JPWO2019078100A1 - Method for Producing Complex Containing Metal Coated with Solid Fine Particles - Google Patents

Method for Producing Complex Containing Metal Coated with Solid Fine Particles Download PDF

Info

Publication number
JPWO2019078100A1
JPWO2019078100A1 JP2019549238A JP2019549238A JPWO2019078100A1 JP WO2019078100 A1 JPWO2019078100 A1 JP WO2019078100A1 JP 2019549238 A JP2019549238 A JP 2019549238A JP 2019549238 A JP2019549238 A JP 2019549238A JP WO2019078100 A1 JPWO2019078100 A1 JP WO2019078100A1
Authority
JP
Japan
Prior art keywords
metal
fine particles
solid fine
solution
pulse laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019549238A
Other languages
Japanese (ja)
Other versions
JP6964898B2 (en
Inventor
西山 宏昭
宏昭 西山
寛 梅津
寛 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Publication of JPWO2019078100A1 publication Critical patent/JPWO2019078100A1/en
Application granted granted Critical
Publication of JP6964898B2 publication Critical patent/JP6964898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis

Abstract

従来技術では達成することが困難であった、固体微粒子の集積を容易に実施し、パターン形成も容易にする技術を提供する。金属のイオン、コロイド、及び/または錯体を含む溶液に、超短パルスレーザ光を照射することで金属を析出させ、溶液中に分散された、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子からなる固体微粒子を、析出した金属に被覆する工程を含む、固体微粒子で被覆された金属を含む複合体の製造方法。Provided is a technique for easily carrying out accumulation of solid fine particles and facilitating pattern formation, which was difficult to achieve by the prior art. Metal is precipitated by irradiating a solution containing metal ions, colloids, and / or complexes with ultrashort pulse laser light, and metal oxide particles, non-metal oxide particles, or ceramics dispersed in the solution. A method for producing a composite containing a metal coated with solid fine particles, which comprises a step of coating solid fine particles composed of particles with a precipitated metal.

Description

本発明は、超短パルスレーザ光の非常に短い時間幅を生かし、超短パルス性に由来した金属イオン、コロイド、錯体(以下「金属イオン等」と記す)の非線形光学吸収を利用して、超短パルスレーザ光集光位置に金属を析出させ、熱的効果が現れる前に析出させた金属に非常に大きなエネルギーを瞬間的に与えることで、析出させた金属を被覆する様に、様々な機能を有する固体微粒子集積してなる、複合体の製造方法に関する。また、本発明は、感光性を有しない透明性の高いコーティング膜形成材料、固体電解質型燃料電池電解質材料、発光ダイオードや光応答半導体材料、抵抗体膜形成材料、金属磁性体粉末材料、超電導材料、圧電セラミックス厚膜材料、誘電体膜材料、微粒子結合材料等の機能性材料の固体微粒子であっても、超短パルスレーザ光集光位置を移動させることで、パターンを形成する、製造方法に関する。 The present invention utilizes the very short time width of ultrashort pulse laser light and utilizes the nonlinear optical absorption of metal ions, colloids, and complexes (hereinafter referred to as "metal ions, etc.") derived from ultrashort pulse properties. By depositing a metal at the ultrashort pulse laser light condensing position and momentarily giving a very large amount of energy to the deposited metal before the thermal effect appears, various methods such as coating the deposited metal. The present invention relates to a method for producing a composite, which is formed by accumulating solid fine particles having a function. Further, the present invention relates to a highly transparent coating film forming material having no photosensitivity, a solid electrolyte type fuel cell electrolyte material, a light emitting diode or a photoresponsive semiconductor material, a resistor film forming material, a metal magnetic powder material, and a superconducting material. , A manufacturing method for forming a pattern by moving the ultrashort pulse laser light condensing position even for solid fine particles of functional materials such as piezoelectric ceramic thick film material, dielectric film material, and fine particle bonding material. ..

近年、微粒子衝突による様々なコーティングを乾式で実施する試みがなされている。この技術は、微粒子の運動エネルギーを、衝突によって、時間的にも空間的にも局所的に熱エネルギーに変換することによって、材料が(融点以上の)高温になり、粒子結合が生じることにより、コーティングを形成するものである。
微粒子衝突によるコーティング法の例として、まず、電界を用いる方法が挙げられる。具体的には、静電微粒子衝撃コーティング(EPID)法(原料微粒子より硬度の低い基板材料を使用して、原料微粒子を基板の中に埋め込む方法)、クラスターイオンビーム法などがある。また、ガス搬送による方法(ガスデポジション(GD)法)もある。この方法によれば、室温で金属ナノ結晶膜を形成することが可能である。なお、この方法により形成した膜の膜密度は、理論密度の55〜80%程度であると考えられ、バルク材料程度の電気伝導を得るには、熱による結晶成長が必要である。更に、エアロゾルデポジション(AD)法も注目されている(特許文献1)。この方法によれば、常温で金属を含めセラミックス材料を含む、緻密かつ高硬度の膜を作ることが可能であるとされている。また、微細なパターンもエッチングなしで得られることも報告されているが、作業環境等の微粉を扱うことの難しさがある。これらの方法はいずれも、大掛かりな装置を必要とするものである。
In recent years, attempts have been made to dryly apply various coatings due to collision of fine particles. This technology converts the kinetic energy of fine particles into thermal energy locally, both temporally and spatially, by collisions, causing the material to heat up (above the melting point) and form particle bonds. It forms a coating.
As an example of the coating method by collision of fine particles, first, a method using an electric field can be mentioned. Specifically, there are an electrostatic fine particle impact coating (EPID) method (a method of embedding raw material fine particles in a substrate using a substrate material having a hardness lower than that of the raw material fine particles), a cluster ion beam method, and the like. There is also a gas transport method (gas deposition (GD) method). According to this method, it is possible to form a metal nanocrystal film at room temperature. The film density of the film formed by this method is considered to be about 55 to 80% of the theoretical density, and crystal growth by heat is required to obtain electrical conductivity equivalent to that of a bulk material. Further, the aerosol deposition (AD) method is also attracting attention (Patent Document 1). According to this method, it is possible to form a dense and high-hardness film containing a ceramic material including a metal at room temperature. It has also been reported that fine patterns can be obtained without etching, but it is difficult to handle fine powder in a working environment or the like. Both of these methods require large-scale equipment.

一方、レーザ光照射に用いられるレーザとして、超短パルスレーザは、主にその非常に短い時間幅を生かし、熱的効果が現れる前に物質に非常に大きなエネルギーを瞬間的に与える特性を持つと考えられる。例えば、非特許文献1には、超短パルスレーザによる加工の例が報告されており、これによれば、銅をターゲットとして10ps(ピコセカンド)のパルスレーザを照射した時、表面電子温度は数千℃にも達する一方で、熱拡散長はμm以下であると推測される。 On the other hand, as a laser used for laser light irradiation, ultrashort pulse lasers have the property of instantly giving a very large amount of energy to a substance before the thermal effect appears, mainly by taking advantage of its very short time width. Conceivable. For example, Non-Patent Document 1 reports an example of processing with an ultrashort pulse laser. According to this, when copper is irradiated with a 10 ps (picosecond) pulse laser as a target, the surface electron temperature is several. It is estimated that the thermal diffusion length is μm or less while reaching 1000 ° C.

このため、銀イオン溶液に超短パルスレーザ光を照射し、溶液中の金属イオンを還元して銀を析出させる方法が報告されている。
例えば、非特許文献2には、波長800nm、パルス幅80fs、周波数82MHz、出力14.97mWの高強度レーザビーム照射による銀イオンの還元により、銀ドットが得られたことが報告されている。
また、非特許文献3には、波長1064nmの近赤外光源と、波長532nmまたは633nmの可視光源とを用いた、比較的弱い連続発振パルスレーザを利用することにより、硝酸銀の還元反応を利用して銀ナノ粒子集合体のパターニングをガラス基板上に形成したことが報告されている。
Therefore, a method of irradiating a silver ion solution with an ultrashort pulse laser beam to reduce metal ions in the solution to precipitate silver has been reported.
For example, Non-Patent Document 2 reports that silver dots were obtained by reducing silver ions by irradiation with a high-intensity laser beam having a wavelength of 800 nm, a pulse width of 80 fs, a frequency of 82 MHz, and an output of 14.97 mW.
Further, Non-Patent Document 3 utilizes a reduction reaction of silver nitrate by using a relatively weak continuously oscillating pulse laser using a near-infrared light source having a wavelength of 1064 nm and a visible light source having a wavelength of 532 nm or 633 nm. It has been reported that the patterning of an aggregate of silver nanoparticles was formed on a glass substrate.

これらレーザ光照射による材料パターニングを行うためには、被加工材料がレーザ光に対する適切な光吸収特性を有すること必須となる。例えば、Agインクなどにレーザ光を照射して金属(Ag)パターンを形成する場合には、インクがレーザ光を適度に吸収することが大前提とされている。 In order to perform material patterning by laser light irradiation, it is essential that the material to be processed has appropriate light absorption characteristics for laser light. For example, when irradiating Ag ink or the like with laser light to form a metal (Ag) pattern, it is a major premise that the ink appropriately absorbs the laser light.

超短パルス光をレーザ発振波長において透過性の高いガラス内部に集光すると、集光点近傍のみを直接に加工することが出来る。非特許文献4には、フェムト秒レーザによる透明材料加工の例が報告されており、波長800nm、パルス幅120fsのパルス光をシリカガラスに照射し、ガラス内部の集光点において格子欠陥を誘起し高密度化を生み出したことが報告されている。
しかしながら、この手法では溶液中で分散している固体微粒子への集光は困難であり、また実現したとしても、照射部の材料特性が改質されるため、固体微粒子の物性もまた変質することは避けられない。
本発明者らは、超短パルスレーザによれば、超短パルス性に由来した非線形光学吸収を利用して、本来吸収を有さない材料の集積方法の検討結果、本発明に至ったものである。
When ultrashort pulsed light is focused inside glass, which has high transparency at the laser oscillation wavelength, only the vicinity of the focusing point can be directly processed. Non-Patent Document 4 reports an example of processing a transparent material by a femtosecond laser, which irradiates silica glass with pulsed light having a wavelength of 800 nm and a pulse width of 120 fs to induce lattice defects at a condensing point inside the glass. It has been reported that it produced a high density.
However, with this method, it is difficult to collect light on the solid fine particles dispersed in the solution, and even if it is realized, the physical properties of the solid fine particles are also altered because the material properties of the irradiated portion are modified. Is inevitable.
According to the ultrashort pulse laser, the present inventors have reached the present invention as a result of studying a method of integrating a material that originally does not have absorption by utilizing nonlinear optical absorption derived from ultrashort pulse property. is there.

