WO2019078100A1 - Method for producing composite including metal coated with solid microparticles - Google Patents

Method for producing composite including metal coated with solid microparticles Download PDF

Info

Publication number
WO2019078100A1
WO2019078100A1 PCT/JP2018/038040 JP2018038040W WO2019078100A1 WO 2019078100 A1 WO2019078100 A1 WO 2019078100A1 JP 2018038040 W JP2018038040 W JP 2018038040W WO 2019078100 A1 WO2019078100 A1 WO 2019078100A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
solution
particles
solid
fine particles
Prior art date
Application number
PCT/JP2018/038040
Other languages
French (fr)
Japanese (ja)
Inventor
西山 宏昭
寛 梅津
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Priority to JP2019549238A priority Critical patent/JP6964898B2/en
Publication of WO2019078100A1 publication Critical patent/WO2019078100A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis

Definitions

  • the present invention makes use of the nonlinear optical absorption of metal ions, colloids and complexes (hereinafter referred to as “metal ions etc.”) derived from the ultrashort pulse property, making use of the extremely short time width of the ultrashort pulse laser light.
  • metal ions colloids and complexes
  • There are various methods such as depositing metal in the ultrashort pulse laser beam focusing position and coating the deposited metal by instantaneously giving very large energy to the deposited metal before the thermal effect appears.
  • the present invention relates to a method for producing a composite formed by accumulating solid fine particles having a function.
  • a highly transparent coating film-forming material having no photosensitivity a solid electrolyte fuel cell electrolyte material, a light emitting diode, a light responsive semiconductor material, a resistor film-forming material, a metal magnetic powder material, a superconducting material
  • the present invention relates to a manufacturing method of forming a pattern by moving an ultrashort pulse laser beam focusing position even in solid fine particles of functional materials such as piezoelectric ceramic thick film materials, dielectric film materials, and fine particle bonding materials.
  • the film density of the film formed by this method is considered to be about 55 to 80% of the theoretical density, and crystal growth by heat is necessary to obtain electric conduction of bulk material level.
  • an aerosol deposition (AD) method is also attracting attention (Patent Document 1). According to this method, it is said that it is possible to form a dense and high hardness film containing ceramic materials including metals at normal temperature.
  • a fine pattern can be obtained without etching, it is difficult to handle fine powder in a working environment or the like. All of these methods require large-scale equipment.
  • an ultrashort pulse laser mainly uses its very short time width, and has the property of instantaneously giving a very large energy to a substance before a thermal effect appears.
  • Conceivable For example, Non-Patent Document 1 reports an example of processing with an ultrashort pulse laser, and according to this, when irradiating a 10 ps (picosecond) pulse laser with a copper target, the surface electron temperature is several While reaching 1000 ° C., the thermal diffusion length is estimated to be less than ⁇ m.
  • Non-Patent Document 2 reports that silver dots were obtained by reduction of silver ions by high-intensity laser beam irradiation with a wavelength of 800 nm, a pulse width of 80 fs, a frequency of 82 MHz, and an output of 14.97 mW.
  • Non-Patent Document 3 utilizes a reduction reaction of silver nitrate by utilizing a relatively weak continuous wave pulse laser using a near infrared light source of wavelength 1064 nm and a visible light source of wavelength 532 nm or 633 nm. It is reported that the patterning of the silver nanoparticle assembly was formed on a glass substrate.
  • the material to be processed has an appropriate light absorption property to the laser beam.
  • a metal (Ag) pattern is formed by irradiating a laser beam to an Ag ink or the like, it is largely assumed that the ink appropriately absorbs the laser beam.
  • Non-Patent Document 4 reports an example of transparent material processing using a femtosecond laser, and emits pulsed light with a wavelength of 800 nm and a pulse width of 120 fs to silica glass to induce lattice defects at a focusing point inside the glass. It is reported that it has produced high density.
  • this method it is difficult to condense the solid particles dispersed in the solution, and even if it is realized, the physical properties of the solid particles are also degraded because the material properties of the irradiated part are modified. Is inevitable.
  • the inventors of the present invention have reached the present invention as a result of examining a method of integrating materials which originally do not have absorption using ultra-short pulse laser and utilizing nonlinear optical absorption derived from ultra-short pulse property. is there.
  • the present invention provides a technique for easily carrying out accumulation of solid fine particles and for facilitating pattern formation, which was difficult to achieve in the prior art.
  • the present inventors have used this metal particle as a micro heat source based on the finding that, according to the ultrashort pulse laser, the metal particle can be deposited using nonlinear optical absorption derived from the ultrashort pulse property.
  • the present invention has been achieved as a result of earnestly examining a method of accumulating materials which originally do not have absorption to laser light, by contemplating the use of.
  • the present inventors disperse
  • the ultrashort pulse laser can momentarily emit high-intensity light pulses derived from its short pulse width, and the non-linear optical absorption produced by the high-intensity pulses can directly process only the vicinity of the focusing point.
  • metal was deposited only in the vicinity of the ultrashort pulse laser focusing point in the solution, and local heat was applied to the deposited metal, whereby the solid fine particles in the periphery were accumulated on the metal surface. This method made it possible to pattern non-photosensitive materials.
  • a highly transparent coating film-forming material having no photosensitivity a solid electrolyte fuel cell electrolyte material, a light emitting diode or a photoresponsive semiconductor material, a resistor film-forming material, a metal magnetic powder material, a superconducting material, a piezoelectric
  • solid fine particles of functional materials such as ceramic thick film materials, dielectric film materials, and fine particle bonding materials
  • metal oxide particles or non-particles dispersed in the solution are deposited by irradiating the solution containing the metal ions, colloids, and / or complexes with the ultrashort pulse laser beam. It is a manufacturing method of the complex containing metal covered with solid particulates including the process of covering solid particulates which consist of metal oxide particles or ceramic particles on the deposited metal.
  • the metal is not particularly limited as long as the deposited metal does not chemically react with the solvent.
  • metals which do not react with water and high temperature steam are selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold.
  • the melting point of the solid fine particles is preferably 500 ° C to 3500 ° C. Further, the solid fine particles preferably have a diameter of 0.005 ⁇ m to 1 ⁇ m. Furthermore, the concentration of the solid fine particles in the solution is preferably 0.01% by mass to 3.0% by mass.
  • the wavelength of the ultrashort pulse laser beam is preferably 200 nm to 2000 nm. Further, the fluence (energy input to a unit area) of the ultrashort pulse laser beam is preferably 0.01 mJ / cm 2 to 10 mJ / cm 2 . Furthermore, the repetition frequency of the ultrashort pulse laser light is preferably 1 Hz to 500 MHz. The average output of the ultrashort pulse laser beam is preferably 10 mW or more. Moreover, it is preferable that the condensing diameter of the said ultra-short pulse laser beam is 20 micrometers or less.
  • the present invention may further include the steps of immersing the substrate in the solution, and moving the beam spot of the ultrashort pulsed laser light along the surface of the substrate.
  • the present invention further includes the steps of: immersing the substrate in the solution; and moving the beam spot of the ultrashort pulsed laser beam from the surface of the substrate to a predetermined position in the solution away from the substrate. It can be included.
  • the present invention is further directed to a complex comprising a metal coated with solid particles, wherein the metal is present in solution as metal ions, colloids, and / or complexes, to which ultrashort pulsed laser light is applied.
  • the solid fine particles are metal oxide particles, non-metal oxide particles, or ceramic particles, the metal forms a core, and the core has a cavity inside thereof , The complex.
  • the metal is preferably selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold.
  • the melting point of the solid fine particles is preferably 500 ° C to 3500 ° C. Furthermore, it is preferable that the solid fine particles have a diameter of 0.005 ⁇ m to 1 ⁇ m.
  • the metal is dissolved in a liquid in which solid fine particles (silica, alumina, titanium oxide particles, etc.) are dispersed in a solvent in the state of metal ions, metal complexes, etc.
  • solid fine particles dispersed in a solution can be easily coated on the metal surface, and a composite containing the metal coated with the solid fine particles can be produced, in which case an ultrashort pulse is produced.
  • the present invention can be applied to various occasions such as manufacturing of devices by freely patterning solid particles having various functions such as metal oxides, non-metal oxides or ceramics by controlling irradiation of laser light, etc. It can be expected to apply.
  • the present invention is a low-temperature optical process of irradiating ultrashort pulse laser light in a solution, patterning can be performed without damaging the plastic substrate and elements on the substrate.
  • the present invention deposits metal in a solution containing metal ions, colloids, and / or complexes by irradiating an ultrashort pulse laser beam, and is dispersed in the solution, metal oxide particles, nonmetal oxide particles It is a manufacturing method of the complex containing metal covered with solid particulates including the process of covering solid particulates which consist of object particles or ceramic particles on the deposited metal.
  • a solution holder contains a solution in which silver nitrate is dissolved and solid fine particles are dispersed, A substrate transmitting laser light is placed such that one surface of the substrate is in contact with the solution.
  • the solution is irradiated with ultrashort pulse laser light from the other side of the substrate to precipitate silver in the solution, and at the same time, the deposited fine particles are coated with the solid fine particles dispersed in the solution to form a solid A composite is prepared comprising silver coated with microparticles.
  • the substrate surface (solution side) can be obtained by irradiating a silver nitrate solution with an ultrashort pulse laser beam.
  • Metal silver
  • This metal forms a core
  • the metal surface is locally heated, and after rapid expansion due to evaporation of the solvent on the metal surface, rapid contraction due to reduced pressure occurs.
  • the solid particles dispersed in the solution around the core are subjected to the force of rapid contraction and collide with the metal surface at a high speed, whereby a dense aggregate is accumulated on the metal surface, and the metal coated with the solid particles It is believed that a complex containing is generated.
  • the metal used in the present invention is one that exists as a metal ion, colloid, and / or complex in a solution irradiated with ultrashort pulsed laser light.
  • the type of metal is not particularly limited as long as the deposited metal does not chemically react with the solvent.
  • the metal used in the present invention is, in particular, a metal which does not react with water and high temperature water vapor, selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold when water is selected as the solvent. Is preferred.
  • metals that react with water or high-temperature water vapor for example, metals having a high ionization tendency such as potassium, magnesium, aluminum, zinc, iron
  • preferable metals can be selected by appropriately selecting a solvent. It is possible.
  • the metal ion is, for example, Ag + , Cu + , Cu 2+ , Ni 2+ , Sn 2+ , Sn 3+ , Sn 4+ , Pb 2+ , Pt 2+ , It may be Au + , Au 3 + or the like.
  • the counter ion of the metal salt is selected from the group consisting of nitrate ion, sulfate ion, carboxylate ion, cyanide ion, sulfonate ion, borate ion, halogen ion, carbonate ion, phosphate ion and perchlorate ion Is preferred.
  • Examples of metals present as colloids in solution include silver colloids, copper colloids, nickel colloids and the like.
  • Examples of the case where the metal is present as a complex in a solution include a case where the metal is easily dispersed or dissolved in a solvent by coordinating a ligand to a metal atom.
  • Examples of silver complexes include silver docosanoate, chloro [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] silver, silver (II) pyridine-2-carboxylate, silver sulfadiazine, etc. Can.
  • copper complexes such as copper (I) acetate, bis (1,3-propanediamine) copper (II) dichloride, cupric acetylacetonate, bis (8-quinolinolato) copper (II) and the like can be mentioned. it can.
  • complexes of gold include tetrachloroaurate (III) tetrahydrate, (dimethyl sulfide) gold (I) chloride, chloro [1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene ] Gold (I) etc. can be raised.
  • complexes of lead include lead tetraacetate and lead (II) acetate.
  • it may be a product containing metal complexes such as silver nanoinks and copper nanoinks.
  • the concentration of the metal used in the present invention in the solution is not particularly limited. There is no limitation as long as it can be uniformly dissolved or dispersed at 0.1% by mass or more. In a thin solution of less than 0.1% by mass, the accumulation of solid fine particles degrades the light efficiency.
  • the metal concentration in the solution is increased, the size of the metal core formed by the irradiation with the ultrashort pulse laser light is increased.
  • the concentration of the metal in the solution is preferably 3.0% by mass or less.
  • the solid fine particles used in the present invention are metal oxide particles, non-metal oxide particles, or ceramic particles dispersed in a solution irradiated with ultrashort pulse laser light. Dispersion here does not necessarily have to be uniformly distributed in solid solution throughout the solution, and as long as solid particles are present in the vicinity of the focusing point, part of them may be precipitated.
  • solid fine particles used in the present invention for example, inorganic compounds such as carbides, nitrides, borides and the like can be used.
  • solid particles a plurality of different types of particles may be simultaneously dispersed in a solvent, or solid particles in which solid particles are joined to each other, or solid particles consisting of a plurality of components may be used.
  • solid fine particles such as gold-supported titanium oxide (Au / TiO 2 ) can be used together with the solid fine particles.
  • the melting point of the solid fine particles is preferably 500 ° C to 3500 ° C.
