JP4670017B2 - Thermoelectric conversion element and thermoelectric conversion module - Google Patents

Thermoelectric conversion element and thermoelectric conversion module Download PDF

Info

Publication number
JP4670017B2
JP4670017B2 JP2006511459A JP2006511459A JP4670017B2 JP 4670017 B2 JP4670017 B2 JP 4670017B2 JP 2006511459 A JP2006511459 A JP 2006511459A JP 2006511459 A JP2006511459 A JP 2006511459A JP 4670017 B2 JP4670017 B2 JP 4670017B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type thermoelectric
thin film
conversion material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006511459A
Other languages
Japanese (ja)
Other versions
JPWO2005093864A1 (en
Inventor
敏行 三原
良次 舟橋
純 明渡
創 馬場
祐史 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2005093864A1 publication Critical patent/JPWO2005093864A1/en
Application granted granted Critical
Publication of JP4670017B2 publication Critical patent/JP4670017B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Description

本発明は、熱電変換素子、熱電変換モジュール及び熱電変換方法に関する。   The present invention relates to a thermoelectric conversion element, a thermoelectric conversion module, and a thermoelectric conversion method.

我が国では、一次供給エネルギーからの有効なエネルギーの得率は30%程度であり、約70%ものエネルギーを熱として大気中に廃棄している。また、工場、ごみ焼却場などにおいて燃焼により生ずる熱も、他のエネルギーに変換されることなく大気中に廃棄されている。このように我々人類は、非常に多くの熱エネルギーを無駄に廃棄しており、化石エネルギーの燃焼等の行為から僅かなエネルギーしか獲得していない。   In Japan, the yield of effective energy from primary supply energy is about 30%, and about 70% of energy is discarded as heat into the atmosphere. In addition, heat generated by combustion in factories, garbage incinerators, and the like is discarded into the atmosphere without being converted into other energy. In this way, we humans are wasting a great deal of thermal energy, and have obtained little energy from actions such as burning fossil energy.

エネルギーの得率を向上させるためには、大気中に廃棄されている熱エネルギーを利用することが有効である。そのためには熱エネルギーを直接電気エネルギーに変換する熱電変換は効果的な手段と考えられる。熱電変換とはゼーベック効果を利用したものであり、熱電変換材料の両端に温度差をつけることで電位差を生じさせ、発電を行うエネルギー変換法である。   In order to improve the energy yield, it is effective to use thermal energy discarded in the atmosphere. For this purpose, thermoelectric conversion that directly converts thermal energy into electrical energy is considered an effective means. Thermoelectric conversion uses the Seebeck effect and is an energy conversion method in which a potential difference is generated by creating a temperature difference at both ends of a thermoelectric conversion material to generate power.

このような熱電変換を利用する発電、即ち、熱電発電では、熱電変換材料の一端を廃熱により生じた高温部に配置し、もう一端を大気中に配置して、両端に外部抵抗を接続するだけで電気が得られ、一般の発電に必要なモーターやタービン等の可動装置は全く必要ない。このためコストも安く、燃焼等によるガスの排出も無く、熱電変換材料が劣化するまで継続的に発電を行うことができる。また熱電発電は高出力密度での発電が可能であるため、発電器(モジュール)そのものが小型、軽量化でき携帯電話やノート型パソコン等の移動用電源としても用いることが可能である。   In such power generation using thermoelectric conversion, that is, thermoelectric power generation, one end of the thermoelectric conversion material is disposed in a high temperature portion generated by waste heat, the other end is disposed in the atmosphere, and external resistance is connected to both ends. Electricity can be obtained by itself, and movable devices such as motors and turbines necessary for general power generation are not required at all. Therefore, the cost is low, gas is not discharged due to combustion, and power generation can be continuously performed until the thermoelectric conversion material deteriorates. In addition, since thermoelectric power generation can generate power with a high output density, the power generator (module) itself can be reduced in size and weight, and can be used as a mobile power source for mobile phones, notebook computers, and the like.

この様に、熱電発電は今後心配されるエネルギー問題の解決の一端を担うと期待されている。熱電発電を実現するためには、高い変換効率を有し、耐熱性、化学的耐久性等に優れた熱電変換材料により構成される熱電変換モジュールが必要となる。   In this way, thermoelectric power generation is expected to play a part in solving energy problems that are a concern in the future. In order to realize thermoelectric power generation, a thermoelectric conversion module having a high conversion efficiency and composed of a thermoelectric conversion material having excellent heat resistance, chemical durability, and the like is required.

これまでに高温・空気中で優れた熱電性能を示す物質として、CaCo等のCoO系層状酸化物が報告されており、熱電変換材料についての開発は、進行しつつある(例えば、下記非特許文献1参照)。So far, CoO 2 -based layered oxides such as Ca 3 Co 4 O 9 have been reported as substances exhibiting excellent thermoelectric performance in high temperature and air, and development of thermoelectric conversion materials is progressing ( For example, see Non-Patent Document 1 below).

しかしながら、熱電変換材料を用いて効率の良い熱電発電を実現するために必要となる熱電変換モジュール、すなわち発電器の開発が遅れているのが現状である。
R. Funahashiら、Jpn. J. Appl. Phys. 39, L1127 (2000).
However, the present situation is that development of a thermoelectric conversion module, that is, a generator required for realizing efficient thermoelectric power generation using a thermoelectric conversion material is delayed.
R. Funahashi et al., Jpn. J. Appl. Phys. 39, L1127 (2000).

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、熱電発電を実現するために必要な高い変換効率を有し、且つ熱的安定性、化学的耐久性等に優れた熱電変換素子及び熱電変換モジュールを提供することである。   The present invention has been made in view of the above-described current state of the prior art, and its main purpose is to have high conversion efficiency necessary for realizing thermoelectric power generation, thermal stability, and chemical durability. It is providing the thermoelectric conversion element and thermoelectric conversion module excellent in property.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、特定の複合酸化物からなるp型熱電変換材料とn型熱電変換材料の薄膜を電気絶縁性基板上に形成し、p型熱電変換材料の一端とn型熱電変換材料の一端を電気的に接続することによって得られる素子は、高い変換効率と良好な導電性を有し、且つ熱的安定性、化学的耐久性等も良好であり、熱電変換素子として優れた性能を発揮し得るものであることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, a thin film of a p-type thermoelectric conversion material and an n-type thermoelectric conversion material made of a specific composite oxide is formed on an electrically insulating substrate, and one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material are electrically connected. The element obtained by connecting the elements has high conversion efficiency and good conductivity, and also has good thermal stability, chemical durability, etc., and can exhibit excellent performance as a thermoelectric conversion element. As a result, the present invention has been completed.

即ち、本発明は、下記の熱電変換素子、熱電変換モジュール及び熱電変換方法を提供するものである。
1. 電気絶縁性基板上に形成されたp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を電気的に接続してなる熱電変換素子であって、
(i)p型熱電変換材料が、
一般式(1):Ca Co (式中、Aは、 Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Bi、Yおよびランタノイドからなる群から選択される一種又は二種以上の元素であり、Aは、Ti、V、Cr、Mn、Fe、Ni、Cu、Ag、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、2.2≦a≦3.6;0≦b≦0.8;2.0≦c≦4.5;0≦d≦2.0;8≦e≦10である。)で表される複合酸化物、及び
一般式(2):BiPb Co (式中、Mは、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Ca、Sr、Ba、Al、Yおよびランタノイドからなる群から選択される一種又は二種以上の元素であり、Mは、Ti、V、Cr、Mn、Fe、Ni、Cu、Ag、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、1.8≦f≦2.2;0≦g≦0.4;1.8≦h≦2.2;1.6≦i≦2.2;0≦j≦0.5;8≦k≦10である。)で表される複合酸化物
からなる群から選ばれた少なくとも一種の酸化物であり、
(ii)n型熱電変換材料が、
一般式(3):Ln Ni (式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、Rは、Na、K、Sr、Ca及びBiからなる群から選択される一種又は二種以上の元素であり、Rは、Ti、V、Cr、Mn、Fe、Co、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、0.5≦m≦1.7;0≦n≦0.5;0.5≦p≦1.2;0≦q≦0.5;2.7≦r≦3.3である。)で表される複合酸化物、
一般式(4):(Ln Ni (式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、Rは、Na、K、Sr、Ca及びBiからなる群から選択される一種又は二種以上の元素であり、Rは、Ti、V、Cr、Mn、Fe、Co、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、0.5≦s≦1.2;0≦t≦0.5;0.5≦u≦1.2;0≦v≦0.5;3.6≦w≦4.4である。)で表される複合酸化物、
一般式(5):AZn(式中、AはGa又はAlであり、0≦x≦0.1;0.9≦y≦1;0.9≦z≦1.1である。)で表される酸化物、及び
一般式(6):SnxxInyyzz(式中、0≦xx≦1;0≦yy≦2;1.9≦zz≦3である。)で表される複合酸化物
からなる群から選ばれた少なくとも一種の酸化物である、
ことを特徴とする熱電変換素子。
2. p型熱電変換材料が、一般式:Ca Co (式中、Aは、 Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Bi、Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、2.2≦a≦3.6;0≦b≦0.8;8≦e≦10である。)で表される複合酸化物、及び一般式:BiPb Co(式中、Mは、Sr、Ca及びBaからなる群から選択される一種又は二種以上の元素であり、1.8≦f≦2.2;0≦g≦0.4;1.8≦h≦2.2;8≦k≦10である。)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物であり、
n型熱電変換材料が、一般式:Ln NiO(式中、Lnはランタノイド元素であり、Rは、Na、K、Sr、Ca及びBiからなる群から選択される一種又は二種以上の元素であり、0.5≦m≦1.2;0≦n≦0.5;2.7≦r≦3.3である。)で表される複合酸化物、一般式:(Ln NiO(式中、Lnはランタノイド元素であり、Rは、Na、K、Sr、Ca及びBi からなる群から選択される一種又は二種以上の元素であり、0.5≦s≦1.2;0≦t≦0.5;3.6≦w≦4.4である。)で表される複合酸化物、及び一般式 : Ln Ni q’r’(式中、Lnは、ランタノイド元素であり、Rは、Na、K、Sr、Ca、Bi及びNdからなる群から選択される少なくとも一種の元素であり、Rは、Ti、V、Cr、Mn、Fe、Co及びCuからなる群から選択される少なくとも一種の元素であり、0.5≦x≦1.2;0≦y≦0.5;0.5≦p≦1.2;0.01≦q’≦0.5;2.8≦r’≦3.2である。)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物である
上記項1に記載の熱電変換素子。
3. p型熱電変換材料の薄膜とn型熱電変換材料の薄膜を電気的に接続する方法が、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を直接接触させる方法、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を導電性材料を介して接触させる方法、又はp型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を直接接触させ、該接触部分を導電性材料で被覆する方法である
上記項1に記載の熱電変換素子。
4. p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、電気絶縁性基板の同一面又は異なる面に形成されたものである上記項1に記載の熱電変換材料。
5. 電気絶縁性基板が、プラスチック材料からなる基板である請求項1に記載の熱電変換材料。
6. 293K〜1073Kの温度範囲において、熱起電力が60μV/K以上である上記項1に記載の熱電変換素子。
7. 293K〜1073Kの温度範囲において、電気抵抗が1KΩ以下である上記項1に記載の熱電変換素子。
8. 上記項1に記載された熱電変換素子を複数個用い、一個の熱電変換素子のp型熱電変換材料の未接合の端部を、他の熱電変換素子のn型熱電変換材料の未接合の端部に接続する方法で複数の熱電変換素子を直列に接続してなる熱電変換モジュール。
9. 上記項8に記載の熱電発電モジュールの一端を高温部に配置し、他端を低温部に配置することを特徴とする熱電変換方法。
That is, the present invention provides the following thermoelectric conversion element, thermoelectric conversion module, and thermoelectric conversion method.
1. A thermoelectric conversion element formed by electrically connecting a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material formed on an electrically insulating substrate,
(I) The p-type thermoelectric conversion material is
General formula (1): Ca a A 1 b Co c A 2 d O e (where A 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, One or more elements selected from the group consisting of Sr, Ba, Al, Bi, Y and lanthanoids, and A 2 is Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, One or more elements selected from the group consisting of W, Nb and Ta, 2.2 ≦ a ≦ 3.6; 0 ≦ b ≦ 0.8; 2.0 ≦ c ≦ 4.5; 0 ≦ d ≦ 2.0; 8 ≦ e ≦ And a composite oxide represented by the general formula (2): Bi f Pb g M 1 h Co i M 2 j O k (wherein M 1 represents Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y and one or more elements selected from the group consisting of lanthanoids, M 2 is Ti, One or two or more selected from the group consisting of V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb and Ta The above element is 1.8 ≦ f ≦ 2.2; 0 ≦ g ≦ 0.4; 1.8 ≦ h ≦ 2.2; 1.6 ≦ i ≦ 2.2; 0 ≦ j ≦ 0.5; 8 ≦ k ≦ 10. At least one oxide selected from the group consisting of oxides;
(Ii) n-type thermoelectric conversion material
Formula (3): Ln m R 1 n Ni p R 2 q O r ( wherein, Ln is one or more elements selected from lanthanide, R 1 is, Na, K, Sr, Ca And two or more elements selected from the group consisting of Bi and Bi, and R 2 is selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Ta Or a combination of two or more elements, 0.5 ≦ m ≦ 1.7; 0 ≦ n ≦ 0.5; 0.5 ≦ p ≦ 1.2; 0 ≦ q ≦ 0.5; 2.7 ≦ r ≦ 3.3. object,
General formula (4): (Ln s R 3 t ) 2 Ni u R 4 v O w (wherein Ln is one or more elements selected from lanthanoids, and R 3 represents Na, K, One or more elements selected from the group consisting of Sr, Ca and Bi, and R 4 is a group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Ta One or two or more elements selected from the following: 0.5 ≦ s ≦ 1.2; 0 ≦ t ≦ 0.5; 0.5 ≦ u ≦ 1.2; 0 ≦ v ≦ 0.5; 3.6 ≦ w ≦ 4.4. Complex oxides,
Oxidation represented by general formula (5): A x Zn y O z (wherein A is Ga or Al, 0 ≦ x ≦ 0.1; 0.9 ≦ y ≦ 1; 0.9 ≦ z ≦ 1.1). And a group consisting of complex oxides represented by general formula (6): Sn xx In yy O zz (where 0 ≦ xx ≦ 1; 0 ≦ yy ≦ 2; 1.9 ≦ zz ≦ 3). Is at least one oxide selected from
The thermoelectric conversion element characterized by the above-mentioned.
2. The p-type thermoelectric conversion material has a general formula: Ca a A 1 b Co 4 O e (where A 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb) , Sr, Ba, Al, Bi, Y and one or more elements selected from the group consisting of lanthanoids, 2.2 ≦ a ≦ 3.6; 0 ≦ b ≦ 0.8; 8 ≦ e ≦ 10) And a general formula: Bi f Pb g M 1 h Co 2 O k (wherein M 1 is one or more elements selected from the group consisting of Sr, Ca and Ba) 1.8 ≦ f ≦ 2.2; 0 ≦ g ≦ 0.4; 1.8 ≦ h ≦ 2.2; 8 ≦ k ≦ 10)) at least one oxide selected from the group consisting of complex oxides Yes,
The n-type thermoelectric conversion material is represented by the general formula: Ln m R 1 n NiO r (wherein Ln is a lanthanoid element and R 1 is a kind selected from the group consisting of Na, K, Sr, Ca and Bi) 2 or more elements, 0.5 ≦ m ≦ 1.2; 0 ≦ n ≦ 0.5; 2.7 ≦ r ≦ 3.3)), a composite oxide represented by the general formula: (Ln s R 3 t ) 2 NiO w (Wherein Ln is a lanthanoid element, R 3 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi, 0.5 ≦ s ≦ 1.2; 0 ≦ t ≦ 0.5; 3.6 ≦ w ≦ 4.4), and a general formula: Ln x R 5 y Ni p R 6 q ′ O r ′ (where Ln is a lanthanoid element; R 5 is at least one element selected from the group consisting of Na, K, Sr, Ca, Bi and Nd, and R 6 is a group consisting of Ti, V, Cr, Mn, Fe, Co and Cu. At least one element selected from the following: 0.5 ≦ x ≦ 1.2; 0 ≦ y ≦ 0.5; 0.5 ≦ p ≦ 1.2; 0.01 ≦ q ′ ≦ 0.5; 2.8 ≦ r ′ ≦ 3.2. Item 2. The thermoelectric conversion element according to Item 1, which is at least one oxide selected from the group consisting of complex oxides.
3. A method of electrically connecting a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material is a method of directly contacting one end of a p-type thermoelectric conversion material thin film and one end of an n-type thermoelectric conversion material thin film, p-type thermoelectric A method in which one end of the conversion material thin film and one end of the n-type thermoelectric conversion material thin film are brought into contact with each other through a conductive material, or one end of the p-type thermoelectric conversion material thin film and one end of the n-type thermoelectric conversion material thin film are directly in contact with each other Item 2. The thermoelectric conversion element according to Item 1, which is a method of coating a portion with a conductive material.
4). Item 2. The thermoelectric conversion material according to Item 1, wherein the thin film of the p-type thermoelectric conversion material and the thin film of the n-type thermoelectric conversion material are formed on the same surface or different surfaces of the electrically insulating substrate.
5. The thermoelectric conversion material according to claim 1, wherein the electrically insulating substrate is a substrate made of a plastic material.
6). 2. The thermoelectric conversion element according to item 1, wherein the thermoelectromotive force is 60 μV / K or more in a temperature range of 293K to 1073K.
7). Item 2. The thermoelectric conversion element according to Item 1, wherein the electric resistance is 1 KΩ or less in a temperature range of 293K to 1073K.
8). A plurality of the thermoelectric conversion elements described in the above item 1 are used, and an unjoined end of the p-type thermoelectric conversion material of one thermoelectric conversion element is used as an unjoined end of the n-type thermoelectric conversion material of another thermoelectric conversion element. A thermoelectric conversion module formed by connecting a plurality of thermoelectric conversion elements in series by a method of connecting to a section.
9. 9. The thermoelectric conversion method according to claim 8, wherein one end of the thermoelectric power generation module according to item 8 is disposed in the high temperature portion and the other end is disposed in the low temperature portion.

本発明の熱電変換素子は、p型熱電変換材料とn型熱電変換材料として特定の複合酸化物を用い、これらの複合酸化物の薄膜を電気絶縁性基板上に形成し、p型熱電変換材料の一端とn型熱電変換材料の一端とを電気的に接続してなるものである。   The thermoelectric conversion element of the present invention uses a specific composite oxide as a p-type thermoelectric conversion material and an n-type thermoelectric conversion material, and a thin film of these composite oxides is formed on an electrically insulating substrate. And one end of the n-type thermoelectric conversion material are electrically connected.

この様な特定の複合酸化物を組み合わせて用いることによって、高い熱電変換効率と良好な電気伝導性を有する熱電変換素子を得ることができる。更に、薄膜状に形成することにより、各種の任意の形状の基板上に熱電変換素子を形成することが可能となり、多様な形状の熱電変換素子を容易に得ることができる。その結果、電子回路への組み込みや微細部分での利用など各種の応用が可能となる。さらにボイラーや自動車ラジエーターのように気流中で熱電変換モジュールを用いる場合、モジュールが気流を妨げ、圧損が生じないようにフィン型にする必要があるが、この様な用途においても薄膜状熱電素子が有効である。   By using such a specific composite oxide in combination, a thermoelectric conversion element having high thermoelectric conversion efficiency and good electrical conductivity can be obtained. Furthermore, by forming it in a thin film shape, it becomes possible to form thermoelectric conversion elements on substrates of various arbitrary shapes, and thermoelectric conversion elements of various shapes can be easily obtained. As a result, various applications such as incorporation into an electronic circuit and use in a fine part are possible. Furthermore, when a thermoelectric conversion module is used in an air current such as a boiler or an automobile radiator, it is necessary to use a fin type so that the module prevents the air current and pressure loss does not occur. It is valid.