特開2003−112976号公報Japanese Unexamined Patent Publication No. 2003-112976

S.I. Anisimov and B. Rethfeld, Proc. SPIE Nonresonant Laser-Matter Interaction (NLMI-9), 3093, 192 (1997)S.I. Anisimov and B. Rethfeld, Proc. SPIE Nonresonant Laser-Matter Interaction (NLMI-9), 3093, 192 (1997) A. Ishikawa, T. Tanaka, and S. Kawata, Apply.Phys.Lett.89, 113102(2006)A. Ishikawa, T. Tanaka, and S. Kawata, Apply. Phys. Lett. 89, 113102 (2006) 平成21年度一般研究開発助成AF-2009216、大阪大学 大学院工学研究科 精密科学・応用物理学専攻 助教 吉川裕之2009 General Research and Development Grant AF-2009216, Assistant Professor, Department of Exact Science and Applied Physics, Graduate School of Engineering, Osaka University Hiroyuki Yoshikawa K. Miura, Jianrong Qiu, H. Inouye, and T. Mitsuyu, Apply.Phys.Lett.71, 3329(1997)K. Miura, Jianrong Qiu, H. Inouye, and T. Mitsuyu, Apply. Phys. Lett. 71, 3329 (1997)

本発明は、従来技術では達成することが困難であった、固体微粒子の集積を容易に実施し、パターン形成も容易にする技術を提供するものである。 The present invention provides a technique for easily carrying out the accumulation of solid fine particles and facilitating pattern formation, which has been difficult to achieve by the prior art.

本発明者らは、超短パルスレーザによれば、超短パルス性に由来した非線形光学吸収を利用して、金属粒子の析出させることができとの知見に基づき、この金属粒子を微小熱源としての利用を着想することで、本来、レーザ光に対する吸収を有さない材料の集積方法について鋭意検討した結果、本発明に至ったものである。
そして、本発明者らは、上記課題を解決するために、感光性を有しない材料等の固体微粒子を、金属イオン等が存在する溶液中に分散させ、超短パルスレーザを照射することで、固体微粒子が金属表面に集積してなる複合体を製造することを可能にした。超短パルスレーザは、その短いパルス幅に由来した高強度光パルスを瞬間的に放出することができ、この高強度パルスが生み出す非線形光学吸収は集光点近傍のみを直接に加工することを可能とする。この特性を用いて、溶液中の超短パルスレーザ集光点近傍にのみ金属を析出させるとともに、更にこの析出金属の局所加熱を行うことで、周辺の固体微粒子を金属表面に集積させた。この方法により、感光性を有しない材料のパターニングを可能にした。
本発明により、感光性を有しない透明性の高いコーティング膜形成材料、固体電解質型燃料電池電解質材料、発光ダイオードや光応答半導体材料、抵抗体膜形成材料、金属磁性体粉末材料、超電導材料、圧電セラミックス厚膜材料、誘電体膜材料、微粒子結合材料等の機能性材料の固体微粒子であっても、超短パルスレーザ光集光位置を移動させることで、パターンを形成することが可能となる。
Based on the finding that, according to an ultrashort pulse laser, metal particles can be precipitated by utilizing nonlinear optical absorption derived from ultrashort pulse properties, the present inventors use these metal particles as a minute heat source. The present invention was reached as a result of diligent studies on a method for accumulating materials that originally do not absorb laser light, based on the idea of using the above.
Then, in order to solve the above problems, the present inventors disperse solid fine particles such as non-photosensitive materials in a solution in which metal ions and the like are present, and irradiate them with an ultrashort pulse laser. It has made it possible to produce a composite in which solid fine particles are accumulated on a metal surface. An ultrashort pulse laser can instantaneously emit a high-intensity optical pulse derived from its short pulse width, and the nonlinear optical absorption produced by this high-intensity pulse can directly process only the vicinity of the focusing point. And. Using this property, the metal was deposited only in the vicinity of the ultrashort pulse laser condensing point in the solution, and the precipitated metal was further locally heated to accumulate the surrounding solid fine particles on the metal surface. This method made it possible to pattern non-photosensitive materials.
According to the present invention, a highly transparent coating film forming material having no photosensitivity, a solid electrolyte type fuel cell electrolyte material, a light emitting diode or a photoresponsive semiconductor material, a resistor film forming material, a metal magnetic powder material, a superconducting material, and a piezoelectric material. Even solid fine particles of functional materials such as ceramic thick film materials, dielectric film materials, and fine particle bonding materials can form patterns by moving the ultrashort pulse laser light condensing position.

すなわち、本発明は、金属のイオン、コロイド、及び/または錯体を含む溶液に、超短パルスレーザ光を照射することで金属を析出させ、前記溶液中に分散された、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子からなる固体微粒子を、前記析出した金属に被覆する工程を含む、固体微粒子で被覆された金属を含む複合体の製造方法である。 That is, in the present invention, a solution containing metal ions, colloids, and / or complexes is irradiated with an ultrashort pulse laser beam to precipitate a metal, and the metal oxide particles dispersed in the solution are non-metal oxide particles. This is a method for producing a composite containing a metal coated with solid fine particles, which comprises a step of coating the precipitated metal with solid fine particles composed of metal oxide particles or ceramics particles.

前記金属は、析出した金属が溶媒と化学反応することが無ければ特に制限されない。溶媒に水を選択した場合には、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれる、水および高温の水蒸気と反応しない金属が好ましい。 The metal is not particularly limited as long as the precipitated metal does not chemically react with the solvent. When water is selected as the solvent, a metal selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold, which does not react with water and high temperature water vapor, is preferable.

前記固体微粒子の融点は、500℃〜3500℃であるのが好ましい。
また、前記固体微粒子は、0.005μm〜1μmの直径を有するのが好ましい。
さらに、前記固体微粒子の前記溶液中の濃度は、0.01質量%〜3.0質量%であるのが好ましい。
The melting point of the solid fine particles is preferably 500 ° C. to 3500 ° C.
Further, the solid fine particles preferably have a diameter of 0.005 μm to 1 μm.
Further, the concentration of the solid fine particles in the solution is preferably 0.01% by mass to 3.0% by mass.

前記超短パルスレーザ光の波長は、200nm〜2000nmであるのが好ましい。
また、前記超短パルスレーザ光のフルエンス(単位面積に投入されるエネルギー)は、0.01mJ/cm2〜10mJ/cm2であるのが好ましい。
さらに、前記超短パルスレーザ光の繰返し周波数は、1Hz〜500MHzであるのが好ましい。
前記超短パルスレーザ光の平均出力は、10mW以上であるのが好ましい。
また、前記超短パルスレーザ光の集光径は、20μm以下であるのが好ましい。
The wavelength of the ultrashort pulse laser light is preferably 200 nm to 2000 nm.
Further, the (energy input to the unit area) fluence ultrashort pulsed laser light is preferably a 0.01mJ / cm 2 ~10mJ / cm 2 .
Further, the repetition frequency of the ultrashort pulse laser light is preferably 1 Hz to 500 MHz.
The average output of the ultrashort pulse laser beam is preferably 10 mW or more.
Further, the focused diameter of the ultrashort pulse laser light is preferably 20 μm or less.

本発明は、前記溶液に基板を浸漬させる工程、及び前記基板の表面に沿って前記超短パルスレーザ光のビームスポットを移動させる工程をさらに含むものとすることができる。
あるいは、本発明は、前記溶液に基板を浸漬させる工程、及び前記基板の表面から、前記基板から離れた前記溶液中の所定の位置に前記超短パルスレーザ光のビームスポットを移動させる工程をさらに含むものとすることができる。
本発明はさらに、固体微粒子で被覆された金属を含む複合体であって、前記金属は、溶液中に金属のイオン、コロイド、及び/または錯体として存在し、該溶液に超短パルスレーザ光を照射することで析出しうるものであり、前記固体微粒子は、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子であり、前記金属がコアを形成し、該コアがその内側に空洞を有する、前記複合体である。
前記金属は、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれるのが好ましい。
また、前記固体微粒子の融点は、500℃〜3500℃であるのが好ましい。
さらに、前記固体微粒子が、0.005μm〜1μmの直径を有するのが好ましい。
The present invention may further include a step of immersing the substrate in the solution and a step of moving the beam spot of the ultrashort pulse laser beam along the surface of the substrate.
Alternatively, the present invention further comprises a step of immersing the substrate in the solution and a step of moving the beam spot of the ultrashort pulse laser beam from the surface of the substrate to a predetermined position in the solution away from the substrate. Can include.
The present invention further comprises a composite comprising a metal coated with solid fine particles, wherein the metal is present in the solution as metal ions, colloids, and / or complexes, and the solution is exposed to ultrashort pulse laser light. It can be precipitated by irradiation, and the solid fine particles are metal oxide particles, non-metal oxide particles, or ceramics particles, and the metal forms a core, and the core has a cavity inside the core. , The complex.
The metal is preferably selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold.
The melting point of the solid fine particles is preferably 500 ° C. to 3500 ° C.
Further, it is preferable that the solid fine particles have a diameter of 0.005 μm to 1 μm.

静電微粒子衝撃コーティング(EPID)法、クラスターイオンビーム法、エアロゾルデポジション(AD)法などの、従来の固体微粒子を使った膜形成方法には、数々のプロセスを有すること、体積密度の低い微粉体の飛散防止、健康面や安全面での対策など装置が大掛かりなこと、粉体のまま使用するために原料ロスが大きいことなど、数多くの問題があったが、本発明によれば、これら従来技術が有する問題をいずれも解決することが可能である。 Conventional film forming methods using solid fine particles, such as electrostatic fine particle impact coating (EPID) method, cluster ion beam method, and aerosol deposition (AD) method, have a number of processes and have low volume density fine powder. There were many problems such as large-scale equipment such as prevention of scattering of the body, measures for health and safety, and large loss of raw materials due to use as powder, but according to the present invention, these It is possible to solve any of the problems of the prior art.