  • the melting point of the solid fine particles is preferably 500 ° C to 3500 ° C.
  • a cross section as shown in FIG. 4 is observed. While the interface between titanium oxide and silver is in wide contact, a void is present inside silver.
  • the ratio of the cross section of the cavity to that of silver is measured to be about 5 to 1,
  • the linear expansion coefficient of titanium oxide (average from room temperature to 1000 ° C.) is 8 ⁇ 10 -6 (1 / K) Because the linear expansion coefficient of silver is 25 ⁇ 10 -6 (1 / K), the maximum temperature reached on the silver surface by irradiation with ultra-short pulse laser light is about 5000 K (4700 ° C. or higher). It is estimated to be. Therefore, if it is solid fine particles having a melting point of 3500 ° C. or less, it is considered that they can be melted and easily accumulated on the metal surface.
  • solid fine particles useful as a coating material for example, silica (1650 ° C.), tin oxide (1080 ° C.), iron oxide (1565 ° C.), chromium oxide (2435 ° C.), beryllium oxide (2570) as solid fine particles of oxide ° C), hafnium oxide (2758 ° C), (reacted with water), dimanganese trioxide (1080 ° C), trimanganese tetraoxide (1567 ° C), manganese oxide (1650 ° C), barium oxide (1920 ° C), strontium oxide (2531 ° C), triiron tetraoxide (1538 ° C), cobalt oxide (1933 ° C), nickel oxide (1984 ° C), lead zirconate titanate (1400 ° C), lithium titanate (1520 ° C), aluminum titanate (aluminum titanate) 1860 ° C), strontium titanate (2080 ° C), lead titanate, lead zirconate, mixed crystal of lead titanate and lead zir
  • chromium carbide (1890 ° C), boron carbide (2763 ° C), vanadium carbide (2840 ° C), tungsten carbide (2870 ° C), molybdenum carbide (2687 ° C), titanium carbide (3170 ° C), carbonization Zirconium (3500 ° C.), niobium carbide (3500 ° C.), tantalum carbide (3880 ° C.), silicon carbide (2730 ° C.), bismuth titanate (1203 ° C.) and the like can be mentioned.
  • niobium nitride 2573 ° C
  • titanium nitride 2930 ° C
  • tantalum nitride (3090 ° C)
  • gallium nitride (2500 ° C)
  • gallium nitride 1100 ° C 2500 ° C.
  • boron nitride 2967 ° C.
  • aluminum nitride 2200 ° C.
  • Boron compounds include boron (2076 ° C), aluminum boride (1655 ° C), chromium boride (2373 ° C), titanium boride (2400 ° C), molybdenum boride (2543 ° C), tungsten boride (2643 ° C) Vanadium boride (2673 ° C.), zirconium boride (3100 ° C.), magnesium boride (800 ° C.), niobium boride (3000 ° C.), tantalum boride (3037 ° C.) and the like.
  • cerium fluoride (1800 ° C.) and the like as a halogen compound
  • hydroxyapatite (1650 ° C.) and the like as a phosphoric acid compound
  • Li 2 S—P 2 S 5 LiCoO 2 , xLi 2 O and the like as a lithium compound -BPO 4 and (0.5 ⁇ x ⁇ 1.5)
  • the compound semiconductor such as a semiconductor with a group II element and group VI element, and the like, respectively.
  • solid particles useful as highly transparent coating film-forming materials include nickel oxide, tricobalt tetraoxide, indium tin oxide, magnesium oxide, zirconium oxide, aluminum nitride, magnesium boride, silicon nitride, silicon carbide, and fluorine. There may be mentioned cerium oxide and the like.
  • solid particles useful as solid electrolyte fuel cell electrolyte materials include scandium oxide, neodymium oxide, gadolinium oxide, samarium oxide (2300 ° C.), yttrium oxide, neodymium oxide, scandium oxide, LiCoO 2 , lithium sulfide compounds, and the like. be able to.
  • lithium sulfide-based compound Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr , Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 -ZmSn (although, m, n is the number of positive .Z is, Ge, Zn, one of Ga.), Li 2 S- GeS 2, Li 2 S-S 5 -Z
  • solid particles useful as light emitting diodes and light responsive semiconductor materials include indium nitride, gallium nitride, aluminum nitride, and semiconductors using group II elements and group VI elements.
  • semiconductors using group II elements and group VI elements include CuInSe 2 , CuInS 2 (CIS), CuIn 1-x Ga x Se 2 (CIGS), Cu 2 ZnSnS 4 (CZTS), CdTe-based semiconductors, etc. It can be mentioned.
  • solid fine particles useful as a resistor film forming material include triiron tetraoxide, cobalt oxide, nickel oxide, rhenium oxide, iridium oxide, ruthenium oxide, ferrite, oxide ceramics and the like.
  • oxide ceramics SrVO 3 , CaVO 3 , LaTiO 3 , SrMoO 3 , CaMoO 3 , SrCrO 3 , SrCrO 3 , CaCrO 3 , CaCrO 3 , LaVO 3 , GdVO 3 , SrMnO 3 , CaMnO 3 , NiCrO 3 , BiCrO 3 , LaCrO 3 , LnCrO 3 , SrRuO 3 , CaRuO 3 , SrFeO 3 , BaRuO 3 , LaRuO 3 , LaMnO 3 , LnMnO 3 , LaFeO 3 , LnFeO 3 , LaCoO 3
  • solid fine particles useful as a superconducting material include YBa-based oxides, BiSrCa-based oxides, and TlBaCa-based oxides.
  • solid fine particles useful as a piezoelectric ceramic thick film material include magnesium oxide, dimanganese trioxide, trimanganese tetraoxide, manganese oxide, barium oxide, strontium oxide, barium titanate, hydroxyapatite and the like.
  • titanium oxide, silica, aluminum nitride, magnesium oxide, barium titanate, lead zirconate titanate, oxide ceramics and the like can be mentioned.
  • oxide ceramics PZT represented by the general formula of PbTiO 3 , PbZrO 3 , Pb (Zr 1-x Ti x ) O 3 (0 ⁇ x ⁇ 1), (Pb 1 -y La y ) (Zr PLZT represented by the general formula of 1-x Ti x ) O 3 (0 ⁇ x, y ⁇ 1), Pb (Mg 1/3 Nb 2/3 ) O 3 , Pb (Ni 1/3 Nb 2/3 ) O 3, Pb (Zn 1/3 Nb 2/3) O 3, BaTiO 3, BaTi 4 O 9, Ba 2 Ti 9 O 20, Ba (Zn 1/3 Ta 2/3) O 3, Ba (Zn 1 / 3 Nb 2/3) O 3, Ba (Mg 1/3 Ta 2/3) O 3, Ba (Mg 1/3 Ta 2/3) O 3, Ba (Mg 1/3 Ta
  • solid fine particles useful as the fine particle bonding material include cordierite, anorthite, gohalenite, calcium aluminate, lithium aluminate, strontium aluminate, mullite, yttrium aluminate, spinel, aluminum nitride and the like.
  • the present invention there are two major methods for irradiating ultra-short pulse laser light.
  • One is a method of irradiating through a transparent substrate which precipitates a metal
  • the other is a method of irradiating a substrate surface through a solution.
  • the former case since it does not pass through the solution, it is not easily affected by solid particles dispersed in the solution.
  • the latter case if the light absorption in solution by the solid particles is small, light loss and scattering can be suppressed, more solid particles can be dispersed in the solvent, and it is effective for the deposited metal.
  • the laser light can be absorbed and does not cause a problem, but conversely, if the light absorption is large, light loss and scattering are likely to occur.
  • the particle diameter of the solid fine particles is changed or By reducing the concentration in the medium, it is possible to control the irradiation of the deposited metal with laser light efficiently.
  • the solvent for the solution used in the present invention is not particularly limited as long as it is suitable for the dispersion of solid particles.
  • a solvent can be selected according to use, such as re-dispersing solid fine particles dispersed in an organic solvent such as toluene in a mixed solvent of alcohol and water.
  • the viscosity of the solution used in the present invention is not particularly limited. If it is desired to thicken the coating of the solid particles covering the core metal, it is conceivable to increase the concentration of the solid particles, and in such a case, the viscosity of the solution becomes high.
  • the solution may contain a dissolving agent such as a dispersing agent used for dispersing the solid fine particles, or any other agent as long as it does not prevent the irradiation of the laser beam.
  • a dissolving agent such as a dispersing agent used for dispersing the solid fine particles, or any other agent as long as it does not prevent the irradiation of the laser beam.
  • the “ultrashort pulse laser” is several femtoseconds (1 femtosecond is 1 ⁇ 10 ⁇ 15 seconds, also described as fs) to several hundreds picoseconds (1 picosecond is 1 ⁇ 10 ⁇ 12). It is a pulse laser having a pulse width of second and ps.
  • the average output of the ultrashort pulse laser beam used in the present invention is preferably 10 mW or more. Moreover, it is preferable that the condensing diameter of ultra-short pulse laser light is 20 ⁇ m or less. By controlling the irradiation amount and the intensity of the ultrashort pulse laser light, it is possible to control the size of the metal core generated.
  • the repetition frequency of the ultrashort pulse laser beam is preferably 1 Hz to 500 MHz.
  • the wavelength of the ultrashort pulse laser beam used in the present invention is not particularly limited as long as it is a wavelength absorbed by the metal ion or the like used in the present invention and has a high molar absorption coefficient. If it is a wavelength with little absorption by solid fine particles, the formation efficiency of the composite according to the present invention is further improved, which is preferable.
  • the wavelength of the ultrashort pulse laser beam used in the present invention is adjusted to the absorption wavelength of the photosensitive metal compound dissolved in the solution, and for example, the molar absorption coefficient of the metal used in the present invention is 5 l / mol. It is preferable to select so as to be at least cm, but it is not particularly limited thereto.
  • the wavelength of the ultrashort pulse laser beam is preferably 200 nm to 2000 nm. Furthermore, the fluence (energy input to a unit area) of ultrashort pulse laser light is preferably 0.01 mJ / cm 2 to 10 mJ / cm 2 .
  • the present invention may further include the steps of immersing the substrate in a solution, and moving the beam spot of ultrashort pulsed laser light along the surface of the substrate.
  • FIG. 3 which is a conceptual cross-sectional view showing another embodiment of the present invention
  • the substrate is immersed in the solution on one surface, and by moving the substrate in the scanning direction in this state,
  • the beam spot of ultrashort pulsed laser light can be moved along the surface.
  • Metal deposition in solution by ultra-short pulse laser irradiation occurs only near the laser focusing point via nonlinear optical absorption.
  • a three-dimensional metal structure coated on solid particles is obtained by arranging the laser focus at an arbitrary position in the solution away from the substrate as well as on the surface of the substrate and scanning three-dimensionally. It is possible to manufacture. That is, the present invention can further include the steps of immersing the substrate in the solution, and moving the beam spot of the ultrashort pulse laser beam to a predetermined position in the solution away from the substrate from the surface of the substrate. . Moreover, it is also possible to take out the three-dimensional structure which consists of solid fine particles by removing a metal core from the manufactured composite by an etching process etc.
  • Example 1 In a brown bottle, 6 ml of pure water and 10 ml of ethanol were placed, and 4 ml of a silver nitrate solution (1 mol / l, Junsei Chemical Co., Ltd.) was placed and stirred. Thereafter, 0.7 ml of a silica nanoparticle dispersed aqueous solution (Sigma-aldrich, LUDOX, TM-50, nanoparticle particle size 22 nm, concentration 50% by mass) was added, and stirred again for 1 hour. The concentration of silica at this time was 2.5% by mass.
  • a silica nanoparticle dispersed aqueous solution Sigma-aldrich, LUDOX, TM-50, nanoparticle particle size 22 nm, concentration 50% by mass
  • the solution was transferred from the brown bottle to a Teflon (registered trademark) solution holder, and a cover glass as a substrate was placed on the holder so that one surface of the substrate was in direct contact with the solution in the holder.
  • a femtosecond laser C-Fiber 780, MenloSystems Ltd.
  • the focal point is adjusted to be the contact surface between the substrate and the solution, central wavelength 780 nm, repetition frequency 100 MHz, pulse width 127 fs, average laser output It irradiated on 20 mW, condensing diameter (theoretical value) 2 micrometers, and the conditions of fluence 6.4 mJ / cm ⁇ 2 >.
  • Example 2 In Example 1, 1.9 ml of titanium oxide nanoparticle dispersed aqueous solution (NTB-1, Showa Denko KK, nanoparticle particle diameter 10 to 20 nm (catalog value), concentration 15 mass%) was used instead of the silica nanoparticle dispersed aqueous solution Solution dispersion and laser light irradiation were performed under the same conditions as Example 1 except for the above.
  • the titanium oxide concentration at this time was 1.5% by mass.
  • Microscopic observation of the cross-sectional shape of the formed composite revealed a silver core of about 5 ⁇ m in diameter with a semicircle and a coating of about 5 ⁇ m thick titanium oxide nanoparticles covering it (FIG. 5).
  • Example 1 (Examples 3 to 7)
  • the dispersion of the solution and the laser light irradiation were performed under the same conditions as in Example 1 using various types of solid fine particles shown in Table 1 in place of the silica nanoparticles.
  • the formation of a complex was confirmed.
  • Example 8 Dispersion of the solution under the same conditions as in Example 2 except that the scanning speed of the holder was 30 ⁇ m / s, the titanium oxide concentration was 1.5 mass%, and the average laser power was changed to 15 mW, 25 mW and 30 mW. Laser light irradiation was performed. The cross section of the obtained composite was observed with a microscope, and the relationship between the cross-sectional area of the coating of titanium oxide and the average laser output was organized in FIG. It can be seen from FIG. 6 that as the laser power increases, a composite with a larger cross-sectional area is obtained.
  • Example 6 In Example 6, the average laser power is fixed at 25 mW, and the titanium oxide concentration, which was 1.5% by mass, is 0.8% by mass (Example 9), 0.3% by mass (Example 10), 0. The solution was dispersed and irradiated with laser light in the same manner as in Example 6 with a decrease of 2% by mass (Example 11) and 0.01% by mass (Example 12). The cross section of the obtained complex was observed microscopically. The relationship between the cross-sectional area of the coating by titanium oxide and the concentration of titanium oxide is shown in FIG. From FIG. 7, it can be seen that although the cross-sectional area changes when the concentration of titanium oxide is changed, when the concentration is 0.1% by mass or more, a favorable composite is obtained even at a low concentration of titanium oxide. .
  • Example 13 to 15 The dispersion of the solution and the laser light irradiation were performed under the same conditions as in Example 2 except that the concentration of titanium oxide was made to be 1.5% by mass and the particle diameter of the nanoparticles was made larger in Example 2. Microscopic observation of the cross section of the composite obtained when the particle size of the nanoparticles is 0.1 ⁇ m (Example 13), 0.5 ⁇ m (Example 14) and 1.0 ⁇ m (Example 15), Also in the case, it was confirmed that a good composite in which the covering layer was formed was obtained.
  • Example 16 Copper sulfate (Example 16), tetrachloroaurate (III) tetrahydrate (Example 17), nickel sulfate (Example 18), lead nitrate (lead nitrate) (4 ml) of the silver nitrate solution (1 mol / l) of Example 1 II) (Example 19)
  • the solution was replaced with 4 ml of each aqueous solution (1 mol / l) and stirred with 6 ml of pure water and 10 ml of ethanol in a brown bottle.
  • silica nanoparticle-dispersed aqueous solution Sigma-aldrich, LUDOX, TM-50, nanoparticle particle size 22 nm, concentration 50% by mass
  • concentration of silica at this time was 2.5% by mass. Accumulation of the silica fine particles was confirmed in any of Examples 16 to 19, and it was also confirmed by microscopic observation of the cross section that a good composite on which the coating layer was formed was obtained.