以下、本発明で用いるp型熱電変換材料とn型熱電変換材料について説明する。   Hereinafter, the p-type thermoelectric conversion material and the n-type thermoelectric conversion material used in the present invention will be described.

p型熱電変換材料
p型熱電変換材料としては、下記一般式(1)で表される複合酸化物、及び一般式(2)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物を用いることができる:
一般式(1):Ca Co (式中、Aは、 Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Bi、Yおよびランタノイドからなる群から選択される一種又は二種以上の元素であり、Aは、Ti、V、Cr、Mn、Fe、Ni、Cu、Ag、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、2.2≦a≦3.6;0≦b≦0.8;2.0≦c≦4.5;0≦d≦2.0;8≦e≦10である。)、
一般式(2):BiPb Co (式中、Mは、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Ca、Sr、Ba、Al、Yおよびランタノイドからなる群から選択される一種又は二種以上の元素であり、Mは、Ti、V、Cr、Mn、Fe、Ni、Cu、Ag、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、1.8≦f≦2.2;0≦g≦0.4;1.8≦h≦2.2;1.6≦i≦2.2;0≦j≦0.5;8≦k≦10である。)。
p-type thermoelectric conversion material The p-type thermoelectric conversion material is at least one selected from the group consisting of a composite oxide represented by the following general formula (1) and a composite oxide represented by the general formula (2) Oxides can be used:
General formula (1): Ca a A 1 b Co c A 2 d O e (where A 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, One or more elements selected from the group consisting of Sr, Ba, Al, Bi, Y and lanthanoids, and A 2 is Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, One or more elements selected from the group consisting of W, Nb and Ta, 2.2 ≦ a ≦ 3.6; 0 ≦ b ≦ 0.8; 2.0 ≦ c ≦ 4.5; 0 ≦ d ≦ 2.0; 8 ≦ e ≦ 10)
Formula (2): Bi f Pb g M 1 h Co i M 2 j O k ( wherein, M 1 is, Na, K, Li, Ti , V, Cr, Mn, Fe, Ni, Cu, Zn, It is one or more elements selected from the group consisting of Pb, Ca, Sr, Ba, Al, Y and lanthanoids, and M 2 is Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, One or more elements selected from the group consisting of Mo, W, Nb, and Ta, 1.8 ≦ f ≦ 2.2; 0 ≦ g ≦ 0.4; 1.8 ≦ h ≦ 2.2; 1.6 ≦ i ≦ 2.2; 0 ≦ j ≦ 0.5; 8 ≦ k ≦ 10.)

上記一般式(1)及び(2)において、ランタノイドとしては、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を例示できる。   In the general formulas (1) and (2), examples of the lanthanoid include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

この様な一般式で表される複合酸化物は、Ca、Co及び0により構成されるCaCo0という組成比、又はBi、M1及び0により構成されるBiM1 4という組成比の岩塩型構造を有する層と、六つの0が一つのCoに八面体配位し、その八面体がお互いに辺を共有するように二次元的に配列したCo02層が交互に積層した構造を有するものであり、前者の場合、CaCo0のCaの一部がAで置換され、さらにこの層のCoの一部及びCo02層のCoの一部がA2によって置換されており、後者ではBiの一部がPb又はM1の一部で置換され、Coの一部がMによって置換されている。The composite oxide represented by such a general formula is called a composition ratio of Ca 2 Co 0 3 composed of Ca, Co and 0, or Bi 2 M 1 2 0 4 composed of Bi, M 1 and 0. Layers with a rock salt structure with a composition ratio and CoO 2 layers arranged two-dimensionally so that six 0's are octahedrally coordinated to one Co and the octahedrons share sides with each other In the former case, a part of Ca in Ca 2 CoO 3 is replaced with A 1 , and a part of Co in this layer and a part of Co in Co 0 2 layer are replaced with A 2 . In the latter, a part of Bi is substituted with a part of Pb or M 1 and a part of Co is substituted with M 2 .

これらの複合酸化物はp型熱電変換材料として高いゼーベック係数を有し、且つ電気伝導性も良好である。例えば、100K以上の温度で100μV/K程度以上のゼーベック係数と、50mΩcm程度以下、好ましくは30mΩcm程度以下の電気抵抗率を有し、温度の上昇とともにゼーベック係数が増加し、電気抵抗率が減少する傾向を示すものを得ることができる。   These composite oxides have a high Seebeck coefficient as a p-type thermoelectric conversion material and also have good electrical conductivity. For example, it has a Seebeck coefficient of about 100 μV / K or more at a temperature of 100 K or more and an electric resistivity of about 50 mΩcm or less, preferably about 30 mΩcm or less. As the temperature rises, the Seebeck coefficient increases and the electric resistivity decreases. The thing which shows a tendency can be obtained.

上記した複合酸化物の内で、好ましい酸化物の一例として、一般式:Ca Co (式中、Aは、 Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Bi、Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、2.2≦a≦3.6;0≦b≦0.8;8≦e≦10である。)で表される複合酸化物、及び一般式:BiPb Co(式中、Mは、Sr、Ca及びBaからなる群から選択される一種又は二種以上の元素であり、1.8≦f≦2.2;0≦g≦0.4;1.8≦h≦2.2;8≦k≦10である。)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物等を挙げることができる。これらの酸化物は、例えば、100K以上の温度で100μV/K程度以上のゼーベック係数と、100mΩcm程度以下の電気抵抗率を有し、温度の上昇とともにゼーベック係数が増加し、電気抵抗率が減少する傾向を示すものとすることができる。Among the above complex oxides, as an example of a preferable oxide, a general formula: Ca a A 1 b Co 4 O e (where A 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and one or more elements selected from the group consisting of lanthanoids, 2.2 ≦ a ≦ 3.6; 0 ≦ b ≦ 0.8; 8 ≦ e ≦ 10) and a general formula: Bi f Pb g M 1 h Co 2 O k (wherein M 1 is selected from the group consisting of Sr, Ca and Ba) One or more elements selected from the group consisting of complex oxides represented by: 1.8 ≦ f ≦ 2.2; 0 ≦ g ≦ 0.4; 1.8 ≦ h ≦ 2.2; 8 ≦ k ≦ 10) There may be mentioned at least one selected oxide. These oxides have, for example, a Seebeck coefficient of about 100 μV / K or more at a temperature of 100 K or more and an electric resistivity of about 100 mΩcm or less. As the temperature rises, the Seebeck coefficient increases and the electric resistivity decreases. It can be a trend.

n型熱電変換材料
n型熱電変換材料としては、下記一般式(3)で表される複合酸化物、一般式(4)で表される複合酸化物、一般式(5)で表される複合酸化物、及び一般式(6)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物を用いることができる:
一般式(3):Ln Ni (式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、Rは、Na、K、Sr、Ca及びBiからなる群から選択される一種又は二種以上の元素であり、Rは、Ti、V、Cr、Mn、Fe、Co、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、0.5≦m≦1.7;0≦n≦0.5;0.5≦p≦1.2;0≦q≦0.5;2.7≦r≦3.3である。)、
一般式(4):(Ln Ni (式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、Rは、Na、K、Sr、Ca及びBiからなる群から選択される一種又は二種以上の元素であり、Rは、Ti、V、Cr、Mn、Fe、Co、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、0.5≦s≦1.2;0≦t≦0.5;0.5≦u≦1.2;0≦v≦0.5;3.6≦w≦4.4である。)、
一般式(5):AZn(式中、AはGa又はAlであり、0≦x≦0.1;0.9≦y≦1;0.9≦z≦1.1である。)、
一般式(6):SnxxInyyzz(式中、0≦xx≦1;0≦yy≦2;1.9≦zz≦3である。)。
n-Type Thermoelectric Conversion Material As an n-type thermoelectric conversion material, a composite oxide represented by the following general formula (3), a composite oxide represented by the general formula (4), and a composite represented by the general formula (5) An oxide and at least one oxide selected from the group consisting of complex oxides represented by the general formula (6) can be used:
Formula (3): Ln m R 1 n Ni p R 2 q O r ( wherein, Ln is one or more elements selected from lanthanide, R 1 is, Na, K, Sr, Ca And two or more elements selected from the group consisting of Bi and Bi, and R 2 is selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Ta One or two or more elements, 0.5 ≦ m ≦ 1.7; 0 ≦ n ≦ 0.5; 0.5 ≦ p ≦ 1.2; 0 ≦ q ≦ 0.5; 2.7 ≦ r ≦ 3.3).
General formula (4): (Ln s R 3 t ) 2 Ni u R 4 v O w (wherein Ln is one or more elements selected from lanthanoids, and R 3 represents Na, K, One or more elements selected from the group consisting of Sr, Ca and Bi, and R 4 is a group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb and Ta 1 or two or more elements selected from: 0.5 ≦ s ≦ 1.2; 0 ≦ t ≦ 0.5; 0.5 ≦ u ≦ 1.2; 0 ≦ v ≦ 0.5; 3.6 ≦ w ≦ 4.4.
General formula (5): A x Zn y O z (wherein A is Ga or Al, 0 ≦ x ≦ 0.1; 0.9 ≦ y ≦ 1; 0.9 ≦ z ≦ 1.1),
General formula (6): Sn xx In yy O zz (where 0 ≦ xx ≦ 1; 0 ≦ yy ≦ 2; 1.9 ≦ zz ≦ 3).

尚、上記一般式において、ランタノイド元素としては、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu等を例示できる。また、一般式(3)において、m値は、0.5≦m≦1.7であり、0.5≦m≦1.2であることが好ましい。   In the above general formula, examples of lanthanoid elements include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Lu. Moreover, in General formula (3), m value is 0.5 <= m <= 1.7, and it is preferable that it is 0.5 <= m <= 1.2.

上記各一般式で表される複合酸化物は、負のゼーベック係数を有するものであり、該酸化物からなる材料の両端に温度差を生じさせた場合に、熱起電力により生じる電位は、高温側の方が低温側に比べて高くなり、n型熱電変換材料としての特性を示す。   The composite oxides represented by the above general formulas have a negative Seebeck coefficient. When a temperature difference is generated between both ends of the material made of the oxide, the potential generated by the thermoelectromotive force is high. The side becomes higher than the low temperature side, and exhibits characteristics as an n-type thermoelectric conversion material.

例えば、上記一般式(3)で表される複合酸化物及び一般式(4)で表される複合酸化物は、373K以上の温度において負のゼーベック係数を有し、例えば、373K以上の温度で−1〜−20μV/K程度のゼーベック係数を有するものとなる。更に、これらの複合酸化物は、電気伝導性がよく、低い電気抵抗率を示し、例えば、373K以上の温度において、20mΩcm程度以下の電気抵抗率を有するものとすることができる。   For example, the composite oxide represented by the general formula (3) and the composite oxide represented by the general formula (4) have a negative Seebeck coefficient at a temperature of 373 K or higher, for example, at a temperature of 373 K or higher. It has a Seebeck coefficient of about −1 to −20 μV / K. Furthermore, these composite oxides have good electrical conductivity and low electrical resistivity, and can have electrical resistivity of about 20 mΩcm or less at a temperature of 373 K or more, for example.

上記した一般式(3)で表される複合酸化物はペロブスカイト型の結晶構造を有し、一般式(4)で表される複合酸化物は一般に層状ペロブスカイトと呼ばれる結晶構造を有するものであり、一般に前者がABO3構造、後者がABO構造とも呼ばれる。どちらの複合酸化物もLnの一部がR1又はR3で置換され、Niの一部がR又はRで置換されている。The complex oxide represented by the general formula (3) has a perovskite type crystal structure, and the complex oxide represented by the general formula (4) has a crystal structure generally called a layered perovskite, In general, the former is also called ABO 3 structure and the latter is also called A 2 BO 4 structure. In both composite oxides, a part of Ln is substituted with R 1 or R 3 , and a part of Ni is substituted with R 2 or R 4 .

また、一般式(5)で表される複合酸化物及び一般式(6)で表される複合酸化物は、透明導電膜の材料などとして知られている酸化物であり、例えば、100K以上の温度で-100μV/K以下のゼーベック係数を有し、更に、電気伝導性がよく、低い電気抵抗率を示し、100K以上の温度において、100mΩcm以下の電気抵抗率である。   In addition, the composite oxide represented by the general formula (5) and the composite oxide represented by the general formula (6) are oxides known as a material for a transparent conductive film, for example, 100K or more. It has a Seebeck coefficient of -100 μV / K or less at temperature, has good electrical conductivity, exhibits low electrical resistivity, and has an electrical resistivity of 100 mΩcm or less at a temperature of 100 K or more.

これらの内で、一般式(5)で表される複合酸化物は六方晶ウルツ型構造を有し、一般式(6)で表される複合酸化物は立方晶ルチル構造または正方晶bcc構造を有するものである。   Among these, the composite oxide represented by the general formula (5) has a hexagonal wurtzite structure, and the composite oxide represented by the general formula (6) has a cubic rutile structure or a tetragonal bcc structure. I have it.

上記したn型熱電変換材料の内で、好ましい複合酸化物の一例として、一般式:Ln NiO(式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、Rは、Na、K、Sr、Ca及びBiからなる群から選択される一種又は二種以上の元素であり、0.5≦m≦1.2;0≦n≦0.5;2.7≦r≦3.3である。)で表される複合酸化物、一般式:(Ln NiO(式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、Rは、Na、K、Sr、Ca及びBi からなる群から選択される一種又は二種以上の元素であり、0.5≦s≦1.2;0≦t≦0.5;3.6≦w≦4.4である。)で表される複合酸化物、一般式 : Ln Ni q’r’(式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、Rは、Na、K、Sr、Ca、Bi及びNdからなる群から選択される少なくとも一種の元素であり、Rは、Ti、V、Cr、Mn、Fe、Co及びCuからなる群から選択される少なくとも一種の元素であり、0.5≦x≦1.2;0≦y≦0.5;0.5≦p≦1.2;0.01≦q’≦0.5;2.8≦r’≦3.2である。)で表される複合酸化物等を挙げることができる。Among the n-type thermoelectric conversion materials described above, as an example of a preferable composite oxide, a general formula: Ln m R 1 n NiO r (wherein Ln is one or more elements selected from lanthanoids, R 1 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi, and 0.5 ≦ m ≦ 1.2; 0 ≦ n ≦ 0.5; 2.7 ≦ r ≦ 3.3. ), A general formula: (Ln s R 3 t ) 2 NiO w (wherein Ln is one or more elements selected from lanthanoids, and R 3 is Na, K , Sr, Ca and Bi, one or more elements selected from the group consisting of 0.5 ≦ s ≦ 1.2; 0 ≦ t ≦ 0.5; 3.6 ≦ w ≦ 4.4. things, the general formula: Ln x R 5 y Ni p R 6 q 'O r' ( wherein, Ln is one or more selected from lanthanoids An element, R 5 is, Na, K, Sr, Ca , and at least one element selected from the group consisting of Bi and Nd, R 6 is, Ti, V, Cr, Mn , Fe, Co and Cu And at least one element selected from the group consisting of 0.5 ≦ x ≦ 1.2; 0 ≦ y ≦ 0.5; 0.5 ≦ p ≦ 1.2; 0.01 ≦ q ′ ≦ 0.5; 2.8 ≦ r ′ ≦ 3.2. Examples thereof include complex oxides represented.

これらの内で、一般式:Ln NiOで表される複合酸化物と、一般式:(Ln NiOで表される複合酸化物は、例えば100K以上の温度で-1〜-30mV/K程度のゼーベック係数を有し、且つ低い電気抵抗率を示す。また、例えば、100K以上の温度において、10mΩcm程度以下の電気抵抗率を有するものとすることができる。Among these, the composite oxide represented by the general formula: Ln m R 1 n NiO r and the composite oxide represented by the general formula: (Ln s R 3 t ) 2 NiO w are, for example, 100K or more. It has a Seebeck coefficient of about -1 to -30 mV / K at temperature and exhibits a low electrical resistivity. For example, it can have an electrical resistivity of about 10 mΩcm or less at a temperature of 100 K or higher.

また、一般式 : Ln Ni q’r’で表される複合酸化物は、100℃以上の温度において負のゼーベック係数を有するものであり、更に、電気伝導性がよく、低い電気抵抗率を示し、100℃以上の温度において、10mΩcm以下の電気抵抗率とすることができる。Further, the composite oxide represented by the general formula: Ln x R 5 y Ni p R 6 q′O r ′ has a negative Seebeck coefficient at a temperature of 100 ° C. or higher, and further has electrical conductivity. It shows a low electrical resistivity and can be an electrical resistivity of 10 mΩcm or less at a temperature of 100 ° C. or higher.

熱電変換素子
本発明の熱電変換素子は、電気絶縁性基板上に、上記したp型熱電変換材料とn型熱電変換材料の薄膜を形成し、該p型熱電変換材料薄膜の一端と、n型熱電変換材料薄膜の一端とを電気的に接続してなるものである。
Thermoelectric Conversion Element The thermoelectric conversion element of the present invention is formed by forming a thin film of the above-described p-type thermoelectric conversion material and n-type thermoelectric conversion material on an electrically insulating substrate, one end of the p-type thermoelectric conversion material thin film, and n-type One end of the thermoelectric conversion material thin film is electrically connected.

(1)電気絶縁性基板:
電気絶縁性基板としては、特に限定はなく、酸化物薄膜の形成のために熱処理を行う場合には、熱処理温度において変質を生じないものであればよい。従って、使用できる基板の種類が非常に多く、安価な基板を使用可能である。また、ガラス基板、セラミックス基板などの熱伝導率が低い基板を使用できるので、この様な基板を用いることにより、形成される複合酸化物薄膜の熱電変換性能に対する基板温度の影響を大きく低減できる。
(1) Electrically insulating substrate:
There are no particular limitations on the electrically insulating substrate, and any material that does not change in quality at the heat treatment temperature may be used if heat treatment is performed to form an oxide thin film. Therefore, there are many kinds of substrates that can be used, and inexpensive substrates can be used. Moreover, since a board | substrate with low heat conductivity, such as a glass substrate and a ceramic substrate, can be used, the influence of the board | substrate temperature with respect to the thermoelectric conversion performance of the complex oxide thin film formed can be reduced significantly by using such a board | substrate.

また、熱処理温度において変質しない材質であれば、ポリイミド等の各種プラスチック材料を基板として用いることも可能である。また、後述する薄膜形成法の内で、気相蒸着法、エアロゾル堆積法等の方法によって熱電変換材料薄膜を形成する場合には、熱処理を行わない場合にも優れた熱電変換性能を有する薄膜を形成できるので、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート(PET)等の耐熱性の比較的低いプラスチック材料を基板として、その上に優れた性能の熱電変換材料薄膜を形成することもできる。本発明によれば、この様な各種プラスチック材料を基板として用いることができ、その柔軟性、変形性などの特性を利用して幅広い用途への利用が可能となる。また、例えば、有機薄膜トランジスタ(有機TFT)等を熱的に損傷することなく熱電変換材料薄膜を形成できるので、各種フレキシブルデバイスへの応用が可能となる。   In addition, various plastic materials such as polyimide can be used as the substrate as long as the material does not change at the heat treatment temperature. In addition, among the thin film formation methods described later, when forming a thermoelectric conversion material thin film by a method such as vapor deposition or aerosol deposition, a thin film having excellent thermoelectric conversion performance even when heat treatment is not performed. Since it can be formed, for example, a thermoelectric conversion material thin film having excellent performance can be formed on a plastic material having relatively low heat resistance such as polyethylene, polypropylene, polystyrene, and polyethylene terephthalate (PET) as a substrate. According to the present invention, such various plastic materials can be used as a substrate and can be used for a wide range of applications by utilizing characteristics such as flexibility and deformability. Further, for example, since a thermoelectric conversion material thin film can be formed without thermally damaging an organic thin film transistor (organic TFT) or the like, application to various flexible devices becomes possible.

本発明では、特に、25℃における熱伝導率が10W/m・K程度以下の低熱伝導率の基板を用いることが好ましく、より好ましく熱伝導率5W/m・K程度以下、更に好ましくは熱伝導率2W/m・K程度以下の基板を用いることがよい。   In the present invention, it is particularly preferable to use a low thermal conductivity substrate having a thermal conductivity of about 10 W / m · K or less at 25 ° C., more preferably a thermal conductivity of about 5 W / m · K or less, still more preferably thermal conductivity. A substrate with a rate of about 2 W / m · K or less is preferably used.

電気絶縁性基板の形状については、特に限定はなく、目的とする熱電変換素子の使用方法に応じて、任意の形状とすることができる。   The shape of the electrically insulating substrate is not particularly limited, and can be any shape depending on the intended method of using the thermoelectric conversion element.

例えば、パイプ状に成形した基板を用いる場合には、その片面又は両面に複合酸化物の薄膜を形成することにより、パイプ状の熱電変換素子とすることができる。この様な形状の熱電変換素子では、例えば、パイプ内部に燃焼ガスを通過させることにより、ガスの導入部分と排出部分の温度差を利用して熱電発電を行うことができる。斯かる熱電変換素子を利用すれば、例えば、自動車の排気ガスを利用した発電などが可能となる。   For example, when a pipe-shaped substrate is used, a pipe-shaped thermoelectric conversion element can be obtained by forming a complex oxide thin film on one or both surfaces thereof. In the thermoelectric conversion element having such a shape, for example, by allowing a combustion gas to pass through a pipe, thermoelectric power generation can be performed using a temperature difference between a gas introduction portion and a discharge portion. If such a thermoelectric conversion element is used, for example, power generation using the exhaust gas of an automobile becomes possible.