また、本発明によれば、溶媒に固体微粒子(シリカ、アルミナ、酸化チタン粒子等)を分散させた液に、金属イオンや金属錯体などの状態で金属を溶解させておき、この溶液に超短パルスレーザ光を照射することで、溶液中に分散する固体微粒子を金属表面に容易に被覆して、固体微粒子で被覆された金属を含む複合体の製造することができ、その際、超短パルスレーザ光の照射を制御することなどにより、金属酸化物、非金属酸化物又はセラミクス等の様々な機能を有する固体微粒子を自在にパターン形成させ、デバイスを製造する等、様々な機会で本発明を適用することが期待できる。 Further, according to the present invention, a metal is dissolved in a solution in which solid fine particles (silica, alumina, titanium oxide particles, etc.) are dispersed in a solvent in the state of metal ions or metal complexes, and the solution is ultrashort. By irradiating the pulsed laser beam, the metal surface can be easily coated with the solid fine particles dispersed in the solution, and a composite containing the metal coated with the solid fine particles can be produced. By controlling the irradiation of laser light, the present invention can be freely patterned by forming solid fine particles having various functions such as metal oxides, non-metal oxides, and ceramics, and the present invention can be manufactured at various opportunities. It can be expected to be applied.

さらに、本発明の複合体の製造方法を、基板上や基板に垂直方向に連続的に行うことにより、従来レーザ光照射によるパターニングが困難であった感光性を有しない材料によってコーティングされた金属からなる三次元パターンを、基板上に形成することが可能となる。その際、本発明は、溶液中で超短パルスレーザ光を照射する低温の光プロセスであることから、プラスチック基板や基板上の素子に大きなダメージを与えることなくパターニングを行うことができる。 Further, by continuously performing the method for producing the composite of the present invention on the substrate or in the direction perpendicular to the substrate, the metal coated with a non-photosensitive material, which has been difficult to pattern by laser light irradiation in the past, can be used. It is possible to form a three-dimensional pattern on the substrate. At that time, since the present invention is a low-temperature optical process of irradiating an ultrashort pulse laser beam in a solution, patterning can be performed without significantly damaging the plastic substrate or the element on the substrate.

本発明の一実施形態を示す概念断面図である。It is a conceptual sectional view which shows one Embodiment of this invention. 本発明の原理を示す概念断面図である。It is a conceptual cross-sectional view which shows the principle of this invention. 本発明の他の実施形態を示す概念断面図である。It is a conceptual cross-sectional view which shows the other embodiment of this invention. 実施例1で製造された複合体の断面の顕微鏡写真である。6 is a photomicrograph of a cross section of the composite produced in Example 1. 実施例2で製造された複合体の断面の顕微鏡写真である。It is a micrograph of the cross section of the composite produced in Example 2. 被膜の断面積と平均レーザ出力との関係を示すグラフである。It is a graph which shows the relationship between the cross-sectional area of a coating film and the average laser output. 酸化チタン濃度と被膜の断面積との関係を示すグラフである。It is a graph which shows the relationship between the titanium oxide concentration and the cross-sectional area of a coating film.

以下、本発明を実施するための形態について説明する。
本発明は、金属のイオン、コロイド、及び/または錯体を含む溶液に、超短パルスレーザ光を照射することで金属を析出させ、前記溶液中に分散された、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子からなる固体微粒子を、前記析出した金属に被覆する工程を含む、固体微粒子で被覆された金属を含む複合体の製造方法である。
Hereinafter, modes for carrying out the present invention will be described.
In the present invention, a solution containing metal ions, colloids, and / or complexes is irradiated with an ultrashort pulse laser beam to precipitate a metal, and metal oxide particles and non-metal oxidation dispersed in the solution. This is a method for producing a composite containing a metal coated with solid fine particles, which comprises a step of coating solid fine particles composed of physical particles or ceramic particles with the precipitated metal.

本発明の一実施形態を示す概念断面図である図1を参照して、本発明ではまず、溶液ホルダー中に、硝酸銀が溶解され、かつ固体微粒子が分散された溶液を収容し、その上に、レーザ光を透過させる基板を、基板の一方の面が溶液と接触するように載置する。次いで、基板の他の一方の面側から超短パルスレーザ光を溶液に照射して、溶液中の銀を析出させるとともに、溶液中に分散された固体微粒子により析出した銀を被覆して、固体微粒子で被覆された銀を含む複合体を製造する。 With reference to FIG. 1, which is a conceptual cross-sectional view showing an embodiment of the present invention, in the present invention, first, a solution in which silver nitrate is dissolved and solid fine particles are dispersed is contained in a solution holder, and the solution is placed therein. , The substrate that transmits the laser beam is placed so that one surface of the substrate is in contact with the solution. Next, the solution is irradiated with ultrashort pulse laser light from the other surface side of the substrate to precipitate silver in the solution, and the silver precipitated by the solid fine particles dispersed in the solution is coated to form a solid. A composite containing silver coated with fine particles is produced.

本発明の原理を示す概念断面図である図2を参照して、いかなる理論にも拘束されるものではないが、超短パルスレーザ光を硝酸銀溶液に照射することにより、基板表面(溶液側)に金属(銀)が析出し、この金属がコアとなって、金属表面が局所的に加熱され、金属表面での溶媒の気化による急激な膨張の後に、減圧による急激な収縮がおこる現象を通じて、コアの周囲に存在する溶液中に分散された固体微粒子が急激な収縮の力を受け、高速で金属表面に衝突することで緻密な集合体が金属表面に集積され、固体微粒子で被覆された金属を含む複合体が生成されるものと考えられる。 Although not bound by any theory with reference to FIG. 2, which is a conceptual sectional view showing the principle of the present invention, the substrate surface (solution side) is obtained by irradiating the silver nitrate solution with an ultrashort pulse laser beam. A metal (silver) is deposited on the metal, and this metal becomes a core, the metal surface is locally heated, and after a rapid expansion due to vaporization of the solvent on the metal surface, a rapid contraction due to decompression occurs. The solid fine particles dispersed in the solution existing around the core receive the force of rapid contraction and collide with the metal surface at high speed, so that dense aggregates are accumulated on the metal surface and the metal coated with the solid fine particles. It is considered that a complex containing is produced.

<金属>
本発明で使用する金属は、超短パルスレーザ光を照射する溶液中に金属のイオン、コロイド、及び/または錯体として存在しているものである。また、析出した金属が溶媒と化学反応することが無ければ金属の種類は特に制限されない。
本発明で使用する金属は特に、溶媒に水を選択した場合には、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれる、水および高温の水蒸気と反応しない金属であるのが好ましい。水や高温の水蒸気と反応する金属(例えば、カリウム、マグネシウム、アルミニウム、亜鉛、鉄などイオン化傾向の高い金属)の場合であっても、溶媒を適宜選択することにより、好ましい金属を選択することが可能である。
<Metal>
The metal used in the present invention is present as a metal ion, colloid, and / or complex in a solution irradiated with an ultrashort pulse laser beam. Further, the type of metal is not particularly limited as long as the precipitated metal does not chemically react with the solvent.
The metal used in the present invention is a metal that does not react with water and high temperature water vapor, which is selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold, especially when water is selected as the solvent. Is preferable. Even in the case of a metal that reacts with water or high-temperature water vapor (for example, a metal having a high ionization tendency such as potassium, magnesium, aluminum, zinc, iron), a preferable metal can be selected by appropriately selecting a solvent. It is possible.

金属が溶液中にイオンとして存在する場合、金属イオンは、例えばAg+、Cu+、Cu2+、Ni2+、Sn2+、Sn3+、Sn4+、Pb2+、Pt2+、Au+、Au3+などであってよい。
金属塩の対イオンは、硝酸イオン、硫酸イオン、カルボン酸イオン、シアン化物イオン、スルホン酸イオン、ホウ酸イオン、ハロゲンイオン、炭酸イオン、リン酸イオンおよび過塩素酸イオンからなる群から選択されるのが好ましい。
When the metal is present as an ion in the solution, the metal ion is, for example, Ag + , Cu + , Cu 2+ , Ni 2+ , Sn 2+ , Sn 3+ , Sn 4+ , Pb 2+ , Pt 2+ , It may be Au + , Au 3+, or the like.
The counter ion of the metal salt is selected from the group consisting of nitrate ion, sulfate ion, carboxylic acid ion, cyanide ion, sulfonic acid ion, borate ion, halogen ion, carbonate ion, phosphate ion and perchlorate ion. Is preferable.

金属が溶液中にコロイドとして存在する例としては、銀コロイド、銅コロイド、ニッケルコロイドなどが挙げられる。
金属が溶液中に錯体として存在する場合としては、例えば、金属原子に配位子を配位することにより、溶媒に分散、溶解しやすくしたような場合が挙げられる。
銀錯体の例としては、ドコサン酸銀、クロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]銀、ピリジン-2-カルボン酸銀(II)、スルファジアジン銀等あげることができる。また、銅の錯体としては、酢酸銅(I)、ビス(1,3-プロパンジアミン)銅(II)ジクロリド、第二銅アセチルアセトナート、ビス(8-キノリノラト)銅(II) 等あげることができる。金の錯体の例としては、テトラクロロ金(III)酸四水和物、(ジメチルスルフィド)金(I)クロリド、クロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金(I)等あげることができる。鉛の錯体としては、四酢酸鉛、酢酸鉛(II)等あげることができる。更に、銀ナノインク、銅ナノインクのような金属錯体を含む製品であってよい。
Examples of the presence of the metal as a colloid in the solution include silver colloid, copper colloid, nickel colloid and the like.
Examples of the case where the metal exists as a complex in the solution include a case where a ligand is coordinated with a metal atom to facilitate dispersion and dissolution in a solvent.
Examples of silver complexes include silver docosanoate, chloro [1,3-bis (2,6-diisopropylphenyl) imidazol-2-iriden] silver, silver pyridine-2-carboxylate (II), silver sulfaziazine, etc. Can be done. Examples of the copper complex include copper acetate (I), bis (1,3-propanediamine) copper (II) dichloride, cupric acetylacetonate, and bis (8-quinolinolato) copper (II). it can. Examples of gold complexes include tetrachlorogold (III) acid tetrahydrate, (dimethyl sulfide) gold (I) chloride, and chloro [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene. ] Money (I) etc. can be given. Examples of the lead complex include lead tetraacetate and lead (II) acetate. Further, it may be a product containing a metal complex such as silver nanoink or copper nanoink.