Abstract

Provided is a feature with which it is easy to accumulate solid microparticles and also form a pattern, which was difficult to achieve in the prior art. A method for producing a composite including a metal coated with solid microparticles, the method including a step in which: a metal is deposited, by radiation of ultrashort-pulse laser light, in a solution that includes metal ions, a colloid, and/or a complex; and solid microparticles dispersed in the solution coat the deposited metal, the solid microparticles comprising metal oxide particles, non-metal oxide particles, or ceramic particles.

Description

固体微粒子で被覆された金属を含む複合体の製造方法Process for producing composite containing metal coated with solid particles
 本発明は、超短パルスレーザ光の非常に短い時間幅を生かし、超短パルス性に由来した金属イオン、コロイド、錯体(以下「金属イオン等」と記す)の非線形光学吸収を利用して、超短パルスレーザ光集光位置に金属を析出させ、熱的効果が現れる前に析出させた金属に非常に大きなエネルギーを瞬間的に与えることで、析出させた金属を被覆する様に、様々な機能を有する固体微粒子集積してなる、複合体の製造方法に関する。また、本発明は、感光性を有しない透明性の高いコーティング膜形成材料、固体電解質型燃料電池電解質材料、発光ダイオードや光応答半導体材料、抵抗体膜形成材料、金属磁性体粉末材料、超電導材料、圧電セラミックス厚膜材料、誘電体膜材料、微粒子結合材料等の機能性材料の固体微粒子であっても、超短パルスレーザ光集光位置を移動させることで、パターンを形成する、製造方法に関する。 The present invention makes use of the nonlinear optical absorption of metal ions, colloids and complexes (hereinafter referred to as “metal ions etc.”) derived from the ultrashort pulse property, making use of the extremely short time width of the ultrashort pulse laser light. There are various methods such as depositing metal in the ultrashort pulse laser beam focusing position and coating the deposited metal by instantaneously giving very large energy to the deposited metal before the thermal effect appears. The present invention relates to a method for producing a composite formed by accumulating solid fine particles having a function. In the present invention, a highly transparent coating film-forming material having no photosensitivity, a solid electrolyte fuel cell electrolyte material, a light emitting diode, a light responsive semiconductor material, a resistor film-forming material, a metal magnetic powder material, a superconducting material The present invention relates to a manufacturing method of forming a pattern by moving an ultrashort pulse laser beam focusing position even in solid fine particles of functional materials such as piezoelectric ceramic thick film materials, dielectric film materials, and fine particle bonding materials. .
 近年、微粒子衝突による様々なコーティングを乾式で実施する試みがなされている。この技術は、微粒子の運動エネルギーを、衝突によって、時間的にも空間的にも局所的に熱エネルギーに変換することによって、材料が(融点以上の)高温になり、粒子結合が生じることにより、コーティングを形成するものである。
 微粒子衝突によるコーティング法の例として、まず、電界を用いる方法が挙げられる。具体的には、静電微粒子衝撃コーティング(EPID)法(原料微粒子より硬度の低い基板材料を使用して、原料微粒子を基板の中に埋め込む方法)、クラスターイオンビーム法などがある。また、ガス搬送による方法(ガスデポジション(GD)法)もある。この方法によれば、室温で金属ナノ結晶膜を形成することが可能である。なお、この方法により形成した膜の膜密度は、理論密度の55~80%程度であると考えられ、バルク材料程度の電気伝導を得るには、熱による結晶成長が必要である。更に、エアロゾルデポジション(AD)法も注目されている(特許文献1)。この方法によれば、常温で金属を含めセラミックス材料を含む、緻密かつ高硬度の膜を作ることが可能であるとされている。また、微細なパターンもエッチングなしで得られることも報告されているが、作業環境等の微粉を扱うことの難しさがある。これらの方法はいずれも、大掛かりな装置を必要とするものである。
In recent years, attempts have been made to dry coat various coatings due to particle collisions. This technology converts particles' kinetic energy into thermal energy locally and temporally and spatially by collision, causing the material to reach a high temperature (above the melting point) and causing particle bonding, It forms a coating.
As an example of the coating method by fine particle collision, a method using an electric field can be mentioned first. Specifically, there are an electrostatic fine particle impact coating (EPID) method (a method of embedding raw material fine particles in a substrate using a substrate material having a hardness lower than that of the raw material fine particles), a cluster ion beam method and the like. In addition, there is also a method by gas transfer (gas deposition (GD) method). According to this method, it is possible to form a metal nanocrystal film at room temperature. The film density of the film formed by this method is considered to be about 55 to 80% of the theoretical density, and crystal growth by heat is necessary to obtain electric conduction of bulk material level. Furthermore, an aerosol deposition (AD) method is also attracting attention (Patent Document 1). According to this method, it is said that it is possible to form a dense and high hardness film containing ceramic materials including metals at normal temperature. In addition, although it is also reported that a fine pattern can be obtained without etching, it is difficult to handle fine powder in a working environment or the like. All of these methods require large-scale equipment.
 一方、レーザ光照射に用いられるレーザとして、超短パルスレーザは、主にその非常に短い時間幅を生かし、熱的効果が現れる前に物質に非常に大きなエネルギーを瞬間的に与える特性を持つと考えられる。例えば、非特許文献1には、超短パルスレーザによる加工の例が報告されており、これによれば、銅をターゲットとして10ps(ピコセカンド)のパルスレーザを照射した時、表面電子温度は数千℃にも達する一方で、熱拡散長はμm以下であると推測される。 On the other hand, as a laser used for laser light irradiation, an ultrashort pulse laser mainly uses its very short time width, and has the property of instantaneously giving a very large energy to a substance before a thermal effect appears. Conceivable. For example, Non-Patent Document 1 reports an example of processing with an ultrashort pulse laser, and according to this, when irradiating a 10 ps (picosecond) pulse laser with a copper target, the surface electron temperature is several While reaching 1000 ° C., the thermal diffusion length is estimated to be less than μm.
 このため、銀イオン溶液に超短パルスレーザ光を照射し、溶液中の金属イオンを還元して銀を析出させる方法が報告されている。
 例えば、非特許文献2には、波長800nm、パルス幅80fs、周波数82MHz、出力14.97mWの高強度レーザビーム照射による銀イオンの還元により、銀ドットが得られたことが報告されている。
 また、非特許文献3には、波長1064nmの近赤外光源と、波長532nmまたは633nmの可視光源とを用いた、比較的弱い連続発振パルスレーザを利用することにより、硝酸銀の還元反応を利用して銀ナノ粒子集合体のパターニングをガラス基板上に形成したことが報告されている。
Therefore, a method has been reported in which a silver ion solution is irradiated with an ultrashort pulse laser beam to reduce metal ions in the solution to precipitate silver.
For example, Non-Patent Document 2 reports that silver dots were obtained by reduction of silver ions by high-intensity laser beam irradiation with a wavelength of 800 nm, a pulse width of 80 fs, a frequency of 82 MHz, and an output of 14.97 mW.
Further, Non-Patent Document 3 utilizes a reduction reaction of silver nitrate by utilizing a relatively weak continuous wave pulse laser using a near infrared light source of wavelength 1064 nm and a visible light source of wavelength 532 nm or 633 nm. It is reported that the patterning of the silver nanoparticle assembly was formed on a glass substrate.
 これらレーザ光照射による材料パターニングを行うためには、被加工材料がレーザ光に対する適切な光吸収特性を有すること必須となる。例えば、Agインクなどにレーザ光を照射して金属(Ag)パターンを形成する場合には、インクがレーザ光を適度に吸収することが大前提とされている。 In order to perform material patterning by the laser beam irradiation, it is essential that the material to be processed has an appropriate light absorption property to the laser beam. For example, in the case where a metal (Ag) pattern is formed by irradiating a laser beam to an Ag ink or the like, it is largely assumed that the ink appropriately absorbs the laser beam.
 超短パルス光をレーザ発振波長において透過性の高いガラス内部に集光すると、集光点近傍のみを直接に加工することが出来る。非特許文献4には、フェムト秒レーザによる透明材料加工の例が報告されており、波長800nm、パルス幅120fsのパルス光をシリカガラスに照射し、ガラス内部の集光点において格子欠陥を誘起し高密度化を生み出したことが報告されている。
 しかしながら、この手法では溶液中で分散している固体微粒子への集光は困難であり、また実現したとしても、照射部の材料特性が改質されるため、固体微粒子の物性もまた変質することは避けられない。
 本発明者らは、超短パルスレーザによれば、超短パルス性に由来した非線形光学吸収を利用して、本来吸収を有さない材料の集積方法の検討結果、本発明に至ったものである。
When the ultrashort pulse light is condensed on the inside of the glass having high transparency at the laser oscillation wavelength, only the vicinity of the condensing point can be directly processed. Non-Patent Document 4 reports an example of transparent material processing using a femtosecond laser, and emits pulsed light with a wavelength of 800 nm and a pulse width of 120 fs to silica glass to induce lattice defects at a focusing point inside the glass. It is reported that it has produced high density.
However, with this method, it is difficult to condense the solid particles dispersed in the solution, and even if it is realized, the physical properties of the solid particles are also degraded because the material properties of the irradiated part are modified. Is inevitable.
The inventors of the present invention have reached the present invention as a result of examining a method of integrating materials which originally do not have absorption using ultra-short pulse laser and utilizing nonlinear optical absorption derived from ultra-short pulse property. is there.
特開2003-112976号公報JP 2003-112976
 本発明は、従来技術では達成することが困難であった、固体微粒子の集積を容易に実施し、パターン形成も容易にする技術を提供するものである。 The present invention provides a technique for easily carrying out accumulation of solid fine particles and for facilitating pattern formation, which was difficult to achieve in the prior art.
 本発明者らは、超短パルスレーザによれば、超短パルス性に由来した非線形光学吸収を利用して、金属粒子の析出させることができとの知見に基づき、この金属粒子を微小熱源としての利用を着想することで、本来、レーザ光に対する吸収を有さない材料の集積方法について鋭意検討した結果、本発明に至ったものである。
 そして、本発明者らは、上記課題を解決するために、感光性を有しない材料等の固体微粒子を、金属イオン等が存在する溶液中に分散させ、超短パルスレーザを照射することで、固体微粒子が金属表面に集積してなる複合体を製造することを可能にした。超短パルスレーザは、その短いパルス幅に由来した高強度光パルスを瞬間的に放出することができ、この高強度パルスが生み出す非線形光学吸収は集光点近傍のみを直接に加工することを可能とする。この特性を用いて、溶液中の超短パルスレーザ集光点近傍にのみ金属を析出させるとともに、更にこの析出金属の局所加熱を行うことで、周辺の固体微粒子を金属表面に集積させた。この方法により、感光性を有しない材料のパターニングを可能にした。
 本発明により、感光性を有しない透明性の高いコーティング膜形成材料、固体電解質型燃料電池電解質材料、発光ダイオードや光応答半導体材料、抵抗体膜形成材料、金属磁性体粉末材料、超電導材料、圧電セラミックス厚膜材料、誘電体膜材料、微粒子結合材料等の機能性材料の固体微粒子であっても、超短パルスレーザ光集光位置を移動させることで、パターンを形成することが可能となる。
The present inventors have used this metal particle as a micro heat source based on the finding that, according to the ultrashort pulse laser, the metal particle can be deposited using nonlinear optical absorption derived from the ultrashort pulse property. The present invention has been achieved as a result of earnestly examining a method of accumulating materials which originally do not have absorption to laser light, by contemplating the use of.
And in order to solve the said subject, the present inventors disperse | distribute solid microparticles | fine-particles, such as a material which does not have photosensitivity, in the solution in which a metal ion etc. exist, and irradiate an ultrashort pulse laser, It has become possible to produce a complex in which solid particles are accumulated on a metal surface. The ultrashort pulse laser can momentarily emit high-intensity light pulses derived from its short pulse width, and the non-linear optical absorption produced by the high-intensity pulses can directly process only the vicinity of the focusing point. I assume. Using this characteristic, metal was deposited only in the vicinity of the ultrashort pulse laser focusing point in the solution, and local heat was applied to the deposited metal, whereby the solid fine particles in the periphery were accumulated on the metal surface. This method made it possible to pattern non-photosensitive materials.
According to the present invention, a highly transparent coating film-forming material having no photosensitivity, a solid electrolyte fuel cell electrolyte material, a light emitting diode or a photoresponsive semiconductor material, a resistor film-forming material, a metal magnetic powder material, a superconducting material, a piezoelectric Even in the case of solid fine particles of functional materials such as ceramic thick film materials, dielectric film materials, and fine particle bonding materials, it becomes possible to form a pattern by moving the ultrashort pulse laser beam focusing position.
 すなわち、本発明は、金属のイオン、コロイド、及び/または錯体を含む溶液に、超短パルスレーザ光を照射することで金属を析出させ、前記溶液中に分散された、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子からなる固体微粒子を、前記析出した金属に被覆する工程を含む、固体微粒子で被覆された金属を含む複合体の製造方法である。 That is, according to the present invention, metal oxide particles or non-particles dispersed in the solution are deposited by irradiating the solution containing the metal ions, colloids, and / or complexes with the ultrashort pulse laser beam. It is a manufacturing method of the complex containing metal covered with solid particulates including the process of covering solid particulates which consist of metal oxide particles or ceramic particles on the deposited metal.
 前記金属は、析出した金属が溶媒と化学反応することが無ければ特に制限されない。溶媒に水を選択した場合には、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれる、水および高温の水蒸気と反応しない金属が好ましい。 The metal is not particularly limited as long as the deposited metal does not chemically react with the solvent. When water is selected as the solvent, metals which do not react with water and high temperature steam are selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold.
 前記固体微粒子の融点は、500℃~3500℃であるのが好ましい。
 また、前記固体微粒子は、0.005μm~1μmの直径を有するのが好ましい。
 さらに、前記固体微粒子の前記溶液中の濃度は、0.01質量%~3.0質量%であるのが好ましい。
The melting point of the solid fine particles is preferably 500 ° C to 3500 ° C.
Further, the solid fine particles preferably have a diameter of 0.005 μm to 1 μm.
Furthermore, the concentration of the solid fine particles in the solution is preferably 0.01% by mass to 3.0% by mass.
 前記超短パルスレーザ光の波長は、200nm~2000nmであるのが好ましい。
 また、前記超短パルスレーザ光のフルエンス(単位面積に投入されるエネルギー)は、0.01mJ/cm2~10mJ/cm2であるのが好ましい。
 さらに、前記超短パルスレーザ光の繰返し周波数は、1Hz~500MHzであるのが好ましい。
 前記超短パルスレーザ光の平均出力は、10mW以上であるのが好ましい。
 また、前記超短パルスレーザ光の集光径は、20μm以下であるのが好ましい。
The wavelength of the ultrashort pulse laser beam is preferably 200 nm to 2000 nm.
Further, the fluence (energy input to a unit area) of the ultrashort pulse laser beam is preferably 0.01 mJ / cm 2 to 10 mJ / cm 2 .
Furthermore, the repetition frequency of the ultrashort pulse laser light is preferably 1 Hz to 500 MHz.
The average output of the ultrashort pulse laser beam is preferably 10 mW or more.
Moreover, it is preferable that the condensing diameter of the said ultra-short pulse laser beam is 20 micrometers or less.
 本発明は、前記溶液に基板を浸漬させる工程、及び前記基板の表面に沿って前記超短パルスレーザ光のビームスポットを移動させる工程をさらに含むものとすることができる。
