を有しないことを特徴とする、該電解液;
<2>前記電解液の沸点よりも低い温度領域に発火点を有しない、上記<1>に記載の二次電池用電解液;
<3>自己消火時間が1秒/g以下である、上記<1>又は<2>に記載の二次電池用電解液;
<4>前記非水溶媒が難燃性有機溶媒であって、電解液が難燃性有機溶媒とアルカリ金属塩のみからなる、上記<1>〜<3>のいずれか1に記載の二次電池用電解液;
<5>前記非水溶媒が、リン酸エステル、フッ素化エーテル、又はそれらの組み合わせである、上記<1>〜<3>のいずれか1に記載の二次電池用電解液;
<6>前記リン酸エステルが、リン酸トリメチル、リン酸トリエチル、環状エステル部を有するリン酸エステル、及びそれらに含フッ素置換基を導入した化合物よりなる群から選択される、上記<5>に記載の二次電池用電解液;
<7>前記アルカリ金属塩を構成するアニオンが、フルオロスルホニル基、トリフルオロメタンスルホニル基、及びパーフルオロエタンスルホニル基よりなる群から選択される1以上の基を含むアニオンである、上記<1>〜<6>のいずれか1に記載の二次電池用電解液;
<8>前記アニオンが、ビス(フルオロスルホニル)アミド([N(FSO)、(フルオロスルホニル)(トリフルオロスルホニル)アミド([N(CFSO)(FSO)])、ビス(トリフルオロメタンスルホニル)アミド([N(CFSO)、ビス(パーフルオロエタンスルホニル)アミド([N(CSO)又は(パーフルオロエタンスルホニル)(トリフルオロエタンメタンスルホニル)アミド([N(CSO)(CFSO)])である、上記<7>に記載の二次電池用電解液;
<9>前記アルカリ金属塩が、リチウム塩又はナトリウム塩である、上記<1>〜<8>のいずれか1に記載の二次電池用電解液;
<10>塩単体として50℃以下の融点を有する常温溶融塩を含有しない、上記<1>〜<9>のいずれか1に記載の二次電池用電解液;及び
<11>前記二次電池が、リチウムイオン二次電池又はナトリウムイオン二次電池である、上記<1>〜<10>のいずれか1に記載の二次電池用電解液
を提供するものである。
That is, the present invention is an electrolytic solution for a secondary battery having <1> fire extinguishing property in one embodiment, containing a non-aqueous solvent and an alkali metal salt, and the amount of the non-aqueous solvent with respect to 1 mol of the alkali metal salt. Is 4 mol or less, and the electrolytic solution has no ignition point in a temperature region lower than the boiling point of the electrolytic solution;
<2> The electrolytic solution for a secondary battery according to <1> above, which does not have an ignition point in a temperature region lower than the boiling point of the electrolytic solution;
<3> The electrolytic solution for a secondary battery according to <1> or <2> above, wherein the self-extinguishing time is 1 second / g or less;
<4> The secondary according to any one of <1> to <3> above, wherein the non-aqueous solvent is a flame-retardant organic solvent and the electrolytic solution is composed of only a flame-retardant organic solvent and an alkali metal salt. Electrolyte for batteries;
<5> The electrolytic solution for a secondary battery according to any one of <1> to <3> above, wherein the non-aqueous solvent is a phosphoric acid ester, a fluorinated ether, or a combination thereof;
<6> The above <5>, wherein the phosphoric acid ester is selected from the group consisting of trimethyl phosphate, triethyl phosphate, a phosphoric acid ester having a cyclic ester portion, and a compound into which a fluorine-containing substituent is introduced. The above-mentioned electrolyte for secondary batteries;
<7> The anions constituting the alkali metal salt are anions containing one or more groups selected from the group consisting of a fluorosulfonyl group, a trifluoromethanesulfonyl group, and a perfluoroethanesulfonyl group. The electrolyte for a secondary battery according to any one of <6>;
<8> The anion is a bis (fluorosulfonyl) amide ([N (FSO 2 ) 2 ] ), (fluorosulfonyl) (trifluorosulfonyl) amide ([N (CF 3 SO 2 ) (FSO 2 )] −. ), Bis (trifluoromethanesulfonyl) amide ([N (CF 3 SO 2 ) 2 ] ), bis (perfluoroethanesulfonyl) amide ([N (C 2 F 5 SO 2 ) 2 ] ) or (perfluoro) The electrolyte for a secondary battery according to <7> above, which is an ethanesulfonyl) (trifluoroethanemethanesulfonyl) amide ([N (C 2 F 5 SO 2 ) (CF 3 SO 2 )] );
<9> The electrolytic solution for a secondary battery according to any one of <1> to <8> above, wherein the alkali metal salt is a lithium salt or a sodium salt;
<10> The electrolytic solution for a secondary battery according to any one of <1> to <9> above, which does not contain a room temperature molten salt having a melting point of 50 ° C. or lower as a single salt; and <11> The secondary battery. Is a lithium ion secondary battery or a sodium ion secondary battery, which provides the electrolytic solution for a secondary battery according to any one of <1> to <10> above.

別の態様において、本発明は、
<12>正極、負極、及び、上記<1>〜<11>のいずれか1に記載の二次電池用電解液を備える二次電池;
<13>リチウムイオン二次電池である、上記<12>に記載の二次電池;
<14>作動電圧が、2.3V以上である、上記<13>に記載の二次電池;
<15>負極の作動電位が、金属リチウム電位に対して0.5Vより低い、上記<13>又は<14>に記載の二次電池;
<16>前記正極が、リチウム元素を有する金属酸化物、ポリアニオン系化合物、又は硫黄系化合物より選択される活物質を含む、上記<13>〜<15>のいずれか1に記載の二次電池;
<17>前記負極が、炭素材料、金属リチウム、又はリチウム合金、より選択される活物質を含む、上記<13>〜<16>のいずれか1に記載の二次電池;
<18>ナトリウムイオン二次電池である、上記<12>に記載の二次電池;
<19>作動電圧が、2.0V以上である、上記<18>に記載の二次電池;
<20>前記正極が、遷移金属酸化物である、上記<18>又は<19>に記載の二次電池;
<21>前記負極が、ハードカーボンである、上記<18>〜<20>のいずれか1に記載の二次電池
を提供するものである。
In another aspect, the invention
<12> A secondary battery including a positive electrode, a negative electrode, and an electrolytic solution for a secondary battery according to any one of <1> to <11>above;
<13> The secondary battery according to <12> above, which is a lithium ion secondary battery;
<14> The secondary battery according to <13> above, wherein the operating voltage is 2.3 V or more;
<15> The secondary battery according to <13> or <14>, wherein the operating potential of the negative electrode is lower than 0.5 V with respect to the metallic lithium potential;
<16> The secondary battery according to any one of <13> to <15>, wherein the positive electrode contains an active material selected from a metal oxide having a lithium element, a polyanionic compound, or a sulfur compound. ;
<17> The secondary battery according to any one of <13> to <16>, wherein the negative electrode contains an active material selected from a carbon material, metallic lithium, or a lithium alloy;
<18> The secondary battery according to <12> above, which is a sodium ion secondary battery;
<19> The secondary battery according to <18> above, wherein the operating voltage is 2.0 V or more;
<20> The secondary battery according to <18> or <19>, wherein the positive electrode is a transition metal oxide;
<21> The secondary battery according to any one of <18> to <20>, wherein the negative electrode is hard carbon.

本発明の二次電池用電解液は、電解液の沸点よりも低い温度領域に引火点(さらには発火点)を有しないことにより、難燃性というだけでなく、消火機能をも有するものである。さらに、電界液の温度が上昇した場合に発生・拡散する蒸気が消火剤となり得ることから、電池の発火リスクを広範囲にわたって積極的に低減することができる。 The electrolytic solution for a secondary battery of the present invention has not only flame retardancy but also a fire extinguishing function because it does not have a flash point (furthermore, an ignition point) in a temperature region lower than the boiling point of the electrolytic solution. is there. Further, since the vapor generated and diffused when the temperature of the electric field liquid rises can serve as a fire extinguishing agent, the risk of ignition of the battery can be positively reduced over a wide range.

また、かかる消火機能を有するだけでなく、本発明の二次電池用電解液は、優れた電池特性を提供し得るという点で優れた効果を提供する。すなわち、従来、負極の安定作動のためには炭酸エステル系溶媒を用いることが必須とされていたが、本発明の二次電池用電解液を用いた電池では、1000回以上(時間にして連続1年以上)の繰り返し充放電を行ってもほとんど劣化せず、電圧耐性も十分に高い。したがって、電池の過充電などが行われた場合でも、発火の危険性を回避することができ、安全性が高くかつ長寿命化等の優れた電池特性を有する二次電池を構築可能である。 In addition to having such a fire extinguishing function, the electrolytic solution for a secondary battery of the present invention provides an excellent effect in that it can provide excellent battery characteristics. That is, conventionally, it has been essential to use a carbonic acid ester solvent for stable operation of the negative electrode, but in the battery using the electrolytic solution for the secondary battery of the present invention, 1000 times or more (continuously in time). It hardly deteriorates even after repeated charging and discharging for 1 year or more, and its voltage resistance is sufficiently high. Therefore, even when the battery is overcharged, the risk of ignition can be avoided, and a secondary battery having high safety and excellent battery characteristics such as long life can be constructed.