本発明で使用する金属の溶液中の濃度は、特に限定されない。0.1質量%以上で均一に溶解、または分散可能であれば制限を受けない。0.1質量%未満の薄い溶液では、固体微粒子の集積があっても光効率が悪くなる。溶液中の金属濃度を高くすると、超短パルスレーザ光を照射することにより形成される金属コアのサイズが大きくなる。金属の溶液中の濃度は、3.0質量%以下であるのが好ましい。 The concentration of the metal used in the present invention in the solution is not particularly limited. There is no limitation as long as it can be uniformly dissolved or dispersed in 0.1% by mass or more. With a dilute solution of less than 0.1% by mass, the light efficiency deteriorates even if solid fine particles are accumulated. Increasing the metal concentration in the solution increases the size of the metal core formed by irradiating the ultrashort pulse laser beam. The concentration of the metal in the solution is preferably 3.0% by mass or less.

<固体微粒子>
本発明で使用する固体微粒子は、超短パルスレーザ光を照射する溶液中に分散された、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子である。ここでの分散は、必ずしも溶液全体に均一に固体微粒子が分布している必要はなく、集光点近傍に固体微粒子が存在してさえいれば、その一部が沈殿していても良い。
本発明で使用する固体微粒子として、例えば、炭化物、窒化物、ホウ化物などの無機化合物等を使用することができる。また、透明性の高いコーティング膜形成材料、固体電解質型燃料電池電解質材料、発光ダイオードや光応答半導体材料、抵抗体膜形成材料、金属磁性体粉末材料、超電導材料、圧電セラミックス厚膜材料、誘電体膜材料、微粒子結合材料等の機能性材料の固体微粒子を、目的に応じて使用することも可能である。
<Solid fine particles>
The solid fine particles used in the present invention are metal oxide particles, non-metal oxide particles, or ceramics particles dispersed in a solution irradiated with an ultrashort pulse laser beam. The dispersion here does not necessarily mean that the solid fine particles are uniformly distributed throughout the solution, and as long as the solid fine particles are present in the vicinity of the condensing point, a part of the solid fine particles may be precipitated.
As the solid fine particles used in the present invention, for example, inorganic compounds such as carbides, nitrides, and borides can be used. In addition, highly transparent coating film forming material, solid electrolyte type fuel cell electrolyte material, light emitting diode and photoresponsive semiconductor material, resistor film forming material, metal magnetic powder material, superconducting material, piezoelectric ceramic thick film material, dielectric It is also possible to use solid fine particles of a functional material such as a membrane material and a fine particle binding material, depending on the purpose.

これらの固体微粒子は、異なる種類のものを複数同時に溶媒に分散させてもよく、あるいは、固体微粒子同士が接合した固体微粒子や、複数成分からなる固体微粒子を使用してもよい。更に、金担持酸化チタン(Au/TiO2)のような固体微粒子を固体微粒子とともに用いることもできる。As these solid fine particles, a plurality of different types of fine particles may be dispersed in a solvent at the same time, or solid fine particles in which solid fine particles are bonded to each other or solid fine particles composed of a plurality of components may be used. Further, solid fine particles such as gold-supported titanium oxide (Au / TiO 2 ) can be used together with the solid fine particles.

前記固体微粒子の融点は、500℃〜3500℃であるのが好ましい。
これは例えば、金属として銀を、固体微粒子として酸化チタンを用いた場合、図4の様な断面が観察される。酸化チタンと銀の境界面は広範囲に接触しているのに対し、銀の内側には空洞が存在する。銀の断面積に対し、空洞の断面の比は、5対1程度と測定されること、酸化チタンの線膨張係数(室温から1000℃までの平均)が8×10-6(1/K)であるのと、銀の線膨張係数は25×10-6(1/K)であることから、超短パルスレーザ光を照射することによる銀表面の最高到達温度が5000K(4700℃以上)程度であろうと推定される。従って、3500℃以下の融点を持つ固体微粒子であれば、融解して容易に、金属表面に集積させることが考えられるためである。
The melting point of the solid fine particles is preferably 500 ° C. to 3500 ° C.
For example, when silver is used as the metal and titanium oxide is used as the solid fine particles, a cross section as shown in FIG. 4 is observed. While the interface between titanium oxide and silver is in extensive contact, there are cavities inside the silver. The ratio of the cross section of the cavity to the cross section of silver is measured to be about 5: 1, and the coefficient of linear expansion of titanium oxide (average from room temperature to 1000 ° C) is 8 × 10 -6 (1 / K). Since the coefficient of linear expansion of silver is 25 × 10 -6 (1 / K), the maximum temperature reached on the silver surface by irradiating ultrashort pulse laser light is about 5000K (4700 ° C or higher). It is presumed that it will be. Therefore, solid fine particles having a melting point of 3500 ° C. or lower can be melted and easily accumulated on the metal surface.

コーティング材料として有用な固体微粒子としては、酸化物の固体微粒子として、例えば、シリカ(1650℃)、酸化錫(1080℃)、酸化鉄(1565℃)、酸化クロム(2435℃)、酸化ベリリウム(2570℃)、酸化ハフニウム(2758℃)、(水と反応)、三酸化二マンガン(1080℃)、四酸化三マンガン(1567℃)、酸化マンガン(1650℃)、酸化バリウム(1920℃)、酸化ストロンチウム(2531℃)、四酸化三鉄(1538℃)、酸化コバルト(1933℃)、酸化ニッケル(1984℃)、チタン酸ジルコン酸鉛(1400℃)、チタン酸リチウム(1520℃)、チタン酸アルミニウム(1860℃)、チタン酸ストロンチウム(2080℃)、チタン酸鉛、ジルコン酸鉛、チタン酸鉛とジルコン酸鉛の混晶(チタン酸ジルコン酸鉛)、酸化スカンジウム(1000℃)、酸化ネオジウム(2270℃)、酸化ガドリニウム(2330℃)、酸化サマリウム(2300℃)、酸化イットリウム(2410℃)、酸化ニッケル(600℃)、四酸化三コバルト(895℃)、酸化インジウムスズ(1800℃)、酸化マグネシウム(2852℃)、酸化ジルコニウム(2715℃)、コージエライト(1450℃)、アノーサ イ ト(1553℃)、ゲーレナイト(1593℃)、カルシウム・アルミネート(1600℃)、リチウムアルミネート(1625℃)、アルミン酸ストロンチウム(1790℃)、ムライト(1850℃)、アルミン酸イットリウム(1970℃)、スピネル(2130℃)、酸化ネオジウム(1900℃)、酸化スカンジウム(2485℃)、ランタンガレート系酸化物、PbZrTi系酸化物、LaSrCo系酸化物、LaSrMn系酸化物、YBa系酸化物、BiSrCa系酸化物、TlBaCa系酸化物、酸化鉄を主成分とするフェライト、上記以外の酸化物セラミックスなどが挙げられる(カッコ内の温度は融点である。以下同様)。 Solid fine particles useful as coating materials include, for example, silica (1650 ° C), tin oxide (1080 ° C), iron oxide (1565 ° C), chromium oxide (2435 ° C), and beryllium oxide (2570 ° C) as solid fine particles of oxide. ℃), Hafnium oxide (2758 ℃), (Reacts with water), Dimanganese trimanganese (1080 ℃), Trimanganese tetraoxide (1567 ℃), Manganese oxide (1650 ℃), Barium oxide (1920 ℃), Strontium oxide (2531 ℃), triiron tetroxide (1538 ℃), cobalt oxide (1933 ℃), nickel oxide (1984 ℃), lead zirconate titanate (1400 ℃), lithium titanate (1520 ℃), aluminum titanate (2520 ℃) 1860 ° C), Strontium titanate (2080 ° C), lead titanate, lead zirconate, mixed crystals of lead titanate and lead zirconate (lead zirconate titanate), scandium oxide (1000 ° C), neodium oxide (2270 ° C) ), Gadrinium Oxide (2330 ℃), Samarium Oxide (2300 ℃), Ittrium Oxide (2410 ℃), Nickel Oxide (600 ℃), Tricobalt Oxide (895 ℃), Indium Tin Oxide (1800 ℃), Magnesium Oxide (1800 ℃) 2852 ° C), Zirconate Oxide (2715 ° C), Cordierite (1450 ° C), Anotherite (1553 ° C), Gerenite (1593 ° C), Calcium Aluminate (1600 ° C), Lithium Aluminate (1625 ° C), Aluminic Acid Strontium (1790 ℃), Murite (1850 ℃), Ithrium aluminate (1970 ℃), Spinel (2130 ℃), Neodium Oxide (1900 ℃), Scandium Oxide (2485 ℃), Lantangalate Oxide, PbZrTi Oxide , LaSrCo-based oxides, LaSrMn-based oxides, YBa-based oxides, BiSrCa-based oxides, TlBaCa-based oxides, ferrites containing iron oxide as a main component, oxide ceramics other than the above, and the like (temperatures in parentheses). Is the melting point; the same applies hereinafter).