 あるいは、本発明は、前記溶液に基板を浸漬させる工程、及び前記基板の表面から、前記基板から離れた前記溶液中の所定の位置に前記超短パルスレーザ光のビームスポットを移動させる工程をさらに含むものとすることができる。
 本発明はさらに、固体微粒子で被覆された金属を含む複合体であって、前記金属は、溶液中に金属のイオン、コロイド、及び/または錯体として存在し、該溶液に超短パルスレーザ光を照射することで析出しうるものであり、前記固体微粒子は、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子であり、前記金属がコアを形成し、該コアがその内側に空洞を有する、前記複合体である。
 前記金属は、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれるのが好ましい。
 また、前記固体微粒子の融点は、500℃~3500℃であるのが好ましい。
 さらに、前記固体微粒子が、0.005μm~1μmの直径を有するのが好ましい。
The present invention may further include the steps of immersing the substrate in the solution, and moving the beam spot of the ultrashort pulsed laser light along the surface of the substrate.
Alternatively, the present invention further includes the steps of: immersing the substrate in the solution; and moving the beam spot of the ultrashort pulsed laser beam from the surface of the substrate to a predetermined position in the solution away from the substrate. It can be included.
The present invention is further directed to a complex comprising a metal coated with solid particles, wherein the metal is present in solution as metal ions, colloids, and / or complexes, to which ultrashort pulsed laser light is applied. It can be deposited by irradiation, and the solid fine particles are metal oxide particles, non-metal oxide particles, or ceramic particles, the metal forms a core, and the core has a cavity inside thereof , The complex.
The metal is preferably selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold.
The melting point of the solid fine particles is preferably 500 ° C to 3500 ° C.
Furthermore, it is preferable that the solid fine particles have a diameter of 0.005 μm to 1 μm.
 静電微粒子衝撃コーティング(EPID)法、クラスターイオンビーム法、エアロゾルデポジション(AD)法などの、従来の固体微粒子を使った膜形成方法には、数々のプロセスを有すること、体積密度の低い微粉体の飛散防止、健康面や安全面での対策など装置が大掛かりなこと、粉体のまま使用するために原料ロスが大きいことなど、数多くの問題があったが、本発明によれば、これら従来技術が有する問題をいずれも解決することが可能である。 Conventional film forming methods using solid fine particles, such as electrostatic fine particle impact coating (EPID), cluster ion beam, aerosol deposition (AD), etc., have numerous processes, fine powder with low volume density There have been many problems such as large-scale equipment such as prevention of body scattering, measures for health and safety, large raw material loss for use as powder, etc. According to the present invention It is possible to solve all the problems of the prior art.
 また、本発明によれば、溶媒に固体微粒子(シリカ、アルミナ、酸化チタン粒子等)を分散させた液に、金属イオンや金属錯体などの状態で金属を溶解させておき、この溶液に超短パルスレーザ光を照射することで、溶液中に分散する固体微粒子を金属表面に容易に被覆して、固体微粒子で被覆された金属を含む複合体の製造することができ、その際、超短パルスレーザ光の照射を制御することなどにより、金属酸化物、非金属酸化物又はセラミクス等の様々な機能を有する固体微粒子を自在にパターン形成させ、デバイスを製造する等、様々な機会で本発明を適用することが期待できる。 Further, according to the present invention, the metal is dissolved in a liquid in which solid fine particles (silica, alumina, titanium oxide particles, etc.) are dispersed in a solvent in the state of metal ions, metal complexes, etc. By irradiating pulsed laser light, solid fine particles dispersed in a solution can be easily coated on the metal surface, and a composite containing the metal coated with the solid fine particles can be produced, in which case an ultrashort pulse is produced. The present invention can be applied to various occasions such as manufacturing of devices by freely patterning solid particles having various functions such as metal oxides, non-metal oxides or ceramics by controlling irradiation of laser light, etc. It can be expected to apply.
 さらに、本発明の複合体の製造方法を、基板上や基板に垂直方向に連続的に行うことにより、従来レーザ光照射によるパターニングが困難であった感光性を有しない材料によってコーティングされた金属からなる三次元パターンを、基板上に形成することが可能となる。その際、本発明は、溶液中で超短パルスレーザ光を照射する低温の光プロセスであることから、プラスチック基板や基板上の素子に大きなダメージを与えることなくパターニングを行うことができる。 Furthermore, by continuously performing the method of producing a composite of the present invention on a substrate or in a direction perpendicular to the substrate, it is possible to use a metal coated with a non-photosensitive material for which patterning by laser beam irradiation was difficult in the past. It becomes possible to form a three-dimensional pattern on the substrate. At this time, since the present invention is a low-temperature optical process of irradiating ultrashort pulse laser light in a solution, patterning can be performed without damaging the plastic substrate and elements on the substrate.
本発明の一実施形態を示す概念断面図である。It is a conceptual sectional view showing one embodiment of the present invention. 本発明の原理を示す概念断面図である。It is a conceptual sectional view showing the principle of the present invention. 本発明の他の実施形態を示す概念断面図である。It is a conceptual sectional view showing another embodiment of the present invention. 実施例1で製造された複合体の断面の顕微鏡写真である。2 is a photomicrograph of a cross section of the composite produced in Example 1. 実施例2で製造された複合体の断面の顕微鏡写真である。3 is a photomicrograph of a cross section of the composite produced in Example 2. 被膜の断面積と平均レーザ出力との関係を示すグラフである。It is a graph which shows the relationship between the cross-sectional area of a film, and average laser output. 酸化チタン濃度と被膜の断面積との関係を示すグラフである。It is a graph which shows the relationship between a titanium oxide density | concentration and the cross-sectional area of a film.
 以下、本発明を実施するための形態について説明する。
 本発明は、金属のイオン、コロイド、及び/または錯体を含む溶液に、超短パルスレーザ光を照射することで金属を析出させ、前記溶液中に分散された、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子からなる固体微粒子を、前記析出した金属に被覆する工程を含む、固体微粒子で被覆された金属を含む複合体の製造方法である。
Hereinafter, modes for carrying out the present invention will be described.
The present invention deposits metal in a solution containing metal ions, colloids, and / or complexes by irradiating an ultrashort pulse laser beam, and is dispersed in the solution, metal oxide particles, nonmetal oxide particles It is a manufacturing method of the complex containing metal covered with solid particulates including the process of covering solid particulates which consist of object particles or ceramic particles on the deposited metal.
 本発明の一実施形態を示す概念断面図である図1を参照して、本発明ではまず、溶液ホルダー中に、硝酸銀が溶解され、かつ固体微粒子が分散された溶液を収容し、その上に、レーザ光を透過させる基板を、基板の一方の面が溶液と接触するように載置する。次いで、基板の他の一方の面側から超短パルスレーザ光を溶液に照射して、溶液中の銀を析出させるとともに、溶液中に分散された固体微粒子により析出した銀を被覆して、固体微粒子で被覆された銀を含む複合体を製造する。 Referring to FIG. 1, which is a conceptual cross-sectional view showing an embodiment of the present invention, in the present invention, first, a solution holder contains a solution in which silver nitrate is dissolved and solid fine particles are dispersed, A substrate transmitting laser light is placed such that one surface of the substrate is in contact with the solution. Next, the solution is irradiated with ultrashort pulse laser light from the other side of the substrate to precipitate silver in the solution, and at the same time, the deposited fine particles are coated with the solid fine particles dispersed in the solution to form a solid A composite is prepared comprising silver coated with microparticles.
 本発明の原理を示す概念断面図である図2を参照して、いかなる理論にも拘束されるものではないが、超短パルスレーザ光を硝酸銀溶液に照射することにより、基板表面(溶液側)に金属(銀)が析出し、この金属がコアとなって、金属表面が局所的に加熱され、金属表面での溶媒の気化による急激な膨張の後に、減圧による急激な収縮がおこる現象を通じて、コアの周囲に存在する溶液中に分散された固体微粒子が急激な収縮の力を受け、高速で金属表面に衝突することで緻密な集合体が金属表面に集積され、固体微粒子で被覆された金属を含む複合体が生成されるものと考えられる。 Referring to FIG. 2 which is a conceptual cross-sectional view showing the principle of the present invention, although not being bound by any theory, the substrate surface (solution side) can be obtained by irradiating a silver nitrate solution with an ultrashort pulse laser beam. Metal (silver) precipitates, this metal forms a core, and the metal surface is locally heated, and after rapid expansion due to evaporation of the solvent on the metal surface, rapid contraction due to reduced pressure occurs. The solid particles dispersed in the solution around the core are subjected to the force of rapid contraction and collide with the metal surface at a high speed, whereby a dense aggregate is accumulated on the metal surface, and the metal coated with the solid particles It is believed that a complex containing is generated.
<金属>
 本発明で使用する金属は、超短パルスレーザ光を照射する溶液中に金属のイオン、コロイド、及び/または錯体として存在しているものである。また、析出した金属が溶媒と化学反応することが無ければ金属の種類は特に制限されない。
 本発明で使用する金属は特に、溶媒に水を選択した場合には、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれる、水および高温の水蒸気と反応しない金属であるのが好ましい。水や高温の水蒸気と反応する金属(例えば、カリウム、マグネシウム、アルミニウム、亜鉛、鉄などイオン化傾向の高い金属)の場合であっても、溶媒を適宜選択することにより、好ましい金属を選択することが可能である。
<Metal>
The metal used in the present invention is one that exists as a metal ion, colloid, and / or complex in a solution irradiated with ultrashort pulsed laser light. The type of metal is not particularly limited as long as the deposited metal does not chemically react with the solvent.
The metal used in the present invention is, in particular, a metal which does not react with water and high temperature water vapor, selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold when water is selected as the solvent. Is preferred. Even in the case of metals that react with water or high-temperature water vapor (for example, metals having a high ionization tendency such as potassium, magnesium, aluminum, zinc, iron), preferable metals can be selected by appropriately selecting a solvent. It is possible.
 金属が溶液中にイオンとして存在する場合、金属イオンは、例えばAg+、Cu+、Cu2+、Ni2+、Sn2+、Sn3+、Sn4+、Pb2+、Pt2+、Au+、Au3+などであってよい。
 金属塩の対イオンは、硝酸イオン、硫酸イオン、カルボン酸イオン、シアン化物イオン、スルホン酸イオン、ホウ酸イオン、ハロゲンイオン、炭酸イオン、リン酸イオンおよび過塩素酸イオンからなる群から選択されるのが好ましい。
When the metal is present as an ion in the solution, the metal ion is, for example, Ag + , Cu + , Cu 2+ , Ni 2+ , Sn 2+ , Sn 3+ , Sn 4+ , Pb 2+ , Pt 2+ , It may be Au + , Au 3 + or the like.
The counter ion of the metal salt is selected from the group consisting of nitrate ion, sulfate ion, carboxylate ion, cyanide ion, sulfonate ion, borate ion, halogen ion, carbonate ion, phosphate ion and perchlorate ion Is preferred.
 金属が溶液中にコロイドとして存在する例としては、銀コロイド、銅コロイド、ニッケルコロイドなどが挙げられる。
 金属が溶液中に錯体として存在する場合としては、例えば、金属原子に配位子を配位することにより、溶媒に分散、溶解しやすくしたような場合が挙げられる。
 銀錯体の例としては、ドコサン酸銀、クロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]銀、ピリジン-2-カルボン酸銀(II)、スルファジアジン銀等あげることができる。また、銅の錯体としては、酢酸銅(I)、ビス(1,3-プロパンジアミン)銅(II)ジクロリド、第二銅アセチルアセトナート、ビス(8-キノリノラト)銅(II) 等あげることができる。金の錯体の例としては、テトラクロロ金(III)酸四水和物、(ジメチルスルフィド)金(I)クロリド、クロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金(I)等あげることができる。鉛の錯体としては、四酢酸鉛、酢酸鉛(II)等あげることができる。更に、銀ナノインク、銅ナノインクのような金属錯体を含む製品であってよい。
Examples of metals present as colloids in solution include silver colloids, copper colloids, nickel colloids and the like.
Examples of the case where the metal is present as a complex in a solution include a case where the metal is easily dispersed or dissolved in a solvent by coordinating a ligand to a metal atom.
Examples of silver complexes include silver docosanoate, chloro [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] silver, silver (II) pyridine-2-carboxylate, silver sulfadiazine, etc. Can. In addition, copper complexes such as copper (I) acetate, bis (1,3-propanediamine) copper (II) dichloride, cupric acetylacetonate, bis (8-quinolinolato) copper (II) and the like can be mentioned. it can. Examples of complexes of gold include tetrachloroaurate (III) tetrahydrate, (dimethyl sulfide) gold (I) chloride, chloro [1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene ] Gold (I) etc. can be raised. Examples of complexes of lead include lead tetraacetate and lead (II) acetate. Furthermore, it may be a product containing metal complexes such as silver nanoinks and copper nanoinks.
 本発明で使用する金属の溶液中の濃度は、特に限定されない。0.1質量%以上で均一に溶解、または分散可能であれば制限を受けない。0.1質量%未満の薄い溶液では、固体微粒子の集積があっても光効率が悪くなる。溶液中の金属濃度を高くすると、超短パルスレーザ光を照射することにより形成される金属コアのサイズが大きくなる。金属の溶液中の濃度は、3.0質量%以下であるのが好ましい。 The concentration of the metal used in the present invention in the solution is not particularly limited. There is no limitation as long as it can be uniformly dissolved or dispersed at 0.1% by mass or more. In a thin solution of less than 0.1% by mass, the accumulation of solid fine particles degrades the light efficiency. When the metal concentration in the solution is increased, the size of the metal core formed by the irradiation with the ultrashort pulse laser light is increased. The concentration of the metal in the solution is preferably 3.0% by mass or less.
<固体微粒子>
 本発明で使用する固体微粒子は、超短パルスレーザ光を照射する溶液中に分散された、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子である。ここでの分散は、必ずしも溶液全体に均一に固体微粒子が分布している必要はなく、集光点近傍に固体微粒子が存在してさえいれば、その一部が沈殿していても良い。
 本発明で使用する固体微粒子として、例えば、炭化物、窒化物、ホウ化物などの無機化合物等を使用することができる。また、透明性の高いコーティング膜形成材料、固体電解質型燃料電池電解質材料、発光ダイオードや光応答半導体材料、抵抗体膜形成材料、金属磁性体粉末材料、超電導材料、圧電セラミックス厚膜材料、誘電体膜材料、微粒子結合材料等の機能性材料の固体微粒子を、目的に応じて使用することも可能である。
<Solid particles>
The solid fine particles used in the present invention are metal oxide particles, non-metal oxide particles, or ceramic particles dispersed in a solution irradiated with ultrashort pulse laser light. Dispersion here does not necessarily have to be uniformly distributed in solid solution throughout the solution, and as long as solid particles are present in the vicinity of the focusing point, part of them may be precipitated.
As solid fine particles used in the present invention, for example, inorganic compounds such as carbides, nitrides, borides and the like can be used. In addition, highly transparent coating film forming materials, solid electrolyte fuel cell electrolyte materials, light emitting diodes and light responsive semiconductor materials, resistor film forming materials, metallic magnetic powder materials, superconducting materials, piezoelectric ceramic thick film materials, dielectrics It is also possible to use solid fine particles of functional materials such as membrane material and fine particle bonding material according to the purpose.