図1は、本発明の電解液(左図)及び比較例の電解液(右図)を、セパレータに浸透させ燃焼試験を行った結果を示す画像である。FIG. 1 is an image showing the results of a combustion test in which the electrolytic solution of the present invention (left figure) and the electrolytic solution of Comparative Example (right figure) were permeated into a separator. 図2は、種々の濃度のLiFSA/TMP電解液を用いた場合の電圧・容量曲線の比較を示すグラフである。FIG. 2 is a graph showing a comparison of voltage / capacitance curves when LiFSA / TMP electrolytic solutions having various concentrations are used. 図3は、5.3M LiFSA/TMP電解液(塩:溶媒モル比=1:0.83)を用いた場合の天然黒鉛電極(ハーフセル)における電圧・容量曲線を示すグラフである。FIG. 3 is a graph showing a voltage / capacitance curve in a natural graphite electrode (half cell) when a 5.3M LiFSA / TMP electrolytic solution (salt: solvent molar ratio = 1: 0.83) is used. 図4は、図3における充放電サイクルで得られたサイクル数、容量及びクーロン効率のプロットを示すグラフである。FIG. 4 is a graph showing a plot of the number of cycles, capacitance and Coulomb efficiency obtained in the charge / discharge cycle in FIG. 図5は、5.3M LiFSA/TMP電解液(塩:溶媒モル比=1:0.83)を用いた場合の天然黒鉛電極(フルセル)における電圧・容量曲線を示すグラフである。FIG. 5 is a graph showing a voltage / capacitance curve in a natural graphite electrode (full cell) when a 5.3M LiFSA / TMP electrolytic solution (salt: solvent molar ratio = 1: 0.83) is used. 図6は、図5における充放電サイクルで得られたサイクル数、容量及びクーロン効率のプロットを示すグラフである。FIG. 6 is a graph showing a plot of the number of cycles, capacitance and Coulomb efficiency obtained in the charge / discharge cycle in FIG. 図7は、LiFSA/TMP/HFE電解液(1:1.8:8.1)を用いた場合のハードカーボン電極(ハーフセル)における電圧・容量曲線を示すグラフである。FIG. 7 is a graph showing a voltage / capacitance curve in a hard carbon electrode (half cell) when a LiFSA / TMP / HFE electrolytic solution (1: 1.8: 8.1) is used. 図8は、種々の濃度のNaFSA/TMP電解液を用いた場合の電圧・容量曲線の比較を示すグラフである。FIG. 8 is a graph showing a comparison of voltage / capacitance curves when NaFSA / TMP electrolytes having various concentrations are used. 図9は、3.3M NaFSA/TMP電解液(1:1.8)を用いた場合のハードカーボン電極(ハーフセル)における電圧・容量曲線を示すグラフである。FIG. 9 is a graph showing a voltage / capacitance curve in a hard carbon electrode (half cell) when a 3.3M NaFSA / TMP electrolytic solution (1: 1.8) is used. 図10は、1.0M NaPF/EC:DEC電解液を用いた場合のハードカーボン電極における充放電曲線を示すグラフである。FIG. 10 is a graph showing a charge / discharge curve in a hard carbon electrode when 1.0 M NaPF 6 / EC: DEC electrolytic solution is used. 図11は、3.3M NaFSA/TMP電解液を用いた場合及び1.0M NaPF/EC:DEC電解液を用いた場合の充放電サイクルで得られたサイクル数、容量及びクーロン効率のプロットを示すグラフである。FIG. 11 is a plot of the number of cycles, capacity and Coulomb efficiency obtained in the charge / discharge cycles with the 3.3M NaFSA / TMP electrolyte and with the 1.0M NaPF 6 / EC: DEC electrolyte. It is a graph which shows. 図12は、3.3M NaFSA/TMP電解液(1:1.8)を用いた場合のハードカーボン電極(フルセル)における充放電サイクルで得られたサイクル数、容量及びクーロン効率のプロットを示すグラフである。挿入図は、その際の電圧・容量曲線を示すグラフである。FIG. 12 is a graph showing a plot of the number of cycles, capacitance and Coulomb efficiency obtained in charge / discharge cycles at a hard carbon electrode (full cell) when a 3.3M NaFSA / TMP electrolyte (1: 1.8) was used. Is. The inset is a graph showing the voltage / capacitance curve at that time.

以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Hereinafter, embodiments of the present invention will be described. The scope of the present invention is not limited to these explanations, and other than the following examples, the scope of the present invention can be appropriately modified and implemented without impairing the gist of the present invention.

1.電解液
本発明の二次電池用電解液は、消火性を有することを特徴とする。より具体的には、本発明の二次電池用電解液は、その引火点が、電解液の沸点よりも低い温度領域に存在しない。さらに、発火点についても、電解液の沸点よりも低い温度領域に存在しないことが好ましい。
1. 1. Electrolyte The electrolytic solution for a secondary battery of the present invention is characterized by having fire extinguishing properties. More specifically, the electrolytic solution for a secondary battery of the present invention does not have a flash point in a temperature region lower than the boiling point of the electrolytic solution. Further, it is preferable that the ignition point does not exist in the temperature region lower than the boiling point of the electrolytic solution.

「引火点」とは、液体を加熱しその付近に火源を近づけて引火するようになる最低温度で、燃料などさまざまな液体の火災危険性を表す代表的な値である。例えば、灯油や軽油の引火点は40−70℃である。一方、「発火点」とは、物質を空気中で加熱するとき、火源がなくとも発火する最低温度のことである。例えば、硫黄232℃、硫化水素260℃、軽油250℃、灯油255℃、ガソリン300℃、 プロパン432℃等が代表的な値である。 The "flash point" is the lowest temperature at which a liquid is heated and a fire source is brought close to it to ignite, and is a typical value indicating the fire risk of various liquids such as fuel. For example, the flash point of kerosene and light oil is 40-70 ° C. On the other hand, the "ignition point" is the minimum temperature at which a substance ignites when it is heated in the air, even if there is no fire source. For example, sulfur 232 ° C., hydrogen sulfide 260 ° C., light oil 250 ° C., kerosene 255 ° C., gasoline 300 ° C., propane 432 ° C. and the like are typical values.

従来用いられている一般的な商用電解液は、消防法で灯油や軽油と同グループに分類される引火性の液体(引火点40℃以下)が典型的であり、電池の火災・爆発事故の主原因となっている。これに対し、本発明の二次電池用電解液は、沸点よりも低い温度領域に引火点及び/又は発火点を有しないため、単に燃えにくいという難燃性の性質だけでなく、これを超えて、消火性をも有するものである。例えば、後述のように、非水溶媒としてリン酸トリエステルを用いた場合には、電解液の沸点は約200℃付近となるため、その場合の本発明の二次電池用電解液は、200℃付近より低い温度範囲に、引火点及び/又は発火点を有しないことが好ましい。 Conventionally used general commercial electrolytes are typically flammable liquids (flash point 40 ° C or less) that are classified in the same group as kerosene and light oil under the Fire Service Act, and can cause battery fires and explosions. It is the main cause. On the other hand, the electrolytic solution for a secondary battery of the present invention does not have a flash point and / or an ignition point in a temperature region lower than the boiling point, so that it not only has a flame-retardant property of being hard to burn, but also exceeds this. It also has fire extinguishing properties. For example, as described later, when a phosphoric acid triester is used as the non-aqueous solvent, the boiling point of the electrolytic solution is around 200 ° C., and therefore, the electrolytic solution for the secondary battery of the present invention in that case is 200. It is preferable not to have a flash point and / or an ignition point in a temperature range lower than around ° C.

このような消火性を有し、かつ後述のように実用レベルの電池特性を発揮し得る二次電池用電解液は本発明において新規に見出されたものである。別の観点から捉えると、本発明の二次電池用電解液は、周辺温度が沸点以上の温度になると、引火点や発火点を迎える前に気化し、その蒸気が消火剤として機能し得るという利点を有する。 An electrolytic solution for a secondary battery having such fire extinguishing properties and capable of exhibiting practical level battery characteristics as described later has been newly found in the present invention. From another point of view, the electrolytic solution for a secondary battery of the present invention vaporizes before reaching a flash point or an ignition point when the ambient temperature rises above the boiling point, and the vapor can function as a fire extinguishing agent. Has advantages.

このような消火機能を示す指標として、自己消火時間を用いることができる。本明細書において、「自己消火時間(秒/g)」とは、着火した試料1gあたりの燃焼の継続時間を意味する。本発明の二次電池用電解液は、好ましくは、自己消火時間が1秒/g以下であり、より好ましくは、自己消火時間がほぼ0秒/gである。 Self-fire extinguishing time can be used as an index showing such a fire extinguishing function. In the present specification, the "self-extinguishing time (seconds / g)" means the duration of combustion per 1 g of the ignited sample. The electrolytic solution for a secondary battery of the present invention preferably has a self-extinguishing time of 1 second / g or less, and more preferably a self-extinguishing time of approximately 0 second / g.

(1)非水溶媒
本発明の二次電池用電解液に含まれる非水溶媒は、難燃性の有機溶媒であることが好ましい。かかる難燃性有機溶媒としては、典型的には、リン酸エステルやフッ素化溶媒、或いはそれらの組み合わせを挙げることができる。リン酸エステルは、リン酸モノエステル、リン酸ジエステル、又はリン酸トリエステルであることができる。また、エステル部のアルキル基等が環状構造を構成するリン酸エステルを用いることができる。特に、リン酸トリメチルは、難燃性に加えて、低い粘度や高い酸化安定性の点でも好ましい。これらリン酸エステルには、含フッ素置換基を導入することができ、例えば、エステル部のアルキル鎖における任意の位置にトリフルオロメチル基等のフッ化アルキルを導入することができる。また、フッ素化溶媒としては、ハイドロフルオロエーテル等のフッ素化エーテルを挙げることができる。
(1) Non-aqueous solvent The non-aqueous solvent contained in the electrolytic solution for a secondary battery of the present invention is preferably a flame-retardant organic solvent. Typical examples of such a flame-retardant organic solvent include a phosphoric acid ester, a fluorinated solvent, or a combination thereof. The phosphoric acid ester can be a phosphoric acid monoester, a phosphoric acid diester, or a phosphoric acid triester. Further, a phosphoric acid ester in which an alkyl group or the like in the ester portion constitutes a cyclic structure can be used. In particular, trimethyl phosphate is preferable in terms of low viscosity and high oxidative stability in addition to flame retardancy. A fluorine-containing substituent can be introduced into these phosphoric acid esters, and for example, an alkyl fluoride such as a trifluoromethyl group can be introduced at an arbitrary position in the alkyl chain of the ester portion. Further, examples of the fluorinated solvent include fluorinated ethers such as hydrofluoro ethers.