また、柔軟な電気絶縁性プラスチックフィルムを基板とする場合には、複合酸化物の薄膜を形成して熱電変換素子を得た後、プラスチックフィルム基板の巻き取りや折り曲げなどを行うことにより、熱電変換素子を変形させることが可能である。   In addition, when a flexible electrically insulating plastic film is used as a substrate, a thermoelectric conversion element is obtained by forming a thin film of a composite oxide, and then the plastic film substrate is wound or bent to perform thermoelectric conversion. It is possible to deform the element.

(2)熱電変換材料薄膜:
p型熱電変換材料薄膜とn型熱電変換材料薄膜の膜厚については、特に限定的ではなく、これらの薄膜の使用態様に応じて良好な熱電変換性能を発揮できる範囲に適宜設定すればよく、例えば、100nm程度以上、好ましくは300nm程度以上の厚さとすることによって、良好な性能を発揮できる。また、膜厚の上限については、薄膜としての用途を考える場合には、通常、10μm程度以下、好ましくは5μm程度以下、より好ましくは2μm程度以下とすればよい。
(2) Thermoelectric conversion material thin film:
The film thickness of the p-type thermoelectric conversion material thin film and the n-type thermoelectric conversion material thin film is not particularly limited, and may be appropriately set within a range in which good thermoelectric conversion performance can be exhibited according to the use mode of these thin films. For example, good performance can be achieved by setting the thickness to about 100 nm or more, preferably about 300 nm or more. The upper limit of the film thickness is usually about 10 μm or less, preferably about 5 μm or less, more preferably about 2 μm or less when considering the use as a thin film.

p型熱電変換材料薄膜及びn型熱電変換材料薄膜の形状についても特に限定はなく、基板の形状に応じた任意の形状、大きさとすることができる。例えば、板状の基板を用いる場合には、p型熱電変換材料薄膜とn型熱電変換材料薄膜を、基板の一方の面に同時に形成するか、或いは、一方の面にp型熱電変換材料薄膜を形成し、他方の面にn型熱電変換材料薄膜を形成することができる。これらの薄膜は、基板の一部にのみ形成してもよく、全面に形成しても良い。また、薄膜の長辺をできるだけ長くすることにより、変換材料の薄膜の両端部の温度差を大きくして、電圧を高めることができる。また、短くすることで電気抵抗を下げることもできる。   The shape of the p-type thermoelectric conversion material thin film and the n-type thermoelectric conversion material thin film is also not particularly limited, and can be any shape and size according to the shape of the substrate. For example, when a plate-like substrate is used, a p-type thermoelectric conversion material thin film and an n-type thermoelectric conversion material thin film are formed simultaneously on one surface of the substrate, or a p-type thermoelectric conversion material thin film is formed on one surface. And an n-type thermoelectric conversion material thin film can be formed on the other surface. These thin films may be formed only on a part of the substrate or on the entire surface. Further, by making the long side of the thin film as long as possible, the temperature difference between both ends of the thin film of the conversion material can be increased to increase the voltage. In addition, the electrical resistance can be lowered by shortening.

パイプ状の基板を用いる場合にも、同様に、パイプの外面に両方の薄膜を形成してもよく、或いは、外面に一方の薄膜を形成し、内面に他方の薄膜を形成してもよい。   Similarly, when using a pipe-shaped substrate, both thin films may be formed on the outer surface of the pipe, or one thin film may be formed on the outer surface and the other thin film may be formed on the inner surface.

(3)薄膜形成法
電気絶縁性基板上にp型熱電変換材料とn型熱電変換材料の薄膜を形成する方法については、特に限定されるものではなく、上記した組成を有する単結晶薄膜又は多結晶薄膜を形成できる方法であればよい。
(3) Thin film formation method The method of forming a thin film of a p-type thermoelectric conversion material and an n-type thermoelectric conversion material on an electrically insulating substrate is not particularly limited. Any method that can form a crystalline thin film may be used.

例えば、気相蒸着法を用いた薄膜製造法;ディップコート法、スピンコート法、塗布法、スプレー噴霧法などの溶液原料を用いた薄膜製造法;複合酸化物の微粉末を吹き付けるエアロゾル堆積法などの公知の方法を適用できる。更に、融液を用いたフラックス法や融液を用いることなく原料を溶融・凝固させる方法などの単結晶薄膜の製造方法も適用できる。   For example, thin film manufacturing method using vapor deposition method; thin film manufacturing method using solution raw materials such as dip coating method, spin coating method, coating method, spray spraying method; aerosol deposition method in which fine powder of composite oxide is sprayed These known methods can be applied. Furthermore, a single crystal thin film manufacturing method such as a flux method using a melt or a method of melting and solidifying a raw material without using a melt can be applied.

これらの被膜形成方法は、いずれも公知の条件に従って実施することができる。以下、これらの内の代表的な方法についてより具体的に説明する。   Any of these film forming methods can be carried out according to known conditions. Hereinafter, typical methods among these will be described more specifically.

(i)気相蒸着法:
以下、気相蒸着法による薄膜製造方法について、より詳細に説明する。
(I) Vapor deposition method:
Hereinafter, the thin film manufacturing method by the vapor deposition method will be described in more detail.

原料物質としては、気相蒸着法によって気化させて基板上に堆積させることにより、酸化物を形成し得るものであれば特に限定なく使用できる。例えば、構成金属成分を含む金属単体、酸化物、各種化合物(炭酸塩等)等を用いることができる。また、目的とする複合酸化物の構成原子を二種以上含む原料物質を使用してもよい。   Any material can be used without particular limitation as long as it can form an oxide by being vaporized by vapor deposition and deposited on a substrate. For example, a single metal containing a constituent metal component, an oxide, various compounds (such as carbonates), and the like can be used. Further, a raw material containing two or more constituent atoms of the target composite oxide may be used.

これらの原料物質は、目的とする複合酸化物の金属成分比と同様の金属比となるように混合して、そのまま用いることが可能であるが、特に、これらの原料物質を混合し焼成して用いることが好ましい。焼成物とすることにより、後述する気相蒸着の際に原料物質の取り扱いが容易となる。   These raw materials can be mixed and used as they are in a metal ratio similar to the metal component ratio of the target composite oxide. In particular, these raw materials are mixed and fired. It is preferable to use it. By using a fired product, handling of the raw material is facilitated during vapor phase vapor deposition described later.

原料物質の焼成条件については特に限定はなく、上記した一般式で表される複合酸化物の結晶が形成される高温度で焼成しても良く、或いは、上記複合酸化物の結晶が生じることが無く、仮焼体が形成される程度の比較的低温度で焼成してもよい。焼成手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の手段を採用できる。焼成雰囲気は、通常、酸素気流中、空気中等の酸化性雰囲気中とすればよいが、不活性雰囲気中で焼成することも可能である。   There are no particular limitations on the firing conditions of the raw material, and it may be fired at a high temperature at which the complex oxide crystal represented by the above general formula is formed, or the complex oxide crystal may be formed. Alternatively, the firing may be performed at a relatively low temperature so that a calcined body is formed. The firing means is not particularly limited, and any means such as an electric heating furnace or a gas heating furnace can be adopted. The firing atmosphere is usually an oxidizing atmosphere such as an oxygen stream or air, but it is also possible to fire in an inert atmosphere.

気相蒸着法としては、特に限定的ではなく、上記した原料物質を用いて基板上に酸化物薄膜を形成できる方法であればよい。例えば、パルスレーザー堆積法、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマアシスト蒸着法、イオンアシスト蒸着法、反応性蒸着法、レーザーアブレーション法等の物理蒸着法を好適に採用できる。これらの方法の内で、多元素を含む複合酸化物を蒸着させる際に組成変動を生じ難い点で、パルスレーザー堆積法が好ましい。   The vapor deposition method is not particularly limited as long as the oxide thin film can be formed on the substrate using the above-described raw material. For example, physical vapor deposition methods such as pulse laser deposition, sputtering, vacuum vapor deposition, ion plating, plasma assisted vapor deposition, ion assisted vapor deposition, reactive vapor deposition, and laser ablation can be suitably employed. Among these methods, the pulsed laser deposition method is preferable in that the composition does not easily change when a composite oxide containing multiple elements is vapor-deposited.

複合酸化物を堆積させる際に、400〜600℃程度に基板を加熱してもよく、或いは、室温のままでもよい。加熱して堆積させる場合には、該複合酸化物が基板上に生成するため、通常、熱処理を行う必要はない。室温で基板上に複合酸化物を堆積させた状態では、該複合酸化物は、結晶化の程度が非常に低く、良好な熱電変換性能を発揮できないことがあるが、熱処理を行うことによって、該複合酸化物の結晶化が進行して良好な熱電変換性能を発揮できるようになる。   When depositing the composite oxide, the substrate may be heated to about 400 to 600 ° C. or may be kept at room temperature. In the case of depositing by heating, since the composite oxide is formed on the substrate, it is usually unnecessary to perform heat treatment. In a state where the composite oxide is deposited on the substrate at room temperature, the composite oxide has a very low degree of crystallization and may not exhibit good thermoelectric conversion performance. The crystallization of the composite oxide proceeds and good thermoelectric conversion performance can be exhibited.

熱処理温度については、例えば、600〜740℃程度とすればよい。この温度範囲で熱処理を行うことによって、複合酸化物薄膜の結晶化が進行して、良好な熱電変換性能を有するものとなる。熱処理温度が低すぎる場合には、結晶化が十分に進行せず、熱電変換性能が劣るものとなるので好ましくない。一方、熱処理温度が高すぎると、別の相が出現して、やはり熱電変換性能が低下するので好ましくない。   About heat processing temperature, what is necessary is just to be about 600-740 degreeC, for example. By performing the heat treatment in this temperature range, the crystallization of the composite oxide thin film proceeds to have good thermoelectric conversion performance. If the heat treatment temperature is too low, crystallization does not proceed sufficiently, and the thermoelectric conversion performance becomes inferior. On the other hand, if the heat treatment temperature is too high, another phase appears and the thermoelectric conversion performance is lowered, which is not preferable.

熱処理時の雰囲気については、通常、大気中や酸素を5%程度以上含む雰囲気下などの酸化性雰囲気とすればよい。この時の圧力は、特に限定的ではなく、減圧、大気圧、加圧のいずれでも良く、例えば、10−3Pa〜2MPa程度の範囲とすることができる。About the atmosphere at the time of heat processing, what is necessary is just to usually set it as oxidizing atmospheres, such as the atmosphere which contains about 5% or more in air | atmosphere. The pressure at this time is not particularly limited, and may be any of reduced pressure, atmospheric pressure, and increased pressure, and can be, for example, in the range of about 10 −3 Pa to 2 MPa.

熱処理時間は、被処理物の大きさや複合酸化物薄膜の厚さなどによって異なるが、該複合酸化物薄膜の結晶化が十分に進行するまで熱処理を行えばよく、通常、3分〜10時間程度、好ましくは1〜3時間程度程度の熱処理時間とすればよい。   The heat treatment time varies depending on the size of the object to be treated and the thickness of the complex oxide thin film, but the heat treatment may be performed until the crystallization of the complex oxide thin film is sufficiently advanced, and is usually about 3 minutes to 10 hours. The heat treatment time is preferably about 1 to 3 hours.

この様な方法によって、目的とする複合酸化物の薄膜を形成することができる。   By such a method, a target complex oxide thin film can be formed.

(ii)スピンコート法:
次に、溶液原料を用いる複合酸化物薄膜の製造方法として、スピンコート法について詳細に記載する。
(Ii) Spin coating method:
Next, a spin coating method will be described in detail as a method for producing a complex oxide thin film using a solution raw material.

溶液原料としては、目的とする複合酸化物の構成金属元素を含む原料物物質を溶解した溶液を用いればよい。原料物質は焼成により酸化物を形成し得るものであれば特に限定されず、金属単体、酸化物、各種化合物(塩化物、炭酸塩、硝酸塩、水酸化物、アルコキシド化合物等)等を使用できる。   As a solution raw material, a solution in which a raw material substance containing a constituent metal element of a target composite oxide is dissolved may be used. The raw material is not particularly limited as long as it can form oxides by firing, and simple metals, oxides, various compounds (chlorides, carbonates, nitrates, hydroxides, alkoxide compounds, etc.) can be used.

溶媒としては、水や、トルエン、キシレン等の有機溶媒を用いることができる。原料物質の濃度については、特に限定的ではないが、例えば、例えば0.01〜1モル/l程度とすればよく、目的とする複合酸化物の金属成分と同様の比率で金属成分を含有する溶液を用いればよい。   As the solvent, water or an organic solvent such as toluene or xylene can be used. The concentration of the raw material is not particularly limited. For example, it may be about 0.01 to 1 mol / l, for example, and a solution containing the metal component at the same ratio as the metal component of the target composite oxide may be used. Use it.

まず、この様な溶液原料を、高速回転している基板上に少量ずつ滴下する。回転による遠心力で溶液が均一に基板面に拡がり、溶媒を蒸発させることにより、目的とする複合酸化物薄膜の前駆体が形成される。基板の回転速度は特に限定されないが、溶液粘度や製造する膜厚によって、適宜回転速度を決めればよい。   First, such a solution raw material is dropped little by little on a substrate rotating at high speed. The solution is uniformly spread on the substrate surface by centrifugal force due to rotation, and the solvent is evaporated, thereby forming a target complex oxide thin film precursor. Although the rotation speed of a board | substrate is not specifically limited, What is necessary is just to determine a rotation speed suitably with a solution viscosity or the film thickness to manufacture.

次いで、この前駆体を空気中で熱処理することによって、複合酸化物薄膜が形成される。熱処理条件は、目的とする複合酸化物が形成される条件であればよく特に限定されないが、一般的には、300〜500℃程度で1〜10時間程度加熱して溶媒を除去し、その後500〜1000℃程度で1〜20時間程度加熱することによって、目的とする複合酸化物の多結晶体の薄膜が形成される。   Subsequently, this precursor is heat-treated in air to form a complex oxide thin film. The heat treatment conditions are not particularly limited as long as the target composite oxide is formed. In general, the solvent is removed by heating at about 300 to 500 ° C. for about 1 to 10 hours, and then 500 By heating at about 1000 ° C. for about 1 to 20 hours, a target polycrystalline thin film of complex oxide is formed.

(iii)エアロゾル堆積法:
エアロゾル堆積法では、目的とする複合酸化物の微粉末を搬送ガスと共に基板上に吹き付けることによって、複合酸化物の被膜を形成できる。
(Iii) Aerosol deposition method:
In the aerosol deposition method, a composite oxide film can be formed by spraying a target composite oxide fine powder onto a substrate together with a carrier gas.

複合酸化物の微粉末は、通常、目的とする複合酸化物の金属成分比と同様の金属比となるように原料物質を混合し、酸素含有雰囲気中で焼成し、必要に応じて粉砕することによって得ることができる。複合酸化物の平均粒径は、例えば、0.5〜5μm程度とすればよい。   The fine powder of the composite oxide is usually mixed with raw materials so that the metal ratio is the same as the metal component ratio of the target composite oxide, fired in an oxygen-containing atmosphere, and pulverized as necessary. Can be obtained by: The average particle size of the composite oxide may be, for example, about 0.5 to 5 μm.

搬送ガスとしては、例えば、窒素ガス、Heガス等を用いることができる。この様な搬送ガスを用い、圧力10Pa〜8kPa程度の減圧チャンバー内で、ガス流量5〜10L/分程度、ノズル基板間距離10〜30mm程度で、複合酸化物粉末を基板に吹き付けることによって、複合酸化物の被膜を形成することができる。このとき、基板は加熱する必要は必ずしも無いが、200〜600℃程度に加熱しておくと、形成される被膜の密着性を向上させることができる。   For example, nitrogen gas, He gas, or the like can be used as the carrier gas. By using such a carrier gas, a composite oxide powder is sprayed onto the substrate at a gas flow rate of about 5 to 10 L / min and a nozzle-to-substrate distance of about 10 to 30 mm in a reduced pressure chamber having a pressure of about 10 Pa to 8 kPa. An oxide film can be formed. At this time, it is not always necessary to heat the substrate, but if the substrate is heated to about 200 to 600 ° C., the adhesion of the formed film can be improved.

また被膜後、加熱の必要はないが、必要に応じて、酸素含有雰囲気中で、膜厚に応じて200〜700℃程度で10分〜4時間程度加熱することによって、形成される被膜の結晶性をより向上させることができる。   In addition, heating is not required after coating, but if necessary, the film crystals formed by heating at about 200 to 700 ° C. for about 10 minutes to 4 hours depending on the film thickness in an oxygen-containing atmosphere. The sex can be further improved.

(iv)単結晶薄膜形成法:
次に、複合酸化物の単結晶体薄膜を形成する方法について説明する。
この方法では、目的とする複合酸化物の元素成分比率と同様の元素成分比率となるように原料物質を混合し、基板上で加熱して溶融させた後、徐々に冷却することによって単結晶体薄膜を形成することができる。原料物質としては、原料混合物を加熱した際に均一な溶融物を形成し得るものであれば特に限定されず、元素単体、酸化物、各種化合物(炭酸塩等)等を使用できる。また目的とする複合酸化物の構成元素を二種以上含む化合物を使用しても良い。
(Iv) Single crystal thin film formation method:
Next, a method for forming a complex oxide single crystal thin film will be described.
In this method, a single crystal is obtained by mixing raw materials so as to have an element component ratio similar to the element component ratio of the target composite oxide, heating and melting on the substrate, and then gradually cooling. A thin film can be formed. The raw material is not particularly limited as long as it can form a uniform melt when the raw material mixture is heated, and elemental elements, oxides, various compounds (such as carbonates) and the like can be used. Moreover, you may use the compound containing 2 or more types of the structural element of the target complex oxide.

具体的な単結晶薄膜形成方法としては、溶融した原料混合物が均一な溶液状態となる条件で加熱した後、冷却すればよい。加熱時間については特に限定はなく、均一な溶液状態となるまで加熱すればよい。加熱手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の手段を採用できる。溶融時の雰囲気は、通常、酸素気流中、空気中等の酸化性雰囲気中とすればよいが、原料物質が十分量の酸素を含む場合には、例えば、不活性雰囲気中で溶融することも可能である。   As a specific method for forming a single crystal thin film, the molten raw material mixture may be heated under conditions that make it a uniform solution and then cooled. There is no particular limitation on the heating time, and heating may be performed until a uniform solution state is obtained. The heating means is not particularly limited, and any means such as an electric heating furnace or a gas heating furnace can be adopted. The atmosphere at the time of melting is usually an oxidizing atmosphere such as an oxygen stream or in the air. However, when the raw material contains a sufficient amount of oxygen, it can be melted in an inert atmosphere, for example. It is.

冷却方法についても特に限定的ではなく、溶液状態の原料の全体を冷却しても良く、或いは、溶融した原料物質の入った容器に冷却した基板を浸漬して、その面上に単結晶を析出させてもよい。   The cooling method is not particularly limited, and the entire raw material in solution may be cooled, or the cooled substrate is immersed in a container containing molten raw material, and a single crystal is deposited on the surface. You may let them.

冷却速度については、特に限定的ではないが、速度が大きくなると基板上に多数の結晶が析出して、いわゆる多結晶薄膜が形成されるので、単結晶薄膜を製造するためには、ゆっくりと冷却することが好ましい。例えば、毎時50℃程度以下の冷却速度とすればよい。   The cooling rate is not particularly limited, but as the rate increases, a large number of crystals are deposited on the substrate to form a so-called polycrystalline thin film. It is preferable to do. For example, the cooling rate may be about 50 ° C. or less per hour.

また、原料混合物を直接溶融することに代えて、原料混合物に、溶融物の融点調整などを目的として、その他の成分を添加し、この混合物を加熱して溶融させても良い。この様な複合酸化物の金属源となる物質以外の添加成分(フラックス成分)を加えて溶融させる方法は、いわゆる“フラックス法”と称される方法である。この方法によれば、原料混合物に含まれるフラックス成分の一部が加熱により溶融し、その化学変化、溶解作用などによって、原料物質全体が溶液状態となり、原料混合物を直接冷却する方法と比べて低い温度で溶融物を得ることができる。そして、溶液状態の原料物質の冷却速度を適度に制御して冷却することによって、冷却に伴う過飽和状態を用いて目的とする単結晶を成長させることができる。この冷却過程においては、原料物質が溶融して形成された溶液と相平衡にある固相組成の複合酸化物の単結晶が成長する。よって、互いに平衡状態にある融液相と固相(単結晶)の組成の関係に基づいて、目的とする複合酸化物単結晶の組成に対応する原料混合物における各原料物質の割合を決めることができる。   Instead of directly melting the raw material mixture, other components may be added to the raw material mixture for the purpose of adjusting the melting point of the melt and the mixture may be heated to melt. A method of adding and melting an additive component (flux component) other than the material that becomes a metal source of such a composite oxide is a so-called “flux method”. According to this method, a part of the flux component contained in the raw material mixture is melted by heating, and due to its chemical change, dissolving action, etc., the entire raw material substance is in a solution state, which is lower than the method of directly cooling the raw material mixture. A melt can be obtained at temperature. And the target single crystal can be grown using the supersaturated state accompanying cooling by controlling the cooling rate of the raw material substance of a solution state moderately. In this cooling process, a single crystal of a complex oxide having a solid phase composition that is in phase equilibrium with a solution formed by melting a raw material is grown. Therefore, based on the relationship between the composition of the melt phase and the solid phase (single crystal) in equilibrium with each other, the ratio of each raw material substance in the raw material mixture corresponding to the composition of the target composite oxide single crystal can be determined. it can.