また、炭化化合物としては、炭化クロム(1890℃)、炭化硼素(2763℃)、炭化バナジウム(2840℃)、炭化タングステン(2870℃)、炭化モリブデン(2687℃)、炭化チタン(3170℃)、炭化ジルコニウム(3500℃)、炭化ニオブ(3500℃)、炭化タンタル(3880℃)、炭化珪素(2730℃)、チタン酸ビスマス(1203℃)などが挙げられる。
窒化化合物としては、窒化ニオブ(2573℃)、窒化チタン(2930℃)、窒化タンタル(3090℃)、窒化インジウム(1100℃)、窒化ガリウム(2500℃)、窒化インジウム(1100℃)、窒化ガリウム(2500℃)、窒化硼素(2967℃)、窒化アルミニウム(2200℃)などが挙げられる。
硼素化合物としては、硼素(2076℃)、硼化アルミニウム(1655℃)、硼化クロム(2373℃)、硼化チタン(2400℃)、硼化モリブデン(2543℃)、硼化タングステン(2643℃)、硼化バナジウム(2673℃)、硼化ジルコニウム(3100℃)、硼化マグネシウム(800℃)、硼化ニオブ(3000℃)、硼化タンタル(3037℃)などが挙げられる。
さらに、ハロゲン化合物としてはフッ化セリウム(1800℃)などが、リン酸化合物としてはハイドロキシアパタイト(1650℃)などが、リチウム系化合物としてはLi2S−P25、LiCoO2、xLi2O−BPO4(0.5≦x≦1.5)などが、化合物半導体としてはII族元素とVI族元素を用いた半導体などが、それぞれ挙げられる。
Examples of the carbonized compound include chromium carbide (1890 ° C), boron carbide (2763 ° C), vanadium carbide (2840 ° C), tungsten carbide (2870 ° C), molybdenum carbide (2687 ° C), titanium carbide (3170 ° C), and carbide. Examples thereof include zirconium (3500 ° C), niobium carbide (3500 ° C), tantalum carbide (3880 ° C), silicon carbide (2730 ° C), and bismuth titanate (1203 ° C).
Examples of the nitriding compound include niobium nitride (2573 ° C), titanium nitride (2930 ° C), tantalum nitride (3090 ° C), indium nitride (1100 ° C), gallium nitride (2500 ° C), indium nitride (1100 ° C), and gallium nitride (1100 ° C). 2500 ° C), boron nitride (2967 ° C), aluminum nitride (2200 ° C) and the like.
Examples of the boron compound include boron (2076 ° C), aluminum boborated (1655 ° C), chromium boborated (2373 ° C), titanium boborated (2400 ° C), molybdenum boborized (2543 ° C), and tungsten boborated (2643 ° C). , Banadium Boron (2673 ° C), Zirconium Boron (3100 ° C), Magnesium Boron (800 ° C), Niob Boron (3000 ° C), Tantal Boron (3037 ° C) and the like.
Further, examples of the halogen compound include cerium fluoride (1800 ° C.), and hydroxyapatite as phosphoric acid compound (1650 ° C.). Examples of the lithium-based compound Li 2 S-P 2 S 5 , LiCoO 2, xLi 2 O -BPO 4 (0.5 ≤ x ≤ 1.5) and the like, and examples of the compound semiconductor include semiconductors using Group II elements and Group VI elements.

特に、透明性の高いコーティング膜形成材料として有用な固体微粒子としては、酸化ニッケル、四酸化三コバルト、酸化インジウムスズ、酸化マグネシウム、酸化ジルコニウム、窒化アルミニウム、硼化マグネシウム、窒化珪素、炭化珪素、フッ化セリウム等を挙げることができる。 In particular, solid fine particles useful as a highly transparent coating film forming material include nickel oxide, tricobalt tetraoxide, indium tin oxide, magnesium oxide, zirconium oxide, aluminum nitride, magnesium boron oxide, silicon nitride, silicon carbide, and foot. Examples thereof include cerium dioxide.

固体電解質型燃料電池電解質材料として有用な固体微粒子としては、酸化スカンジウム、酸化ネオジウム、酸化ガドリニウム、酸化サマリウム(2300℃)、酸化イットリウム、酸化ネオジウム、酸化スカンジウム、LiCoO2、硫化リチウム系化合物等を挙げることができる。
硫化リチウム系化合物の具体例として、Li2S−P25、Li2S−P25−LiI、Li2S−P25−LiCl、Li2S−P25−LiBr、Li2S−P25−Li2O、Li2S−P25−Li2O−LiI、Li2S−SiS2、Li2S−SiS2−LiI、Li2S−SiS2−LiBr、Li2S−SiS2−LiCl、Li2S−SiS2−B23−LiI、Li2S−SiS2−P25−LiI、Li2S−B23、Li2S−P25−ZmSn(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか。)、Li2S−GeS2、Li2S−SiS2−Li3PO4、Li2S−SiS2−LixMOy(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか。)、Li10GeP212、xLi2O−BPO4(0.5≦x≦1.5)、Lix1-x/3PO4(0.75≦x<3)等を挙げることができる。
Examples of solid fine particles useful as a solid electrolyte fuel cell electrolyte material include scandium oxide, neodium oxide, gadolinium oxide, samarium oxide (2300 ° C.), yttrium oxide, neodium oxide, scandium oxide, LiCoO 2 , and lithium sulfide compounds. be able to.
Specific examples of the lithium sulfide-based compound, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr , Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2- LiBr, Li 2 S-SiS 2- LiCl, Li 2 S-SiS 2- B 2 S 3- LiI, Li 2 S-SiS 2- P 2 S 5- LiI, Li 2 SB 2 S 3 , Li 2 SP 2 S 5- ZmSn (where m and n are positive numbers. Z is any of Ge, Zn or Ga), Li 2 S-GeS 2 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2 -Li x MO y (where x, y are positive numbers, M is any of P, Si, Ge, B, Al, Ga, In), Li 10 GeP 2 S 12 , xLi 2 O-BPO 4 (0.5 ≦ x ≦ 1.5), Li x B 1-x / 3 PO 4 (0.75 ≦ x <3) and the like can be mentioned.

発光ダイオードや光応答半導体材料として有用な固体微粒子としては、窒化インジウム、窒化ガリウム、窒化アルミニウム、II族元素とVI族元素を用いた半導体等を挙げることができる。
II族元素とVI族元素を用いた半導体の具体例として、CuInSe2、CuInS2(CIS)、CuIn1-xGaxSe2(CIGS)、Cu2ZnSnS4(CZTS)、CdTe系半導体等を挙げることができる。
Examples of solid fine particles useful as light emitting diodes and photoresponsive semiconductor materials include indium nitride, gallium nitride, aluminum nitride, semiconductors using Group II elements and Group VI elements, and the like.
Specific examples of semiconductors using Group II elements and Group VI elements include CuInSe 2 , CuInS 2 (CIS), CuIn 1-x Ga x Se 2 (CIGS), Cu 2 ZnSnS 4 (CZTS), and CdTe semiconductors. Can be mentioned.

抵抗体膜形成材料として有用な固体微粒子としては、四酸化三鉄、酸化コバルト、酸化ニッケル、酸化レニウム、酸化イリジウム、酸化ルテニウ ム、フェライト、酸化物セラミックス等を挙げることができる。
酸化物セラミックスの具体例として、SrVO3、CaVO3、LaTiO3、SrMoO3、CaMoO3、SrCrO3、CaCrO3、LaVO3、GdVO3、SrMnO3、CaMnO3、NiCrO3、BiCrO3、LaCrO3、LnCrO3、SrRuO3、CaRuO3、SrFeO3、BaRuO3、LaMnO3、LnMnO3、LaFeO3、LnFeO3、LaCoO3、LaRhO3、LaNiO3、PbRuO3、Bi2Ru27、LaTaO3、BiRuO3、LaB6等を挙げることができる。
Examples of solid fine particles useful as a resistor film-forming material include triiron tetroxide, cobalt oxide, nickel oxide, renium oxide, iridium oxide, ruthenium oxide, ferrite, and oxide ceramics.
Specific examples of the oxide ceramics, SrVO 3, CaVO 3, LaTiO 3, SrMoO 3, CaMoO 3, SrCrO 3, CaCrO 3, LaVO 3, GdVO 3, SrMnO 3, CaMnO 3, NiCrO 3, BiCrO 3, LaCrO 3, LnCrO 3, SrRuO 3, CaRuO 3 , SrFeO 3, BaRuO 3, LaMnO 3, LnMnO 3, LaFeO 3, LnFeO 3, LaCoO 3, LaRhO 3, LaNiO 3, PbRuO 3, Bi 2 Ru 2 O 7, LaTaO 3, BiRuO 3 , LaB 6 and the like can be mentioned.

超電導材料として有用な固体微粒子としては、YBa系酸化物、BiSrCa系酸化物、TlBaCa系酸化物等を挙げることができる。
圧電セラミックス厚膜材料として有用な固体微粒子としては、酸化マグネシウム、三酸化二マンガン、四酸化三マンガン、酸化マンガン、酸化バリウム、酸化ストロンチウム、チタン酸バリウム、ハイドロキシアパタイト等を挙げることができる。
Examples of solid fine particles useful as superconducting materials include YBa-based oxides, BiSrCa-based oxides, and TlBaCa-based oxides.
Examples of the solid fine particles useful as the piezoelectric ceramic thick film material include magnesium oxide, dimanganese trioxide, trimanganese tetraoxide, manganese oxide, barium oxide, strontium oxide, barium titanate, and hydroxyapatite.

誘電体膜材料として有用な固体微粒子としては、酸化チタン、シリカ、窒化アルミニウム、酸化マグネシウム、チタン酸バリウム、チタン酸ジルコン酸鉛、酸化物セラミックス等を上げることができる。
酸化物セラミックスの具体例として、PbTiO3、PbZrO3、Pb(Zr1-xTix)O3(0≦x≦1)の一般式で示されるPZT、(Pb1-yLay)(Zr1-xTix)O3(0≦x、y≦1)の一般式で示されるPLZT、Pb(Mg1/3Nb2/3)O3、Pb(Ni1/3Nb2/3)O3、Pb(Zn1/3Nb2/3)O3、BaTiO3、BaTi49、Ba2Ti920、Ba(Zn1/3Ta2/3)O3、Ba(Zn1/3Nb2/3)O3、Ba(Mg1/3Ta2/3)O3、Ba(Mg1/3Ta2/3)O3、Ba(Co1/3Ta2/3)O3、Ba(Co1/3Nb2/3)O3、Ba(Ni1/3Ta2/3)O3、Ba(Zr1-xTix)O3、(Ba1-xSrx)TiO3、ZrSnTiO4、CaTiO3、MgTiO3、SrTiO3等を挙げることができる。
Examples of the solid fine particles useful as the dielectric film material include titanium oxide, silica, aluminum nitride, magnesium oxide, barium titanate, lead zirconate titanate, and oxide ceramics.
Specific examples of the oxide ceramics, PbTiO 3, PbZrO 3, Pb (Zr 1-x Ti x) O 3 (0 ≦ x ≦ 1) PZT represented by the general formula, (Pb 1-y La y ) (Zr 1-x Ti x ) O 3 (0 ≦ x, y ≦ 1) PLZT, Pb (Mg 1/3 Nb 2/3 ) O 3 , Pb (Ni 1/3 Nb 2/3 ) O 3 , Pb (Zn 1/3 Nb 2/3 ) O 3 , BaTiO 3 , BaTi 4 O 9 , Ba 2 Ti 9 O 20 , Ba (Zn 1/3 Ta 2/3 ) O 3 , Ba (Zn 1) / 3 Nb 2/3 ) O 3 , Ba (Mg 1/3 Ta 2/3 ) O 3 , Ba (Mg 1/3 Ta 2/3 ) O 3 , Ba (Co 1/3 Ta 2/3 ) O 3 , Ba (Co 1/3 Nb 2/3 ) O 3 , Ba (Ni 1/3 Ta 2/3 ) O 3 , Ba (Zr 1-x Ti x ) O 3 , (Ba 1-x Sr x ) it can be exemplified TiO 3, ZrSnTiO 4, CaTiO 3 , MgTiO 3, SrTiO 3 or the like.