 これらの固体微粒子は、異なる種類のものを複数同時に溶媒に分散させてもよく、あるいは、固体微粒子同士が接合した固体微粒子や、複数成分からなる固体微粒子を使用してもよい。更に、金担持酸化チタン(Au/TiO2)のような固体微粒子を固体微粒子とともに用いることもできる。 As these solid particles, a plurality of different types of particles may be simultaneously dispersed in a solvent, or solid particles in which solid particles are joined to each other, or solid particles consisting of a plurality of components may be used. Furthermore, solid fine particles such as gold-supported titanium oxide (Au / TiO 2 ) can be used together with the solid fine particles.
 前記固体微粒子の融点は、500℃~3500℃であるのが好ましい。
 これは例えば、金属として銀を、固体微粒子として酸化チタンを用いた場合、図4の様な断面が観察される。酸化チタンと銀の境界面は広範囲に接触しているのに対し、銀の内側には空洞が存在する。銀の断面積に対し、空洞の断面の比は、5対1程度と測定されること、酸化チタンの線膨張係数(室温から1000℃までの平均)が8×10-6(1/K)であるのと、銀の線膨張係数は25×10-6(1/K)であることから、超短パルスレーザ光を照射することによる銀表面の最高到達温度が5000K(4700℃以上)程度であろうと推定される。従って、3500℃以下の融点を持つ固体微粒子であれば、融解して容易に、金属表面に集積させることが考えられるためである。
The melting point of the solid fine particles is preferably 500 ° C to 3500 ° C.
For example, when silver is used as the metal and titanium oxide is used as the solid fine particles, a cross section as shown in FIG. 4 is observed. While the interface between titanium oxide and silver is in wide contact, a void is present inside silver. The ratio of the cross section of the cavity to that of silver is measured to be about 5 to 1, The linear expansion coefficient of titanium oxide (average from room temperature to 1000 ° C.) is 8 × 10 -6 (1 / K) Because the linear expansion coefficient of silver is 25 × 10 -6 (1 / K), the maximum temperature reached on the silver surface by irradiation with ultra-short pulse laser light is about 5000 K (4700 ° C. or higher). It is estimated to be. Therefore, if it is solid fine particles having a melting point of 3500 ° C. or less, it is considered that they can be melted and easily accumulated on the metal surface.
 コーティング材料として有用な固体微粒子としては、酸化物の固体微粒子として、例えば、シリカ(1650℃)、酸化錫(1080℃)、酸化鉄(1565℃)、酸化クロム(2435℃)、酸化ベリリウム(2570℃)、酸化ハフニウム(2758℃)、(水と反応)、三酸化二マンガン(1080℃)、四酸化三マンガン(1567℃)、酸化マンガン(1650℃)、酸化バリウム(1920℃)、酸化ストロンチウム(2531℃)、四酸化三鉄(1538℃)、酸化コバルト(1933℃)、酸化ニッケル(1984℃)、チタン酸ジルコン酸鉛(1400℃)、チタン酸リチウム(1520℃)、チタン酸アルミニウム(1860℃)、チタン酸ストロンチウム(2080℃)、チタン酸鉛、ジルコン酸鉛、チタン酸鉛とジルコン酸鉛の混晶(チタン酸ジルコン酸鉛)、酸化スカンジウム(1000℃)、酸化ネオジウム(2270℃)、酸化ガドリニウム(2330℃)、酸化サマリウム(2300℃)、酸化イットリウム(2410℃)、酸化ニッケル(600℃)、四酸化三コバルト(895℃)、酸化インジウムスズ(1800℃)、酸化マグネシウム(2852℃)、酸化ジルコニウム(2715℃)、コージエライト(1450℃)、アノーサ イ ト(1553℃)、ゲーレナイト(1593℃)、カルシウム・アルミネート(1600℃)、リチウムアルミネート(1625℃)、アルミン酸ストロンチウム(1790℃)、ムライト(1850℃)、アルミン酸イットリウム(1970℃)、スピネル(2130℃)、酸化ネオジウム(1900℃)、酸化スカンジウム(2485℃)、ランタンガレート系酸化物、PbZrTi系酸化物、LaSrCo系酸化物、LaSrMn系酸化物、YBa系酸化物、BiSrCa系酸化物、TlBaCa系酸化物、酸化鉄を主成分とするフェライト、上記以外の酸化物セラミックスなどが挙げられる(カッコ内の温度は融点である。以下同様)。 As solid fine particles useful as a coating material, for example, silica (1650 ° C.), tin oxide (1080 ° C.), iron oxide (1565 ° C.), chromium oxide (2435 ° C.), beryllium oxide (2570) as solid fine particles of oxide ° C), hafnium oxide (2758 ° C), (reacted with water), dimanganese trioxide (1080 ° C), trimanganese tetraoxide (1567 ° C), manganese oxide (1650 ° C), barium oxide (1920 ° C), strontium oxide (2531 ° C), triiron tetraoxide (1538 ° C), cobalt oxide (1933 ° C), nickel oxide (1984 ° C), lead zirconate titanate (1400 ° C), lithium titanate (1520 ° C), aluminum titanate (aluminum titanate) 1860 ° C), strontium titanate (2080 ° C), lead titanate, lead zirconate, mixed crystal of lead titanate and lead zirconate (lead zirconate titanate), scandium oxide (1000 ° C.), neodymium oxide (2270 ° C.) ), Oxide (2330 ° C), samarium oxide (2300 ° C), yttrium oxide (2410 ° C), nickel oxide (600 ° C), tricobalt tetraoxide (895 ° C), indium tin oxide (1800 ° C), magnesium oxide (2852 ° C) ), Zirconium oxide (2715 ° C), cordierite (1450 ° C), anorthite (1553 ° C), gelenite (1593 ° C), calcium aluminate (1600 ° C), lithium aluminate (1625 ° C), strontium aluminate (12.5 ° C) 1790 ° C), mullite (1850 ° C), yttrium aluminate (1970 ° C), spinel (2130 ° C), neodymium oxide (1900 ° C), scandium oxide (2485 ° C), lanthanum gallate oxide, PbZrTi oxide, LaSrCo Oxides, LaSrMn oxides, YBa oxides, BiSrCa oxides, TlBaCa oxides, iron oxide And ferrite ceramics other than those described above (the temperature in the parentheses is the melting point; the same applies hereinafter).
 また、炭化化合物としては、炭化クロム(1890℃)、炭化硼素(2763℃)、炭化バナジウム(2840℃)、炭化タングステン(2870℃)、炭化モリブデン(2687℃)、炭化チタン(3170℃)、炭化ジルコニウム(3500℃)、炭化ニオブ(3500℃)、炭化タンタル(3880℃)、炭化珪素(2730℃)、チタン酸ビスマス(1203℃)などが挙げられる。
 窒化化合物としては、窒化ニオブ(2573℃)、窒化チタン(2930℃)、窒化タンタル(3090℃)、窒化インジウム(1100℃)、窒化ガリウム(2500℃)、窒化インジウム(1100℃)、窒化ガリウム(2500℃)、窒化硼素(2967℃)、窒化アルミニウム(2200℃)などが挙げられる。
 硼素化合物としては、硼素(2076℃)、硼化アルミニウム(1655℃)、硼化クロム(2373℃)、硼化チタン(2400℃)、硼化モリブデン(2543℃)、硼化タングステン(2643℃)、硼化バナジウム(2673℃)、硼化ジルコニウム(3100℃)、硼化マグネシウム(800℃)、硼化ニオブ(3000℃)、硼化タンタル(3037℃)などが挙げられる。
 さらに、ハロゲン化合物としてはフッ化セリウム(1800℃)などが、リン酸化合物としてはハイドロキシアパタイト(1650℃)などが、リチウム系化合物としてはLi2S-P25、LiCoO2、xLi2O-BPO4(0.5≦x≦1.5)などが、化合物半導体としてはII族元素とVI族元素を用いた半導体などが、それぞれ挙げられる。
In addition, as a carbonized compound, chromium carbide (1890 ° C), boron carbide (2763 ° C), vanadium carbide (2840 ° C), tungsten carbide (2870 ° C), molybdenum carbide (2687 ° C), titanium carbide (3170 ° C), carbonization Zirconium (3500 ° C.), niobium carbide (3500 ° C.), tantalum carbide (3880 ° C.), silicon carbide (2730 ° C.), bismuth titanate (1203 ° C.) and the like can be mentioned.
As a nitride compound, niobium nitride (2573 ° C), titanium nitride (2930 ° C), tantalum nitride (3090 ° C), indium nitride (1100 ° C), gallium nitride (2500 ° C), indium nitride (1100 ° C), gallium nitride (1100 ° C) 2500 ° C.), boron nitride (2967 ° C.), aluminum nitride (2200 ° C.) and the like.
Boron compounds include boron (2076 ° C), aluminum boride (1655 ° C), chromium boride (2373 ° C), titanium boride (2400 ° C), molybdenum boride (2543 ° C), tungsten boride (2643 ° C) Vanadium boride (2673 ° C.), zirconium boride (3100 ° C.), magnesium boride (800 ° C.), niobium boride (3000 ° C.), tantalum boride (3037 ° C.) and the like.
Furthermore, cerium fluoride (1800 ° C.) and the like as a halogen compound, hydroxyapatite (1650 ° C.) and the like as a phosphoric acid compound, Li 2 S—P 2 S 5 , LiCoO 2 , xLi 2 O and the like as a lithium compound -BPO 4 and (0.5 ≦ x ≦ 1.5), as the compound semiconductor such as a semiconductor with a group II element and group VI element, and the like, respectively.
 特に、透明性の高いコーティング膜形成材料として有用な固体微粒子としては、酸化ニッケル、四酸化三コバルト、酸化インジウムスズ、酸化マグネシウム、酸化ジルコニウム、窒化アルミニウム、硼化マグネシウム、窒化珪素、炭化珪素、フッ化セリウム等を挙げることができる。 In particular, solid particles useful as highly transparent coating film-forming materials include nickel oxide, tricobalt tetraoxide, indium tin oxide, magnesium oxide, zirconium oxide, aluminum nitride, magnesium boride, silicon nitride, silicon carbide, and fluorine. There may be mentioned cerium oxide and the like.
 固体電解質型燃料電池電解質材料として有用な固体微粒子としては、酸化スカンジウム、酸化ネオジウム、酸化ガドリニウム、酸化サマリウム(2300℃)、酸化イットリウム、酸化ネオジウム、酸化スカンジウム、LiCoO2、硫化リチウム系化合物等を挙げることができる。
 硫化リチウム系化合物の具体例として、Li2S-P25、Li2S-P25-LiI、Li2S-P25-LiCl、Li2S-P25-LiBr、Li2S-P25-Li2O、Li2S-P25-Li2O-LiI、Li2S-SiS2、Li2S-SiS2-LiI、Li2S-SiS2-LiBr、Li2S-SiS2-LiCl、Li2S-SiS2-B23-LiI、Li2S-SiS2-P25-LiI、Li2S-B23、Li2S-P25-ZmSn(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか。)、Li2S-GeS2、Li2S-SiS2-Li3PO4、Li2S-SiS2-LixMOy(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか。)、Li10GeP212、xLi2O-BPO4(0.5≦x≦1.5)、Lix1-x/3PO4(0.75≦x<3)等を挙げることができる。
Examples of solid particles useful as solid electrolyte fuel cell electrolyte materials include scandium oxide, neodymium oxide, gadolinium oxide, samarium oxide (2300 ° C.), yttrium oxide, neodymium oxide, scandium oxide, LiCoO 2 , lithium sulfide compounds, and the like. be able to.
Specific examples of the lithium sulfide-based compound, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr , Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 -ZmSn ( although, m, n is the number of positive .Z is, Ge, Zn, one of Ga.), Li 2 S- GeS 2, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S- SiS 2 -Li x MO y ( provided that, x, y is a positive number .M is, P, Si, Ge, B , Al, Ga, in Neu Re or.), Li 10 GeP 2 S 12, xLi 2 O-BPO 4 (0.5 ≦ x ≦ 1.5), Li x B 1-x / 3 PO 4 (0.75 ≦ x <3) or the like Can be mentioned.
 発光ダイオードや光応答半導体材料として有用な固体微粒子としては、窒化インジウム、窒化ガリウム、窒化アルミニウム、II族元素とVI族元素を用いた半導体等を挙げることができる。
 II族元素とVI族元素を用いた半導体の具体例として、CuInSe2、CuInS2(CIS)、CuIn1-xGaxSe2(CIGS)、Cu2ZnSnS4(CZTS)、CdTe系半導体等を挙げることができる。
Examples of solid particles useful as light emitting diodes and light responsive semiconductor materials include indium nitride, gallium nitride, aluminum nitride, and semiconductors using group II elements and group VI elements.
Specific examples of semiconductors using group II elements and group VI elements include CuInSe 2 , CuInS 2 (CIS), CuIn 1-x Ga x Se 2 (CIGS), Cu 2 ZnSnS 4 (CZTS), CdTe-based semiconductors, etc. It can be mentioned.
 抵抗体膜形成材料として有用な固体微粒子としては、四酸化三鉄、酸化コバルト、酸化ニッケル、酸化レニウム、酸化イリジウム、酸化ルテニウ ム、フェライト、酸化物セラミックス等を挙げることができる。
 酸化物セラミックスの具体例として、SrVO3、CaVO3、LaTiO3、SrMoO3、CaMoO3、SrCrO3、CaCrO3、LaVO3、GdVO3、SrMnO3、CaMnO3、NiCrO3、BiCrO3、LaCrO3、LnCrO3、SrRuO3、CaRuO3、SrFeO3、BaRuO3、LaMnO3、LnMnO3、LaFeO3、LnFeO3、LaCoO3、LaRhO3、LaNiO3、PbRuO3、Bi2Ru27、LaTaO3、BiRuO3、LaB6等を挙げることができる。
Examples of solid fine particles useful as a resistor film forming material include triiron tetraoxide, cobalt oxide, nickel oxide, rhenium oxide, iridium oxide, ruthenium oxide, ferrite, oxide ceramics and the like.
As specific examples of oxide ceramics, SrVO 3 , CaVO 3 , LaTiO 3 , SrMoO 3 , CaMoO 3 , SrCrO 3 , SrCrO 3 , CaCrO 3 , CaCrO 3 , LaVO 3 , GdVO 3 , SrMnO 3 , CaMnO 3 , NiCrO 3 , BiCrO 3 , LaCrO 3 , LnCrO 3 , SrRuO 3 , CaRuO 3 , SrFeO 3 , BaRuO 3 , LaRuO 3 , LaMnO 3 , LnMnO 3 , LaFeO 3 , LnFeO 3 , LaCoO 3 , LaRhO 3 , LaNiO 3 , PbRuO 3 , Bi 2 Ru 2 O 7 , LaTaO 3 , 3 and LaB 6 etc. can be mentioned.
 超電導材料として有用な固体微粒子としては、YBa系酸化物、BiSrCa系酸化物、TlBaCa系酸化物等を挙げることができる。
 圧電セラミックス厚膜材料として有用な固体微粒子としては、酸化マグネシウム、三酸化二マンガン、四酸化三マンガン、酸化マンガン、酸化バリウム、酸化ストロンチウム、チタン酸バリウム、ハイドロキシアパタイト等を挙げることができる。
Examples of solid fine particles useful as a superconducting material include YBa-based oxides, BiSrCa-based oxides, and TlBaCa-based oxides.
Examples of solid fine particles useful as a piezoelectric ceramic thick film material include magnesium oxide, dimanganese trioxide, trimanganese tetraoxide, manganese oxide, barium oxide, strontium oxide, barium titanate, hydroxyapatite and the like.
 誘電体膜材料として有用な固体微粒子としては、酸化チタン、シリカ、窒化アルミニウム、酸化マグネシウム、チタン酸バリウム、チタン酸ジルコン酸鉛、酸化物セラミックス等を上げることができる。
 酸化物セラミックスの具体例として、PbTiO3、PbZrO3、Pb(Zr1-xTix)O3(0≦x≦1)の一般式で示されるPZT、(Pb1-yLay)(Zr1-xTix)O3(0≦x、y≦1)の一般式で示されるPLZT、Pb(Mg1/3Nb2/3)O3、Pb(Ni1/3Nb2/3)O3、Pb(Zn1/3Nb2/3)O3、BaTiO3、BaTi49、Ba2Ti920、Ba(Zn1/3Ta2/3)O3、Ba(Zn1/3Nb2/3)O3、Ba(Mg1/3Ta2/3)O3、Ba(Mg1/3Ta2/3)O3、Ba(Co1/3Ta2/3)O3、Ba(Co1/3Nb2/3)O3、Ba(Ni1/3Ta2/3)O3、Ba(Zr1-xTix)O3、(Ba1-xSrx)TiO3、ZrSnTiO4、CaTiO3、MgTiO3、SrTiO3等を挙げることができる。
As solid fine particles useful as dielectric film materials, titanium oxide, silica, aluminum nitride, magnesium oxide, barium titanate, lead zirconate titanate, oxide ceramics and the like can be mentioned.
As specific examples of oxide ceramics, PZT represented by the general formula of PbTiO 3 , PbZrO 3 , Pb (Zr 1-x Ti x ) O 3 (0 ≦ x ≦ 1), (Pb 1 -y La y ) (Zr PLZT represented by the general formula of 1-x Ti x ) O 3 (0 ≦ x, y ≦ 1), Pb (Mg 1/3 Nb 2/3 ) O 3 , Pb (Ni 1/3 Nb 2/3 ) O 3, Pb (Zn 1/3 Nb 2/3) O 3, BaTiO 3, BaTi 4 O 9, Ba 2 Ti 9 O 20, Ba (Zn 1/3 Ta 2/3) O 3, Ba (Zn 1 / 3 Nb 2/3) O 3, Ba (Mg 1/3 Ta 2/3) O 3, Ba (Mg 1/3 Ta 2/3) O 3, Ba (Co 1/3 Ta 2/3) O 3, Ba (Co 1/3 Nb 2/3 ) O 3, Ba (Ni 1/3 Ta 2/3) O 3, Ba (Zr 1-x Ti x) O 3, (Ba 1-x Sr x) cited TiO 3, ZrSnTiO 4, CaTiO 3 , MgTiO 3, SrTiO 3 , etc. It is possible.
 微粒子結合材料として有用な固体微粒子としては、コージエライト、アノーサイト、ゲーレナイト、カルシウム・アルミネート、リチウムアルミネート、アルミン酸ストロンチウム、ムライト、アルミン酸イットリウム、スピネル、窒化アルミニウム等を挙げることができる。 Examples of solid fine particles useful as the fine particle bonding material include cordierite, anorthite, gohalenite, calcium aluminate, lithium aluminate, strontium aluminate, mullite, yttrium aluminate, spinel, aluminum nitride and the like.
 本発明において、超短パルスレーザ光を照射する方法には、大きく2つある。1つは、金属を析出させる透明基板を通し照射する方法と、もう1つは、溶液を介し基板表面に照射する方法である。前者の場合には、溶液と通過しないため、溶液中に分散している固体微粒子の影響を受けにくい。
 後者の場合には、固体微粒子による溶液中での光吸収が小さければ、光損失や散乱が抑制され、より多くの固体微粒子を溶媒中に分散させることができ、かつ、析出した金属に効率的にレーザ光を吸収させることができると考えられ問題とならないが、逆に、光吸収が大きければ、光損失や散乱が起こりやすくなり、この場合は、固体微粒子の粒子径を変化させるか、溶液中の濃度を低くすることなどにより、析出金属へのレーザ光の照射が効率的になるように制御することが可能である。
In the present invention, there are two major methods for irradiating ultra-short pulse laser light. One is a method of irradiating through a transparent substrate which precipitates a metal, and the other is a method of irradiating a substrate surface through a solution. In the former case, since it does not pass through the solution, it is not easily affected by solid particles dispersed in the solution.
In the latter case, if the light absorption in solution by the solid particles is small, light loss and scattering can be suppressed, more solid particles can be dispersed in the solvent, and it is effective for the deposited metal. It is considered that the laser light can be absorbed and does not cause a problem, but conversely, if the light absorption is large, light loss and scattering are likely to occur. In this case, the particle diameter of the solid fine particles is changed or By reducing the concentration in the medium, it is possible to control the irradiation of the deposited metal with laser light efficiently.
<溶媒>
 本発明で使用する溶液のための溶媒は、固体微粒子の分散に適したものであれば特に限定されない。トルエン等の有機溶媒に分散された固体微粒子を、アルコールと水の混合溶媒に再分散させるなど、使用に応じ溶媒を選択することができる。
 本発明で使用する溶液の粘度は、特に限定されない。コアとなる金属を覆う固体微粒子の被覆を厚くしたい場合には、固体微粒子の濃度を高くすることが考えられ、そのような場合には、溶液の粘度は高くなる。
<Solvent>
The solvent for the solution used in the present invention is not particularly limited as long as it is suitable for the dispersion of solid particles. A solvent can be selected according to use, such as re-dispersing solid fine particles dispersed in an organic solvent such as toluene in a mixed solvent of alcohol and water.
The viscosity of the solution used in the present invention is not particularly limited. If it is desired to thicken the coating of the solid particles covering the core metal, it is conceivable to increase the concentration of the solid particles, and in such a case, the viscosity of the solution becomes high.
<その他の成分>
 溶液中には、固体微粒子の分散のために使用される分散剤など溶解するもの、レーザ光の照射を妨げるものでなければ含まれていても構わない。
<Other ingredients>
The solution may contain a dissolving agent such as a dispersing agent used for dispersing the solid fine particles, or any other agent as long as it does not prevent the irradiation of the laser beam.
<レーザ>
 本発明において、「超短パルスレーザ」とは、数フェムト秒(1フェムト秒は1×10-15秒、fsとも表記される。)~数百ピコ秒(1ピコ秒は1×10-12秒、psとも表記される。)のパルス幅をもつパルスレーザである。
<Laser>
In the present invention, the “ultrashort pulse laser” is several femtoseconds (1 femtosecond is 1 × 10 −15 seconds, also described as fs) to several hundreds picoseconds (1 picosecond is 1 × 10 −12). It is a pulse laser having a pulse width of second and ps.
 本発明で使用する超短パルスレーザ光の平均出力は、10mW以上であるのが好ましい。
 また、超短パルスレーザ光の集光径は、20μm以下であるのが好ましい。
 超短パルスレーザ光の照射量および強度を制御することで、生成される金属コアの大きさを制御することが可能である。
 また、超短パルスレーザ光の繰返し周波数は、1Hz~500MHzであるのが好ましい。
The average output of the ultrashort pulse laser beam used in the present invention is preferably 10 mW or more.
Moreover, it is preferable that the condensing diameter of ultra-short pulse laser light is 20 μm or less.
By controlling the irradiation amount and the intensity of the ultrashort pulse laser light, it is possible to control the size of the metal core generated.
The repetition frequency of the ultrashort pulse laser beam is preferably 1 Hz to 500 MHz.
 本発明で使用する超短パルスレーザ光の波長は、本発明で使用する金属イオン等により吸収される波長であって、モル吸光係数の高い波長であれば、特に限定されない。固体微粒子による吸収の少ない波長であれば、本発明による複合体の生成効率が更に良くなり好ましい。
 具体的には、本発明で使用する超短パルスレーザ光の波長を、溶液に溶解した感光性の金属化合物の吸収波長に合わせて、例えば本発明で使用する金属のモル吸光係数が5l/mol・cm以上となるように選択するのが好ましいが、特にこれに限定されるものではない。
 超短パルスレーザ光の波長は、200nm~2000nmであるのが好ましい。
 さらに、超短パルスレーザ光のフルエンス(単位面積に投入されるエネルギー)は、0.01mJ/cm2~10mJ/cm2であるのが好ましい。
The wavelength of the ultrashort pulse laser beam used in the present invention is not particularly limited as long as it is a wavelength absorbed by the metal ion or the like used in the present invention and has a high molar absorption coefficient. If it is a wavelength with little absorption by solid fine particles, the formation efficiency of the composite according to the present invention is further improved, which is preferable.
Specifically, the wavelength of the ultrashort pulse laser beam used in the present invention is adjusted to the absorption wavelength of the photosensitive metal compound dissolved in the solution, and for example, the molar absorption coefficient of the metal used in the present invention is 5 l / mol. It is preferable to select so as to be at least cm, but it is not particularly limited thereto.
The wavelength of the ultrashort pulse laser beam is preferably 200 nm to 2000 nm.
Furthermore, the fluence (energy input to a unit area) of ultrashort pulse laser light is preferably 0.01 mJ / cm 2 to 10 mJ / cm 2 .
 本発明は、溶液に基板を浸漬させる工程、及び基板の表面に沿って超短パルスレーザ光のビームスポットを移動させる工程をさらに含むものとすることができる。
 本発明の他の実施形態を示す概念断面図である図3を参照して、基板はその一方の表面が溶液に浸漬されており、この状態で基板を走査方向に移動させることにより、基板の表面に沿って超短パルスレーザ光のビームスポットを移動させることができる。
 超短パルスレーザ照射による溶液中での金属析出は、非線形光学吸収を介してレーザ集光点近傍でのみ起こる。このため、本発明では、基板の表面上だけでなく、基板から離れた溶液中の任意位置にレーザ焦点を配置し三次元的に走査することで、固体微粒子に被覆された三次元金属構造を製造することが可能である。すなわち、本発明は、溶液に基板を浸漬させる工程、及び基板の表面から、基板から離れた溶液中の所定の位置に超短パルスレーザ光のビームスポットを移動させる工程をさらに含むものとすることができる。
 また、製造された複合体から金属コアをエッチング処理などにより除去することにより、固体微粒子からなる三次元構造を取り出すことも可能である。
The present invention may further include the steps of immersing the substrate in a solution, and moving the beam spot of ultrashort pulsed laser light along the surface of the substrate.
Referring to FIG. 3 which is a conceptual cross-sectional view showing another embodiment of the present invention, the substrate is immersed in the solution on one surface, and by moving the substrate in the scanning direction in this state, The beam spot of ultrashort pulsed laser light can be moved along the surface.
Metal deposition in solution by ultra-short pulse laser irradiation occurs only near the laser focusing point via nonlinear optical absorption. For this reason, in the present invention, a three-dimensional metal structure coated on solid particles is obtained by arranging the laser focus at an arbitrary position in the solution away from the substrate as well as on the surface of the substrate and scanning three-dimensionally. It is possible to manufacture. That is, the present invention can further include the steps of immersing the substrate in the solution, and moving the beam spot of the ultrashort pulse laser beam to a predetermined position in the solution away from the substrate from the surface of the substrate. .
Moreover, it is also possible to take out the three-dimensional structure which consists of solid fine particles by removing a metal core from the manufactured composite by an etching process etc.
<後処理>
 本発明の製造方法により製造された複合体について、電気炉、炭酸ガスレーザ照射などによる熱処理を行うことにより、構造安定化を得ることが可能である。また、製造された複合体から金属コアをエッチング処理などにより除去することにより、被覆部分のみを取り出すことも可能である。
<Post-processing>
It is possible to obtain structural stabilization by heat-treating the composite manufactured by the manufacturing method of the present invention by an electric furnace, carbon dioxide gas laser irradiation or the like. Further, it is also possible to take out only the coated portion by removing the metal core from the manufactured composite by etching or the like.
 以下に実施例により本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be more specifically described below by way of Examples, but the present invention is not limited thereto.
(実施例1)
 褐色ビン中に、純水6mlとエタノール10mlを入れ、硝酸銀溶液(1mol/l、純正化学株式会社)を4ml入れて、攪拌した。その後、シリカナノ粒子分散水溶液(Sigma-aldrich,LUDOX、TM-50、ナノ粒子粒径22nm、濃度50質量%)を0.7ml入れて、再度1時間撹拌した。この時のシリカの濃度は、2.5質量%であった。
 褐色ビンから溶液をテフロン(登録商標)製の溶液ホルダーに移し、基板となるカバーガラスを、基板の一方表面がホルダー中の溶液と直接接触するようにホルダーに被せた。
 次に、フェムト秒レーザ(C-Fiber780、MenloSystems Ltd.)を用いて、焦点が基板と溶液との接触面となるように調整し、中心波長780nm、繰返し周波数100MHz、パルス幅127fs、平均レーザ出力20mW、集光径(理論値)2μm、フルエンス6.4mJ/cm2の条件で照射した。
 ホルダーを走査速度10μm/sで水平に動かすことで、基板表面に複合体が走査方向に連続的に形成された。
 形成された複合体にカーボン保護膜をつけ、集束イオンビームで切片を切り出して形成された複合体の断面形状を顕微鏡観察した(図4)。半円の直径約2.5μm銀のコアとそれを覆う厚み約2.5μmのシリカナノ粒子による被覆が確認された。
Example 1
In a brown bottle, 6 ml of pure water and 10 ml of ethanol were placed, and 4 ml of a silver nitrate solution (1 mol / l, Junsei Chemical Co., Ltd.) was placed and stirred. Thereafter, 0.7 ml of a silica nanoparticle dispersed aqueous solution (Sigma-aldrich, LUDOX, TM-50, nanoparticle particle size 22 nm, concentration 50% by mass) was added, and stirred again for 1 hour. The concentration of silica at this time was 2.5% by mass.
The solution was transferred from the brown bottle to a Teflon (registered trademark) solution holder, and a cover glass as a substrate was placed on the holder so that one surface of the substrate was in direct contact with the solution in the holder.
Next, using a femtosecond laser (C-Fiber 780, MenloSystems Ltd.), the focal point is adjusted to be the contact surface between the substrate and the solution, central wavelength 780 nm, repetition frequency 100 MHz, pulse width 127 fs, average laser output It irradiated on 20 mW, condensing diameter (theoretical value) 2 micrometers, and the conditions of fluence 6.4 mJ / cm < 2 >.
By moving the holder horizontally at a scanning speed of 10 μm / s, complexes were continuously formed in the scanning direction on the substrate surface.
A carbon protective film was attached to the formed complex, and a section was cut out with a focused ion beam, and the cross-sectional shape of the formed complex was observed microscopically (FIG. 4). A half-circle diameter of about 2.5 μm silver core and a coating of about 2.5 μm thick silica nanoparticles covering it were confirmed.
(実施例2)
 実施例1において、シリカナノ粒子分散水溶液に代えて酸化チタンナノ粒子分散水溶液(NTB-1、昭和電工株式会社、ナノ粒子粒径10~20nm(カタログ値)、濃度15質量%)を1.9ml使用したこと以外は、実施例1と同じ条件で、溶液の分散及びレーザ光照射を行った。この時の酸化チタン濃度は、1.5質量%であった。
 形成された複合体の断面形状を顕微鏡観察したところ、半円の直径約5μm銀のコアとそれを覆う厚み約5μmの酸化チタンナノ粒子による被覆が確認された(図5)。
(Example 2)
In Example 1, 1.9 ml of titanium oxide nanoparticle dispersed aqueous solution (NTB-1, Showa Denko KK, nanoparticle particle diameter 10 to 20 nm (catalog value), concentration 15 mass%) was used instead of the silica nanoparticle dispersed aqueous solution Solution dispersion and laser light irradiation were performed under the same conditions as Example 1 except for the above. The titanium oxide concentration at this time was 1.5% by mass.
Microscopic observation of the cross-sectional shape of the formed composite revealed a silver core of about 5 μm in diameter with a semicircle and a coating of about 5 μm thick titanium oxide nanoparticles covering it (FIG. 5).
(実施例3~7)
 実施例1において、シリカナノ粒子に代えて、表1に示す様々な種類の固体微粒子を使用して、実施例1と同じ条件で、溶液の分散及びレーザ光照射を行った。
 いずれの実施例においても、実施例1の場合と同様に、複合体の形成が確認された。
(Examples 3 to 7)
In Example 1, the dispersion of the solution and the laser light irradiation were performed under the same conditions as in Example 1 using various types of solid fine particles shown in Table 1 in place of the silica nanoparticles.
In any of the examples, as in the case of Example 1, the formation of a complex was confirmed.
Figure JPOXMLDOC01-appb-T000001
*アパタイト及び窒化ホウ素の粒子径は、BET法での見積りによる。
*酸化亜鉛及びアルミナの粒子径は、TEM観察による。
Figure JPOXMLDOC01-appb-T000001
* The particle sizes of apatite and boron nitride are as estimated by the BET method.
* The particle size of zinc oxide and alumina is by TEM observation.
(実施例8)
 ホルダーの走査速度を30μm/s、酸化チタン濃度は、1.5質量%とし、平均レーザ出力を15mW、25mW、30mWと変化させたこと以外は、実施例2と同じ条件で、溶液の分散及びレーザ光照射を行った。
 得られた複合体の断面を顕微鏡観察して、酸化チタンによる被膜の断面積と平均レーザ出力との関係を図6に整理した。
 図6から、レーザ出力が増加するにしたがって、大きな断面積を有する複合体が得られることがわかる。
(Example 8)
Dispersion of the solution under the same conditions as in Example 2 except that the scanning speed of the holder was 30 μm / s, the titanium oxide concentration was 1.5 mass%, and the average laser power was changed to 15 mW, 25 mW and 30 mW. Laser light irradiation was performed.
The cross section of the obtained composite was observed with a microscope, and the relationship between the cross-sectional area of the coating of titanium oxide and the average laser output was organized in FIG.
It can be seen from FIG. 6 that as the laser power increases, a composite with a larger cross-sectional area is obtained.
(実施例9~12)
 実施例6において、平均レーザ出力を25mWに固定し、1.5質量%であった酸化チタン濃度を0.8質量%(実施例9)、0.3質量%(実施例10)、0.2質量%(実施例11)、0.01質量%(実施例12)と減少させて、実施例6と同様に、溶液の分散及びレーザ光照射を行った。
 得られた複合体の断面を顕微鏡観察した。
 酸化チタンによる被膜の断面積と、酸化チタン濃度との関係を図7に整理した。
 図7から、酸化チタン濃度を変化させると断面積が変化するものの、濃度が0.1質量%以上であれば、低い酸化チタン濃度であっても良好な複合体が得られていることがわかる。
(Examples 9 to 12)
In Example 6, the average laser power is fixed at 25 mW, and the titanium oxide concentration, which was 1.5% by mass, is 0.8% by mass (Example 9), 0.3% by mass (Example 10), 0. The solution was dispersed and irradiated with laser light in the same manner as in Example 6 with a decrease of 2% by mass (Example 11) and 0.01% by mass (Example 12).
The cross section of the obtained complex was observed microscopically.
The relationship between the cross-sectional area of the coating by titanium oxide and the concentration of titanium oxide is shown in FIG.
From FIG. 7, it can be seen that although the cross-sectional area changes when the concentration of titanium oxide is changed, when the concentration is 0.1% by mass or more, a favorable composite is obtained even at a low concentration of titanium oxide. .
(実施例13~15)
 実施例2において、酸化チタン濃度を1.5質量%とし、ナノ粒子粒径をさらに大きいものとしたこと以外は、実施例2と同じ条件で、溶液の分散及びレーザ光照射を行った。
 ナノ粒子粒径を0.1μm(実施例13)、0.5μm(実施例14)、1.0μm(実施例15)とした場合に得られた複合体の断面を顕微鏡観察した結果、いずれの場合も被覆層が形成された良好な複合体が得られていることが確認された。
(実施例16~19)
 実施例1の硝酸銀溶液(1mol/l)4mlを、硫酸銅(実施例16)、テトラクロロ金(III)酸四水和物(実施例17)、硫酸ニッケル(実施例18)、硝酸鉛(II)(実施例19)、各水溶液(1mol/l)4mlに置き換え、褐色ビン中で、純水6mlとエタノール10mlと共に攪拌した。その後、シリカナノ粒子分散水溶液(Sigma-aldrich,LUDOX、TM-50、ナノ粒子粒径22nm、濃度50質量%)を0.7ml入れて、再度1時間撹拌し、実施例1と同じ条件で、溶液の分散及びレーザ光照射を行った。この時のシリカの濃度は、2.5質量%であった。
 実施例16~19のいずれの場合にもシリカ微粒子の集積が確認され、断面の顕微鏡観察においても、被覆層が形成された良好な複合体が得られていることが確認された。
(Examples 13 to 15)
The dispersion of the solution and the laser light irradiation were performed under the same conditions as in Example 2 except that the concentration of titanium oxide was made to be 1.5% by mass and the particle diameter of the nanoparticles was made larger in Example 2.
Microscopic observation of the cross section of the composite obtained when the particle size of the nanoparticles is 0.1 μm (Example 13), 0.5 μm (Example 14) and 1.0 μm (Example 15), Also in the case, it was confirmed that a good composite in which the covering layer was formed was obtained.
(Examples 16 to 19)
Copper sulfate (Example 16), tetrachloroaurate (III) tetrahydrate (Example 17), nickel sulfate (Example 18), lead nitrate (lead nitrate) (4 ml) of the silver nitrate solution (1 mol / l) of Example 1 II) (Example 19) The solution was replaced with 4 ml of each aqueous solution (1 mol / l) and stirred with 6 ml of pure water and 10 ml of ethanol in a brown bottle. Thereafter, 0.7 ml of a silica nanoparticle-dispersed aqueous solution (Sigma-aldrich, LUDOX, TM-50, nanoparticle particle size 22 nm, concentration 50% by mass) is added, stirred again for 1 hour, and solution under the same conditions as Example 1 Dispersion and laser light irradiation. The concentration of silica at this time was 2.5% by mass.
Accumulation of the silica fine particles was confirmed in any of Examples 16 to 19, and it was also confirmed by microscopic observation of the cross section that a good composite on which the coating layer was formed was obtained.