リン酸トリエステルの具体例としては、リン酸トリメチル(TMP)及びリン酸トリエチル(TEP)を挙げることができる。また、環状構造を構成するリン酸エステル及び含フッ素置換基を導入した化合物としては、それらに限定されるものではないが、以下の化合物を挙げることができる。
Specific examples of the phosphate triester include trimethyl phosphate (TMP) and triethyl phosphate (TEP). Further, examples of the compound into which the phosphoric acid ester and the fluorine-containing substituent constituting the cyclic structure are introduced include, but are not limited to, the following compounds.

本発明の二次電池用電解液は、場合により、上記難燃性有機溶媒以外の他の溶媒を含む混合溶媒とすることも可能である。かかる他の溶媒としては、例えば、エチルメチルエーテル、ジプロピルエーテル等のエーテル類;メトキシプロピオニトリルのニトリル類;酢酸メチル等のエステル類;トリエチルアミン等のアミン類;メタノール等のアルコール類;アセトン等のケトン類;含フッ素アルカン等を用いることができる。例えば、1,2−ジメトキシエタン、アセトニトリル、テトラヒドロフラン、ジメチルスルホキシド、γ−ブチロラクトン、及びスルホラン等の非プロトン性有機溶媒を用いることもできる。 In some cases, the electrolytic solution for a secondary battery of the present invention can be a mixed solvent containing a solvent other than the above-mentioned flame-retardant organic solvent. Examples of such other solvents include ethers such as ethyl methyl ether and dipropyl ether; nitriles of methoxypropionitrile; esters such as methyl acetate; amines such as triethylamine; alcohols such as methanol; acetone and the like. Ketones; fluorine-containing alcohols and the like can be used. For example, aprotic organic solvents such as 1,2-dimethoxyethane, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, γ-butyrolactone, and sulfolane can also be used.

しかしながら、このような混合溶媒を用いる場合であっても、難燃性有機溶媒は、全溶媒中において最も多い割合で存在し、全溶媒に対するモル比で、好ましくは70〜100mol%、より好ましくは80〜100mol%の割合で存在する。特に好ましくは、難燃性有機溶媒が単一溶媒(すなわち、100%)である。これは、難燃性溶媒以外の他の溶媒を含む場合には、その割合によっては消火性が十分に発揮されない場合があるからである。 However, even when such a mixed solvent is used, the flame-retardant organic solvent is present in the largest proportion in the total solvent, and the molar ratio to the total solvent is preferably 70 to 100 mol%, more preferably 70 to 100 mol%. It is present in a proportion of 80 to 100 mol%. Particularly preferably, the flame-retardant organic solvent is a single solvent (ie, 100%). This is because when a solvent other than the flame-retardant solvent is contained, the fire extinguishing property may not be sufficiently exhibited depending on the ratio.

(2)アルカリ金属塩
また、本発明の二次電池用電解液は、高濃度のアルカリ金属塩を含むことを特徴とする。これによって、溶媒の消火性を高めるとともに、従来は、難溶性溶媒系の電解液では可逆的に作動し得なかった電極構成においても、優れた可逆性を示す二次電池を実現することができる。上記電解液中におけるアルカリ金属塩と溶媒の混合比は、アルカリ金属塩1molに対して溶媒量が4mol以下であり、好ましくは、3mol以下であり、より好ましくは2mol以下である。溶媒量の下限については、当該アルカリ金属塩の析出等が発生せず、正極・負極における電気化学的反応が進行する限り特に制限はされないが、例えば、アルカリ金属塩1molに対して溶媒1mol以上であり、好ましくはアルカリ金属塩1molに対して溶媒2mol以上であることができる。
(2) Alkali metal salt The electrolytic solution for a secondary battery of the present invention is characterized by containing a high concentration of alkali metal salt. As a result, it is possible to improve the fire extinguishing property of the solvent and realize a secondary battery showing excellent reversibility even in an electrode configuration that could not operate reversibly with a poorly soluble solvent-based electrolytic solution in the past. .. The mixing ratio of the alkali metal salt and the solvent in the electrolytic solution is such that the amount of the solvent is 4 mol or less, preferably 3 mol or less, and more preferably 2 mol or less with respect to 1 mol of the alkali metal salt. The lower limit of the amount of the solvent is not particularly limited as long as the alkali metal salt does not precipitate and the electrochemical reaction at the positive electrode and the negative electrode proceeds. For example, the solvent amount is 1 mol or more with respect to 1 mol of the alkali metal salt. Yes, preferably, the solvent can be 2 mol or more with respect to 1 mol of the alkali metal salt.

本発明の二次電池用電解液において用いられるアルカリ金属塩は、好ましくは、リチウム塩、ナトリウム塩である。本発明の電解液を用いる二次電池の種類に応じて、例えば、二次電池がリチウムイオン電池の場合にはリチウム塩が好ましく、二次電池がナトリウムイオン電池の場合にはナトリウム塩が好ましい。また、2種類以上のアルカリ金属塩を組み合わせた混合物を用いることもできる。 The alkali metal salt used in the electrolytic solution for a secondary battery of the present invention is preferably a lithium salt or a sodium salt. Depending on the type of secondary battery using the electrolytic solution of the present invention, for example, a lithium salt is preferable when the secondary battery is a lithium ion battery, and a sodium salt is preferable when the secondary battery is a sodium ion battery. It is also possible to use a mixture in which two or more kinds of alkali metal salts are combined.

当該アルカリ金属塩を構成するアニオンは、好ましくはフルオロスルホニル基、トリフルオロメタンスルホニル基、及びパーフルオロエタンスルホニル基よりなる群から選択される1以上の基を含むアニオンである。例えば、ビス(フルオロスルホニル)アミド([N(FSO)、(フルオロスルホニル)(トリフルオロスルホニル)アミド([N(CFSO)(FSO)])、ビス(トリフルオロメタンスルホニル)アミド([N(CFSO)、ビス(パーフルオロエタンスルホニル)アミド([N(CSO)又は(パーフルオロエタンスルホニル)(トリフルオロエタンメタンスルホニル)アミド([N(CSO)(CFSO)])が好適である。The anion constituting the alkali metal salt is preferably an anion containing one or more groups selected from the group consisting of a fluorosulfonyl group, a trifluoromethanesulfonyl group, and a perfluoroethanesulfonyl group. For example, bis (fluorosulfonyl) amide ([N (FSO 2 ) 2 ] ), (fluorosulfonyl) (trifluorosulfonyl) amide ([N (CF 3 SO 2 ) (FSO 2 )] ), bis (trifluo). Lomethanesulfonyl) amide ([N (CF 3 SO 2 ) 2 ] ), bis (perfluoroethanesulfonyl) amide ([N (C 2 F 5 SO 2 ) 2 ] ) or (perfluoroethanesulfonyl) (tri) Fluoroethanemethanesulfonyl) amide ([N (C 2 F 5 SO 2 ) (CF 3 SO 2 )] ) is suitable.

したがって、当該アルカリ金属塩の具体例としては、リチウムビス(フルオロスルホニル)アミド(LiFSA)、リチウム(フルオロスルホニル)(トリフルオロスルホニル)アミド、リチウムビス(トリフルオロメタンスルホニル)アミド(LiTFSA)、リチウムビス(パーフルオロエタンスルホニル)アミド)(LiBETA)又はリチウム(パーフルオロエタンスルホニル)(トリフルオロエタンメタンスルホニル)アミド;或いは、ナトリウムビス(フルオロスルホニル)アミド(NaFSA)、ナトリウム(フルオロスルホニル)(トリフルオロスルホニル)アミド、ナトリウムビス(トリフルオロメタンスルホニル)アミド(NaTFSA)、ナトリウムビス(パーフルオロエタンスルホニル)アミド)(NaBETA)又はナトリウム(パーフルオロエタンスルホニル)(トリフルオロエタンメタンスルホニル)アミドが挙げられる。Therefore, specific examples of the alkali metal salt include lithium bis (fluorosulfonyl) amide (LiFSA), lithium (fluorosulfonyl) (trifluorosulfonyl) amide, lithium bis (trifluoromethanesulfonyl) amide (LiTFSA), and lithium bis (LiTFSA). perfluoro ethanesulfonyl) amide -) (LiBETA) or lithium (perfluoro ethanesulfonyl) (trifluoroethane sulfonyl) amide; or sodium bis (fluorosulfonyl) amide (NaFSA), sodium (fluorosulfonyl) (trifluorosulfonyl ) amide, sodium bis (trifluoromethanesulfonyl) amide (NaTFSA), sodium bis (perfluoro ethanesulfonyl) amide -) (NaBETA) or sodium (perfluoro ethanesulfonyl) (trifluoroethane sulfonyl) amide.

特に好ましいアルカリ金属塩は、リチウムビス(フルオロスルホニル)アミド(LiFSA)又はナトリウムビス(フルオロスルホニル)アミド(NaFSA)である。これらの塩は、カチオン−アニオン相互作用が弱く、高濃度とした場合でも高いイオン電導性を有するためである。 Particularly preferred alkali metal salts are lithium bis (fluorosulfonyl) amide (LiFSA) or sodium bis (fluorosulfonyl) amide (NaFSA). This is because these salts have a weak cation-anion interaction and have high ionic conductivity even at high concentrations.

これらアルカリ金属塩に加えて、当該技術分野において公知の支持電解質を含むことができる。そのような支持電解質は、例えば、二次電池がリチウムイオン電池である場合には、LiPF、LiBF、LiClO、LiNO、LiCl、LiSO及びLiS等及びこれらの任意の組み合わせから選択されるものが挙げられる。In addition to these alkali metal salts, supporting electrolytes known in the art can be included. Such supporting electrolytes include, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiNO 3 , LiCl, Li 2 SO 4 and Li 2 S and any of these, when the secondary battery is a lithium ion battery. The one selected from the combination can be mentioned.