その際、原料中に含まれるフラックス成分は融液成分として残り、成長する単結晶の構成成分には含まれない。   At that time, the flux component contained in the raw material remains as a melt component and is not included in the constituent components of the growing single crystal.

この様なフラックス成分としては、原料物質と比べて低融点であり、形成される融液中に原料物質を十分に溶解することができ、しかも目的とする複合酸化物の特性を阻害しない物質から適宜選択して用いればよい。例えば、アルカリ金属化合物、ホウ素含有化合物などを好適に用いることができる。   As such a flux component, it has a low melting point compared to the raw material, can sufficiently dissolve the raw material in the melt to be formed, and does not disturb the properties of the target composite oxide. What is necessary is just to select and use suitably. For example, an alkali metal compound or a boron-containing compound can be preferably used.

アルカリ金属化合物の具体例としては、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)などのアルカリ金属塩化物、これらの水和物;炭酸リチウム(Li2CO3)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)などのアルカリ金属炭酸塩などを挙げることができる。ホウ素含有化合物の具体例としては、ホウ酸(B2O3)などを挙げることができる。これらの任意の添加成分についても、それぞれを単独あるいは二種以上混合して用いることができる。Specific examples of alkali metal compounds include alkali metal chlorides such as lithium chloride (LiCl), sodium chloride (NaCl), and potassium chloride (KCl), and hydrates thereof; lithium carbonate (Li 2 CO 3 ), sodium carbonate Examples thereof include alkali metal carbonates such as (Na 2 CO 3 ) and potassium carbonate (K 2 CO 3 ). Specific examples of the boron-containing compound include boric acid (B 2 O 3 ). These optional additive components can also be used alone or in admixture of two or more.

これらのフラックス成分の量については特に限定的ではなく、形成される融液中への原料物質の溶解度を考慮して、できるだけ高濃度の原料物質を含む溶液が形成されるように、実際の加熱温度に応じて使用量を決めればよい。   The amount of these flux components is not particularly limited. Considering the solubility of the raw material in the melt to be formed, actual heating is performed so that a solution containing the raw material at a concentration as high as possible is formed. What is necessary is just to decide usage-amount according to temperature.

原料混合物を溶融させる方法については特に限定的ではなく、溶融した原料混合物が基板上で均一な溶液状態となる条件で加熱すれば良い。実際の加熱温度は、使用するフラックス成分の種類などによって異なるが、例えば、800〜1000℃程度の温度範囲において、20時間〜40時間程度加熱して溶融させれば良い。   The method for melting the raw material mixture is not particularly limited, and it is sufficient to heat the molten raw material mixture under conditions that allow the molten raw material mixture to be in a uniform solution state on the substrate. The actual heating temperature varies depending on the type of flux component to be used, but may be heated and melted for about 20 to 40 hours in a temperature range of about 800 to 1000 ° C., for example.

加熱手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の手段を採用できる。溶融時の雰囲気は、通常、酸素気流中、空気中等の酸化性雰囲気中とすればよいが、原料物質が十分量の酸素を含む場合には、例えば、不活性雰囲気中で溶融させることも可能である。   The heating means is not particularly limited, and any means such as an electric heating furnace or a gas heating furnace can be adopted. The atmosphere at the time of melting is usually an oxidizing atmosphere such as in an oxygen stream or in the air. However, when the raw material contains a sufficient amount of oxygen, it can be melted in an inert atmosphere, for example. It is.

冷却速度については、特に限定的ではないが、冷却速度が速いと多結晶薄膜が形成され、冷却速度を遅くするほど単結晶薄膜を得やすい。例えば、毎時50℃程度以下の速度で冷却すれば単結晶薄膜を製造することができる。   The cooling rate is not particularly limited, but if the cooling rate is high, a polycrystalline thin film is formed, and the slower the cooling rate, the easier it is to obtain a single crystal thin film. For example, a single crystal thin film can be manufactured by cooling at a rate of about 50 ° C. or less per hour.

形成される複合酸化物単結晶薄膜の大きさ、収率などは、原料物質の種類と組成比、溶融成分の組成、冷却速度などによって変わり得るが、例えば毎時50℃程度以下の冷却速度で試料が固化するまで冷却する場合には、幅0.5mm程度以上、厚さ0.5mm程度以上、長5mm程度以上の針状又は板状の形状を有する単結晶を得ることができる。   The size, yield, etc. of the formed complex oxide single crystal thin film may vary depending on the type and composition ratio of the raw material, the composition of the molten component, the cooling rate, etc. For example, the sample at a cooling rate of about 50 ° C. or less per hour. In the case of cooling until solidifies, a single crystal having a needle-like or plate-like shape having a width of about 0.5 mm or more, a thickness of about 0.5 mm or more, and a length of about 5 mm or more can be obtained.

次いで、冷却により形成された固化物から、目的とする複合酸化物単結晶以外の成分を除去することによって、基板面に付着した状態で目的とする複合酸化物の単結晶薄膜を得ることができる。   Next, by removing components other than the target complex oxide single crystal from the solidified product formed by cooling, a target single crystal thin film of the complex oxide can be obtained while attached to the substrate surface. .

目的物以外の成分を除去する方法としては、複合酸化物単結晶に付着している水溶性の成分、例えば、塩化物などについては、蒸留水による洗浄と濾過を繰り返して行い、さらに必要に応じてエタノール洗浄などを併用することによって、目的生成物から除去することができる。   As a method for removing components other than the target product, water-soluble components adhering to the composite oxide single crystal, such as chloride, are repeatedly washed with distilled water and filtered, and further if necessary. In combination with ethanol washing, it can be removed from the target product.

(4)熱電変換素子:
基板上に形成されたp型熱電変換材料薄膜とn型熱電変換材料薄膜は、それぞれの一端同士を電気的に接続させることによって、熱電変換素子とすることができる。
(4) Thermoelectric conversion element:
The p-type thermoelectric conversion material thin film and the n-type thermoelectric conversion material thin film formed on the substrate can be made into a thermoelectric conversion element by electrically connecting one end of each.

この場合、p型熱電変換材料とn型熱電変換材料の熱起電力の絶対値の和が、例えば、293〜1073K(絶対温度)の範囲の全ての温度において60μV/K程度以上、好ましくは100μV/K程度以上となるように熱電変換材料を組合せて用いることが好ましい。また、両材料とも、293〜1073K(絶対温度)の範囲の全ての温度において電気抵抗率が100mΩcm程度以下、好ましくは50mΩcm程度以下、より好ましくは10mΩcm程度以下であることが望ましい。   In this case, the sum of absolute values of the thermoelectromotive forces of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material is, for example, about 60 μV / K or more, preferably 100 μV at all temperatures in the range of 293 to 1073 K (absolute temperature). It is preferable to use a combination of thermoelectric conversion materials so as to be about / K or more. Moreover, it is desirable that both materials have an electric resistivity of about 100 mΩcm or less, preferably about 50 mΩcm or less, more preferably about 10 mΩcm or less at all temperatures in the range of 293 to 1073 K (absolute temperature).

電気的に接続させる方法については特に限定はなく、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を直接接触させて接続してもよく、或いは、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を、導電性材料を介して接続しても良い。   There is no particular limitation on the electrical connection method, and one end of the p-type thermoelectric conversion material thin film and one end of the n-type thermoelectric conversion material thin film may be directly contacted or connected. One end and one end of the n-type thermoelectric conversion material thin film may be connected via a conductive material.

p型熱電変換材料の一端とn型熱電変換材料の一端を電気的に接続するための具体的な方法については、特に限定はないが、接合した際に、293〜1073K(絶対温度)の全ての範囲において素子の熱起電力が60μV/K以上、電気抵抗が1KΩ以下の特性を維持できる方法が好ましい。   A specific method for electrically connecting one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material is not particularly limited, but all of 293 to 1073 K (absolute temperature) are obtained when bonded. In this range, a method capable of maintaining the characteristics of the element having a thermoelectromotive force of 60 μV / K or more and an electric resistance of 1 KΩ or less is preferable.

尚、接続によって生じる電気抵抗は、接続方法や接合部分の面積、使用する導電性材料の種類、大きさなどに依存するが、一般に、熱電変換素子全体の抵抗に占める接合部の抵抗の割合が50%程度以下となるように、接続条件を設定することが好ましく、10%程度以下となるように設定することがより好ましく、5%程度以下となるように設定することが更に好ましい。   The electrical resistance generated by the connection depends on the connection method, the area of the joined portion, the type and size of the conductive material used, but in general, the proportion of the resistance of the joined portion in the overall resistance of the thermoelectric conversion element is The connection condition is preferably set so as to be about 50% or less, more preferably set to be about 10% or less, and further preferably set to be about 5% or less.

以下、図面を参照して、電気的に接続させる方法の具体例を説明する。各図面では、基板上においてp型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を電気的に接続して得られる熱電変換素子の正面図と平面図を示す。   Hereinafter, a specific example of a method for electrical connection will be described with reference to the drawings. In each drawing, a front view and a plan view of a thermoelectric conversion element obtained by electrically connecting one end of a p-type thermoelectric conversion material thin film and one end of an n-type thermoelectric conversion material thin film on a substrate are shown.

図1(a)〜(c)は、基板1の同一平面上に形成したp型熱電変換材料薄膜2の一端とn型熱電変換材料薄膜3の一端を直接接触させた構造の熱電変換素子を示すものである。   1A to 1C show a thermoelectric conversion element having a structure in which one end of a p-type thermoelectric conversion material thin film 2 formed on the same plane of a substrate 1 and one end of an n-type thermoelectric conversion material thin film 3 are in direct contact with each other. It is shown.

図1(d)及び(e)は、薄膜の接触部分において、一方の材料が他方の材料の一部を被覆する状態で接触させたものである。この様な構成の素子によれば、より良好な電気的接続を得ることができる。   FIGS. 1D and 1E show the contact portion of the thin film in a state where one material covers a part of the other material. According to the element having such a configuration, a better electrical connection can be obtained.

図2(a)〜(c)は、基板1上に形成したp型熱電変換材料薄膜2の一端とn型熱電変換材料薄膜3の一端を、導電性材料4を介して接続させた構造の熱電変換素子を示すものである。   2A to 2C show a structure in which one end of a p-type thermoelectric conversion material thin film 2 formed on a substrate 1 and one end of an n-type thermoelectric conversion material thin film 3 are connected via a conductive material 4. A thermoelectric conversion element is shown.

導電性材料としては、p型熱電変換材料とn型熱電変換材料を低抵抗で接続できるものであれば、特に限定なく使用できる。例えば、金属ペースト、ハンダ、導電性セラミックスなどを用いることができる。特に、1073K程度の高温においても溶融することなく、化学的に安定であり、低抵抗を維持できるものとして、金、銀、白金などの貴金属ペースト、導電性セラミックスなどを用いることが好ましい。また、スパッタリングなどの気相蒸着法によって、これらの導電性材料の薄膜を形成してもよい。   Any conductive material can be used without particular limitation as long as it can connect the p-type thermoelectric conversion material and the n-type thermoelectric conversion material with low resistance. For example, metal paste, solder, conductive ceramics, or the like can be used. In particular, it is preferable to use a noble metal paste such as gold, silver, or platinum, conductive ceramics, or the like as a material that is chemically stable and can maintain low resistance even at a high temperature of about 1073K. Further, a thin film of these conductive materials may be formed by a vapor deposition method such as sputtering.

図3は、基板1上において、p型熱電変換材料薄膜2の一端とn型熱電変換材料薄膜3の一端を直接接触させ、その接触部分を、更に、導電性材料4で被覆した構造の熱電変換素子の構造を示す図面である。この様な構造の素子によれば、両薄膜に接触部分においてより良好な電気的接続を確保することができる。   FIG. 3 shows a thermoelectric structure in which one end of a p-type thermoelectric conversion material thin film 2 and one end of an n-type thermoelectric conversion material thin film 3 are in direct contact with each other on the substrate 1 and the contact portion is further covered with a conductive material 4. It is drawing which shows the structure of a conversion element. According to the element having such a structure, better electrical connection can be ensured at the contact portion between the two thin films.

図4(a)〜(c)は、基板の同一面上にp型熱電変換材料薄膜2とn型熱電変換材料薄膜3を接触させることなく形成し、該基板の端面において両薄膜を電気的に接続させた構造の熱電変換素子を示す図面である。これらの内で、図4の(a)は、基板の端面において、両薄膜を直接接続させた構造の素子を示すものであり、図4の(b)は、基板の端面において、導電性材料4を介して両薄膜を接触させた構造の熱電変換素子を示すものである。図4の(c)は、基板の端面に導電性材料4の薄膜を形成し、p型熱電変換材料薄膜2とn型熱電変換材料薄膜3を、基板の角部分で該導電性材料4に接触させることによって、両薄膜を電気的に接続した構造の素子を示すものである。この場合、導電性材料4としては、図2に示した素子と同様に金属ペースト、ハンダ、導電性セラミックス等を用いることができ、更に、蒸着法で形成した導電性膜でも良い。この場合、基板の端面に形成する導電性材料として、p型熱電変換材料薄膜又はn型熱電変換材料薄膜を用いてもよく、p型熱電変換材料薄膜とn型熱電変換材料薄膜の全体又は一部分が積層した状態の薄膜であっても良い。   4 (a) to 4 (c), the p-type thermoelectric conversion material thin film 2 and the n-type thermoelectric conversion material thin film 3 are formed on the same surface of the substrate without contact, and both thin films are electrically connected to the end surface of the substrate. It is drawing which shows the thermoelectric conversion element of the structure connected to this. 4A shows an element having a structure in which both thin films are directly connected to each other at the end face of the substrate. FIG. 4B shows a conductive material at the end face of the substrate. 4 shows a thermoelectric conversion element having a structure in which both thin films are brought into contact with each other through 4. 4C, a thin film of the conductive material 4 is formed on the end face of the substrate, and the p-type thermoelectric conversion material thin film 2 and the n-type thermoelectric conversion material thin film 3 are formed on the conductive material 4 at the corners of the substrate. An element having a structure in which both thin films are electrically connected to each other by contact is shown. In this case, as the conductive material 4, metal paste, solder, conductive ceramics, etc. can be used as in the element shown in FIG. 2, and a conductive film formed by vapor deposition may be used. In this case, a p-type thermoelectric conversion material thin film or an n-type thermoelectric conversion material thin film may be used as the conductive material formed on the end face of the substrate, and the whole or part of the p-type thermoelectric conversion material thin film and the n-type thermoelectric conversion material thin film. It may be a thin film in a state where is laminated.

更に、図4(a)に示す基板の端面で電気的に接続させた構造の熱電変換素子では、両薄膜を直接接触させ、その接触部分を導電性材料で被覆した構造や、基板端面において両材料の一部又は全部を積層する構造とすることによって、より良好な電気的接続を確保することができる。   Furthermore, in the thermoelectric conversion element having a structure in which the end face of the substrate shown in FIG. 4A is electrically connected, both thin films are directly in contact with each other and the contact portion is covered with a conductive material. By adopting a structure in which a part or all of the material is laminated, better electrical connection can be ensured.

尚、上記した図1〜図4に示す各熱電変換素子において、図5に示すような切り込み部分の入った基板を用い、p型熱電変換材料薄膜とn型熱電変換材料薄膜を、切り込み部分の両側に形成することにより、素子全体の熱伝導をより低減することができる。   In each of the thermoelectric conversion elements shown in FIGS. 1 to 4 described above, a p-type thermoelectric conversion material thin film and an n-type thermoelectric conversion material thin film are formed by using a substrate having a cut portion as shown in FIG. By forming on both sides, the heat conduction of the entire device can be further reduced.

熱電変換モジュール
本発明の熱電変換モジュールは、上記した熱電変換素子を複数個用い、一個の熱電変換素子のp型熱電変換材料の未接合の端部を、他の熱電変換素子のn型熱電変換材料の未接合の端部に接続する方法で複数の熱電変換素子を直列に接続したものである。
Thermoelectric Conversion Module The thermoelectric conversion module of the present invention uses a plurality of the above-described thermoelectric conversion elements, and an unjoined end of the p-type thermoelectric conversion material of one thermoelectric conversion element is replaced with an n-type thermoelectric conversion of another thermoelectric conversion element. A plurality of thermoelectric conversion elements are connected in series by a method of connecting to unjoined ends of the material.

具体的な接続方法については、特に限定的ではなく、例えば、上記した熱電変換素子における熱電変換材料の接続方法と同様の方法を適用できる。   The specific connection method is not particularly limited, and for example, a method similar to the connection method of the thermoelectric conversion material in the thermoelectric conversion element described above can be applied.

図6に、熱電変換モジュールの一例の概略図を示す。この熱電変換モジュールは、図1(a)に示した、同一平面上に形成したp型熱電変換材料薄膜2の一端とn型熱電変換材料薄膜3の一端を直接接触させた構造の熱電変換素子を用い、そのp型熱電変換材料2の未接合の端部と、n型熱電変換材料3の未接合の端部とを導電性材料5を介して接合する方法で、複数の熱電変換材料を直列に接続したものである。一つのモジュールに用いる熱電変換素子の数は限定されず、必要とする電力により任意に選択することができる。   FIG. 6 shows a schematic diagram of an example of a thermoelectric conversion module. This thermoelectric conversion module is a thermoelectric conversion element having a structure in which one end of a p-type thermoelectric conversion material thin film 2 formed on the same plane and one end of an n-type thermoelectric conversion material thin film 3 are in direct contact as shown in FIG. And joining the unjoined end of the p-type thermoelectric conversion material 2 and the unjoined end of the n-type thermoelectric conversion material 3 via the conductive material 5, They are connected in series. The number of thermoelectric conversion elements used in one module is not limited and can be arbitrarily selected depending on the required power.

熱電変換素子を接合するために用いる導電性材料5としては、図2に示す熱電変換素子を作製する場合と同様に、貴金属ペースト、ハンダ、導電性セラミックスなどを用いることができる。導電性セラミックスとしては、p型熱電変換材料又はn型熱電変換材料と同様の複合酸化物を用いることもできる。   As the conductive material 5 used for bonding the thermoelectric conversion elements, noble metal paste, solder, conductive ceramics, or the like can be used as in the case of manufacturing the thermoelectric conversion elements shown in FIG. As the conductive ceramic, a composite oxide similar to a p-type thermoelectric conversion material or an n-type thermoelectric conversion material can also be used.

また、異なる基板上に形成した複数の熱電変換素子の未接合の端子同士を接続する方法だけでなく、同一の基板上に複数個の熱電変換素子を形成し、未接合の端部同士を電気的に接続させても良い。この場合、上記した熱電変換材料の薄膜の形成方法を適用して、必要な数のp型熱電変換材料薄膜とn型熱電変換材料薄膜を同一基板上に形成し、各素子の端部を接続することによって、簡単に熱電変換モジュールを得ることができる。   In addition to the method of connecting unjoined terminals of a plurality of thermoelectric conversion elements formed on different substrates, a plurality of thermoelectric conversion elements are formed on the same substrate and the unjoined ends are electrically connected. May be connected. In this case, the above-described method for forming a thin film of thermoelectric conversion material is applied to form a required number of p-type thermoelectric conversion material thin films and n-type thermoelectric conversion material thin films on the same substrate, and the ends of each element are connected. By doing so, a thermoelectric conversion module can be obtained easily.

本発明の熱電変換モジュールは、その一端を高温部に配置し、他端を低温部に配置することによって電圧を発生することができる。例えば、図6のモジュールでは、p型熱電変換材料薄膜とn型熱電変換材料薄膜を直接接触させた部分を高温部に配置し、他端を低温部に配置すればよい。   The thermoelectric conversion module of this invention can generate | occur | produce a voltage by arrange | positioning the one end in a high temperature part, and arrange | positioning the other end in a low temperature part. For example, in the module of FIG. 6, the portion where the p-type thermoelectric conversion material thin film and the n-type thermoelectric conversion material thin film are in direct contact may be disposed in the high temperature portion, and the other end may be disposed in the low temperature portion.