Claims (14)

  1.  金属のイオン、コロイド、及び/または錯体を含む溶液に、超短パルスレーザ光を照射することで金属を析出させ、前記溶液中に分散された、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子からなる固体微粒子を、前記析出した金属に被覆する工程を含むことを特徴とする、固体微粒子で被覆された金属を含む複合体の製造方法。 Metal oxide particles, non-metal oxide particles, or particles dispersed in a solution containing metal ions, colloids, and / or complexes, which are irradiated with ultrashort pulsed laser light to deposit the metal. A process for producing a composite containing a metal coated with solid particles, comprising the step of coating the precipitated metal with the solid particles made of ceramic particles.
  2.  前記金属が、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれることを特徴とする、請求項1に記載の製造方法。 The method according to claim 1, wherein the metal is selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold.
  3.  前記固体微粒子の融点が500℃~3500℃であることを特徴とする、請求項1又は請求項2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the melting point of the solid fine particles is 500 属 C to 3500 属 C.
  4.  前記固体微粒子が、0.005μm~1μmの直径を有することを特徴とする、請求項1~請求項3のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 3, wherein the solid fine particles have a diameter of 0.005 μm to 1 μm.
  5.  前記固体微粒子の前記溶液中の濃度が、0.01質量%~3.0質量%であることを特徴とする、請求項1~請求項4のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 4, wherein the concentration of the solid fine particles in the solution is 0.01% by mass to 3.0% by mass.
  6.  前記超短パルスレーザ光の波長が200nm~2000nmであることを特徴とする、請求項1~請求項5のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 5, wherein the wavelength of the ultrashort pulse laser light is 200 nm to 2000 nm.
  7.  前記超短パルスレーザ光のフルエンスが0.01mJ/cm2~10mJ/cm2であることを特徴とする、請求項1~請求項6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the fluence of the ultrashort pulse laser beam is 0.01 mJ / cm 2 to 10 mJ / cm 2 .
  8.  前記超短パルスレーザ光の繰返し周波数が1Hz~500MHzであることを特徴とする、請求項1~請求項7のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 7, wherein a repetition frequency of the ultrashort pulse laser beam is 1 Hz to 500 MHz.
  9.  前記溶液に基板を浸漬させる工程、及び
     前記基板の表面に沿って前記超短パルスレーザ光のビームスポットを移動させる工程
    をさらに含むことを特徴とする、請求項1~請求項8のいずれか1項に記載の製造方法。
    9. The method according to claim 1, further comprising the steps of: immersing the substrate in the solution; and moving a beam spot of the ultrashort pulsed laser light along the surface of the substrate. The manufacturing method as described in a section.
  10.  前記溶液に基板を浸漬させる工程、及び
     前記基板の表面から、前記基板から離れた前記溶液中の所定の位置に前記超短パルスレーザ光のビームスポットを移動させる工程
    をさらに含むことを特徴とする、請求項1~請求項8のいずれか1項に記載の製造方法。
    The method may further include the steps of immersing the substrate in the solution, and moving the beam spot of the ultrashort pulse laser beam from the surface of the substrate to a predetermined position in the solution away from the substrate. The manufacturing method according to any one of claims 1 to 8.
  11.  固体微粒子で被覆された金属を含む複合体であって、
     前記金属は、溶液中に金属のイオン、コロイド、及び/または錯体として存在し、該溶液に超短パルスレーザ光を照射することで析出しうるものであり、
     前記固体微粒子は、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子であり、
     前記金属がコアを形成し、該コアがその内側に空洞を有する
    ことを特徴とする、前記複合体。
    A complex comprising a metal coated with solid particles,
    The metal is present in the solution as metal ions, colloids, and / or complexes, and can be deposited by irradiating the solution with ultrashort pulsed laser light.
    The solid particles are metal oxide particles, non-metal oxide particles, or ceramic particles,
    The composite, characterized in that said metal forms a core, said core having a cavity inside it.
  12.  前記金属が、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれることを特徴とする、請求項11に記載の複合体。 The composite of claim 11, wherein the metal is selected from the group consisting of silver, copper, nickel, lead, tin, platinum and gold.
  13.  前記固体微粒子の融点が500℃~3500℃であることを特徴とする、請求項11又は請求項12に記載の複合体。 The composite according to claim 11 or 12, wherein the melting point of the solid fine particles is 500 属 C to 3500 属 C.
  14.  前記固体微粒子が、0.005μm~1μmの直径を有することを特徴とする、請求項11~請求項13のいずれか1項に記載の複合体。 The composite according to any one of claims 11 to 13, wherein the solid fine particles have a diameter of 0.005 μm to 1 μm.
PCT/JP2018/038040 2017-10-16 2018-10-12 Method for producing composite including metal coated with solid microparticles WO2019078100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019549238A JP6964898B2 (en) 2017-10-16 2018-10-12 Method for Producing Complex Containing Metal Coated with Solid Fine Particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-200202 2017-10-16
JP2017200202 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019078100A1 true WO2019078100A1 (en) 2019-04-25