(3)その他の成分
また、本発明の二次電池用電解液は、その機能の向上等の目的で、必要に応じて他の成分を含むこともできる。しかしながら、本発明の二次電池用電解液は、塩単体として50℃以下の融点を有する常温溶融塩を含有しないことが好ましい。そのような溶融塩の具体例としては、イミダゾリウム塩やテトラフルオロホウ酸塩が挙げられる。本発明の二次電池用電解液は、そのような溶融塩を添加せずとも、既に十分なイオン電導性を有するからである。より好ましくは、本発明の二次電池用電解液は、非水溶媒が難燃性有機溶媒であって、電解液が当該難燃性有機溶媒とアルカリ金属塩のみからなる。
(3) Other Components The electrolytic solution for a secondary battery of the present invention may contain other components as necessary for the purpose of improving its function. However, the electrolytic solution for a secondary battery of the present invention preferably does not contain a room temperature molten salt having a melting point of 50 ° C. or lower as a simple substance. Specific examples of such a molten salt include imidazolium salt and tetrafluoroborate. This is because the electrolytic solution for a secondary battery of the present invention already has sufficient ionic conductivity without adding such a molten salt. More preferably, in the electrolytic solution for a secondary battery of the present invention, the non-aqueous solvent is a flame-retardant organic solvent, and the electrolytic solution is composed only of the flame-retardant organic solvent and an alkali metal salt.

他の成分としては、例えば、従来公知の過充電防止剤、脱水剤、脱酸剤、高温保存後の容量維持特性およびサイクル特性を改善するための特性改善助剤が挙げられる。 Other components include, for example, conventionally known overcharge inhibitors, dehydrating agents, deoxidizers, and property improving aids for improving capacity retention properties and cycle properties after high temperature storage.

過充電防止剤としては、例えば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソールおよび2,6−ジフルオロアニオール等の含フッ素アニソール化合物が挙げられる。過充電防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the overcharge inhibitor include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, and partially hydrides of terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluoro. Partial fluorides of the aromatic compounds such as biphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; fluorine-containing anisole such as 2,4-difluoroanisole, 2,5-difluoroanisol and 2,6-difluoroaniol. Examples include compounds. One type of overcharge inhibitor may be used alone, or two or more types may be used in combination.

当該電解液が過充電防止剤を含有する場合、電解液中の過充電防止剤の含有量は、0.01〜5質量%であることが好ましい。電解液に過充電防止剤を0.1質量%以上含有させることにより、過充電による二次電池の破裂・発火を抑制することがさらに容易になり、二次電池をより安定に使用できる。 When the electrolytic solution contains an overcharge inhibitor, the content of the overcharge inhibitor in the electrolytic solution is preferably 0.01 to 5% by mass. By containing 0.1% by mass or more of the overcharge inhibitor in the electrolytic solution, it becomes easier to suppress the explosion and ignition of the secondary battery due to overcharge, and the secondary battery can be used more stably.

脱水剤としては、例えば、モレキュラーシーブス、芒硝、硫酸マグネシウム、水素化カルシウム、水素化ナトリウム、水素化カリウム、水素化リチウムアルミニウム等が挙げられる。本発明の電解液に用いる溶媒は、前記脱水剤で脱水を行った後に精留を行ったものを使用することもできる。また、精留を行わずに前記脱水剤による脱水のみを行った溶媒を使用してもよい。 Examples of the dehydrating agent include molecular sieves, mirabilite, magnesium sulfate, calcium hydride, sodium hydride, potassium hydride, lithium aluminum hydride and the like. As the solvent used in the electrolytic solution of the present invention, a solvent obtained by dehydration with the dehydrating agent and then rectification can also be used. Further, a solvent obtained by only dehydrating with the dehydrating agent without rectification may be used.

高温保存後の容量維持特性やサイクル特性を改善するための特性改善助剤としては、例えば、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物;フルオロ炭酸エチレン(FEC)、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物が挙げられる。これら特性改善助剤は、1種を単独で用いてもよく、2種以上を併用してもよい。電解液が特性改善助剤を含有する場合、電解液中の特性改善助剤の含有量は、0.01〜5質量%であることが好ましい。 Examples of the property improving aid for improving the capacity retention property and the cycle property after high temperature storage include succinic anhydride, glutacon anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, and dianhydride. Carboic acid anhydrides such as glycolic acid, cyclohexanedicarboxylic acid anhydride, cyclopentanetetracarboxylic acid dianhydride, phenylsuccinic anhydride; ethylenesulfite, 1,3-propanesulton, 1,4-butanesulton, methanesulfonic acid Includes methyl, busulfane, sulfolane, sulfolene, dimethylsulfone, diphenylsulfone, methylphenylsulfone, dibutyldisulfide, dicyclohexyldisulfide, tetramethylthium monosulfide, N, N-dimethylmethanesulfone amide, N, N-diethylmethanesulfone amide, etc. Sulfur compounds; hydrocarbon compounds such as heptane, octane and cycloheptane; fluorocarbon aromatic compounds such as fluoroethylene (FEC), fluorobenzene, difluorobenzene, hexafluorobenzene and benzotrifluoride. These property improving aids may be used alone or in combination of two or more. When the electrolytic solution contains a characteristic improving auxiliary agent, the content of the characteristic improving auxiliary agent in the electrolytic solution is preferably 0.01 to 5% by mass.

2.二次電池
本発明の二次電池は、正極及び負極と、本発明の電解液を備えるものである。
当該二次電池は、リチウムイオン二次電池又はナトリウムイオン二次電池であることができる。リチウムイオン二次電池の場合、本発明の二次電池は、作動電圧が2.3V以上であることが好ましい。ナトリウムイオン二次電池の場合、本発明の二次電池は、作動電圧が2.0V以上であることが好ましい。
2. 2. Secondary Battery The secondary battery of the present invention includes a positive electrode and a negative electrode, and the electrolytic solution of the present invention.
The secondary battery can be a lithium ion secondary battery or a sodium ion secondary battery. In the case of a lithium ion secondary battery, the secondary battery of the present invention preferably has an operating voltage of 2.3 V or more. In the case of a sodium ion secondary battery, the secondary battery of the present invention preferably has an operating voltage of 2.0 V or higher.

(1)負極
本発明の二次電池における負極としては、当該技術分野において公知の電極構成を用いることができる。例えば、二次電池がリチウムイオン電池の場合には、電気化学的にリチウムイオンを吸蔵・放出できる負極活物質を含む電極が挙げられる。このような負極活物質としては、公知のリチウムイオン二次電池用負極活物質を用いることができ、例えば、天然グラファイト(黒鉛)、高配向性グラファイト(Highly Oriented Pyrolytic Graphite;HOPG)、非晶質炭素等の炭素質材料が挙げられる。さらに他の例として、リチウム金属、金属窒化物のような金属化合物が挙げられる。例えば、リチウム元素を有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム元素を含有する金属窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。これら負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。好ましくは、天然グラファイト(黒鉛)、高配向性グラファイト(HOPG)、非晶質炭素等の炭素質材料炭素質材料を用いることができる。二次電池の電圧とエネルギー密度を高め、機器駆動に必要な直列数を減らすという観点から、負極の作動電位が、金属リチウム電位に対して0.5Vより低い負極を用いることが望ましい。
(1) Negative electrode As the negative electrode in the secondary battery of the present invention, an electrode configuration known in the art can be used. For example, when the secondary battery is a lithium ion battery, an electrode containing a negative electrode active material capable of electrochemically occluding and releasing lithium ions can be mentioned. As such a negative electrode active material, a known negative electrode active material for a lithium ion secondary battery can be used. For example, natural graphite (graphite), highly oriented pyrolytic graphite (HOPG), amorphous Examples include carbonic materials such as carbon. Still other examples include metal compounds such as lithium metals and metal nitrides. For example, examples of the alloy having a lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy. Examples of the metal nitride containing a lithium element include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride. These negative electrode active materials may be used alone or in combination of two or more. Preferably, a carbonaceous material such as natural graphite (graphite), highly oriented graphite (HOPG), and amorphous carbon can be used. From the viewpoint of increasing the voltage and energy density of the secondary battery and reducing the number of series required to drive the device, it is desirable to use a negative electrode whose operating potential of the negative electrode is lower than 0.5 V with respect to the metallic lithium potential.

二次電池がナトリウムイオン電池の場合には、電気化学的にナトリウムイオンを吸蔵・放出できる負極活物質を含む電極を用いることができる。このような負極活物質としては、公知のナトリウムイオン二次電池用負極活物質を用いることができ、例えば、ハードカーボン、ソフトカーボン、カーボンブラック、ケッチェンブラック、アセチレンブラック、活性炭、カーボンナノチューブ、カーボンファイバー、非晶質炭素等の炭素質材料が挙げられる。また、ナトリウムイオン金属、又はナトリウムイオン元素を含む合金、金属酸化物、金属窒化物等を用いることもできる。なかでも、負極活物質としては、乱れた構造を持つハードカーボン等の炭素質材料が好ましい。 When the secondary battery is a sodium ion battery, an electrode containing a negative electrode active material capable of electrochemically occluding and releasing sodium ions can be used. As such a negative electrode active material, a known negative electrode active material for a sodium ion secondary battery can be used, and for example, hard carbon, soft carbon, carbon black, Ketjen black, acetylene black, activated carbon, carbon nanotubes, and carbon. Examples thereof include carbonic materials such as fiber and amorphous carbon. Further, sodium ion metal, alloy containing sodium ion element, metal oxide, metal nitride and the like can also be used. Among them, as the negative electrode active material, a carbonaceous material such as hard carbon having a disordered structure is preferable.

上記負極は、負極活物質のみを含有するものであっても良く、負極活物質の他に、導電性材料および結着材(バインダ)の少なくとも一方を含有し、負極合材として負極集電体に付着させた形態であるものであっても良い。例えば、負極活物質が箔状である場合は、負極活物質のみを含有する負極とすることができる。一方、負極活物質が粉末状である場合は、負極活物質および結着材(バインダ)を有する負極とすることができる。粉末状の負極活物質を用いて負極を形成する方法としては、ドクターブレード法や圧着プレスによる成型方法等を用いることができる。 The negative electrode may contain only the negative electrode active material, and contains at least one of a conductive material and a binder (binder) in addition to the negative electrode active material, and is a negative electrode current collector as a negative electrode mixture. It may be in the form of being attached to. For example, when the negative electrode active material is in the form of a foil, it can be a negative electrode containing only the negative electrode active material. On the other hand, when the negative electrode active material is in the form of powder, it can be a negative electrode having a negative electrode active material and a binder. As a method for forming the negative electrode using the powdered negative electrode active material, a doctor blade method, a molding method by a crimp press, or the like can be used.