更に、図7に斜視図として示すように、パイプ状の基板1を用い、その両面又は片面に、長さ方向と平行に、p型熱電変換材料2の薄膜とn型熱電変換材料3の薄膜を形成し、いずれか一方の開口部付近でp型熱電変換材料とn型熱電変換材料を電気的に接続してパイプ状基板上に熱電変換素子を形成し、更に、この様な熱電変換素子をパイプ状基板上に複数形成して、該熱電変換素子の未接合の端部同士を接続することによってパイプ状の熱電変換モジュールとすることができる。この様なパイプ状の熱電変換モジュールでは、熱電変換モジュールの一方の開口部を高温側に配置し、他方の開口部を低温部側に配置すればよいが、更に、該パイプ中に高温ガスを通過させることによって、パイプの入口部と出口部のガスの温度差を利用して熱電発電を行うことも可能である。   Further, as shown in a perspective view in FIG. 7, a pipe-shaped substrate 1 is used, and a thin film of p-type thermoelectric conversion material 2 and a thin film of n-type thermoelectric conversion material 3 are formed on both sides or one side in parallel with the length direction. The p-type thermoelectric conversion material and the n-type thermoelectric conversion material are electrically connected in the vicinity of one of the openings to form a thermoelectric conversion element on the pipe-shaped substrate, and such a thermoelectric conversion element Are formed on a pipe-shaped substrate, and the unjoined ends of the thermoelectric conversion elements are connected to each other, whereby a pipe-shaped thermoelectric conversion module can be obtained. In such a pipe-shaped thermoelectric conversion module, one opening portion of the thermoelectric conversion module may be disposed on the high temperature side and the other opening portion may be disposed on the low temperature portion side. By letting it pass through, it is possible to perform thermoelectric generation using the temperature difference between the gas at the inlet and outlet of the pipe.

高温部の熱源としては、例えば、自動車エンジン、工場、火力乃至原子力発電所、ごみ焼却炉、マイクロタービン、ボイラー等から出る473K程度以上の高温熱や、太陽熱、熱湯、体温等293〜473K程度の低温熱等を用いることができる。   As a heat source of the high temperature part, for example, high temperature heat of about 473K or more from a car engine, factory, thermal power or nuclear power plant, garbage incinerator, micro turbine, boiler, etc., solar heat, hot water, body temperature, etc. Low temperature heat or the like can be used.

本発明の熱電変換素子は、電気絶縁性基板上に、p型熱電変換材料とn型熱電変換材料が、薄膜状に形成されたものであり、各種の任意の形状の基板上に熱電変換素子を形成できることから、多様な形状の熱電変換素子とすることができる。その結果、電子回路への組み込みや微細部分での利用など各種の応用が可能となる。また、プラスチック基板を用いることもでき、各種フレキシブルデバイスへの応用も可能となる。   The thermoelectric conversion element of the present invention is obtained by forming a p-type thermoelectric conversion material and an n-type thermoelectric conversion material in the form of a thin film on an electrically insulating substrate. The thermoelectric conversion element is formed on a substrate of various arbitrary shapes. Therefore, thermoelectric conversion elements having various shapes can be obtained. As a result, various applications such as incorporation into an electronic circuit and use in a fine part are possible. In addition, a plastic substrate can be used, and application to various flexible devices is also possible.

また、本発明の熱電変換素子は、特定の複合酸化物からなるp型熱電変換材料とn型熱電変換材料を組み合わせて用いるものであり、高い熱電変換効率と良好な電気伝導性を有する熱電変換素子である。この様な熱電変換素子は、高い熱電変換効率を有し、且つ熱的安定性、化学的耐久性等に優れた熱電変換材料により構成されており、優れた性能を有する熱電変換素子である。   The thermoelectric conversion element of the present invention is a combination of a p-type thermoelectric conversion material and an n-type thermoelectric conversion material made of a specific composite oxide, and has high thermoelectric conversion efficiency and good electrical conductivity. It is an element. Such a thermoelectric conversion element is composed of a thermoelectric conversion material having high thermoelectric conversion efficiency and excellent in thermal stability, chemical durability, and the like, and is a thermoelectric conversion element having excellent performance.

また、この様な熱電変換素子を用いた本発明の熱電変換モジュールは、熱耐久性に優れたものであり、高温部を1000K程度の高温から室温まで急冷しても、破損することがなく、発電特性も劣化し難いものである。   In addition, the thermoelectric conversion module of the present invention using such a thermoelectric conversion element is excellent in thermal durability, and even if the high temperature part is rapidly cooled from a high temperature of about 1000 K to room temperature, it is not damaged. The power generation characteristics are also difficult to deteriorate.

この様に、本発明の熱電変換モジュールは、小型で高い出力密度を有するばかりではなく、熱衝撃にも強いことから、工場やゴミ焼却炉、火力・原子力発電所のみならず、温度変化が激しい自動車への応用も可能である。   As described above, the thermoelectric conversion module of the present invention is not only small and has high power density, but also resistant to thermal shock, so that not only factories, garbage incinerators, thermal power / nuclear power plants, but also temperature changes are severe. Application to automobiles is also possible.

さらには473K程度以下の熱エネルギーからも発電が可能であり、熱電変換素子を高集積化できることから、熱源を装着することにより、携帯電話やノートパソコンなど移動機器用の充電が不要な電源としても利用することができる。   Furthermore, power generation is possible from thermal energy of about 473K or less, and thermoelectric conversion elements can be highly integrated. Therefore, by attaching a heat source, it can be used as a power source that does not require charging for mobile devices such as mobile phones and laptop computers. Can be used.

熱電変換素子の一例を示す平面図及び正面図。The top view and front view which show an example of a thermoelectric conversion element. 熱電変換素子のその他の例を示す平面図及び正面図。The top view and front view which show the other example of a thermoelectric conversion element. 熱電変換素子のその他の例を示す平面図及び正面図。The top view and front view which show the other example of a thermoelectric conversion element. 熱電変換素子のその他の例を示す平面図及び正面図。The top view and front view which show the other example of a thermoelectric conversion element. 切り込み部分を有する熱電変換素子用基板の平面図。The top view of the board | substrate for thermoelectric conversion elements which has a notch part. パイプ状基板上に形成された熱電変換モジュールの斜視図。The perspective view of the thermoelectric conversion module formed on the pipe-shaped board | substrate. 熱電変換モジュールの一例を示す図面。The figure which shows an example of a thermoelectric conversion module. 実施例1で得られた熱電変換素子の概略図。1 is a schematic diagram of a thermoelectric conversion element obtained in Example 1. FIG. 実施例9〜16で得られた熱電変換素子の概略図。The schematic of the thermoelectric conversion element obtained in Examples 9-16. 実施例17〜24で得られた熱電変換素子の概略図。Schematic of the thermoelectric conversion element obtained in Examples 17-24. 実施例25〜40で得られた熱電変換素子の概略図。Schematic of the thermoelectric conversion element obtained in Examples 25-40. 実施例41〜48で得られた熱電変換素子の概略図。Schematic of the thermoelectric conversion element obtained in Examples 41-48. 実施例49〜51で得られた熱電変換素子の概略図。The schematic of the thermoelectric conversion element obtained in Examples 49-51. 実施例1で得られた熱電変換素子の電気抵抗の温度依存性を示すグラフ。3 is a graph showing the temperature dependence of the electrical resistance of the thermoelectric conversion element obtained in Example 1.

符号の説明Explanation of symbols

1:基板、
2:p型熱電変換材料、
3:n型熱電変換材料、
4、5:導電性材料
1: substrate
2: p-type thermoelectric conversion material,
3: n-type thermoelectric conversion material,
4, 5: Conductive material

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
以下の方法で、パルスレーザー堆積法に用いるターゲット材(焼結体)を作製した後、パルスレーザー堆積法によって熱電変換素子を作製した。
(1)ターゲット材の作製
(i)p型熱電変換材料用ターゲット材
酸化ビスマス(Bi2O3)、炭酸ストロンチウム(SrCO3)及び酸化コバルト(Co3O4)を原料として用い、これらをBi:Sr:Co(原子比)=2:2:2となるように混合し、電気炉を用い大気中で800℃で10時間仮焼した後、加圧成型し、さらに850℃で20時間焼成して、直径2cm、厚さ3mmの円板状焼結体からなるp型熱電変換材料用ターゲット材を作製した。
(ii)n型熱電変換材料用ターゲット材
La源として硝酸ランタン(La2(NO3)3・6H2O)、Bi源として硝酸ビスマス(Bi(NO3)3・6H2O)、Ni源として硝酸ニッケル(Ni (NO3)・6H2O)を用い、La:Bi:Ni(元素比)=0.9:0.1:1.0となる割合でこれらの原料を蒸留水に完全に溶解させ、アルミナるつぼ中で十分に撹拌混合した後、水分を蒸発させて乾固した。次いで、電気炉を用いて、析出物を空気中で600℃で10時間焼成して、硝酸塩を分解した。その後、焼成物を粉砕し、加圧成形後、300ml/分の酸素気流中で1000℃で20時間加熱して、直径2cm、厚さ3mmの円板状焼結体からなるn型熱電変換材料用ターゲット材を作製した。
(2)熱電変換素子の作製
上記した各ターゲット材を用い、8mm×8mm×1mmの石英ガラス板を基板として、アルゴン・フッ素(ArF)エキシマーレーザーを用いてパルスレーザー堆積法によりp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を順次堆積させた。この際、幅3mm、長さ8mmで、長さ方向の一端部から2mmについては幅が5mmとなるL字形の開口部を有するマスクを用いて、L字型の短辺部分でp型熱電変換材料とn型熱電変換材料が重なり合うようにして、両材料を堆積させた。尚、基板を加熱することなく、室温において各薄膜を形成した。具体的な成膜条件は下記の通りである。
・レーザー:ArFエキシマレーザー
・レーザー出力:150mJ
・繰り返し周波数:5Hz
・圧力:5×10−5Torr
・ターゲット−基板間距離:3cm
・基板:石英ガラス
・基板温度:室温
上記した方法でp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成した後、大気雰囲気中、650℃で2時間熱処理して、熱電変換素子を作製した。
Example 1
The target material (sintered body) used for the pulse laser deposition method was produced by the following method, and then a thermoelectric conversion element was produced by the pulse laser deposition method.
(1) Preparation of target material (i) Target material for p-type thermoelectric conversion materials Bismuth oxide (Bi 2 O 3 ), strontium carbonate (SrCO 3 ) and cobalt oxide (Co 3 O 4 ) are used as raw materials, and these are used as Bi. : Sr: Co (atomic ratio) = 2: 2: 2 is mixed, calcined at 800 ° C for 10 hours in the air using an electric furnace, then pressure-molded, and further fired at 850 ° C for 20 hours Thus, a target material for a p-type thermoelectric conversion material made of a disk-shaped sintered body having a diameter of 2 cm and a thickness of 3 mm was produced.
(Ii) Target material for n-type thermoelectric conversion material
Lan source as La source (La 2 (NO 3 ) 3 · 6H 2 O), Bi source as Bi source (Bi (NO 3 ) 3 · 6H 2 O), Ni source as nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O), La: Bi: Ni (element ratio) = 0.9: 0.1: 1.0 These materials are completely dissolved in distilled water, mixed thoroughly in an alumina crucible and mixed with water. Was evaporated to dryness. Then, using an electric furnace, the precipitate was fired in air at 600 ° C. for 10 hours to decompose nitrate. After that, the fired product is pulverized, pressure-molded, and heated in an oxygen stream at 300ml / min for 20 hours at 1000 ° C to make an n-type thermoelectric conversion material consisting of a disk-shaped sintered body with a diameter of 2cm and a thickness of 3mm. A target material was prepared.
(2) Production of thermoelectric conversion element A p-type thermoelectric conversion material using the above target materials, a quartz glass plate of 8 mm × 8 mm × 1 mm as a substrate, and a pulse laser deposition method using an argon / fluorine (ArF) excimer laser. And a thin film of n-type thermoelectric conversion material were sequentially deposited. At this time, using a mask having an L-shaped opening having a width of 3 mm, a length of 8 mm, and a width of 5 mm from one end in the length direction, a p-type thermoelectric conversion is performed at the L-shaped short side portion. Both materials were deposited such that the material and the n-type thermoelectric conversion material overlapped. Each thin film was formed at room temperature without heating the substrate. Specific film forming conditions are as follows.
・ Laser: ArF excimer laser ・ Laser output: 150 mJ
・ Repetition frequency: 5Hz
・ Pressure: 5 × 10 −5 Torr
・ Distance between target and substrate: 3cm
・ Substrate: quartz glass ・ Substrate temperature: room temperature After forming a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material by the above-mentioned method, heat treatment is performed at 650 ° C. for 2 hours in an air atmosphere, and a thermoelectric conversion element Was made.

得られた熱電変換素子は、図1(d)に示す素子と同様の形状を有するものであり、長さ8mm、幅3mm、膜厚1〜2μmのp型熱電変換材料の薄膜とn型熱電変換材料の薄膜が2mmの間隔で形成され、各薄膜の端部2mmの部分で、各薄膜が重なり合うことによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図8に示す。   The obtained thermoelectric conversion element has the same shape as the element shown in FIG. 1 (d), and is a thin film of p-type thermoelectric conversion material having a length of 8 mm, a width of 3 mm, and a film thickness of 1 to 2 μm, and an n-type thermoelectric. The thin films of the conversion material are formed at intervals of 2 mm, and the thin films overlap each other at the end portions of 2 mm of the thin films so that they are electrically connected. A schematic diagram of this thermoelectric conversion element is shown in FIG.

実施例2〜8
下記表1に示す組成のp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成すること以外は、実施例1と同様にして、実施例2〜8の各熱電変換素子を作製した。尚、下記表1〜表3において、eは8〜10の範囲の値、kは8〜10の範囲の値、rは2.7〜3.3の範囲の値、wは3.6〜4.4の範囲の値、r'は2.8〜3.2の範囲の値である。
Examples 2-8
The thermoelectric conversion elements of Examples 2 to 8 were produced in the same manner as in Example 1 except that a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material having the composition shown in Table 1 below were formed. . In Tables 1 to 3, e is a value in the range of 8 to 10, k is a value in the range of 8 to 10, r is a value in the range of 2.7 to 3.3, and w is 3.6 to A value in the range of 4.4, r ′ is a value in the range of 2.8 to 3.2.

実施例9〜16
表1に示す各組成の熱電変換材料を用い、8mm×8mm×1mmの石英ガラス板を基板として、8mm×8mmの面上の一辺側から幅1mmの範囲に、長さ8mm、厚さ0.5μmの白金薄膜をスパッタリングによって形成した。スパッタリングガスとしては、アルゴンを用い、真空中、室温において白金薄膜を形成した。
Examples 9-16
Using a thermoelectric conversion material having each composition shown in Table 1, a quartz glass plate of 8 mm × 8 mm × 1 mm is used as a substrate, a length of 8 mm, a thickness of 0.1 mm within a range of 1 mm from one side on a surface of 8 mm × 8 mm. A 5 μm platinum thin film was formed by sputtering. As a sputtering gas, argon was used, and a platinum thin film was formed at room temperature in vacuum.

次に、形成された白金薄膜の帯に垂直な一辺の縁から幅3mmの範囲に、長さ8mmのp型熱電変換材料の薄膜を堆積させ、更に、p型熱電変換材料の薄膜を堆積させた反対側の辺の縁から3mmの範囲にn型熱電変換材料の薄膜を堆積させた。各薄膜は、実施例1と同様にして、パルスレーザー堆積法によって堆積させた。次いで、実施例1と同様の条件で熱処理を行って熱電変換素子を作製した。   Next, a thin film of p-type thermoelectric conversion material having a length of 8 mm is deposited within a range of 3 mm width from the edge of one side perpendicular to the band of the formed platinum thin film, and further a thin film of p-type thermoelectric conversion material is deposited. A thin film of n-type thermoelectric conversion material was deposited in a range of 3 mm from the edge of the opposite side. Each thin film was deposited by the pulse laser deposition method in the same manner as in Example 1. Next, heat treatment was performed under the same conditions as in Example 1 to produce a thermoelectric conversion element.

得られた素子は、図2(c)に示す素子と同様の形状であり、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、それぞれ3mm幅、8mm長、1〜2μm厚で、2mmの間隔をあけて形成され、各薄膜の一部が白金薄膜と重なることによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図9に示す。   The obtained element has the same shape as the element shown in FIG. 2C, and the thin film of the p-type thermoelectric conversion material and the thin film of the n-type thermoelectric conversion material are 3 mm wide, 8 mm long, and 1 to 2 μm thick, respectively. The thin film is formed at an interval of 2 mm, and a part of each thin film overlaps the platinum thin film, thereby being electrically connected. A schematic diagram of this thermoelectric conversion element is shown in FIG.

実施例17〜24
幅3mm、長さ8mmで、長さ方向の一端部から2mmの幅が4mmとなるL字形の開口部を有するマスクを用いて、8mm×8mm×1mmの石英ガラス基板上に、p型熱電変換材料とn型熱電変換材料の各薄膜を堆積させた。この際、各材料については、ガラス基板の中間部でL字形の堆積物の短辺の先端部分が接触するようにして堆積させた。p型熱電変換材料とn型熱電変換材料としては、表1に示す組成の材料を用い、実施例1と同様のパルスレーザー堆積法によって堆積させた。次いで、実施例1と同様にして熱処理を行って熱電変換素子を作製した。
Examples 17-24
Using a mask having an L-shaped opening with a width of 3 mm, a length of 8 mm, and a width of 2 mm from one end in the length direction of 4 mm, a p-type thermoelectric conversion is performed on an 8 mm × 8 mm × 1 mm quartz glass substrate. Each thin film of material and n-type thermoelectric conversion material was deposited. At this time, each material was deposited so that the tip part of the short side of the L-shaped deposit was in contact with the middle part of the glass substrate. As the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, materials having the compositions shown in Table 1 were used and deposited by the same pulsed laser deposition method as in Example 1. Next, heat treatment was performed in the same manner as in Example 1 to produce a thermoelectric conversion element.

得られた素子は、図1(a)に示す素子と同様の形状であり、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜がそれぞれ3mm幅、8mm長、1〜2μm厚で、2mmの間隔をあけて形成され、L字形の短辺の先端部で両薄膜が線状に接触することによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図10に示す。   The obtained element has the same shape as the element shown in FIG. 1A, and the p-type thermoelectric conversion material thin film and the n-type thermoelectric conversion material thin film are 3 mm wide, 8 mm long, and 1 to 2 μm thick, respectively. It is formed with an interval of 2 mm, and both thin films are in a state of being electrically connected by making a linear contact at the tip of the short side of the L-shape. A schematic diagram of this thermoelectric conversion element is shown in FIG.

実施例25〜32
8mm×8mm×1mmの石英ガラス基板の一端面(8mm×1mmの面)に、p型熱電変換材料を堆積させた後、その上にn型熱電変換材料を堆積させた。
Examples 25-32
A p-type thermoelectric conversion material was deposited on one end surface (8 mm × 1 mm surface) of an 8 mm × 8 mm × 1 mm quartz glass substrate, and then an n-type thermoelectric conversion material was deposited thereon.

次いで、石英ガラス基板の8mm×8mmの面に、一辺の縁から幅3mmの範囲に、長さ8mmのp型熱電変換材料の薄膜を堆積させ、更に、p型熱電変換材料を形成した側と反対側の辺の縁から幅3mmの範囲に長さ8mmのn型熱電変換材料の薄膜を堆積させた。この場合、p型熱電変換材料薄膜とn型熱電変換材料薄膜は、いずれも、長さ3mmの辺が、基板の端面に形成した熱電変換材料と接触するように堆積させた。p型熱電変換材料とn型熱電変換材料としては、表2に示す組成の材料を用い、実施例1と同様のパルスレーザー堆積法によって堆積させた。次いで、実施例1と同様の条件で、熱処理を行って熱電変換素子を作製した。   Next, a thin film of a p-type thermoelectric conversion material having a length of 8 mm is deposited on an 8 mm × 8 mm surface of a quartz glass substrate within a range of 3 mm from the edge of one side, and the side on which the p-type thermoelectric conversion material is further formed. A thin film of n-type thermoelectric conversion material having a length of 8 mm was deposited in a range of 3 mm width from the edge of the opposite side. In this case, each of the p-type thermoelectric conversion material thin film and the n-type thermoelectric conversion material thin film was deposited so that the side having a length of 3 mm was in contact with the thermoelectric conversion material formed on the end face of the substrate. As the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, materials having the compositions shown in Table 2 were used and deposited by the same pulse laser deposition method as in Example 1. Next, heat treatment was performed under the same conditions as in Example 1 to produce a thermoelectric conversion element.