Family

ID=66174392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038040 WO2019078100A1 (en) 2017-10-16 2018-10-12 Method for producing composite including metal coated with solid microparticles

Country Status (3)

Country Link
JP (1) JP6964898B2 (en)
TW (1) TWI785130B (en)
WO (1) WO2019078100A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172972A1 (en) * 2021-02-09 2022-08-18 国立大学法人山形大学 Method for producing composite by laser irradiation, and composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122747B (en) * 2021-04-22 2021-11-16 合肥工业大学 Cu- (WC-Y) with excellent mechanical property2O3) Method for preparing composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311764A (en) * 1999-04-26 2000-11-07 Tokin Corp Surge absorbing element, and manufacture thereof
JP2005342601A (en) * 2004-06-02 2005-12-15 Univ Kanagawa Visible light-responsive photocatalyst and manufacturing method therefor
JP2008000654A (en) * 2006-06-21 2008-01-10 3R Corp Manufacturing method of nanoparticle with a particle size of 200 nm or less
WO2008114866A1 (en) * 2007-03-22 2008-09-25 Hitachi Chemical Co., Ltd. Fine metal particle, process for producing the same, dispersion of fine metal particles, and process for producing the same
WO2011058976A1 (en) * 2009-11-11 2011-05-19 国立大学法人名古屋大学 Process for producing hollow nanoparticles, hollow nanoparticles, and dispersion thereof
US20120168669A1 (en) * 2011-01-03 2012-07-05 Imra America, Inc Composite nanoparticles and methods for making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311764A (en) * 1999-04-26 2000-11-07 Tokin Corp Surge absorbing element, and manufacture thereof
JP2005342601A (en) * 2004-06-02 2005-12-15 Univ Kanagawa Visible light-responsive photocatalyst and manufacturing method therefor
JP2008000654A (en) * 2006-06-21 2008-01-10 3R Corp Manufacturing method of nanoparticle with a particle size of 200 nm or less
WO2008114866A1 (en) * 2007-03-22 2008-09-25 Hitachi Chemical Co., Ltd. Fine metal particle, process for producing the same, dispersion of fine metal particles, and process for producing the same
WO2011058976A1 (en) * 2009-11-11 2011-05-19 国立大学法人名古屋大学 Process for producing hollow nanoparticles, hollow nanoparticles, and dispersion thereof
US20120168669A1 (en) * 2011-01-03 2012-07-05 Imra America, Inc Composite nanoparticles and methods for making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UMETSU, KAN ET AL.: "Enhancement effects of TiO_2 nanoparticles on femtosecond laser metal precipitation", LECTURE ABSTRACTS OF THE 7TH MICRO-NANO ENGINEERING SYMPOSIUM OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, 21 October 2015 (2015-10-21) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172972A1 (en) * 2021-02-09 2022-08-18 国立大学法人山形大学 Method for producing composite by laser irradiation, and composite

Also Published As

Publication number Publication date
TWI785130B (en) 2022-12-01
JP6964898B2 (en) 2021-11-10
TW201936932A (en) 2019-09-16
JPWO2019078100A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
Palneedi et al. Laser irradiation of metal oxide films and nanostructures: applications and advances
Ahmad et al. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review
Darwish et al. Synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment
Mincuzzi et al. Laser processing in the manufacture of dye‐sensitized and perovskite solar cell technologies
Haider et al. A comprehensive review on pulsed laser deposition technique to effective nanostructure production: Trends and challenges
Singh et al. Laser irradiance and wavelength-dependent compositional evolution of inorganic ZnO and ZnOOH/organic SDS nanocomposite material
CN102781660A (en) Producing nanoparticle solutions based on pulsed laser ablation
EP2845920A1 (en) Oxide compounds as a coating composition
JP6964898B2 (en) Method for Producing Complex Containing Metal Coated with Solid Fine Particles
Ukoba et al. Influence of annealing on properties of spray deposited nickel oxide films for solar cells
Siuzdak et al. Review on robust laser light interaction with titania–Patterning, crystallisation and ablation processes
Peiris Microwave-assisted processing of solid materials for sustainable energy related electronic and optoelectronic applications
Pathak et al. Effect of laser power on conductivity and morphology of silver nanoparticle thin films prepared by a laser assisted electrospray deposition method
JP2004250319A (en) THIN FILM CONTAINING beta-FeSi2 CRYSTAL PARTICLE, AND LUMINESCENT MATERIAL USING THE SAME
Balaji et al. Preparation and characterization of CuSn, CuZr, SnZr and CuSnZr thin films deposited by SILAR method
Kumar Synthesis routes of ZnO nanocrystallites
Gondal et al. Synthesis and characterization of copper oxides nanoparticles via pulsed laser ablation in liquid
EP2883841A1 (en) Joined structure comprising cube- or quadratic prism-shaped rock salt-type oxide nanoparticle with fine metal particle, and method for producing same
Ivanov et al. Confined-plume chemical deposition
JP3355372B2 (en) Laser thin film formation method
Faisal et al. Synthesis of Colloidal Copper Oxide Nano particles using Pulsed Nd: YAG Laser Ablation in Liquid
Saiki et al. Electrical property of laser-sintered nanopastes with reduced metal nanoparticles prepared by laser ablation in liquids
WO2022172972A1 (en) Method for producing composite by laser irradiation, and composite
Shahid et al. Metal oxides for optoelectronic and photonic applications: A general introduction
Ohsumi et al. A study on the field emission properties of Bi2Se3 nanostructures prepared by laser ablation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868665

Country of ref document: EP

Kind code of ref document: A1