導電性材料としては、例えば、炭素材料、金属繊維等の導電性繊維、銅、銀、ニッケル、アルミニウム等の金属粉末、ポリフェニレン誘導体等の有機導電性材料を使用することができる。炭素材料として、黒鉛、ソフトカーボン、ハードカーボン、カーボンブラック、ケッチェンブラック、アセチレンブラック、グラファイト、活性炭、カーボンナノチューブ、カーボンファイバー等を使用することができる。また、芳香環を含む合成樹脂、石油ピッチ等を焼成して得られたメソポーラスカーボンを使用することもできる。 As the conductive material, for example, a carbon material, a conductive fiber such as a metal fiber, a metal powder such as copper, silver, nickel or aluminum, or an organic conductive material such as a polyphenylene derivative can be used. As the carbon material, graphite, soft carbon, hard carbon, carbon black, Ketjen black, acetylene black, graphite, activated carbon, carbon nanotubes, carbon fiber and the like can be used. Further, mesoporous carbon obtained by calcining a synthetic resin containing an aromatic ring, petroleum pitch, or the like can also be used.

結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、エチレンテトラフルオロエチレン(ETFE)等のフッ素系樹脂、或いは、ポリエチレン、ポリプロピレンなどを好ましく用いることができる。負極集電体としては、銅、ニッケル、アルミニウム、ステンレススチール等を主体とする棒状体、板状体、箔状体、網状体等を使用することができる。 As the binder, for example, a fluororesin such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or ethylenetetrafluoroethylene (ETFE), or polyethylene or polypropylene can be preferably used. As the negative electrode current collector, a rod-shaped body, a plate-shaped body, a foil-shaped body, a net-like body or the like mainly made of copper, nickel, aluminum, stainless steel or the like can be used.

(2)正極
本発明の二次電池の正極としては、当該技術分野において公知の電極構成を用いることができる。例えば、二次電池がリチウムイオン電池の場合には、正極活物質としては、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等の1種類以上の遷移金属を含むリチウム含有遷移金属酸化物、遷移金属硫化物、金属酸化物、リン酸鉄リチウム(LiFePO)やピロリン酸鉄リチウム(LiFeP)などの1種類以上の遷移金属を含むリチウム含有ポリアニオン系化合物、硫黄系化合物(LiS)などが挙げられる。当該正極には、導電性材料や結着剤を含有してもよい。好ましくは、マンガン酸リチウムである。二次電池がナトリウムイオン電池の場合にも、同様に公知の正極活物質を用いることができる。
(2) Positive Electrode As the positive electrode of the secondary battery of the present invention, an electrode configuration known in the art can be used. For example, when the secondary battery is a lithium ion battery, the positive electrode active material is one or more of lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickel oxide (LiNiO 2 ), and the like. Lithium-containing transition metal oxides containing transition metals, transition metal sulfides, metal oxides, one or more transition metals such as lithium iron oxide (LiFePO 4 ) and lithium iron pyrophosphate (Li 2 FeP 2 O 7 ). lithium-containing polyanionic compounds containing, sulfur-based compounds (Li 2 S) and the like. The positive electrode may contain a conductive material or a binder. Lithium manganate is preferred. Similarly, when the secondary battery is a sodium ion battery, a known positive electrode active material can be used.

導電性材料及び結着剤(バインダ)としては、上記負極と同様のものを用いることができる。 As the conductive material and the binder, the same materials as those for the negative electrode can be used.

正極集電体金属としては、例えば、銅、ニッケル、アルミニウム、ステンレススチール等を用いることができる。 As the positive electrode current collector metal, for example, copper, nickel, aluminum, stainless steel or the like can be used.

(3)セパレータ
本発明の二次電池において用いられるセパレータとしては、正極層と負極層とを電気的に分離する機能を有するものであれば特に限定されるものではないが、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔質シートや、不織布、ガラス繊維不織布等の不織布等の多孔質絶縁材料等を挙げることができる。
(3) Separator The separator used in the secondary battery of the present invention is not particularly limited as long as it has a function of electrically separating the positive electrode layer and the negative electrode layer, but for example, polyethylene (PE). , Polypropylene (PP), polyester, cellulose, polyamide and other porous sheets, non-woven fabrics, glass fiber non-woven fabrics and other porous insulating materials and the like.

(4)形状等
本発明の二次電池の形状は、正極、負極、及び電解液を収納することができれば特に限定されるものではないが、例えば、円筒型、コイン型、平板型、ラミネート型等を挙げることができる。
(4) Shape, etc. The shape of the secondary battery of the present invention is not particularly limited as long as it can store the positive electrode, the negative electrode, and the electrolytic solution. And so on.

なお、本発明の電解液及び二次電池は、二次電池としての用途に好適ではあるが、一次電池として用いることを除外するものではない。 Although the electrolytic solution and the secondary battery of the present invention are suitable for use as a secondary battery, the use as a primary battery is not excluded.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

1.電解液の消火性
本発明に係る電解液の実施例として、リチウムビス(フルオロスルホニル)アミド(LiFSA)とリン酸トリメチル(TMP)を1:7.8、1:3.0、1:0.83のモル比で混合した溶液を調製した。これらは、LiFSAの体積モル濃度にして、それぞれ1.0M、2.3M、5.3MのLiFSA/TMP電解液である。また、電解質としてナトリウムビス(フルオロスルホニル)アミド(NaFSA)とリン酸トリメチル(TMP)を1:7.6、1:3、及び1:1.8のモル比で混合した溶液を調製した。これらは、NaFSAの体積モル濃度にして、それぞれ1.0M、2.2M、3.3MのNaFSA/TMP電解液である。
これらの電解液の物性を測定した結果を表1に示す。比較例として、EC:DMCの混合溶媒(1:1体積%)に1.0M LiPFを溶解させた溶液、及びEC:DECの混合溶媒(1:1体積%)に1.0M NaPFを溶解させた溶液を用いた。
1. 1. Fire extinguishing property of electrolytic solution As an example of the electrolytic solution according to the present invention, lithium bis (fluorosulfonyl) amide (LiFSA) and trimethyl phosphate (TMP) were added at 1: 7.8, 1: 3.0, 1: 0. A mixed solution was prepared at a molar ratio of 83. These are LiFSA / TMP electrolytes of 1.0 M, 2.3 M, and 5.3 M in volume molar concentration of LiFSA, respectively. In addition, a solution was prepared by mixing sodium bis (fluorosulfonyl) amide (NaFSA) and trimethyl phosphate (TMP) as electrolytes at a molar ratio of 1: 7.6, 1: 3, and 1: 1.8. These are NaFSA / TMP electrolytes of 1.0 M, 2.2 M and 3.3 M, respectively, in terms of volume molar concentration of NaFSA.
Table 1 shows the results of measuring the physical properties of these electrolytes. As a comparative example, a solution in which 1.0 M LiPF 6 was dissolved in a mixed solvent of EC: DMC (1: 1% by volume) and 1.0 M NaPF 6 in a mixed solvent of EC: DEC (1: 1% by volume) were added. A dissolved solution was used.

なお、引火点の測定は、測定装置はセタ密閉式(メーカー:STANHOPE-SETA、型式:70000-0)を用い、試験条件は、日本の消防法準拠(試料量2mL、保持時間1分)で行っております。測定は、複数回行い、その平均値をとり、更に測定環境の気圧を考慮し、以下の式を用いて1気圧の場合(101.3 kPa)に補正した値を採用した。
Tc=T0+0.25*(101.3-P)
(式中、Tc:引火点(℃)、T0:測定引火点(℃)、P:測定時の気圧(kPa)である)。
For the measurement of the flash point, the measuring device is a seta sealed type (manufacturer: STANHOPE-SETA, model: 70000-0), and the test conditions are in accordance with the Japanese Fire Service Act (sample amount 2 mL, holding time 1 minute). I am going. The measurement was performed multiple times, the average value was taken, and the value corrected for 1 atmosphere (101.3 kPa) was adopted using the following formula in consideration of the pressure in the measurement environment.
Tc = T0 + 0.25 * (101.3-P)
(In the formula, Tc: flash point (° C), T0: measured flash point (° C), P: atmospheric pressure at the time of measurement (kPa)).

表1に示すように、本発明のLiFSA/TMP電解液及びNaFSA/TMP電解液は、沸点(200℃付近)までの温度領域内において引火点を示さなかった。また、本発明のLiFSA/TMP電解液及びNaFSA/TMP電解液は、いずれも自己消火時間が0s/gであった。これに対し、比較例の1.0M NaPF/[EC:DEC]では、37.5℃付近に引火点を有し、また、自己消火時間は約43s/gであった。同じく比較例の1.0M LiPF/EC:DECでは、25.3℃付近に引火点が観察された。As shown in Table 1, the LiFSA / TMP electrolytic solution and NaFSA / TMP electrolytic solution of the present invention did not show a flash point in the temperature range up to the boiling point (around 200 ° C.). In addition, the LiFSA / TMP electrolytic solution and the NaFSA / TMP electrolytic solution of the present invention both had a self-extinguishing time of 0 s / g. On the other hand, the 1.0 M NaPF 6 / [EC: DEC] of the comparative example had a flash point near 37.5 ° C. and the self-extinguishing time was about 43 s / g. Similarly, in the 1.0M LiPF 6 / EC: DEC of the comparative example, a flash point was observed near 25.3 ° C.