得られた素子は、図4(c)に示す素子と同様の形状であり、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、それぞれ3mm幅、8mm長、1〜2μm厚で、2mmの間隔をあけて形成され、基板の端面に形成された熱電変換材料(p型熱電変換材料とn型熱電変換材料の積層膜)からなる導電性膜と基板の角で接触することによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図11に示す。   The obtained element has the same shape as the element shown in FIG. 4C, and a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material are 3 mm wide, 8 mm long, and 1 to 2 μm thick, respectively. By contacting at the corner of the substrate with a conductive film made of a thermoelectric conversion material (a laminated film of a p-type thermoelectric conversion material and an n-type thermoelectric conversion material) formed at an interval of 2 mm and formed on the end face of the substrate It is in an electrically connected state. A schematic diagram of this thermoelectric conversion element is shown in FIG.

実施例33〜40
8mm×8mm×1mmの石英ガラス基板の一端面(8mm×1mmの面)に、実施例9〜16と同様にして白金を蒸着させた。
Examples 33-40
Platinum was vapor-deposited on one end surface (8 mm × 1 mm surface) of an 8 mm × 8 mm × 1 mm quartz glass substrate in the same manner as in Examples 9-16.

次いで、石英ガラス基板の8mm×8mmの面に、一辺の縁から幅3mmの範囲に、長さ8mmのp型熱電変換材料の薄膜を堆積させ、更に、p型熱電変換材料を形成した側と反対側の辺の縁から幅3mmの範囲に長さ8mmのn型熱電変換材料の薄膜を堆積させた。この場合、p型熱電変換材料薄膜とn型熱電変換材料薄膜については、いずれも長さ3mmの辺が、基板の端面に形成した白金薄膜と接触するようにして堆積させた。p型熱電変換材料とn型熱電変換材料としては、表2に示す組成の材料を用い、実施例1と同様のパルスレーザー堆積法によって堆積させた。次いで、実施例1と同様の条件で、熱処理を行って熱電変換素子を作製した。   Next, a thin film of a p-type thermoelectric conversion material having a length of 8 mm is deposited on an 8 mm × 8 mm surface of a quartz glass substrate within a range of 3 mm from the edge of one side, and the side on which the p-type thermoelectric conversion material is further formed. A thin film of n-type thermoelectric conversion material having a length of 8 mm was deposited in a range of 3 mm width from the edge of the opposite side. In this case, each of the p-type thermoelectric conversion material thin film and the n-type thermoelectric conversion material thin film was deposited such that the side having a length of 3 mm was in contact with the platinum thin film formed on the end face of the substrate. As the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, materials having the compositions shown in Table 2 were used and deposited by the same pulse laser deposition method as in Example 1. Next, heat treatment was performed under the same conditions as in Example 1 to produce a thermoelectric conversion element.

得られた素子は、図4(c)に示す素子と同様の形状であり、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、それぞれ3mm幅、8mm長、1〜2μm厚で、2mmの間隔をあけて形成され、基板の端面に形成された白金薄膜からなる導電性膜と基板の角で接触することによって、電気的に接続された状態となっている。この熱電変換素子は、図11に示すものと同様の構造である。   The obtained element has the same shape as the element shown in FIG. 4C, and a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material are 3 mm wide, 8 mm long, and 1 to 2 μm thick, respectively. The conductive film made of a platinum thin film formed on the end face of the substrate with an interval of 2 mm is brought into contact with each other at the corner of the substrate, thereby being electrically connected. This thermoelectric conversion element has the same structure as that shown in FIG.

実施例41〜48
8mm×8mm×1mmの石英ガラス基板の一端面(8mm×1mmの面)に、一端から4mmの長さでp型熱電変換材料を堆積させ、更に、同一の端面の反対端から4mmの長さでn型熱電変換材料を堆積させた。この場合、p型熱電変換材料とn型熱電変換材料は、長さ1mmの辺で線状に接触した状態であった。
Examples 41-48
A p-type thermoelectric conversion material is deposited on one end surface (8 mm × 1 mm surface) of an 8 mm × 8 mm × 1 mm quartz glass substrate with a length of 4 mm from one end, and further, a length of 4 mm from the opposite end of the same end surface. The n-type thermoelectric conversion material was deposited. In this case, the p-type thermoelectric conversion material and the n-type thermoelectric conversion material were in a state of linear contact on the side having a length of 1 mm.

次いで、石英ガラス基板の8mm×8mmの面に、一辺の縁から幅3mmの範囲に、長さ8mmのp型熱電変換材料の薄膜を堆積させ、更に、p型熱電変換材料を形成した側と反対側の辺の縁から幅3mmの範囲に長さ8mmのn型熱電変換材料の薄膜を堆積させた。この場合、p型熱電変換材料薄膜については、長さ3mmの辺が基板の端面に形成されたp型熱電変換材料と基板の角部分で接触する状態となるように堆積させ、n型熱電変換材料薄膜については、長さ3mmの辺が基板の端面に形成したn型熱電変換材料と基板の角部分で接触する状態となるように堆積させた。p型熱電変換材料とn型熱電変換材料としては、表2に示す組成の材料を用い、実施例1と同様のパルスレーザー堆積法によって堆積させた。次いで、実施例1と同様の条件で、熱処理を行って熱電変換素子を作製した。   Next, a thin film of a p-type thermoelectric conversion material having a length of 8 mm is deposited on an 8 mm × 8 mm surface of a quartz glass substrate within a range of 3 mm from the edge of one side, and the side on which the p-type thermoelectric conversion material is further formed. A thin film of n-type thermoelectric conversion material having a length of 8 mm was deposited in a range of 3 mm width from the edge of the opposite side. In this case, the p-type thermoelectric conversion material thin film is deposited so that the side having a length of 3 mm is in contact with the p-type thermoelectric conversion material formed on the end face of the substrate at the corner portion of the substrate, and n-type thermoelectric conversion is performed. The material thin film was deposited so that the side having a length of 3 mm was in contact with the n-type thermoelectric conversion material formed on the end face of the substrate at the corner of the substrate. As the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, materials having the compositions shown in Table 2 were used and deposited by the same pulse laser deposition method as in Example 1. Next, heat treatment was performed under the same conditions as in Example 1 to produce a thermoelectric conversion element.

得られた素子は、図4(a)に示す素子と同様の形状であり、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、それぞれ3mm幅、8mm長、1〜2μm厚で、2mmの間隔をあけて形成され、基板の端面に形成された熱電変換材料の薄膜と基板の角部分で接触することによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図12に示す。   The obtained element has the same shape as the element shown in FIG. 4A, and a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material are 3 mm wide, 8 mm long, and 1 to 2 μm thick, respectively. The thermoelectric conversion material thin film formed on the end surface of the substrate is formed at an interval of 2 mm, and is in an electrically connected state by contacting at a corner portion of the substrate. A schematic diagram of this thermoelectric conversion element is shown in FIG.

実施例49〜51
長さ8mm、幅3mm、厚さ1mmの石英ガラス基板の短尺の一端面(3mm×1mmの面)に白金、Ca2.7Bi0.3Co4O又はLa0.9Bi0.1NiOの薄膜からなる導電性膜を堆積させた。白金の堆積方法は、実施例9〜16と同様の方法であり、Ca2.7Bi0.3Co4OとLa0.9Bi0.1NiOの薄膜の堆積方法は実施例1と同様である。
Examples 49-51
Conductivity made of a thin film of platinum, Ca 2.7 Bi 0.3 Co 4 Oe or La 0.9 Bi 0.1 NiO r on one short end face (3 mm × 1 mm face) of a quartz glass substrate 8 mm long, 3 mm wide and 1 mm thick A film was deposited. The method of depositing platinum is the same manner as in Example 9-16, a method of depositing a thin film of Ca 2.7 Bi 0.3 Co 4 O e and La 0.9 Bi 0.1 NiO r are the same as in Example 1.

次いで、ガラス基板の8mm×3mm面の一方にCa2.7Bi0.3Co4Oの組成を有するp型熱電変換材料を堆積させ、反対面にLa0.9Bi0.1NiOの組成を有するn型熱電変換材料を堆積させた。この場合、各薄膜の堆積方法は実施例1と同様である。次いで、実施例1と同様の条件で、熱処理を行って熱電変換素子を作製した。Next, a p-type thermoelectric conversion material having a composition of Ca 2.7 Bi 0.3 Co 4 O e is deposited on one of the 8 mm × 3 mm faces of the glass substrate, and an n-type thermoelectric conversion having a composition of La 0.9 Bi 0.1 NiO r on the opposite face. Material was deposited. In this case, the method for depositing each thin film is the same as that in the first embodiment. Next, heat treatment was performed under the same conditions as in Example 1 to produce a thermoelectric conversion element.

得られた素子は、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、基板の端面に形成された白金、Ca2.7Bi0.3Co4O又はLa0.9Bi0.1NiOからなる導電性膜と基板の角部分で接触することによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図13に示す。In the obtained element, a p-type thermoelectric conversion material thin film and an n-type thermoelectric conversion material thin film are composed of platinum, Ca 2.7 Bi 0.3 Co 4 O e or La 0.9 Bi 0.1 NiO r formed on the end face of the substrate. The conductive film and the substrate are brought into contact with each other at a corner portion to be electrically connected. A schematic diagram of this thermoelectric conversion element is shown in FIG.

特性試験例1
実施例1で得られた熱電変換素子のp型熱電変換材料とn型熱電変換材料について、下記の方法で室温におけるゼーベック係数を測定した。
Characteristic test example 1
About the p-type thermoelectric conversion material and n-type thermoelectric conversion material of the thermoelectric conversion element obtained in Example 1, the Seebeck coefficient at room temperature was measured by the following method.

まず、二対のK型熱電対の一方にヒーターを巻いて加熱し、二対それぞれを材料の両端に同時に接触させ、その時の温度と発生電圧を測定した。そして、この発生電圧を二対の熱電対の温度差で除することにより、各熱電変換材料のゼーベック係数を得た。その結果p型熱電変換材料部分のゼーベック係数は85μV/Kであり、n型熱電変換材料部分のゼーベック係数は−13μV/Kであった。   First, a heater was wound around one of the two pairs of K-type thermocouples, the two pairs were simultaneously brought into contact with both ends of the material, and the temperature and generated voltage at that time were measured. Then, the Seebeck coefficient of each thermoelectric conversion material was obtained by dividing this generated voltage by the temperature difference between the two pairs of thermocouples. As a result, the Seebeck coefficient of the p-type thermoelectric conversion material portion was 85 μV / K, and the Seebeck coefficient of the n-type thermoelectric conversion material portion was −13 μV / K.

各実施例で得られた熱電変換素子について、同様の方法でゼーベック係数を測定したところ、p型熱電変換材料部分のゼーベック係数は60〜120μV/Kであり、n型熱電変換材料部分のゼーベック係数は、−5〜―25μV/Kであった。   About the thermoelectric conversion element obtained in each Example, when the Seebeck coefficient was measured by the same method, the p-type thermoelectric conversion material part has a Seebeck coefficient of 60 to 120 μV / K, and the n-type thermoelectric conversion material part Seebeck coefficient. Was −5 to −25 μV / K.

また、各熱電変換素子について、p型熱電変換材料とn型熱電変換材料を電気的に接続している側の反対側の両端部に銀ペーストを用いて白金線を接着させた。この白金線を電圧計に接続し、素子を電気炉に入れて、500℃まで加熱した。エアポンプを用いて熱電変換素子の白金線を接着した側を空冷し、高温側と30〜40℃の温度差を生じさせ、その時の発生電圧(開放電圧)を測定した。   Moreover, about each thermoelectric conversion element, the platinum wire was adhere | attached using the silver paste to the both ends of the opposite side to the side which electrically connected the p-type thermoelectric conversion material and the n-type thermoelectric conversion material. The platinum wire was connected to a voltmeter, and the device was put in an electric furnace and heated to 500 ° C. The side to which the platinum wire of the thermoelectric conversion element was bonded was air-cooled using an air pump, a temperature difference of 30 to 40 ° C. was generated from the high temperature side, and the generated voltage (open voltage) at that time was measured.

実施例1で得られた熱電変換素子では、発生電圧(開放電圧)は3.4mVであった。各実施例で得られた熱電変換素子の発生電圧(開放電圧)を下記表1〜表3に示す。   In the thermoelectric conversion element obtained in Example 1, the generated voltage (open voltage) was 3.4 mV. The generated voltage (open voltage) of the thermoelectric conversion element obtained in each example is shown in Tables 1 to 3 below.

また、実施例1で得られた熱電変換素子の電気抵抗の温度依存性を示すグラフを図14に示す。電気抵抗率は室温〜650℃において350〜1000Ωであった。   Moreover, the graph which shows the temperature dependence of the electrical resistance of the thermoelectric conversion element obtained in Example 1 is shown in FIG. The electrical resistivity was 350 to 1000Ω at room temperature to 650 ° C.

p型熱電変換材料とn型熱電変換材料を電気的に接続している側を高温側として500℃まで加熱し、他端を空冷して38℃の温度差を生じさせた場合、実施例1で得られた熱電変換素子は8.3nWの発電出力を示した。各実施例で得られた熱電変換素子について、同様の方法で発電出力を求めた結果も表1〜表3に示す。   Example 1 in which the side where the p-type thermoelectric conversion material and the n-type thermoelectric conversion material are electrically connected is heated to 500 ° C. and the other end is air-cooled to cause a temperature difference of 38 ° C. The thermoelectric conversion element obtained in (1) showed a power output of 8.3 nW. Tables 1 to 3 also show the results of obtaining the power generation output by the same method for the thermoelectric conversion elements obtained in each example.

実施例52
以下の方法で、スパッタリング法に用いるターゲットを作製した後、スパッタリング法によって、熱電変換素子を作製した。
Example 52
A target used for the sputtering method was produced by the following method, and then a thermoelectric conversion element was produced by the sputtering method.

(1)ターゲットの作製
(i)p型熱電変換材料用ターゲット
酸化ビスマス(Bi2O3)、炭酸ストロンチウム(SrCO3)及び酸化コバルト(Co3O4)を原料として用い、これらをBi:Sr:Co(原子比)=2:2:2となるように混合し、電気炉を用い大気中で800℃で10時間仮焼した後、加圧成型し、さらに850℃で20時間焼成した。得られた粉末を、銅プレート上に直径10cm、厚さ2mmに敷き詰めてp型熱電変換材料用ターゲットを作製した。
(ii)n型熱電変換材料用ターゲット
La源として硝酸ランタン(La2(NO3)3・6H2O)、Bi源として硝酸ビスマス(Bi(NO3)3・6H2O)、Ni源として硝酸ニッケル(Ni (NO3)・6H2O)を用い、La:Bi:Ni(元素比)=0.9:0.1:1.0となる割合でこれらの原料を蒸留水に完全に溶解させ、アルミナるつぼ中で十分に撹拌混合した後、水分を蒸発させて乾固した。次いで、電気炉を用いて、析出物を空気中で600℃で10時間焼成して、硝酸塩を分解した。その後、焼成物を粉砕し、加圧成形後、300ml/分の酸素気流中で1000℃で20時間加熱した。得られた粉末を、銅プレート上に直径10cm、厚さ2mmに敷き詰めてn型熱電変換材料用ターゲットを作製した。
(1) Target preparation (i) Target for p-type thermoelectric conversion materials Bismuth oxide (Bi 2 O 3 ), strontium carbonate (SrCO 3 ) and cobalt oxide (Co 3 O 4 ) are used as raw materials, and these are used as Bi: Sr. : Co (atomic ratio) = 2: 2: 2 was mixed, calcined in the air at 800 ° C. for 10 hours using an electric furnace, pressure-molded, and further fired at 850 ° C. for 20 hours. The obtained powder was spread on a copper plate to have a diameter of 10 cm and a thickness of 2 mm to produce a target for a p-type thermoelectric conversion material.
(Ii) Target for n-type thermoelectric conversion material
Lan source as La source (La 2 (NO 3 ) 3 · 6H 2 O), Bi source as Bi source (Bi (NO 3 ) 3 · 6H 2 O), Ni source as nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O), La: Bi: Ni (element ratio) = 0.9: 0.1: 1.0 These materials are completely dissolved in distilled water, mixed thoroughly in an alumina crucible and mixed with water. Was evaporated to dryness. Then, using an electric furnace, the precipitate was fired in air at 600 ° C. for 10 hours to decompose nitrate. Thereafter, the fired product was pulverized, pressed and then heated at 1000 ° C. for 20 hours in an oxygen stream of 300 ml / min. The obtained powder was spread on a copper plate to a diameter of 10 cm and a thickness of 2 mm to prepare an n-type thermoelectric conversion material target.

(2)熱電変換素子の作製
上記した各ターゲットを用い、8mm×8mm×0.5mmのポリイミドフイルムを基板として、RFスパッタリング法によりp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を順次堆積させた。この際、幅3mm、長さ8mmで、長さ方向の一端部から2mmについては幅が5mmとなるL字形の開口部を有するマスクを用いて、L字型の短辺部分でp型熱電変換材料とn型熱電変換材料が重なり合うようにして、両材料を堆積させた。尚、基板加熱は行わず、プラズマによる温度上昇は260℃以下となるように制御した。具体的な成膜条件は下記の通りである。
・スパッタリングガス:Ar
・RF電力:50〜200W
・基板:ポリイミドフイルム
上記した方法でp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成した。
(2) Production of thermoelectric conversion element Using each of the above targets, a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material are sequentially formed by RF sputtering using a polyimide film of 8 mm × 8 mm × 0.5 mm as a substrate. Deposited. At this time, using a mask having an L-shaped opening having a width of 3 mm, a length of 8 mm, and a width of 5 mm from one end in the length direction, a p-type thermoelectric conversion is performed at the L-shaped short side portion. Both materials were deposited such that the material and the n-type thermoelectric conversion material overlapped. The substrate was not heated, and the temperature rise due to plasma was controlled to be 260 ° C. or lower. Specific film forming conditions are as follows.
・ Sputtering gas: Ar
・ RF power: 50-200W
-Substrate: polyimide film A thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material were formed by the method described above.

得られた熱電変換素子は、図1(d)に示す素子と同様の形状を有するものであり、長さ8mm、幅3mm、膜厚1〜2μmのp型熱電変換材料の薄膜とn型熱電変換材料の薄膜が2mmの間隔で形成され、各薄膜の端部2mmの部分で、各薄膜が重なり合うことによって、電気的に接続された状態となっている。この熱電変換素子は、図8に示すものと同様の形状である。   The obtained thermoelectric conversion element has the same shape as the element shown in FIG. 1 (d), and is a thin film of p-type thermoelectric conversion material having a length of 8 mm, a width of 3 mm, and a film thickness of 1 to 2 μm, and an n-type thermoelectric. The thin films of the conversion material are formed at intervals of 2 mm, and the thin films overlap each other at the end portions of 2 mm of the thin films so that they are electrically connected. This thermoelectric conversion element has the same shape as that shown in FIG.

実施例53〜59
下記表4に示す組成のp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成すること以外は、実施例52と同様にして、実施例53〜59の各熱電変換素子を作製した。尚、原料粉末の製造時の加熱温度については、具体的な組成に応じて700℃〜1100℃の範囲で変更した。
Examples 53-59
The thermoelectric conversion elements of Examples 53 to 59 were produced in the same manner as in Example 52 except that a p-type thermoelectric conversion material thin film and an n-type thermoelectric conversion material thin film having the compositions shown in Table 4 below were formed. . In addition, about the heating temperature at the time of manufacture of raw material powder, it changed in the range of 700 to 1100 degreeC according to a specific composition.

下記表4において、eは8〜10の範囲の値、kは8〜10の範囲の値、rは2.7〜3.3の範囲の値、wは3.6〜4.4の範囲の値、r’は2.8〜3.2の範囲の値である。   In Table 4 below, e is a value in the range of 8 to 10, k is a value in the range of 8 to 10, r is a value in the range of 2.7 to 3.3, and w is a range of 3.6 to 4.4. The value of r ′ is a value in the range of 2.8 to 3.2.

実施例52〜59で作製した各熱電変換素子について、実施例1と同様にして、発生電圧(開放電圧)、電気抵抗及び発電出力を測定した結果を下記表4に示す。   Table 4 below shows the results of measuring the generated voltage (open voltage), electrical resistance, and power generation output for each thermoelectric conversion element manufactured in Examples 52 to 59 in the same manner as in Example 1.

実施例60
以下の方法で、エアロゾル堆積法に用いる原料粉末を作製した後、ポリイミド樹脂(商品名:カプトン)製のシートを基板として、エアロゾル堆積法によって熱電変換素子を作製した。
Example 60
After producing the raw material powder used for the aerosol deposition method by the following method, the thermoelectric conversion element was produced by the aerosol deposition method using the sheet | seat made from a polyimide resin (brand name: Kapton) as a board | substrate.