微粒子結合材料として有用な固体微粒子としては、コージエライト、アノーサイト、ゲーレナイト、カルシウム・アルミネート、リチウムアルミネート、アルミン酸ストロンチウム、ムライト、アルミン酸イットリウム、スピネル、窒化アルミニウム等を挙げることができる。 Examples of solid fine particles useful as a fine particle binding material include cordierite, anorite, gerenite, calcium / aluminate, lithium aluminate, strontium aluminate, mullite, yttrium aluminate, spinel, and aluminum nitride.

本発明において、超短パルスレーザ光を照射する方法には、大きく2つある。1つは、金属を析出させる透明基板を通し照射する方法と、もう1つは、溶液を介し基板表面に照射する方法である。前者の場合には、溶液と通過しないため、溶液中に分散している固体微粒子の影響を受けにくい。
後者の場合には、固体微粒子による溶液中での光吸収が小さければ、光損失や散乱が抑制され、より多くの固体微粒子を溶媒中に分散させることができ、かつ、析出した金属に効率的にレーザ光を吸収させることができると考えられ問題とならないが、逆に、光吸収が大きければ、光損失や散乱が起こりやすくなり、この場合は、固体微粒子の粒子径を変化させるか、溶液中の濃度を低くすることなどにより、析出金属へのレーザ光の照射が効率的になるように制御することが可能である。
In the present invention, there are roughly two methods for irradiating an ultrashort pulse laser beam. One is a method of irradiating through a transparent substrate on which metal is deposited, and the other is a method of irradiating the surface of the substrate through a solution. In the former case, since it does not pass through the solution, it is not easily affected by the solid fine particles dispersed in the solution.
In the latter case, if the light absorption in the solution by the solid fine particles is small, the light loss and scattering are suppressed, more solid fine particles can be dispersed in the solvent, and the precipitated metal is efficient. It is considered that the laser light can be absorbed, which is not a problem. On the contrary, if the light absorption is large, light loss and scattering are likely to occur. In this case, the particle size of the solid fine particles is changed or the solution is used. By lowering the concentration inside, it is possible to control the irradiation of the precipitated metal with laser light so that it becomes efficient.

<溶媒>
本発明で使用する溶液のための溶媒は、固体微粒子の分散に適したものであれば特に限定されない。トルエン等の有機溶媒に分散された固体微粒子を、アルコールと水の混合溶媒に再分散させるなど、使用に応じ溶媒を選択することができる。
本発明で使用する溶液の粘度は、特に限定されない。コアとなる金属を覆う固体微粒子の被覆を厚くしたい場合には、固体微粒子の濃度を高くすることが考えられ、そのような場合には、溶液の粘度は高くなる。
<Solvent>
The solvent for the solution used in the present invention is not particularly limited as long as it is suitable for dispersing solid fine particles. The solvent can be selected according to the use, for example, the solid fine particles dispersed in an organic solvent such as toluene are redispersed in a mixed solvent of alcohol and water.
The viscosity of the solution used in the present invention is not particularly limited. If it is desired to increase the coating of the solid fine particles covering the core metal, it is conceivable to increase the concentration of the solid fine particles, and in such a case, the viscosity of the solution becomes high.

<その他の成分>
溶液中には、固体微粒子の分散のために使用される分散剤など溶解するもの、レーザ光の照射を妨げるものでなければ含まれていても構わない。
<Other ingredients>
The solution may contain a dispersant used for dispersing solid fine particles or the like, as long as it does not interfere with the irradiation of laser light.

<レーザ>
本発明において、「超短パルスレーザ」とは、数フェムト秒(1フェムト秒は1×10-15秒、fsとも表記される。)〜数百ピコ秒(1ピコ秒は1×10-12秒、psとも表記される。)のパルス幅をもつパルスレーザである。
<Laser>
In the present invention, the "ultrashort pulse laser" is defined as several femtoseconds (1 femtosecond is also expressed as 1 × 10 -15 seconds, fs) to several hundred picoseconds (1 picosecond is 1 × 10 -12). It is a pulse laser having a pulse width of (seconds and ps).

本発明で使用する超短パルスレーザ光の平均出力は、10mW以上であるのが好ましい。
また、超短パルスレーザ光の集光径は、20μm以下であるのが好ましい。
超短パルスレーザ光の照射量および強度を制御することで、生成される金属コアの大きさを制御することが可能である。
また、超短パルスレーザ光の繰返し周波数は、1Hz〜500MHzであるのが好ましい。
The average output of the ultrashort pulse laser beam used in the present invention is preferably 10 mW or more.
The focused diameter of the ultrashort pulse laser light is preferably 20 μm or less.
By controlling the irradiation amount and intensity of the ultrashort pulse laser beam, it is possible to control the size of the generated metal core.
Further, the repetition frequency of the ultrashort pulse laser light is preferably 1 Hz to 500 MHz.

本発明で使用する超短パルスレーザ光の波長は、本発明で使用する金属イオン等により吸収される波長であって、モル吸光係数の高い波長であれば、特に限定されない。固体微粒子による吸収の少ない波長であれば、本発明による複合体の生成効率が更に良くなり好ましい。
具体的には、本発明で使用する超短パルスレーザ光の波長を、溶液に溶解した感光性の金属化合物の吸収波長に合わせて、例えば本発明で使用する金属のモル吸光係数が5l/mol・cm以上となるように選択するのが好ましいが、特にこれに限定されるものではない。
超短パルスレーザ光の波長は、200nm〜2000nmであるのが好ましい。
さらに、超短パルスレーザ光のフルエンス(単位面積に投入されるエネルギー)は、0.01mJ/cm2〜10mJ/cm2であるのが好ましい。
The wavelength of the ultrashort pulse laser beam used in the present invention is not particularly limited as long as it is a wavelength absorbed by the metal ion or the like used in the present invention and has a high molar extinction coefficient. If the wavelength is less absorbed by the solid fine particles, the efficiency of forming the complex according to the present invention is further improved, which is preferable.
Specifically, the wavelength of the ultrashort pulse laser light used in the present invention is matched with the absorption wavelength of the photosensitive metal compound dissolved in the solution, and the molar extinction coefficient of the metal used in the present invention is, for example, 5 l / mol. -It is preferable to select it so that it is cm or more, but it is not particularly limited to this.
The wavelength of the ultrashort pulse laser light is preferably 200 nm to 2000 nm.
Furthermore, (energy input to the unit area) fluence ultrashort pulsed laser light is preferably a 0.01mJ / cm 2 ~10mJ / cm 2 .

本発明は、溶液に基板を浸漬させる工程、及び基板の表面に沿って超短パルスレーザ光のビームスポットを移動させる工程をさらに含むものとすることができる。
本発明の他の実施形態を示す概念断面図である図3を参照して、基板はその一方の表面が溶液に浸漬されており、この状態で基板を走査方向に移動させることにより、基板の表面に沿って超短パルスレーザ光のビームスポットを移動させることができる。
超短パルスレーザ照射による溶液中での金属析出は、非線形光学吸収を介してレーザ集光点近傍でのみ起こる。このため、本発明では、基板の表面上だけでなく、基板から離れた溶液中の任意位置にレーザ焦点を配置し三次元的に走査することで、固体微粒子に被覆された三次元金属構造を製造することが可能である。すなわち、本発明は、溶液に基板を浸漬させる工程、及び基板の表面から、基板から離れた溶液中の所定の位置に超短パルスレーザ光のビームスポットを移動させる工程をさらに含むものとすることができる。
また、製造された複合体から金属コアをエッチング処理などにより除去することにより、固体微粒子からなる三次元構造を取り出すことも可能である。
The present invention may further include a step of immersing the substrate in the solution and a step of moving the beam spot of the ultrashort pulse laser beam along the surface of the substrate.
With reference to FIG. 3, which is a conceptual cross-sectional view showing another embodiment of the present invention, one surface of the substrate is immersed in a solution, and in this state, the substrate is moved in the scanning direction to obtain a substrate. The beam spot of the ultrashort pulse laser beam can be moved along the surface.
Metal precipitation in solution by ultrashort pulse laser irradiation occurs only near the laser focusing point via nonlinear optical absorption. Therefore, in the present invention, a three-dimensional metal structure coated with solid fine particles is formed by arranging a laser focus not only on the surface of the substrate but also at an arbitrary position in the solution away from the substrate and scanning three-dimensionally. It is possible to manufacture. That is, the present invention can further include a step of immersing the substrate in the solution and a step of moving the beam spot of the ultrashort pulse laser beam from the surface of the substrate to a predetermined position in the solution away from the substrate. ..
It is also possible to extract the three-dimensional structure composed of solid fine particles by removing the metal core from the produced composite by etching or the like.

<後処理>
本発明の製造方法により製造された複合体について、電気炉、炭酸ガスレーザ照射などによる熱処理を行うことにより、構造安定化を得ることが可能である。また、製造された複合体から金属コアをエッチング処理などにより除去することにより、被覆部分のみを取り出すことも可能である。
<Post-processing>
Structural stabilization can be obtained by heat-treating the composite produced by the production method of the present invention by an electric furnace, carbon dioxide laser irradiation, or the like. It is also possible to take out only the coated portion by removing the metal core from the manufactured composite by etching or the like.

以下に実施例により本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

(実施例1)
褐色ビン中に、純水6mlとエタノール10mlを入れ、硝酸銀溶液(1mol/l、純正化学株式会社)を4ml入れて、攪拌した。その後、シリカナノ粒子分散水溶液(Sigma-aldrich,LUDOX、TM-50、ナノ粒子粒径22nm、濃度50質量%)を0.7ml入れて、再度1時間撹拌した。この時のシリカの濃度は、2.5質量%であった。
褐色ビンから溶液をテフロン(登録商標)製の溶液ホルダーに移し、基板となるカバーガラスを、基板の一方表面がホルダー中の溶液と直接接触するようにホルダーに被せた。
次に、フェムト秒レーザ(C-Fiber780、MenloSystems Ltd.)を用いて、焦点が基板と溶液との接触面となるように調整し、中心波長780nm、繰返し周波数100MHz、パルス幅127fs、平均レーザ出力20mW、集光径(理論値)2μm、フルエンス6.4mJ/cm2の条件で照射した。
ホルダーを走査速度10μm/sで水平に動かすことで、基板表面に複合体が走査方向に連続的に形成された。
形成された複合体にカーボン保護膜をつけ、集束イオンビームで切片を切り出して形成された複合体の断面形状を顕微鏡観察した(図4)。半円の直径約2.5μm銀のコアとそれを覆う厚み約2.5μmのシリカナノ粒子による被覆が確認された。
(Example 1)
6 ml of pure water and 10 ml of ethanol were placed in a brown bottle, 4 ml of a silver nitrate solution (1 mol / l, Junsei Chemical Co., Ltd.) was placed, and the mixture was stirred. Then, 0.7 ml of a silica nanoparticle dispersion aqueous solution (Sigma-aldrich, LUDOX, TM-50, nanoparticle particle size 22 nm, concentration 50% by mass) was added, and the mixture was stirred again for 1 hour. The concentration of silica at this time was 2.5% by mass.
The solution was transferred from the brown bottle to a solution holder made of Teflon (registered trademark), and a cover glass to be a substrate was placed on the holder so that one surface of the substrate was in direct contact with the solution in the holder.
Next, a femtosecond laser (C-Fiber780, MenloSystems Ltd.) was used to adjust the focus so that it was the contact surface between the substrate and the solution, with a center wavelength of 780 nm, a repetition frequency of 100 MHz, a pulse width of 127 fs, and an average laser output. Irradiation was performed under the conditions of 20 mW, a focused diameter (theoretical value) of 2 μm, and a fluence of 6.4 mJ / cm 2 .
By moving the holder horizontally at a scanning speed of 10 μm / s, a composite was continuously formed on the substrate surface in the scanning direction.
A carbon protective film was attached to the formed composite, and sections were cut out with a focused ion beam, and the cross-sectional shape of the formed composite was observed under a microscope (FIG. 4). It was confirmed that the semicircle was covered with a silver core having a diameter of about 2.5 μm and silica nanoparticles having a thickness of about 2.5 μm covering the core.

(実施例2)
実施例1において、シリカナノ粒子分散水溶液に代えて酸化チタンナノ粒子分散水溶液(NTB-1、昭和電工株式会社、ナノ粒子粒径10〜20nm(カタログ値)、濃度15質量%)を1.9ml使用したこと以外は、実施例1と同じ条件で、溶液の分散及びレーザ光照射を行った。この時の酸化チタン濃度は、1.5質量%であった。
形成された複合体の断面形状を顕微鏡観察したところ、半円の直径約5μm銀のコアとそれを覆う厚み約5μmの酸化チタンナノ粒子による被覆が確認された(図5)。
(Example 2)
In Example 1, 1.9 ml of a titanium oxide nanoparticle dispersion aqueous solution (NTB-1, Showa Denko Co., Ltd., nanoparticle particle size 10 to 20 nm (catalog value), concentration 15% by mass) was used instead of the silica nanoparticle dispersion aqueous solution. Except for this, the solution was dispersed and the laser beam was irradiated under the same conditions as in Example 1. The titanium oxide concentration at this time was 1.5% by mass.
When the cross-sectional shape of the formed composite was observed under a microscope, it was confirmed that a semicircular silver core having a diameter of about 5 μm and a titanium oxide nanoparticles having a thickness of about 5 μm covering the core were coated (FIG. 5).

(実施例3〜7)
実施例1において、シリカナノ粒子に代えて、表1に示す様々な種類の固体微粒子を使用して、実施例1と同じ条件で、溶液の分散及びレーザ光照射を行った。
いずれの実施例においても、実施例1の場合と同様に、複合体の形成が確認された。
(Examples 3 to 7)
In Example 1, instead of silica nanoparticles, various types of solid fine particles shown in Table 1 were used to disperse the solution and irradiate the laser beam under the same conditions as in Example 1.
In each of the examples, the formation of the complex was confirmed as in the case of Example 1.

*アパタイト及び窒化ホウ素の粒子径は、BET法での見積りによる。
*酸化亜鉛及びアルミナの粒子径は、TEM観察による。
* The particle size of apatite and boron nitride is estimated by the BET method.
* The particle size of zinc oxide and alumina is determined by TEM observation.

(実施例8)
ホルダーの走査速度を30μm/s、酸化チタン濃度は、1.5質量%とし、平均レーザ出力を15mW、25mW、30mWと変化させたこと以外は、実施例2と同じ条件で、溶液の分散及びレーザ光照射を行った。
得られた複合体の断面を顕微鏡観察して、酸化チタンによる被膜の断面積と平均レーザ出力との関係を図6に整理した。
図6から、レーザ出力が増加するにしたがって、大きな断面積を有する複合体が得られることがわかる。
(Example 8)
The solution was dispersed and the solution was dispersed under the same conditions as in Example 2 except that the scanning speed of the holder was 30 μm / s, the titanium oxide concentration was 1.5% by mass, and the average laser output was changed to 15 mW, 25 mW, and 30 mW. Laser light irradiation was performed.
The cross section of the obtained composite was observed under a microscope, and the relationship between the cross-sectional area of the titanium oxide coating and the average laser output was arranged in FIG.
From FIG. 6, it can be seen that as the laser output increases, a complex having a larger cross-sectional area is obtained.

(実施例9〜12)
実施例6において、平均レーザ出力を25mWに固定し、1.5質量%であった酸化チタン濃度を0.8質量%(実施例9)、0.3質量%(実施例10)、0.2質量%(実施例11)、0.01質量%(実施例12)と減少させて、実施例6と同様に、溶液の分散及びレーザ光照射を行った。
得られた複合体の断面を顕微鏡観察した。
酸化チタンによる被膜の断面積と、酸化チタン濃度との関係を図7に整理した。
図7から、酸化チタン濃度を変化させると断面積が変化するものの、濃度が0.1質量%以上であれば、低い酸化チタン濃度であっても良好な複合体が得られていることがわかる。
(Examples 9 to 12)
In Example 6, the average laser output was fixed at 25 mW, and the titanium oxide concentration, which was 1.5% by mass, was changed to 0.8% by mass (Example 9), 0.3% by mass (Example 10), and 0. The concentration was reduced to 2% by mass (Example 11) and 0.01% by mass (Example 12), and the solution was dispersed and laser light irradiation was performed in the same manner as in Example 6.
The cross section of the obtained complex was observed under a microscope.
The relationship between the cross-sectional area of the titanium oxide film and the titanium oxide concentration is summarized in FIG.
From FIG. 7, it can be seen that although the cross-sectional area changes when the titanium oxide concentration is changed, if the concentration is 0.1% by mass or more, a good composite is obtained even at a low titanium oxide concentration. ..

(実施例13〜15)
実施例2において、酸化チタン濃度を1.5質量%とし、ナノ粒子粒径をさらに大きいものとしたこと以外は、実施例2と同じ条件で、溶液の分散及びレーザ光照射を行った。
ナノ粒子粒径を0.1μm(実施例13)、0.5μm(実施例14)、1.0μm(実施例15)とした場合に得られた複合体の断面を顕微鏡観察した結果、いずれの場合も被覆層が形成された良好な複合体が得られていることが確認された。
(実施例16〜19)
実施例1の硝酸銀溶液(1mol/l)4mlを、硫酸銅(実施例16)、テトラクロロ金(III)酸四水和物(実施例17)、硫酸ニッケル(実施例18)、硝酸鉛(II)(実施例19)、各水溶液(1mol/l)4mlに置き換え、褐色ビン中で、純水6mlとエタノール10mlと共に攪拌した。その後、シリカナノ粒子分散水溶液(Sigma-aldrich,LUDOX、TM-50、ナノ粒子粒径22nm、濃度50質量%)を0.7ml入れて、再度1時間撹拌し、実施例1と同じ条件で、溶液の分散及びレーザ光照射を行った。この時のシリカの濃度は、2.5質量%であった。
実施例16〜19のいずれの場合にもシリカ微粒子の集積が確認され、断面の顕微鏡観察においても、被覆層が形成された良好な複合体が得られていることが確認された。
(Examples 13 to 15)
In Example 2, the solution was dispersed and the laser beam was irradiated under the same conditions as in Example 2 except that the titanium oxide concentration was 1.5% by mass and the nanoparticle particle size was further increased.
As a result of microscopic observation of the cross sections of the obtained composites when the nanoparticle particle size was 0.1 μm (Example 13), 0.5 μm (Example 14), and 1.0 μm (Example 15), any of them. In this case as well, it was confirmed that a good complex in which the coating layer was formed was obtained.
(Examples 16 to 19)
4 ml of silver nitrate solution (1 mol / l) of Example 1 was added to copper sulfate (Example 16), tetrachlorogold (III) acid tetrahydrate (Example 17), nickel sulfate (Example 18), lead nitrate (Example 18). II) (Example 19) was replaced with 4 ml of each aqueous solution (1 mol / l), and the mixture was stirred with 6 ml of pure water and 10 ml of ethanol in a brown bottle. Then, 0.7 ml of a silica nanoparticle dispersion aqueous solution (Sigma-aldrich, LUDOX, TM-50, nanoparticle particle size 22 nm, concentration 50% by mass) was added, and the mixture was stirred again for 1 hour, and the solution was prepared under the same conditions as in Example 1. And the laser beam irradiation was performed. The concentration of silica at this time was 2.5% by mass.
Accumulation of silica fine particles was confirmed in all of Examples 16 to 19, and it was confirmed by microscopic observation of the cross section that a good composite in which a coating layer was formed was obtained.