次いで、本発明の電解液及び比較例の電解液を、セパレータに浸透させ燃焼試験を行った。その結果を図1に示す。本発明のNaFSA/TMP電解液の場合には、火源を近づけても引火を見られなかった(左図)。これに対し、上記比較例の電解液を用いた場合には激しく燃焼することが観測された(右図)。さらに、本発明の電解液を火源に噴霧することで消火できることを確認した。電池の発火リスクの高まる200℃以上の高温条件にしたところ、本発明の電解液の揮発蒸気により火源を消火できることを確認した。 Next, the electrolytic solution of the present invention and the electrolytic solution of the comparative example were permeated into the separator to perform a combustion test. The result is shown in FIG. In the case of the NaFSA / TMP electrolytic solution of the present invention, no ignition was observed even when the fire source was brought closer (left figure). On the other hand, when the electrolytic solution of the above comparative example was used, it was observed that it burned violently (right figure). Furthermore, it was confirmed that the fire can be extinguished by spraying the electrolytic solution of the present invention on the fire source. It was confirmed that the fire source can be extinguished by the volatile vapor of the electrolytic solution of the present invention under high temperature conditions of 200 ° C. or higher, which increases the risk of ignition of the battery.

2.充放電サイクル特性(Liイオン電池)
電解液として、リチウムビス(フルオロスルホニル)アミド(LiFSA)とリン酸トリメチル(TMP)をモル比1:7.8、1:3.0、及び1:0.83混合した溶液(それぞれ、1.0M、2.3M,及び5.3M LiFSA/TMP)を用いて、定電流充放電測定を行った。測定は、天然黒鉛電極と金属リチウム電極からなるハーフセルを用いて行った。温度は25℃、電圧範囲は0〜2.5V、サイクル数は1、電流値は天然黒鉛電極の重量を基準として37.2mA/gとした。得られた電圧・容量曲線を図2に示す。
2. Charge / discharge cycle characteristics (Li-ion battery)
As an electrolytic solution, a solution obtained by mixing lithium bis (fluorosulfonyl) amide (LiFSA) and trimethyl phosphate (TMP) in molar ratios of 1: 7.8, 1: 3.0, and 1: 0.83 (each 1. Constant current charge / discharge measurements were performed using 0M, 2.3M, and 5.3M LiFSA / TMP). The measurement was carried out using a half cell composed of a natural graphite electrode and a metallic lithium electrode. The temperature was 25 ° C., the voltage range was 0 to 2.5 V, the number of cycles was 1, and the current value was 37.2 mA / g based on the weight of the natural graphite electrode. The obtained voltage / capacitance curve is shown in FIG.

図2に示すように、1.0M LiFSA/TMP電解液(塩:溶媒モル比=1:7.8)を用いた場合、充電(黒鉛へのリチウム挿入)時に0.8V付近に電圧平坦部が観察され、その後の放電(黒鉛からのリチウム脱離)容量が得られなかった。これは、当該電解液中で黒鉛電極の反応が不可逆的であることを意味する。一方、2.3M LiFSA/TMP(塩:溶媒モル比=1:3.0)及び5.3M LiFSA/TMP(塩:溶媒モル比=1:0.83)の電解液を用いた場合、充電及び放電過程の双方で0.1V付近に電圧平坦部が観察された。これは、黒鉛電極へのリチウムの挿入脱離反応に帰属されるものであり、充放電反応が可逆的に進行したことを意味する。 As shown in FIG. 2, when a 1.0 M LiFSA / TMP electrolytic solution (salt: solvent molar ratio = 1: 7.8) is used, the voltage flat portion is around 0.8 V during charging (lithium insertion into graphite). Was observed, and the subsequent discharge (lithium desorption from graphite) capacity was not obtained. This means that the reaction of graphite electrodes is irreversible in the electrolytic solution. On the other hand, when the electrolytic solutions of 2.3M LiFSA / TMP (salt: solvent molar ratio = 1: 3.0) and 5.3M LiFSA / TMP (salt: solvent molar ratio = 1: 0.83) are used, charging is performed. A flat voltage portion was observed near 0.1 V in both the discharge process and the discharge process. This is attributed to the insertion / removal reaction of lithium into the graphite electrode, and means that the charge / discharge reaction proceeded reversibly.

電解液として、5.3M LiFSA/TMP(塩:溶媒モル比=1:0.83)を用いて、天然黒鉛電極と金属リチウム電極からなるハーフセルを構築し、1,000回の繰り返し充放電試験を行った。温度は25℃、電圧範囲は0〜2.5V、電流値は天然黒鉛電極の重量を基準として74.4mA/gとした。得られた電圧・容量曲線を図3に示す。またサイクル数と容量及びクーロン効率のプロットを図4に示す。 Using 5.3M LiFSA / TMP (salt: solvent molar ratio = 1: 0.83) as the electrolytic solution, a half cell consisting of a natural graphite electrode and a metallic lithium electrode was constructed, and a charge / discharge test was repeated 1,000 times. Was done. The temperature was 25 ° C., the voltage range was 0 to 2.5 V, and the current value was 74.4 mA / g based on the weight of the natural graphite electrode. The obtained voltage / capacitance curve is shown in FIG. A plot of the number of cycles, capacity and Coulomb efficiency is shown in FIG.

図3に示すように、1000回の充放電サイクル後においても充電及び放電過程の双方で0.1V付近に電圧平坦部が観察された。この結果は、当該電解液中において1,000回の充放電サイクルを行っても、天然黒鉛電極へのリチウム挿入脱離反応が可逆的に進行することを実証するものである。また、図4に示すように、本発明の電解液を用いることで、1,000回以上(連続13ヵ月以上)の繰り返し充放電を行ってもほとんど容量が劣化せず、ほぼ100%の高いクーロン効率を維持することが実証された。 As shown in FIG. 3, even after 1000 charge / discharge cycles, a flat voltage portion was observed near 0.1 V in both the charging and discharging processes. This result demonstrates that the lithium insertion / desorption reaction into the natural graphite electrode proceeds reversibly even after 1,000 charge / discharge cycles in the electrolytic solution. Further, as shown in FIG. 4, by using the electrolytic solution of the present invention, the capacity is hardly deteriorated even after repeated charging and discharging 1,000 times or more (continuously for 13 months or more), which is almost 100% higher. It has been demonstrated to maintain Coulomb efficiency.

電解液として、5.3M LiFSA/TMPを用いて、LiNi0.5Mn1.5正極と天然黒鉛負極からなるフルセルを構築し、100サイクルの充放電サイクル試験を行った。温度は25℃、電圧範囲は3.5〜4.8V、電流値はLiNi0.5Mn1.5の重量を基準として29.4mA/gとした。使用したLiNi0.5Mn1.5と天然黒鉛の重量比は2.8:1(理論容量比にして1:1)とした。得られた電圧・容量曲線を図5に示す。また、サイクル数と正極基準の容量及びクーロン効率のプロットを図6に示す。Using 5.3M LiFSA / TMP as the electrolytic solution, a full cell composed of a LiNi 0.5 Mn 1.5 O 4 positive electrode and a natural graphite negative electrode was constructed, and a charge / discharge cycle test of 100 cycles was performed. The temperature was 25 ° C., the voltage range was 3.5 to 4.8 V, and the current value was 29.4 mA / g based on the weight of LiNi 0.5 Mn 1.5 O 4 . The weight ratio of LiNi 0.5 Mn 1.5 O 4 used and natural graphite was 2.8: 1 (theoretical volume ratio 1: 1). The obtained voltage / capacitance curve is shown in FIG. In addition, a plot of the number of cycles, the capacity based on the positive electrode, and the Coulomb efficiency is shown in FIG.

図5に示すように、充電・放電過程における電圧平坦部が4.5〜4.7V付近で観察された。これは、現時点で実用化されている3.8V級リチウムイオン電池よりも高電圧の約4.6Vの作動電圧を有するリチウムイオン電池が、本発明の電解液を用いることで可逆的に作動することを実証するものである。また、図6に示すように、100回の繰り返し充放電を行ってもほとんど容量が劣化せず、ほぼ100%の高いクーロン効率を維持することが実証された。 As shown in FIG. 5, a flat voltage portion during the charging / discharging process was observed at around 4.5 to 4.7 V. This is because a lithium ion battery having an operating voltage of about 4.6 V, which is higher than the 3.8 V class lithium ion battery currently in practical use, operates reversibly by using the electrolytic solution of the present invention. It proves that. Further, as shown in FIG. 6, it was demonstrated that the capacity was hardly deteriorated even after 100 times of repeated charging and discharging, and the high Coulomb efficiency of almost 100% was maintained.

さらに、難燃性有機溶媒としてTMPとハイドロフルオロエーテル(HFE)の混合溶媒を用いて電池特性の評価を行った。電解液として、モル比で、LiFSA/TMP/HFE=1/1.8/8.1を用いて、充放電サイクル試験を行った。測定は、グラファイト電極と金属リチウム電極からなるハーフセルを用いて行った。温度は25℃、電圧範囲は0〜2.5V、電流値は天然黒鉛電極の重量を基準として74.4mA/gとした。得られた電圧・容量曲線を図7に示す。この結果は、TMP/HFEの混合溶媒を用いた電解液中において、8回の充放電サイクルを行っても、天然黒鉛電極へのリチウム挿入脱離反応が可逆的に進行することが実証された。 Further, the battery characteristics were evaluated using a mixed solvent of TMP and hydrofluoroether (HFE) as a flame-retardant organic solvent. A charge / discharge cycle test was performed using LiFSA / TMP / HFE = 1 / 1.8 / 8.1 as the electrolytic solution in a molar ratio. The measurement was carried out using a half cell composed of a graphite electrode and a metallic lithium electrode. The temperature was 25 ° C., the voltage range was 0 to 2.5 V, and the current value was 74.4 mA / g based on the weight of the natural graphite electrode. The obtained voltage / capacitance curve is shown in FIG. This result demonstrated that the lithium insertion / desorption reaction into the natural graphite electrode proceeded reversibly even after eight charge / discharge cycles in the electrolytic solution using the mixed solvent of TMP / HFE. ..

3.充放電サイクル特性(Naイオン電池)
電解液として、電解質としてナトリウムビス(フルオロスルホニル)アミド(NaFSA)とリン酸トリメチル(TMP)をモル比1:7.6、1:3.0、及び1:1.8で混合した溶液(それぞれ1.0M、2.2M、及び3.3M NaFSA/TMP)を用いて、定電流充放電測定を行った。測定は、ハードカーボン電極と金属ナトリウム電極からなるハーフセルを用いて行った。温度は25℃、電圧範囲は2.5V〜0.01V、サイクル数は1、電流値はハードカーボン電極の重量を基準として25mA/gとした。得られた電圧・容量曲線を図8に示す。
3. 3. Charge / discharge cycle characteristics (Na ion battery)
As the electrolytic solution, a solution in which sodium bis (fluorosulfonyl) amide (NaFSA) and trimethyl phosphate (TMP) as an electrolyte are mixed at molar ratios of 1: 7.6, 1: 3.0, and 1: 1.8 (respectively). Constant current charge / discharge measurements were performed using 1.0 M, 2.2 M, and 3.3 M NaFSA / TMP). The measurement was carried out using a half cell composed of a hard carbon electrode and a metallic sodium electrode. The temperature was 25 ° C., the voltage range was 2.5V to 0.01V, the number of cycles was 1, and the current value was 25 mA / g based on the weight of the hard carbon electrode. The obtained voltage / capacitance curve is shown in FIG.

図8に示すように、1.0M NaFSA/TMP電解液(塩:溶媒モル比=1:7.6)を用いた場合、充電過程(ハードカーボンへのナトリウム挿入)に1V付近において電圧平坦部が観察され、その後の放電過程(ハードカーボンからのナトリウム脱離)では容量が観察されなかった。これは、当該電解液中でハードカーボン負極の反応が不可逆的になったことを意味する。一方、2.2M NaFSA/TMP(塩:溶媒モル比=1:3.0)及び3.3M NaFSA/TMP(塩:溶媒モル比=1:1.8)の電解液を用いた場合、充電及び放電過程の双方で0.1V付近に電圧平坦部が観察された。これは、当該電解液中でハードカーボン電極へのナトリウム挿入脱離反応が進行していることを意味する。この結果は、従来ナトリウム系電解液中で可逆性が低いとされていたハードカーボン電極は、当該電解液中では可逆的に進行することを実証するものである。 As shown in FIG. 8, when a 1.0 M NaFSA / TMP electrolytic solution (salt: solvent molar ratio = 1: 7.6) is used, the voltage flat portion near 1 V during the charging process (sodium insertion into hard carbon). Was observed, and no capacitance was observed during the subsequent discharge process (sodium desorption from hard carbon). This means that the reaction of the hard carbon negative electrode became irreversible in the electrolytic solution. On the other hand, when the electrolytic solutions of 2.2M NaFSA / TMP (salt: solvent molar ratio = 1: 3.0) and 3.3M NaFSA / TMP (salt: solvent molar ratio = 1: 1.8) are used, charging is performed. A flat voltage portion was observed around 0.1 V in both the discharge process and the discharge process. This means that the sodium insertion / desorption reaction to the hard carbon electrode is proceeding in the electrolytic solution. This result demonstrates that the hard carbon electrode, which was conventionally considered to have low reversibility in the sodium-based electrolytic solution, proceeds reversibly in the electrolytic solution.

電解液として、3.3M NaFSA/TMP(塩:溶媒モル比=1:1.8)を用いて、ハードカーボン電極と金属ナトリウム電極からなるハーフセルを構築し、1,200サイクルの充放電サイクル試験を行った。温度は25℃、電圧範囲は0〜2.5V、電流値はハードカーボン電極の重量を基準として50mA/gとした。得られた電圧・容量曲線を図9に示す。 Using 3.3M NaFSA / TMP (salt: solvent molar ratio = 1: 1.8) as the electrolytic solution, a half cell consisting of a hard carbon electrode and a metallic sodium electrode was constructed, and a charge / discharge cycle test of 1,200 cycles was performed. Was done. The temperature was 25 ° C., the voltage range was 0 to 2.5 V, and the current value was 50 mA / g based on the weight of the hard carbon electrode. The obtained voltage / capacitance curve is shown in FIG.

同様に、比較例として、1.0M NaPF/[EC:DEC](1:1体積%)について同様の測定を行った結果を図10に示す。Similarly, as a comparative example, FIG. 10 shows the results of performing the same measurement for 1.0 M NaPF 6 / [EC: DEC] (1: 1% by volume).

本発明の3.3M NaFSA/TMP電解液と比較例(1.0M NaPF/[EC:DEC])について、充放電サイクル試験を行った結果得られたサイクル数と容量及びクーロン効率のプロットを図11に示す。For the 3.3M NaFSA / TMP electrolyte of the present invention and the comparative example (1.0M NaPF 6 / [EC: DEC]), the plots of the number of cycles, the capacity and the Coulomb efficiency obtained as a result of the charge / discharge cycle test It is shown in FIG.

図11に示すように、本発明のNaFSA/TMP(モル比1:1.8)電解液を用いた場合は、充放電を1,200サイクル(連続15ヵ月以上)繰り返しても容量の減少は一切観察されず、ほぼ100%の高い効率を維持した。これに対し、従来用いられている比較例の電解液では、充放電サイクルを重ねるにつれて、容量が低下していく傾向が見られ、200サイクルに達する前に容量は0mAh/gとなった。 As shown in FIG. 11, when the NaFSA / TMP (molar ratio 1: 1.8) electrolytic solution of the present invention is used, the capacity does not decrease even if charging and discharging are repeated for 1,200 cycles (15 months or more continuously). It was not observed at all and maintained a high efficiency of almost 100%. On the other hand, in the electrolytic solution of the comparative example used conventionally, the capacity tends to decrease as the charge / discharge cycle is repeated, and the capacity becomes 0 mAh / g before reaching 200 cycles.

電解液として、3.3M NaFSA/TMPを用いて、Na(PO正極とハードカーボン負極からなるフルセルを構築し、100サイクルの充放電サイクル試験を行った。温度は25℃、電圧範囲は1.8〜3.5V、電流値はハードカーボンの重量を基準として50mA/gとした。使用したNa(POとハードカーボンの重量比は2.5:1(理論容量比1.2:1)とした。得られたサイクル数と負極基準の容量及びクーロン効率のプロットを図12に示す。また、電圧・容量曲線を図12の挿入図として示す。Using 3.3M NaFSA / TMP as the electrolytic solution, a full cell consisting of a Na 3 V 2 (PO 4 ) 3 positive electrode and a hard carbon negative electrode was constructed, and a charge / discharge cycle test of 100 cycles was performed. The temperature was 25 ° C., the voltage range was 1.8 to 3.5 V, and the current value was 50 mA / g based on the weight of hard carbon. The weight ratio of Na 3 V 2 (PO 4 ) 3 used and hard carbon was 2.5: 1 (theoretical volume ratio 1.2: 1). A plot of the number of cycles obtained, the capacity based on the negative electrode, and the Coulomb efficiency is shown in FIG. Further, the voltage / capacitance curve is shown as an inset view of FIG.

図12の挿入図に示すように、充電・放電過程における電圧平坦部が3.4V付近で観察された。これは、3.4V級ナトリウムイオン電池が、本発明の電解液を用いることで可逆的に作動することを実証するものである。また、図12に示すように、100回の繰り返し充放電を行ってもほとんど容量が劣化せず、ほぼ100%の高いクーロン効率を維持することが実証された。 As shown in the inset of FIG. 12, a flat voltage portion during the charging / discharging process was observed at around 3.4 V. This demonstrates that the 3.4V class sodium ion battery operates reversibly by using the electrolytic solution of the present invention. Further, as shown in FIG. 12, it was demonstrated that the capacity was hardly deteriorated even after 100 times of repeated charging and discharging, and the high Coulomb efficiency of almost 100% was maintained.

これらの結果は、本発明の電解液が、消火性を有し安全性が高く、かつ長寿命化等の優れた電池特性を有する二次電池を達成できることを実証するものである。 These results demonstrate that the electrolytic solution of the present invention can achieve a secondary battery having fire extinguishing properties, high safety, and excellent battery characteristics such as long life.

以上、本発明の具体的態様を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。また、特許請求の範囲に記載の発明には、以上の例示した具体的態様を種々変更したものが含まれ得る。 Although the specific embodiments of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. In addition, the invention described in the claims may include various modifications of the above-exemplified specific aspects.

Claims (21)

消火性を有する二次電池用電解液であって、
非水溶媒とアルカリ金属塩を含み、
前記アルカリ金属塩1molに対して前記非水溶媒の量が4mol以下であり、
前記電解液の沸点よりも低い温度領域に引火点を有しないこと
を特徴とする、該電解液。
An electrolytic solution for secondary batteries that has fire extinguishing properties.
Contains non-aqueous solvent and alkali metal salts
The amount of the non-aqueous solvent is 4 mol or less with respect to 1 mol of the alkali metal salt.
The electrolytic solution, which does not have a flash point in a temperature region lower than the boiling point of the electrolytic solution.
前記電解液の沸点よりも低い温度領域に発火点を有しない、請求項1に記載の二次電池用電解液。 The electrolytic solution for a secondary battery according to claim 1, which does not have an ignition point in a temperature region lower than the boiling point of the electrolytic solution. 自己消火時間が1秒/g以下である、請求項1又は2に記載の二次電池用電解液。 The electrolytic solution for a secondary battery according to claim 1 or 2, wherein the self-extinguishing time is 1 second / g or less. 前記非水溶媒が難燃性有機溶媒であって、電解液が難燃性有機溶媒とアルカリ金属塩のみからなる、請求項1〜3のいずれか1項に記載の二次電池用電解液。 The electrolytic solution for a secondary battery according to any one of claims 1 to 3, wherein the non-aqueous solvent is a flame-retardant organic solvent, and the electrolytic solution comprises only a flame-retardant organic solvent and an alkali metal salt. 前記非水溶媒が、リン酸エステル、フッ素化エーテル、又はそれらの組み合わせである、請求項1〜3のいずれか1項に記載の二次電池用電解液。 The electrolytic solution for a secondary battery according to any one of claims 1 to 3, wherein the non-aqueous solvent is a phosphoric acid ester, a fluorinated ether, or a combination thereof. 前記リン酸エステルが、リン酸トリメチル、リン酸トリエチル、環状エステル部を有するリン酸エステル、及びそれらに含フッ素置換基を導入した化合物よりなる群から選択される、請求項5に記載の二次電池用電解液。 The secondary according to claim 5, wherein the phosphoric acid ester is selected from the group consisting of trimethyl phosphate, triethyl phosphate, a phosphoric acid ester having a cyclic ester portion, and a compound into which a fluorine-containing substituent is introduced. Electrolyte for batteries. 前記アルカリ金属塩を構成するアニオンが、フルオロスルホニル基、トリフルオロメタンスルホニル基、及びパーフルオロエタンスルホニル基よりなる群から選択される1以上の基を含むアニオンである、請求項1〜6のいずれか1項に記載の二次電池用電解液。 Any of claims 1 to 6, wherein the anion constituting the alkali metal salt is an anion containing one or more groups selected from the group consisting of a fluorosulfonyl group, a trifluoromethanesulfonyl group, and a perfluoroethanesulfonyl group. The electrolytic solution for a secondary battery according to item 1. 前記アニオンが、ビス(フルオロスルホニル)アミド([N(FSO)、(フルオロスルホニル)(トリフルオロスルホニル)アミド([N(CFSO)(FSO)])、ビス(トリフルオロメタンスルホニル)アミド([N(CFSO)、ビス(パーフルオロエタンスルホニル)アミド([N(CSO)又は(パーフルオロエタンスルホニル)(トリフルオロエタンメタンスルホニル)アミド([N(CSO)(CFSO)])である、請求項7に記載の二次電池用電解液。The anions are bis (fluorosulfonyl) amide ([N (FSO 2 ) 2 ] ), (fluorosulfonyl) (trifluorosulfonyl) amide ([N (CF 3 SO 2 ) (FSO 2 )] ), bis. (Trifluoromethanesulfonyl) amide ([N (CF 3 SO 2 ) 2 ] ), bis (perfluoroethanesulfonyl) amide ([N (C 2 F 5 SO 2 ) 2 ] ) or (perfluoroethanesulfonyl) The electrolytic solution for a secondary battery according to claim 7, which is (trifluoroethanemethanesulfonyl) amide ([N (C 2 F 5 SO 2 ) (CF 3 SO 2 )] ). 前記アルカリ金属塩が、リチウム塩又はナトリウム塩である、請求項1〜8のいずれか1項に記載の二次電池用電解液。 The electrolytic solution for a secondary battery according to any one of claims 1 to 8, wherein the alkali metal salt is a lithium salt or a sodium salt. 塩単体として50℃以下の融点を有する常温溶融塩を含有しない、請求項1〜9のいずれか1項に記載の二次電池用電解液。 The electrolytic solution for a secondary battery according to any one of claims 1 to 9, which does not contain a room temperature molten salt having a melting point of 50 ° C. or lower as a simple substance. 前記二次電池が、リチウムイオン二次電池又はナトリウムイオン二次電池である、請求項1〜10のいずれか1項に記載の二次電池用電解液。 The electrolytic solution for a secondary battery according to any one of claims 1 to 10, wherein the secondary battery is a lithium ion secondary battery or a sodium ion secondary battery. 正極、負極、及び、請求項1〜11のいずれか1項に記載の二次電池用電解液を備える二次電池。 A secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution for a secondary battery according to any one of claims 1 to 11. リチウムイオン二次電池である、請求項12に記載の二次電池。 The secondary battery according to claim 12, which is a lithium ion secondary battery. 作動電圧が、2.3V以上である、請求項13に記載の二次電池。 The secondary battery according to claim 13, wherein the operating voltage is 2.3 V or more. 負極の作動電位が、金属リチウム電位に対して0.5Vより低い、請求項13又は14に記載の二次電池。 The secondary battery according to claim 13 or 14, wherein the operating potential of the negative electrode is lower than 0.5 V with respect to the metallic lithium potential. 前記正極が、リチウム元素を有する金属酸化物、ポリアニオン系化合物、又は硫黄系化合物より選択される活物質を含む、請求項13〜15のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 13 to 15, wherein the positive electrode contains an active material selected from a metal oxide having a lithium element, a polyanionic compound, or a sulfur-based compound. 前記負極が、炭素材料、金属リチウム、又はリチウム合金、より選択される活物質を含む、請求項13〜16のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 13 to 16, wherein the negative electrode contains an active material selected from a carbon material, metallic lithium, or a lithium alloy. ナトリウムイオン二次電池である、請求項12に記載の二次電池。 The secondary battery according to claim 12, which is a sodium ion secondary battery. 作動電圧が、2.0V以上である、請求項18に記載の二次電池。 The secondary battery according to claim 18, wherein the operating voltage is 2.0 V or more. 前記正極が、遷移金属酸化物である、請求項18又は19に記載の二次電池。 The secondary battery according to claim 18 or 19, wherein the positive electrode is a transition metal oxide. 前記負極が、ハードカーボンである、請求項18〜20のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 18 to 20, wherein the negative electrode is hard carbon.
JP2019552370A 2017-11-08 2018-11-08 Fire extinguishing electrolyte and secondary battery containing the electrolyte Pending JPWO2019093411A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017215587 2017-11-08
JP2017215587 2017-11-08
PCT/JP2018/041448 WO2019093411A1 (en) 2017-11-08 2018-11-08 Electrolyte exhibiting fire-extinguishing properties, and secondary battery including said electrolyte

Publications (1)

Publication Number Publication Date
JPWO2019093411A1 true JPWO2019093411A1 (en) 2020-11-19

Family

ID=66438906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019552370A Pending JPWO2019093411A1 (en) 2017-11-08 2018-11-08 Fire extinguishing electrolyte and secondary battery containing the electrolyte

Country Status (2)

Country Link
JP (1) JPWO2019093411A1 (en)
WO (1) WO2019093411A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575147B2 (en) * 2019-07-16 2023-02-07 Factorial Inc. Electrolytes for high-voltage cathode materials and other applications
WO2023095775A1 (en) * 2021-11-26 2023-06-01 日本電気硝子株式会社 Sodium ion secondary battery
CN115051034A (en) * 2022-07-15 2022-09-13 南开大学 Wide-temperature-range sodium ion battery electrolyte
CN115663287B (en) * 2022-12-13 2023-04-04 湖南法恩莱特新能源科技有限公司 High-pressure-resistant flame-retardant sodium ion electrolyte, preparation method thereof and sodium ion battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184870A (en) * 1990-11-19 1992-07-01 Mitsubishi Petrochem Co Ltd Fire-resistant electrolyte for lithium battery
JPH1167232A (en) * 1997-08-19 1999-03-09 Mitsubishi Chem Corp Electrolyte for lithium battery
JPH1167267A (en) * 1997-08-19 1999-03-09 Mitsubishi Chem Corp Electrolyte for lithium battery
JPH11273727A (en) * 1998-03-18 1999-10-08 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2012094491A (en) * 2010-09-27 2012-05-17 Tosoh F-Tech Inc Nonaqueous electrolyte flame-resistant solvent and flame-resistant electrolyte and nonflammable electrolyte containing the same
CN103296311A (en) * 2013-04-25 2013-09-11 合肥工业大学 High-security phosphate-based electrolyte and lithium ion battery
WO2014128940A1 (en) * 2013-02-22 2014-08-28 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
JP2017050148A (en) * 2015-09-02 2017-03-09 国立大学法人 東京大学 Fire retardant electrolytic solution for secondary battery, and secondary battery including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184870A (en) * 1990-11-19 1992-07-01 Mitsubishi Petrochem Co Ltd Fire-resistant electrolyte for lithium battery
JPH1167232A (en) * 1997-08-19 1999-03-09 Mitsubishi Chem Corp Electrolyte for lithium battery
JPH1167267A (en) * 1997-08-19 1999-03-09 Mitsubishi Chem Corp Electrolyte for lithium battery
JPH11273727A (en) * 1998-03-18 1999-10-08 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2012094491A (en) * 2010-09-27 2012-05-17 Tosoh F-Tech Inc Nonaqueous electrolyte flame-resistant solvent and flame-resistant electrolyte and nonflammable electrolyte containing the same
WO2014128940A1 (en) * 2013-02-22 2014-08-28 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
CN103296311A (en) * 2013-04-25 2013-09-11 合肥工业大学 High-security phosphate-based electrolyte and lithium ion battery
JP2017050148A (en) * 2015-09-02 2017-03-09 国立大学法人 東京大学 Fire retardant electrolytic solution for secondary battery, and secondary battery including the same

Also Published As

Publication number Publication date
WO2019093411A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP5605221B2 (en) Nonaqueous electrolyte for secondary battery and secondary battery
JP5145367B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4521525B2 (en) Non-flammable non-aqueous electrolyte and lithium ion battery using the same
JP5942849B2 (en) Nonaqueous electrolyte for secondary battery and secondary battery
JPWO2011052605A1 (en) Nonaqueous electrolyte for secondary battery and secondary battery
EP3346540B1 (en) Flame-resistant electrolyte for secondary cell, and secondary cell including said electrolyte
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP5556818B2 (en) Non-aqueous electrolyte for secondary batteries
JP2014241198A (en) Acetonitrile electrolyte containing high concentration metal salt and secondary battery containing the electrolyte
JPWO2019093411A1 (en) Fire extinguishing electrolyte and secondary battery containing the electrolyte
JP6476611B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP2010205474A (en) Nonaqueous electrolyte and lithium ion secondary battery including the same
JPWO2010110388A1 (en) Electrolytic solution for power storage device and power storage device
WO2021166771A1 (en) Electrolytic solution for secondary cell containing cyclic phosphoric acid ester
Hirata et al. Electrochemical performance of an ethylene carbonate-free electrolyte based on lithium bis (fluorosulfonyl) imide and sulfolane
JP5819653B2 (en) Non-flammable electrolyte
JP2013211095A (en) Nonaqueous electrolyte for secondary battery and secondary battery
JP5262266B2 (en) Non-aqueous electrolyte battery
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
KR20140116069A (en) Organic electrolyte, and organic electrolyte storage battery
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
KR20220087452A (en) composition
JP2022550878A (en) Composition
JP2016046147A (en) Lithium ion battery
JP2022553527A (en) Composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207