(1)原料粉末の作製
(i)p型熱電変換材料粉末
炭酸カルシウム(CaCO3)、酸化ビスマス(Bi2O3)及び酸化コバルト(Co3O4)を原料として用い、これらをCa:Bi:Co(原子比)=2.7:0.3:4となるように混合し、電気炉を用いて、大気中で800℃で10時間仮焼した後、加圧成型し、さらに850℃で20時間焼成した。その後、ボールミルを用いて焼結体を粉砕して、平均粒径4μmの組成式:Ca2.7Bi0.3Co4Oで表されるp型熱電変換材料の原料粉末を得た。
(ii)n型熱電変換材料粉末
La源として硝酸ランタン(La2(NO3)3・6H2O)、Bi源として硝酸ビスマス(Bi(NO3)3・6H2O)、Ni源として硝酸ニッケル(Ni (NO3)・6H2O)を用い、La:Bi:Ni(元素比)=0.9:0.1:1.0となる割合でこれらの原料を蒸留水に完全に溶解させ、アルミナるつぼ中で十分に撹拌混合した後、水分を蒸発させて乾固した。次いで、電気炉を用いて、析出物を空気中で600℃で10時間焼成して、硝酸塩を分解した。その後、焼成物を粉砕し、加圧成形後、300ml/分の酸素気流中で1000℃で20時間加熱した。その後、ボールミルを用いて、焼結体を粉砕し平均粒径4μmの組成式:La0.9Bi0.1NiOで表されるn型熱電変換材料の原料粉末を得た。
(1) Preparation of raw material powder (i) p-type thermoelectric conversion material powder Calcium carbonate (CaCO 3 ), bismuth oxide (Bi 2 O 3 ) and cobalt oxide (Co 3 O 4 ) are used as raw materials, and these are used as Ca: Bi : Co (atomic ratio) = 2.7: 0.3: 4 mixed, calcined in the air at 800 ° C for 10 hours using an electric furnace, then pressure-molded, and further fired at 850 ° C for 20 hours did. Thereafter, the sintered body was pulverized using a ball mill to obtain a raw material powder of a p-type thermoelectric conversion material represented by a composition formula: Ca 2.7 Bi 0.3 Co 4 O e having an average particle diameter of 4 μm.
(Ii) n-type thermoelectric conversion material powder
Lan source as La source (La 2 (NO 3 ) 3 · 6H 2 O), Bi source as Bi source (Bi (NO 3 ) 3 · 6H 2 O), Ni source as nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O), La: Bi: Ni (element ratio) = 0.9: 0.1: 1.0 These materials are completely dissolved in distilled water, mixed thoroughly in an alumina crucible and mixed with water. Was evaporated to dryness. Then, using an electric furnace, the precipitate was fired in air at 600 ° C. for 10 hours to decompose nitrate. Thereafter, the fired product was pulverized, pressed and then heated at 1000 ° C. for 20 hours in an oxygen stream of 300 ml / min. Thereafter, the sintered body was pulverized using a ball mill to obtain a raw material powder of an n-type thermoelectric conversion material represented by a composition formula: La 0.9 Bi 0.1 NiO r having an average particle diameter of 4 μm.

(2)熱電変換素子の作製
8mm×8mm×0.05mmのポリイミド(商品名:カプトン)シートを基板として用い、圧力1kPaの減圧チャンバー内で、p型熱電変換材料膜とn型熱電変換材料膜を順次堆積させて、熱電変換素子を作製した。この際、幅3mm、長さ8mm、長さ方向の一端部から2mmについては幅が5mmとなるL字形の開口部を有するマスクを用いて、L字型の短辺部分でp型熱電変換材料とn型熱電変換材料が重なり合うようにして、両材料を堆積させた。尚、基板を加熱することなく、室温において各薄膜を形成した。
(2) Production of thermoelectric conversion element A p-type thermoelectric conversion material film and an n-type thermoelectric conversion material film are used in a decompression chamber of 1 kPa pressure using a polyimide (trade name: Kapton) sheet of 8 mm × 8 mm × 0.05 mm as a substrate. Were sequentially deposited to produce a thermoelectric conversion element. At this time, a p-type thermoelectric conversion material at the L-shaped short side portion using a mask having an L-shaped opening having a width of 3 mm, a length of 8 mm, and a width of 2 mm from one end in the length direction. Both materials were deposited so that the n-type thermoelectric conversion material overlapped. Each thin film was formed at room temperature without heating the substrate.

具体的な成膜条件としては、搬送ガスとしてHeを用い、ガス流量7L/分、ノズル基板間距離15mmとして、p型熱電変換材料の原料粉末とn型熱電変換材料の原料粉末を順次吹き付けて、厚さ約50μmのp型熱電変換材料薄膜とn型熱電変換材料薄膜を形成した熱電変換素子を得た。被膜形成後も加熱は行わなかった。   As specific film forming conditions, He is used as the carrier gas, the gas flow rate is 7 L / min, the nozzle substrate distance is 15 mm, and the p-type thermoelectric conversion material powder and the n-type thermoelectric conversion material powder are sequentially sprayed. A thermoelectric conversion element having a p-type thermoelectric conversion material thin film and an n-type thermoelectric conversion material thin film with a thickness of about 50 μm was obtained. Heating was not performed after the coating was formed.

得られた熱電変換素子は、図1(d)に示す素子と同様の形状を有するものであり、長さ8mm、幅3mmのp型熱電変換材料の薄膜とn型熱電変換材料の薄膜が2mmの間隔で形成され、各薄膜の端部2mmの部分で、各薄膜が重なり合うことによって、電気的に接続された状態となっている。この素子の高温部を150℃になるように電気ヒーターで加熱し、低温部を120℃とした時、4.7nWの発電が可能であった。   The obtained thermoelectric conversion element has the same shape as the element shown in FIG. 1 (d). The thin film of the p-type thermoelectric conversion material and the thin film of the n-type thermoelectric conversion material having a length of 8 mm and a width of 3 mm are 2 mm. The thin films overlap each other at the end portion 2 mm of each thin film, and are electrically connected. When the high temperature part of this element was heated with an electric heater to 150 ° C. and the low temperature part was 120 ° C., power generation of 4.7 nW was possible.

実施例61〜67
下記表5に示す組成のp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成すること以外は、実施例60と同様にして、実施例61〜67の各熱電変換素子を作製した。尚、原料粉末の製造時の加熱温度については、具体的な組成に応じて700℃〜1100℃の範囲で変更した。
Examples 61-67
The thermoelectric conversion elements of Examples 61 to 67 were produced in the same manner as in Example 60 except that a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material having the composition shown in Table 5 below were formed. . In addition, about the heating temperature at the time of manufacture of raw material powder, it changed in the range of 700 to 1100 degreeC according to a specific composition.

下記表5において、eは8〜10の範囲の値、kは8〜10の範囲の値、rは2.7〜3.3の範囲の値、wは3.6〜4.4の範囲の値である。   In Table 5 below, e is a value in the range of 8 to 10, k is a value in the range of 8 to 10, r is a value in the range of 2.7 to 3.3, and w is a range of 3.6 to 4.4. Is the value of

実施例60〜67で作製した各熱電変換素子について、実施例1と同様にして、発生電圧(開放電圧)、電気抵抗及び発電出力を測定した結果を下記表5に示す。   Table 5 below shows the results of measuring the generated voltage (open voltage), the electrical resistance, and the power generation output for each thermoelectric conversion element manufactured in Examples 60 to 67 in the same manner as in Example 1.

実施例68
以下の方法で、スパッタリング法に用いるターゲットを作製した後、スパッタリング法によって、熱電変換素子を作製した。
Example 68
A target used for the sputtering method was produced by the following method, and then a thermoelectric conversion element was produced by the sputtering method.

(1)ターゲットの作製
(i)p型熱電変換材料用ターゲット
酸化ビスマス(Bi2O3)、炭酸ストロンチウム(SrCO3)及び酸化コバルト(Co3O4)を原料として用い、これらをBi:Sr:Co(原子比)=2:2:2となるように混合し、電気炉を用い大気中で800℃で10時間仮焼した後、加圧成型し、さらに850℃で20時間焼成して得られた粉末を、銅プレート上に直径10cm、厚さ2mmに敷き詰めてp型熱電変換材料用ターゲットを作製した。
(ii)n型熱電変換材料用ターゲット
酸化亜鉛(ZnO)に酸化ガリウム(Ga2O3)を5wt%添加し、直径10cm、厚さ3mmの円盤状に焼結した物をターゲットとした。
(1) Target preparation (i) Target for p-type thermoelectric conversion materials Bismuth oxide (Bi 2 O 3 ), strontium carbonate (SrCO 3 ) and cobalt oxide (Co 3 O 4 ) are used as raw materials, and these are used as Bi: Sr. : Co (atomic ratio) = 2: 2: 2 is mixed, calcined in the atmosphere at 800 ° C for 10 hours using an electric furnace, then pressure-molded, and further fired at 850 ° C for 20 hours The obtained powder was spread on a copper plate to have a diameter of 10 cm and a thickness of 2 mm to produce a target for a p-type thermoelectric conversion material.
(Ii) Target for n-type thermoelectric conversion material A target obtained by adding 5 wt% of gallium oxide (Ga 2 O 3 ) to zinc oxide (ZnO) and sintering it into a disk shape having a diameter of 10 cm and a thickness of 3 mm was used.

(2)熱電変換素子の作製
上記した各ターゲットを用い、8mm×8mm×0.5mmのポリイミドフイルムを基板として、RFスパッタリング法によりp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を順次堆積させた。この際、幅3mm、長さ8mmで、長さ方向の一端部から2mmについては幅が5mmとなるL字形の開口部を有するマスクを用いて、L字型の短辺部分でp型熱電変換材料とn型熱電変換材料が重なり合うようにして、両材料を堆積させた。尚、基板加熱は行わず、プラズマによる温度上昇は260℃以下となるように制御した。具体的な成膜条件は下記の通りである。
・スパッタリングガス:Ar、O2
・RF電力:50〜200W
・基板:ポリイミドフイルム
上記した方法でp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成した。
(2) Production of thermoelectric conversion element Using each of the above targets, a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material are sequentially formed by RF sputtering using a polyimide film of 8 mm × 8 mm × 0.5 mm as a substrate. Deposited. At this time, using a mask having an L-shaped opening having a width of 3 mm, a length of 8 mm, and a width of 5 mm from one end in the length direction, a p-type thermoelectric conversion is performed at the L-shaped short side portion. Both materials were deposited such that the material and the n-type thermoelectric conversion material overlapped. The substrate was not heated, and the temperature rise due to plasma was controlled to be 260 ° C. or lower. Specific film forming conditions are as follows.
・ Sputtering gas: Ar, O 2
・ RF power: 50-200W
-Substrate: polyimide film A thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material were formed by the method described above.

得られた熱電変換素子は、図1(d)に示す素子と同様の形状を有するものであり、長さ8mm、幅3mm、膜厚1〜2μmのp型熱電変換材料の薄膜とn型熱電変換材料の薄膜が2mmの間隔で形成され、各薄膜の端部2mmの部分で、各薄膜が重なり合うことによって、電気的に接続された状態となっている。この熱電変換素子は、図8に示すものと同様の構造である。   The obtained thermoelectric conversion element has the same shape as the element shown in FIG. 1 (d), and is a thin film of p-type thermoelectric conversion material having a length of 8 mm, a width of 3 mm, and a film thickness of 1 to 2 μm, and an n-type thermoelectric. The thin films of the conversion material are formed at intervals of 2 mm, and the thin films overlap each other at the end portions of 2 mm of the thin films so that they are electrically connected. This thermoelectric conversion element has the same structure as that shown in FIG.

実施例69〜75
下記表6に示す組成のp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成すること以外は、実施例68と同様にして、実施例69〜75の各熱電変換素子を作製した。尚、原料粉末の製造時の加熱温度については、具体的な組成に応じて700℃〜1100℃の範囲で変更した。
Examples 69-75
The thermoelectric conversion elements of Examples 69 to 75 were produced in the same manner as in Example 68 except that a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material having the compositions shown in Table 6 below were formed. . In addition, about the heating temperature at the time of manufacture of raw material powder, it changed in the range of 700 to 1100 degreeC according to a specific composition.

下記表6において、eは8〜10の範囲の値、kは8〜10の範囲の値、zは0.9〜1.1の範囲の値、zzは1.9〜3の範囲の値である。   In Table 6 below, e is a value in the range of 8 to 10, k is a value in the range of 8 to 10, z is a value in the range of 0.9 to 1.1, and zz is a value in the range of 1.9 to 3. It is.

実施例68〜75で作製した各熱電変換素子について、実施例1と同様にして、発生電圧(開放電圧)、電気抵抗及び発電出力を測定した結果を下記表6に示す。   Table 6 below shows the results of measuring the generated voltage (open voltage), the electrical resistance, and the power generation output for each thermoelectric conversion element manufactured in Examples 68 to 75 in the same manner as in Example 1.

以下、各種組成の酸化物からなる熱電変換材料について、参考例として物性値を示す。   Hereinafter, physical property values are shown as reference examples for thermoelectric conversion materials made of oxides having various compositions.

参考例1
一般式:Ca Co 又は一般式:BiPb Co で表されるp型熱電変換材料としての特性を有する複合酸化物を下記の方法で作製した。
Reference example 1
A composite oxide having a characteristic as a p-type thermoelectric conversion material represented by a general formula: Ca a A 1 b Co c A 2 d O e or a general formula: Bi f Pb g M 1 h Co i M 2 j O k Was prepared by the following method.

原料物質としては、目的とする複合酸化物の構成元素を含む炭酸塩又は酸化物を用い、表7〜表74に記載した組成式と同じ元素比となるように原料物質を混合し、大気圧中において、1073Kで10時間仮焼した。次いで、得られた焼成物を粉砕し、成形して、300mL/分の酸素ガス気流中で20時間焼成した。その後、得られた焼成物を粉砕、加圧成形し、空気中で10MPaの一軸加圧下に、20時間のホットプレス焼結を行い、p型熱電変換材料用の複合酸化物を作製した。各酸化物を製造する際の焼成温度については、組成に応じて1073〜1273Kの範囲で変更し、更に、ホットプレス焼結の温度についても、1123〜1173Kの範囲で変更した。   As the raw material, a carbonate or an oxide containing a constituent element of the target composite oxide is used, and the raw materials are mixed so as to have the same element ratio as the composition formulas described in Tables 7 to 74, and atmospheric pressure is obtained. Inside, it was calcined at 1073K for 10 hours. Next, the obtained fired product was pulverized, molded, and fired in an oxygen gas stream at 300 mL / min for 20 hours. Thereafter, the obtained fired product was pulverized and pressure-molded, and subjected to hot press sintering for 20 hours under uniaxial pressure of 10 MPa in air, to produce a composite oxide for a p-type thermoelectric conversion material. The firing temperature for producing each oxide was changed in the range of 1073 to 1273K depending on the composition, and the hot press sintering temperature was also changed in the range of 1123 to 1173K.

得られた各酸化物について、700℃におけるゼーベック係数、700℃における電気抵抗率及び700℃における熱伝導度の測定結果を下記表7〜表74に示す。   About each obtained oxide, the measurement result of the Seebeck coefficient in 700 degreeC, the electrical resistivity in 700 degreeC, and the thermal conductivity in 700 degreeC is shown in the following Table 7-Table 74.

以上の結果から明らかなように、表7〜表74に示された各酸化物は、p型熱電変換材料として優れた特性を有し、導電性も良好である。従って、上記各実施例におけるp型熱電変換材料に代えて、これらの酸化物を用いる場合にも、良好な熱電発電性能が発揮されるものと考えられる。   As is clear from the above results, each of the oxides shown in Tables 7 to 74 has excellent characteristics as a p-type thermoelectric conversion material and also has good conductivity. Therefore, it is considered that good thermoelectric power generation performance is exhibited even when these oxides are used instead of the p-type thermoelectric conversion material in each of the above embodiments.

参考例2
一般式:Ln Ni 又は一般式:(Ln Ni で表されるn型熱電変換材料としての特性を有する複合酸化物を下記の方法で作製した。
Reference example 2
General formula: Ln m R 1 n Ni p R 2 q O r or the formula: (Ln s R 3 t) composite oxide having 2 Ni u R 4 v O w properties as n-type thermoelectric conversion material represented by The product was prepared by the following method.

原料物質としては、目的とする複合酸化物の構成元素を含む硝酸塩を用い、表75〜表121に記載した各組成式と同じ元素比となる割合で、各原料物質を蒸留水に完全に溶解し、アルミナるつぼ中で十分に撹拌混合した後、水分を蒸発させて乾固した。次いで、電気炉を用いて、析出物を空気中で600℃で10時間焼成して、硝酸塩を分解した。その後、焼成物を粉砕し、加圧成形後、300mL/分の酸素気流中で20時間焼成して複合酸化物を合成した。焼成温度及び焼成時間については、目的とする酸化物が生成するように700〜1100℃の範囲で適宜変更した。   As the raw material, nitrate containing a constituent element of the target composite oxide is used, and each raw material is completely dissolved in distilled water at the same element ratio as each compositional formula described in Table 75 to Table 121. Then, after sufficiently stirring and mixing in an alumina crucible, the water was evaporated to dryness. Then, using an electric furnace, the precipitate was fired in air at 600 ° C. for 10 hours to decompose nitrate. Thereafter, the fired product was pulverized, pressed, and then fired in an oxygen stream of 300 mL / min for 20 hours to synthesize a composite oxide. About baking temperature and baking time, it changed suitably in the range of 700-1100 degreeC so that the target oxide might produce | generate.

下記表75〜表121に、得られた各複合酸化物における元素比、700℃におけるゼーベック係数、700℃における電気抵抗率、及び700℃における熱伝導度を示す。   Tables 75 to 121 below show element ratios, Seebeck coefficient at 700 ° C., electrical resistivity at 700 ° C., and thermal conductivity at 700 ° C. in the obtained composite oxides.

以上の結果から明らかなように、表75〜表121に示された各酸化物は、n型熱電変換材料として優れた特性を有し、導電性も良好である。従って、上記各実施例におけるn型熱電変換材料に代えて、これらの酸化物を用いる場合にも、良好な熱電発電性能が発揮されるものと考えられる。   As is clear from the above results, each of the oxides shown in Tables 75 to 121 has excellent characteristics as an n-type thermoelectric conversion material and also has good conductivity. Therefore, it is considered that good thermoelectric power generation performance is exhibited even when these oxides are used instead of the n-type thermoelectric conversion material in each of the above embodiments.