Claims (14)

金属のイオン、コロイド、及び/または錯体を含む溶液に、超短パルスレーザ光を照射することで金属を析出させ、前記溶液中に分散された、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子からなる固体微粒子を、前記析出した金属に被覆する工程を含むことを特徴とする、固体微粒子で被覆された金属を含む複合体の製造方法。 Metal is precipitated by irradiating a solution containing metal ions, colloids, and / or complexes with ultrashort pulse laser light, and metal oxide particles, non-metal oxide particles, or non-metal oxide particles dispersed in the solution. A method for producing a composite containing a metal coated with solid fine particles, which comprises a step of coating the precipitated metal with solid fine particles composed of ceramic particles. 前記金属が、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれることを特徴とする、請求項1に記載の製造方法。 The production method according to claim 1, wherein the metal is selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold. 前記固体微粒子の融点が500℃〜3500℃であることを特徴とする、請求項1又は請求項2に記載の製造方法。 The production method according to claim 1 or 2, wherein the solid fine particles have a melting point of 500 ° C. to 3500 ° C. 前記固体微粒子が、0.005μm〜1μmの直径を有することを特徴とする、請求項1〜請求項3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the solid fine particles have a diameter of 0.005 μm to 1 μm. 前記固体微粒子の前記溶液中の濃度が、0.01質量%〜3.0質量%であることを特徴とする、請求項1〜請求項4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the concentration of the solid fine particles in the solution is 0.01% by mass to 3.0% by mass. 前記超短パルスレーザ光の波長が200nm〜2000nmであることを特徴とする、請求項1〜請求項5のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the wavelength of the ultrashort pulse laser light is 200 nm to 2000 nm. 前記超短パルスレーザ光のフルエンスが0.01mJ/cm2〜10mJ/cm2であることを特徴とする、請求項1〜請求項6のいずれか1項に記載の製造方法。The ultrasonic fluence of the short pulsed laser beam is characterized by a 0.01mJ / cm 2 ~10mJ / cm 2 , the production method according to any one of claims 1 to 6. 前記超短パルスレーザ光の繰返し周波数が1Hz〜500MHzであることを特徴とする、請求項1〜請求項7のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 7, wherein the repetition frequency of the ultrashort pulse laser light is 1 Hz to 500 MHz. 前記溶液に基板を浸漬させる工程、及び
前記基板の表面に沿って前記超短パルスレーザ光のビームスポットを移動させる工程
をさらに含むことを特徴とする、請求項1〜請求項8のいずれか1項に記載の製造方法。
Any one of claims 1 to 8, further comprising a step of immersing the substrate in the solution and a step of moving the beam spot of the ultrashort pulse laser beam along the surface of the substrate. The manufacturing method described in the section.
前記溶液に基板を浸漬させる工程、及び
前記基板の表面から、前記基板から離れた前記溶液中の所定の位置に前記超短パルスレーザ光のビームスポットを移動させる工程
をさらに含むことを特徴とする、請求項1〜請求項8のいずれか1項に記載の製造方法。
It further comprises a step of immersing the substrate in the solution and a step of moving the beam spot of the ultrashort pulse laser beam from the surface of the substrate to a predetermined position in the solution away from the substrate. , The manufacturing method according to any one of claims 1 to 8.
固体微粒子で被覆された金属を含む複合体であって、
前記金属は、溶液中に金属のイオン、コロイド、及び/または錯体として存在し、該溶液に超短パルスレーザ光を照射することで析出しうるものであり、
前記固体微粒子は、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子であり、
前記金属がコアを形成し、該コアがその内側に空洞を有する
ことを特徴とする、前記複合体。
A composite containing a metal coated with solid fine particles,
The metal exists in the solution as metal ions, colloids, and / or complexes, and can be precipitated by irradiating the solution with ultrashort pulse laser light.
The solid fine particles are metal oxide particles, non-metal oxide particles, or ceramic particles.
The complex, characterized in that the metal forms a core and the core has cavities within it.
前記金属が、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれることを特徴とする、請求項11に記載の複合体。 The composite according to claim 11, wherein the metal is selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold. 前記固体微粒子の融点が500℃〜3500℃であることを特徴とする、請求項11又は請求項12に記載の複合体。 The composite according to claim 11 or 12, wherein the solid fine particles have a melting point of 500 ° C. to 3500 ° C. 前記固体微粒子が、0.005μm〜1μmの直径を有することを特徴とする、請求項11〜請求項13のいずれか1項に記載の複合体。 The complex according to any one of claims 11 to 13, wherein the solid fine particles have a diameter of 0.005 μm to 1 μm.
JP2019549238A 2017-10-16 2018-10-12 Method for Producing Complex Containing Metal Coated with Solid Fine Particles Active JP6964898B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017200202 2017-10-16
JP2017200202 2017-10-16
PCT/JP2018/038040 WO2019078100A1 (en) 2017-10-16 2018-10-12 Method for producing composite including metal coated with solid microparticles

Publications (2)

Publication Number Publication Date
JPWO2019078100A1 true JPWO2019078100A1 (en) 2020-12-17
JP6964898B2 JP6964898B2 (en) 2021-11-10

Family

ID=66174392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019549238A Active JP6964898B2 (en) 2017-10-16 2018-10-12 Method for Producing Complex Containing Metal Coated with Solid Fine Particles

Country Status (3)

Country Link
JP (1) JP6964898B2 (en)
TW (1) TWI785130B (en)
WO (1) WO2019078100A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172972A1 (en) * 2021-02-09 2022-08-18 国立大学法人山形大学 Method for producing composite by laser irradiation, and composite
CN113122747B (en) * 2021-04-22 2021-11-16 合肥工业大学 Cu- (WC-Y) with excellent mechanical property2O3) Method for preparing composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311764A (en) * 1999-04-26 2000-11-07 Tokin Corp Surge absorbing element, and manufacture thereof
JP2005342601A (en) * 2004-06-02 2005-12-15 Univ Kanagawa Visible light-responsive photocatalyst and manufacturing method therefor
JP2008000654A (en) * 2006-06-21 2008-01-10 3R Corp Manufacturing method of nanoparticle with a particle size of 200 nm or less
WO2008114866A1 (en) * 2007-03-22 2008-09-25 Hitachi Chemical Co., Ltd. Fine metal particle, process for producing the same, dispersion of fine metal particles, and process for producing the same
WO2011058976A1 (en) * 2009-11-11 2011-05-19 国立大学法人名古屋大学 Process for producing hollow nanoparticles, hollow nanoparticles, and dispersion thereof
US20120168669A1 (en) * 2011-01-03 2012-07-05 Imra America, Inc Composite nanoparticles and methods for making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311764A (en) * 1999-04-26 2000-11-07 Tokin Corp Surge absorbing element, and manufacture thereof
JP2005342601A (en) * 2004-06-02 2005-12-15 Univ Kanagawa Visible light-responsive photocatalyst and manufacturing method therefor
JP2008000654A (en) * 2006-06-21 2008-01-10 3R Corp Manufacturing method of nanoparticle with a particle size of 200 nm or less
WO2008114866A1 (en) * 2007-03-22 2008-09-25 Hitachi Chemical Co., Ltd. Fine metal particle, process for producing the same, dispersion of fine metal particles, and process for producing the same
WO2011058976A1 (en) * 2009-11-11 2011-05-19 国立大学法人名古屋大学 Process for producing hollow nanoparticles, hollow nanoparticles, and dispersion thereof
US20120168669A1 (en) * 2011-01-03 2012-07-05 Imra America, Inc Composite nanoparticles and methods for making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梅津寛、阿部祐真、西山宏昭: "酸化チタンナノ粒子含有溶液中でのフェムト秒レーザ金属造形の高速化", 日本機械学会第7回マイクロ・ナノ工学シンポジウム講演論文集, JPN6019000279, 21 October 2015 (2015-10-21), JP, pages 3 - 35, ISSN: 0004501321 *

Also Published As

Publication number Publication date
WO2019078100A1 (en) 2019-04-25
TWI785130B (en) 2022-12-01
JP6964898B2 (en) 2021-11-10
TW201936932A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
Palneedi et al. Laser irradiation of metal oxide films and nanostructures: applications and advances
Mao et al. Environmentally friendly methodologies of nanostructure synthesis
JP4670017B2 (en) Thermoelectric conversion element and thermoelectric conversion module
Singh et al. Laser irradiance and wavelength-dependent compositional evolution of inorganic ZnO and ZnOOH/organic SDS nanocomposite material
JP5537402B2 (en) Thermoelectric conversion material
Haider et al. A comprehensive review on pulsed laser deposition technique to effective nanostructure production: Trends and challenges
JP6964898B2 (en) Method for Producing Complex Containing Metal Coated with Solid Fine Particles
Vidya et al. Synthesis, characterization, and low temperature sintering of nanostructured BaWO 4 for optical and LTCC applications
Cabello-Guzmán et al. Preliminary evaluation of the up-conversion emission of Y2O3: Er-Yb thin films prepared by a solid state photochemical deposition method
Siuzdak et al. Review on robust laser light interaction with titania–Patterning, crystallisation and ablation processes
Jones et al. Direct laser writing of copper and copper oxide structures on plastic substrates for memristor devices
Liu et al. Fabrication and characteristics of rutile TiO2 nanoparticles induced by laser ablation
JP4729737B2 (en) Zinc-containing compounds
JP5892671B2 (en) Bonded structure of rock salt type oxide nanoparticles having cubic shape or quadrangular prism shape and fine metal particles, and method for producing the same
Gondal et al. Synthesis and characterization of copper oxides nanoparticles via pulsed laser ablation in liquid
RU2433948C1 (en) Method of laser deposition of nanoparticles from solutions
Balaji et al. Preparation and characterization of CuSn, CuZr, SnZr and CuSnZr thin films deposited by SILAR method
KR101212193B1 (en) Transparent conductive zno thin films prepared by electrospraying method
JP3032827B1 (en) Manufacturing method of semiconductor thin film
Faisal et al. Synthesis of Colloidal Copper Oxide Nano particles using Pulsed Nd: YAG Laser Ablation in Liquid
Ivanov et al. Confined-plume chemical deposition
Shahid et al. Metal oxides for optoelectronic and photonic applications: A general introduction
Saiki et al. Electrical property of laser-sintered nanopastes with reduced metal nanoparticles prepared by laser ablation in liquids
WO2022172972A1 (en) Method for producing composite by laser irradiation, and composite
Sagadevan et al. Metal Oxides for Optoelectronics and Optics-Based Medical Applications

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20200406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6964898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150