Claims (9)

電気絶縁性基板上に形成されたp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を電気的に接続してなる熱電変換素子であって、
(i)p型熱電変換材料が、
一般式(1):Ca Co (式中、Aは、 Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Bi、Yおよびランタノイドからなる群から選択される一種又は二種以上の元素であり、Aは、Ti、V、Cr、Mn、Fe、Ni、Cu、Ag、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、2.2≦a≦3.6;0≦b≦0.8;2.0≦c≦4.5;0≦d≦2.0;8≦e≦10である。)で表される複合酸化物、及び
一般式(2):BiPb Co (式中、Mは、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Ca、Sr、Ba、Al、Yおよびランタノイドからなる群から選択される一種又は二種以上の元素であり、Mは、Ti、V、Cr、Mn、Fe、Ni、Cu、Ag、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、1.8≦f≦2.2;0≦g≦0.4;1.8≦h≦2.2;1.6≦i≦2.2;0≦j≦0.5;8≦k≦10である。)で表される複合酸化物
からなる群から選ばれた少なくとも一種の酸化物であり、
(ii)n型熱電変換材料が、一般式 : Ln Ni q’ r’ (式中、Lnは、ランタノイド元素であり、R は、Na、K、Sr、Ca及びBiからなる群から選択される少なくとも一種の元素であり、R は、Ti、V、Cr、Mn、Fe及びCuからなる群から選択される少なくとも一種の元素であり、0.5≦x≦1.2;0≦y≦0.5;0.5≦p≦1.2;0.01≦q’≦0.5;2.8≦r’≦3.2である。)で表される複合酸化物である、
ことを特徴とする熱電変換素子。
A thermoelectric conversion element formed by electrically connecting a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material formed on an electrically insulating substrate,
(I) The p-type thermoelectric conversion material is
General formula (1): Ca a A 1 b Co c A 2 d O e (where A 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, One or more elements selected from the group consisting of Sr, Ba, Al, Bi, Y and lanthanoids, and A 2 is Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, One or more elements selected from the group consisting of W, Nb and Ta, 2.2 ≦ a ≦ 3.6; 0 ≦ b ≦ 0.8; 2.0 ≦ c ≦ 4.5; 0 ≦ d ≦ 2.0; 8 ≦ e ≦ And a composite oxide represented by the general formula (2): Bi f Pb g M 1 h Co i M 2 j O k (wherein M 1 represents Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y and one or more elements selected from the group consisting of lanthanoids, M 2 is Ti, One or two or more selected from the group consisting of V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb and Ta The above element is 1.8 ≦ f ≦ 2.2; 0 ≦ g ≦ 0.4; 1.8 ≦ h ≦ 2.2; 1.6 ≦ i ≦ 2.2; 0 ≦ j ≦ 0.5; 8 ≦ k ≦ 10. At least one oxide selected from the group consisting of oxides;
(Ii) n-type thermoelectric conversion material has the general formula: Ln x R 5 y Ni p R 6 q 'O r' ( wherein, Ln is an lanthanide elements, R 5 is Na, K, Sr, Ca And Bi is at least one element selected from the group consisting of Bi, R 6 is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe and Cu, and 0.5 ≦ x ≦ 1.2 0 ≦ y ≦ 0.5; 0.5 ≦ p ≦ 1.2; 0.01 ≦ q ′ ≦ 0.5; 2.8 ≦ r ′ ≦ 3.2.)
The thermoelectric conversion element characterized by the above-mentioned.
p型熱電変換材料が、一般式:Ca Co(式中、Aは、 Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Bi、Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、2.2≦a≦3.6;0≦b≦0.8;8≦e≦10で
ある。)で表される複合酸化物、及び一般式:BiPb Co(式中、Mは、Sr、Ca及びBaからなる群から選択される一種又は二種以上の元素であり、1.8≦f≦2.2;0≦g≦0.4;1.8≦h≦2.2;8≦k≦10である。)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物であり、
n型熱電変換材料が、一般式 : Ln Ni q’r’(式中、Lnは、ランタノイド元素であり、Rは、Na、K、Sr、Ca及びBiからなる群から選択される少なくとも一種の元素であり、Rは、Ti、V、Cr、Mn、Fe及びCuからなる群から選択される少なくとも一種の元素であり、0.5≦x≦1.2;0≦y≦0.5;0.5≦p≦1.2;0.01≦q’≦0.5;2.8≦r’≦3.2である。)で表される複合酸化物である
請求項1に記載の熱電変換素子。
The p-type thermoelectric conversion material has a general formula: Ca a A 1 b Co 4 O e (where A 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb) , Sr, Ba, Al, Bi, Y and one or more elements selected from the group consisting of lanthanoids, 2.2 ≦ a ≦ 3.6; 0 ≦ b ≦ 0.8; 8 ≦ e ≦ 10) And a general formula: Bi f Pb g M 1 h Co 2 O k (wherein M 1 is one or more elements selected from the group consisting of Sr, Ca and Ba) 1.8 ≦ f ≦ 2.2; 0 ≦ g ≦ 0.4; 1.8 ≦ h ≦ 2.2; 8 ≦ k ≦ 10)) at least one oxide selected from the group consisting of complex oxides Yes,
n-type thermoelectric conversion material is one general formula: Ln x R 5 y Ni p R 6 q 'O r' ( wherein, Ln is an lanthanide elements, R 5 is Na, K, Sr, Ca and Bi or Ranaru at least one element selected from the group, R 6 represents at least one element selected Ti, V, Cr, Mn, from the group consisting of Fe及 beauty Cu, 0.5 ≦ x ≦ 1.2 ; 0 ≦ y ≦ 0.5; 0.5 ≦ p ≦ 1.2; 0.01 ≦ q '≦ 0.5; 2.8 ≦ r'. ≦ 3.2 at a) thermoelectric conversion element according to claim 1, which is a composite oxide represented by.
p型熱電変換材料の薄膜とn型熱電変換材料の薄膜を電気的に接続する方法が、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を直接接触させる方法、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を導電性材料を介して接触させる方法、又はp型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を直接接触させ、該接触部分を導電性材料で被覆する方法である
請求項1に記載の熱電変換素子。
A method of electrically connecting a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material is a method of directly contacting one end of a p-type thermoelectric conversion material thin film and one end of an n-type thermoelectric conversion material thin film, p-type thermoelectric A method in which one end of the conversion material thin film and one end of the n-type thermoelectric conversion material thin film are brought into contact with each other through a conductive material, or one end of the p-type thermoelectric conversion material thin film and one end of the n-type thermoelectric conversion material thin film are directly in contact with each other The thermoelectric conversion element according to claim 1, which is a method of coating a portion with a conductive material.
p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、電気絶縁性基板の同一面又は異なる面に形成されたものである請求項1に記載の熱電変換素子The thermoelectric conversion element according to claim 1, wherein the thin film of the p-type thermoelectric conversion material and the thin film of the n-type thermoelectric conversion material are formed on the same surface or different surfaces of the electrically insulating substrate. 電気絶縁性基板が、プラスチック材料からなる基板である請求項1に記載の熱電変換素子The thermoelectric conversion element according to claim 1, wherein the electrically insulating substrate is a substrate made of a plastic material. 293K〜1073Kの温度範囲において、熱起電力が60μV/K以上である請求項1に記載の熱電変換素子The thermoelectric conversion element according to claim 1, wherein the thermoelectromotive force is 60 µV / K or more in a temperature range of 293K to 1073K. 293K〜1073Kの温度範囲において、電気抵抗が1KΩ以下である請求項1に記載の熱電変換素子。The thermoelectric conversion element according to claim 1, wherein the electric resistance is 1 KΩ or less in a temperature range of 293K to 1073K. 請求項1に記載された熱電変換素子を複数個用い、一個の熱電変換素子のp型熱電変換材料の未接合の端部を、他の熱電変換素子のn型熱電変換材料の未接合の端部に接続する方法で複数の熱電変換素子を直列に接続してなる熱電変換モジュール。A plurality of thermoelectric conversion elements according to claim 1 are used, and an unjoined end of a p-type thermoelectric conversion material of one thermoelectric conversion element is an unjoined end of an n-type thermoelectric conversion material of another thermoelectric conversion element. A thermoelectric conversion module formed by connecting a plurality of thermoelectric conversion elements in series by a method of connecting to a section. 請求項8に記載の熱電発電モジュールの一端を高温部に配置し、他端を低温部に配置することを特徴とする熱電変換方法。9. The thermoelectric conversion method according to claim 8, wherein one end of the thermoelectric power generation module according to claim 8 is disposed in the high temperature portion and the other end is disposed in the low temperature portion.
JP2006511459A 2004-03-25 2005-03-22 Thermoelectric conversion element and thermoelectric conversion module Expired - Fee Related JP4670017B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004088290 2004-03-25
JP2004088290 2004-03-25
PCT/JP2005/005133 WO2005093864A1 (en) 2004-03-25 2005-03-22 Thermoelectric conversion element and thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JPWO2005093864A1 JPWO2005093864A1 (en) 2008-02-14
JP4670017B2 true JP4670017B2 (en) 2011-04-13

Family

ID=35056496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006511459A Expired - Fee Related JP4670017B2 (en) 2004-03-25 2005-03-22 Thermoelectric conversion element and thermoelectric conversion module

Country Status (4)

Country Link
US (1) US7649139B2 (en)
EP (1) EP1737053B1 (en)
JP (1) JP4670017B2 (en)
WO (1) WO2005093864A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473249B (en) * 2011-12-23 2015-02-11 Taiwan Textile Res Inst Photo cooling apparatus and preparation method thereof

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629531B2 (en) * 2003-05-19 2009-12-08 Digital Angel Corporation Low power thermoelectric generator
JP4905877B2 (en) * 2005-11-29 2012-03-28 独立行政法人産業技術総合研究所 Cogeneration system and operation method thereof
US7753584B2 (en) * 2006-03-31 2010-07-13 Mesoscribe Technologies, Inc. Thermocouples
US7678701B2 (en) * 2006-07-31 2010-03-16 Eastman Kodak Company Flexible substrate with electronic devices formed thereon
WO2008097385A1 (en) * 2006-10-18 2008-08-14 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Nano-composites for thermal barrier coatings and thermo-electric generators
JP4867618B2 (en) * 2006-11-28 2012-02-01 住友化学株式会社 Thermoelectric conversion material
JP5095517B2 (en) * 2008-06-19 2012-12-12 独立行政法人科学技術振興機構 Aluminum-containing zinc oxide n-type thermoelectric conversion material
JP5414700B2 (en) 2008-08-29 2014-02-12 エルジー・ケム・リミテッド Novel thermoelectric conversion material, production method thereof, and thermoelectric conversion element
US9660165B2 (en) 2008-08-29 2017-05-23 Lg Chem, Ltd. Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
US9214618B2 (en) * 2008-09-18 2015-12-15 University Of Florida Research Foundation, Inc. Miniature thermoelectric power generator
US20100072461A1 (en) * 2008-09-24 2010-03-25 Hanvision Co., Ltd. Thermo-electric semiconductor device and method for manufacturing the same
US20100154855A1 (en) * 2008-12-18 2010-06-24 David Nemir Thin walled thermoelectric devices and methods for production thereof
CN101483218B (en) * 2009-01-20 2011-03-09 深圳大学 Thermoelectric battery manufacturing method
DE102009031302A1 (en) * 2009-06-30 2011-01-05 O-Flexx Technologies Gmbh Process for the production of thermoelectric layers
US20110048488A1 (en) * 2009-09-01 2011-03-03 Gabriel Karim M Combined thermoelectric/photovoltaic device and method of making the same
DE102010036188A1 (en) * 2009-10-28 2011-05-05 Sms Siemag Ag Process for energy recovery in metallurgical plants and metallurgical plant on the basis of thermocouples
KR101300758B1 (en) * 2011-08-30 2013-08-29 세종대학교산학협력단 HIGHLY EFFICIENT π-TYPE THERMOELECTRIC MODULE FOR POWER GENERATION AND PREPARING METHOD OF THE SAME
JP5913935B2 (en) * 2011-11-30 2016-05-11 日本サーモスタット株式会社 Thermoelectric conversion module
KR101384981B1 (en) * 2012-01-30 2014-04-14 연세대학교 산학협력단 Thermoelectric device having structure capable of improving thermal efficiency
JP5670989B2 (en) 2012-11-20 2015-02-18 アイシン高丘株式会社 Thermoelectric module manufacturing method
US9627601B2 (en) * 2013-01-24 2017-04-18 O-Flexx Technologies Gmbh Thermoelectric element and method for the production thereof
US9404175B2 (en) * 2013-02-04 2016-08-02 Blackberry Limited Method of forming a target for deposition of doped dielectric films by sputtering
US10164164B2 (en) * 2013-06-13 2018-12-25 Brian Isaac Ashkenazi Futuristic hybrid thermoelectric devices and designs and methods of using same
JP6164627B2 (en) * 2013-10-04 2017-07-19 エルジー・ケム・リミテッド New compound semiconductors and their utilization
US20180090660A1 (en) 2013-12-06 2018-03-29 Sridhar Kasichainula Flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
US10141492B2 (en) 2015-05-14 2018-11-27 Nimbus Materials Inc. Energy harvesting for wearable technology through a thin flexible thermoelectric device
US10367131B2 (en) 2013-12-06 2019-07-30 Sridhar Kasichainula Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device
US10290794B2 (en) 2016-12-05 2019-05-14 Sridhar Kasichainula Pin coupling based thermoelectric device
US11024789B2 (en) 2013-12-06 2021-06-01 Sridhar Kasichainula Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs
US10566515B2 (en) 2013-12-06 2020-02-18 Sridhar Kasichainula Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device
JP6134658B2 (en) 2014-01-22 2017-05-24 株式会社アツミテック Thermoelectric conversion module
KR102170479B1 (en) * 2014-02-14 2020-10-28 엘지이노텍 주식회사 Device using thermoelectric moudule
US10629321B2 (en) * 2014-04-09 2020-04-21 Cornell University Misfit p-type transparent conductive oxide (TCO) films, methods and applications
US9891114B2 (en) * 2014-05-28 2018-02-13 Hamilton Sundstrand Corporation Flexible laminated thermocouple
DE102014110065A1 (en) * 2014-07-17 2016-01-21 Epcos Ag Material for a thermoelectric element and method for producing a material for a thermoelectric element
DE102014012585B4 (en) * 2014-08-26 2019-07-11 Diehl & Eagle Picher Gmbh Device for providing an electrical operating energy required for the operation of at least one electrical ignition device of a projectile element
US10800665B1 (en) * 2014-09-05 2020-10-13 National Technology & Engineering Solutions Of Sandia, Llc Redox-active oxide materials for thermal energy storage
JP6247771B2 (en) * 2014-09-08 2017-12-13 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
US11283000B2 (en) 2015-05-14 2022-03-22 Nimbus Materials Inc. Method of producing a flexible thermoelectric device to harvest energy for wearable applications
US11276810B2 (en) 2015-05-14 2022-03-15 Nimbus Materials Inc. Method of producing a flexible thermoelectric device to harvest energy for wearable applications
US10388847B2 (en) * 2015-05-14 2019-08-20 Nimbus Materials Inc. Method of producing a flexible thermoelectric device to harvest energy for wearable applications
CN105823569B (en) * 2016-04-27 2018-10-30 西安交通大学 A kind of doping chromic acid lanthanum film type thermocouple and preparation method thereof
US10991867B2 (en) 2016-05-24 2021-04-27 University Of Utah Research Foundation High-performance terbium-based thermoelectric materials
JP6597501B2 (en) * 2016-07-04 2019-10-30 株式会社デンソー Thermoelectric generator
US11152556B2 (en) 2017-07-29 2021-10-19 Nanohmics, Inc. Flexible and conformable thermoelectric compositions
US10873116B2 (en) * 2018-05-18 2020-12-22 Lee Fei Chen Charging device having thermoelectric module
RU189447U1 (en) * 2019-02-13 2019-05-22 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Thermoelectric module
US11274363B2 (en) 2019-04-22 2022-03-15 Nxp Usa, Inc. Method of forming a sputtering target
CN113087514B (en) * 2021-04-16 2022-05-10 郑州轻工业大学 Lead-free multiferroic material with relaxor ferroelectric property and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262678A (en) * 1988-04-14 1989-10-19 Murata Mfg Co Ltd Laminated thermoelectric element and manufacture thereof
JPH03295281A (en) * 1990-04-12 1991-12-26 Matsushita Electric Ind Co Ltd Thermoelectric device and manufacture thereof
JPH07218348A (en) * 1994-02-08 1995-08-18 Toppan Printing Co Ltd Thin-film thermocouple
JPH08186293A (en) * 1994-12-28 1996-07-16 Seibu Gas Kk Material for thermal power generation
JP2001127350A (en) * 1999-08-17 2001-05-11 Tokyo Gas Co Ltd Thermoelectric conversion material and photoelectric conversion element
JP2002076447A (en) * 2000-08-29 2002-03-15 National Institute Of Advanced Industrial & Technology Method for evaluating performance of thermoelectric material
JP2002335021A (en) * 2001-05-09 2002-11-22 Japan Aviation Electronics Industry Ltd Integrated thin film thermocouple thermoelectric conversion device
JP2003008086A (en) * 2001-06-22 2003-01-10 Idemitsu Kosan Co Ltd Composite oxide and thermoelectric converter using the same
JP2003133600A (en) * 2001-10-24 2003-05-09 Kitagawa Ind Co Ltd Thermoelectric conversion member and manufacturing method therefor
JP2003282964A (en) * 2002-03-22 2003-10-03 National Institute Of Advanced Industrial & Technology COMPLEX OXIDE HAVING n-TYPE THERMOELECTRIC CHARACTERISTICS
JP2003306381A (en) * 2002-04-16 2003-10-28 National Institute Of Advanced Industrial & Technology Method for producing composite oxide sintered body
JP2003306380A (en) * 2002-04-16 2003-10-28 National Institute Of Advanced Industrial & Technology Method for producing composite oxide sintered body
JP2003324220A (en) * 2002-05-02 2003-11-14 Toyota Motor Corp Method for manufacturing oxide based thermoelectric conversion thin film based on laser vapor deposition method
JP2003335580A (en) * 2002-05-21 2003-11-25 Univ Tohoku Oxide thermoelectric material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172784A (en) * 1981-04-17 1982-10-23 Univ Kyoto Thermoelectric conversion element
US4859250A (en) * 1985-10-04 1989-08-22 Buist Richard J Thermoelectric pillow and blanket
US5352299A (en) * 1987-06-26 1994-10-04 Sharp Kabushiki Kaisha Thermoelectric material
JP3295281B2 (en) 1995-08-10 2002-06-24 キヤノン株式会社 Laser scanning optics
JP3443641B2 (en) * 2000-02-10 2003-09-08 独立行政法人産業技術総合研究所 Composite oxides with high Seebeck coefficient and high electrical conductivity
JP3472813B2 (en) 2000-07-18 2003-12-02 独立行政法人産業技術総合研究所 Composite oxides with high Seebeck coefficient and high electrical conductivity
EP1672709B1 (en) 2003-10-08 2010-05-12 National Institute of Advanced Industrial Science and Technology Conductive paste for connecting thermoelectric conversion material

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262678A (en) * 1988-04-14 1989-10-19 Murata Mfg Co Ltd Laminated thermoelectric element and manufacture thereof
JPH03295281A (en) * 1990-04-12 1991-12-26 Matsushita Electric Ind Co Ltd Thermoelectric device and manufacture thereof
JPH07218348A (en) * 1994-02-08 1995-08-18 Toppan Printing Co Ltd Thin-film thermocouple
JPH08186293A (en) * 1994-12-28 1996-07-16 Seibu Gas Kk Material for thermal power generation
JP2001127350A (en) * 1999-08-17 2001-05-11 Tokyo Gas Co Ltd Thermoelectric conversion material and photoelectric conversion element
JP2002076447A (en) * 2000-08-29 2002-03-15 National Institute Of Advanced Industrial & Technology Method for evaluating performance of thermoelectric material
JP2002335021A (en) * 2001-05-09 2002-11-22 Japan Aviation Electronics Industry Ltd Integrated thin film thermocouple thermoelectric conversion device
JP2003008086A (en) * 2001-06-22 2003-01-10 Idemitsu Kosan Co Ltd Composite oxide and thermoelectric converter using the same
JP2003133600A (en) * 2001-10-24 2003-05-09 Kitagawa Ind Co Ltd Thermoelectric conversion member and manufacturing method therefor
JP2003282964A (en) * 2002-03-22 2003-10-03 National Institute Of Advanced Industrial & Technology COMPLEX OXIDE HAVING n-TYPE THERMOELECTRIC CHARACTERISTICS
JP2003306381A (en) * 2002-04-16 2003-10-28 National Institute Of Advanced Industrial & Technology Method for producing composite oxide sintered body
JP2003306380A (en) * 2002-04-16 2003-10-28 National Institute Of Advanced Industrial & Technology Method for producing composite oxide sintered body
JP2003324220A (en) * 2002-05-02 2003-11-14 Toyota Motor Corp Method for manufacturing oxide based thermoelectric conversion thin film based on laser vapor deposition method
JP2003335580A (en) * 2002-05-21 2003-11-25 Univ Tohoku Oxide thermoelectric material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473249B (en) * 2011-12-23 2015-02-11 Taiwan Textile Res Inst Photo cooling apparatus and preparation method thereof

Also Published As

Publication number Publication date
WO2005093864A1 (en) 2005-10-06
EP1737053B1 (en) 2012-02-29
EP1737053A8 (en) 2007-10-03
US20070144573A1 (en) 2007-06-28
EP1737053A4 (en) 2008-01-16
US7649139B2 (en) 2010-01-19
EP1737053A1 (en) 2006-12-27
JPWO2005093864A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4670017B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP4446064B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP4797148B2 (en) Conductive paste for thermoelectric conversion material connection
US7312392B2 (en) Thermoelectric conversion device, and cooling method and power generating method using the device
US20120152294A1 (en) Thermoelectric material including coating layers, method of preparing the thermoelectric material, and thermoelectric device including the thermoelectric material
JP3472813B2 (en) Composite oxides with high Seebeck coefficient and high electrical conductivity
US7763793B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device including the thermoelectric conversion element
JP4457215B2 (en) Tube material with thermoelectric power generation function
JP2011198989A (en) Thermoelectric conversion material, method of manufacturing the same, and thermoelectric conversion module
JP3896479B2 (en) Method for producing composite oxide sintered body
WO2006129459A1 (en) Thermoelectric material, thermoelectric converter using same, and electronic device and cooling device comprising such thermoelectric converter
JP4239010B2 (en) Composite oxide having p-type thermoelectric conversion characteristics
WO2004084321A1 (en) Thin-film thermoelectric conversion material and method of forming the same
JP2008041871A (en) Thermoelectric material, method of manufacturing the same, and thermoelectric element
JP4595071B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and thermoelectric conversion method
JP4193940B2 (en) Composite oxide with excellent thermoelectric conversion performance
JP2023096415A (en) Thermoelectric conversion material and thermoelectric conversion element based thereon
JP4275172B2 (en) Layered oxide thermoelectric material with delafossite structure
JP4124420B2 (en) Thermoelectric conversion material comprising palladium oxide and method for producing the same
JP2002111077A (en) Oxide thermoelectric conversion material and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

R150 Certificate of patent or registration of utility model

Ref document number: 4670017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees