JPWO2017022142A1 - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
JPWO2017022142A1
JPWO2017022142A1 JP2017532352A JP2017532352A JPWO2017022142A1 JP WO2017022142 A1 JPWO2017022142 A1 JP WO2017022142A1 JP 2017532352 A JP2017532352 A JP 2017532352A JP 2017532352 A JP2017532352 A JP 2017532352A JP WO2017022142 A1 JPWO2017022142 A1 JP WO2017022142A1
Authority
JP
Japan
Prior art keywords
semiconductor laser
beams
laser bar
wavelength dispersion
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017532352A
Other languages
English (en)
Inventor
山本 達也
達也 山本
大嗣 森田
大嗣 森田
正人 河▲崎▼
正人 河▲崎▼
一樹 久場
一樹 久場
西前 順一
順一 西前
小島 哲夫
哲夫 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017022142A1 publication Critical patent/JPWO2017022142A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/0805Transverse or lateral modes by apertures, e.g. pin-holes or knife-edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08027Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/143Littman-Metcalf configuration, e.g. laser - grating - mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Filters (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

連続した発光領域から波長の異なる複数のビームを出射する半導体レーザバー11と、複数のビームを集光する集光光学系13と、波長分散機能を有する波長分散光学素子14と、透過するビームの波長が周期的に異なっている光学フィルター15と、同軸上に重畳された複数のビームの光路上に配置されたアパーチャ16と、部分反射鏡17とを備え、半導体レーザバー11の背面には、全反射鏡19が形成されており、全反射鏡19で反射されて半導体レーザバー11から出射される波長の異なる複数のビームの各波長は、光学フィルター15により透過される波長と同一である。

Description

本発明は、共振器による光増幅を行う半導体レーザ装置に関する。
従来の半導体レーザ装置においては、半導体レーザバーのビーム品質を向上させるために、半導体レーザバーの各発光点からのビームの発散角度を補正してからレンズを用いて波長分散光学素子上に集光するとともに、波長分散光学素子の波長分散性により各発光点からのビームを重畳し、重畳したビームに対して部分反射ミラーを設置して外部共振器を構成する技術が知られている(例えば、特許文献1)。
米国特許出願公開第2011/0216417号
ところで、特許文献1に記載の技術を半導体レーザバーの側面方向に連続した発光領域から波長の異なる複数のビームを出射するようなブロードエリア型の半導体レーザ装置に適用した場合、一つの発光点の遅軸方向の発散角が大きいため、単に複数のビームを波長重畳させただけではビーム品質のよいレーザ光を得ることは困難である。なお、遅軸方向とは、X軸方向のことである。また、半導体レーザの一つの発光点を小さくすることによりビーム品質は向上できるが、この場合効率が悪く出力の小さなレーザ装置しかできない。
本発明は、上記に鑑みてなされたものであり、半導体レーザバーの側面方向に連続した発光領域から出射された波長の異なる複数のビームの品質を向上することができ、効率も高い半導体レーザ装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る半導体レーザ装置は、連続した発光領域から波長の異なる複数のビームを出射する半導体レーザバーと、前記複数のビームを集光する集光レンズと、前記複数のビームが集光される位置に配置され、波長分散機能を有する波長分散光学素子と、透過するビームの波長が周期的に異なっている光学フィルターと、アパーチャと、を備え、前記半導体レーザバーの背面には、全反射鏡が形成されており、前記全反射鏡で反射されて前記半導体レーザバーから出射される波長の異なる複数のビームの各波長は、前記光学フィルターにより透過される複数の波長と同一であることを特徴とする。
本発明によれば、連続した発光領域から出射された波長の異なる複数のビームの品質を向上させながら重畳することができ、さらに効率もよくなる、という効果を奏する。
実施の形態1にかかる半導体レーザ装置の構成を示す斜視図 実施の形態1にかかる半導体レーザ装置の構成を示す上面図 実施の形態1にかかる光学フィルターの波長と透過率との関係を示す図 実施の形態1にかかる半導体レーザバーの構成を示す斜視図 実施の形態1にかかる半導体レーザバーの発光面と遅軸方向の温度分布を示す図 実施の形態1にかかる半導体レーザバーの遅軸方向の屈折率分布を示す図 実施の形態1にかかる半導体レーザバーから出射した複数のビームが共振器を1往復したときに半導体レーザバーで観測される個々のビームプロファイルを示す図 図7に示す個々のビームプロファイルを合成した場合の合成ビームプロファイルを示す図 実施の形態1にかかる半導体レーザバーから出射した複数のビームが共振器を1往復したときに部分反射鏡で観測される個々のビームプロファイルを示す図 実施の形態1にかかる半導体レーザバーから出射した複数のビームが共振器を20往復したときに半導体レーザバーで観測される個々のビームプロファイルを示す図 図10に示す個々のビームプロファイルを合成した場合の合成ビームプロファイルを示す図 実施の形態1にかかる半導体レーザバーから出射した複数のビームが共振器を20往復したときに部分反射鏡で観測される個々のビームプロファイルを示す図 実施の形態2にかかる半導体レーザ装置の構成を示す斜視図 実施の形態2にかかる半導体レーザ装置の共振器の光路上でのビーム径の変化を示す図 実施の形態2にかかる半導体レーザ装置において、ビーム半径と重ね合わせのピッチが同じ場合のビームプロファイルを示す図 実施の形態2にかかる半導体レーザ装置において、ビーム半径が重ね合わせのピッチの半分の場合のビームプロファイルを示す図 実施の形態2にかかる半導体レーザ装置において、ビーム半径と重ね合わせピッチとの比における半導体レーザバー内の全体のビーム強度比を示す図 実施の形態3にかかる半導体レーザ装置の構成を示す斜視図 実施の形態3にかかる半導体レーザ装置の部分反射鏡の反射率を示す図 実施の形態3にかかる半導体レーザ装置の部分反射鏡の反射率を示す図 実施の形態4にかかる半導体レーザ装置の構成を示す斜視図 実施の形態5にかかる半導体レーザ装置の構成を示す斜視図 実施の形態6にかかる半導体レーザ装置の構成を示す斜視図 実施の形態7にかかる半導体レーザ装置の構成を示す斜視図 実施の形態8にかかる半導体レーザ装置の構成を示す上面図 実施の形態9にかかる半導体レーザ装置の構成を示す斜視図 実施の形態9にかかるエタロンの反射率を示す図 実施の形態10にかかる半導体レーザ装置の構成を示す上面図 実施の形態11にかかる半導体レーザ装置の構成を示す斜視図 実施の形態12にかかる半導体レーザ装置の構成を示す斜視図 実施の形態1〜11における半導体レーザバー内部の不要な光の伝搬径路を示す上面図 実施の形態12にかかる半導体レーザバーを示す上面図 実施の形態13にかかる半導体レーザ装置の構成を示す上面図 実施の形態14にかかる半導体レーザ装置の構成を示す上面図 実施の形態14にかかる半導体レーザバーを示す正面図 実施の形態15にかかる半導体レーザ装置の構成を示す上面図 実施の形態15にかかる半導体レーザバーを示す正面図 従来の半導体レーザ装置のビームプロファイルを示す図
以下に、本発明の実施の形態に係る半導体レーザ装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、実施の形態1にかかる半導体レーザ装置101の構成を示す斜視図である。半導体レーザ装置101は、半導体レーザバーの側面方向に連続した発光領域10を有する半導体レーザバー11と、ビームの発散角度を補正するビーム発散角度補正光学系12と、ビームを集光する集光レンズである集光光学系13と、波長分散機能を有する波長分散光学素子14と、入射光のうち、予め定められている波長範囲の光だけを透過する光学フィルター15と、予め定めた範囲のビームを通過させるアパーチャ16と、一部のビームを外部に出射し、残りのビームをアパーチャ16に反射する部分反射鏡17とを備える。ここで側面方向とは、図に示すX軸方向である。
半導体レーザバー11は、連続した発光領域から波長の異なる複数のビームを出射する。半導体レーザバー11は、連続した発光領域を生成するために、例えば、電極18が半導体レーザバー11の全面に形成されている。半導体レーザバー11の発光面に対向する面には、全反射鏡19が形成されている。また、半導体レーザ装置101は、部分反射鏡17と全反射鏡19との間で共振器を構成している。
ビーム発散角度補正光学系12は、半導体レーザバー11から出射された波長の異なる複数のビームの発散角度を補正する。
集光光学系13は、複数のビームを集光する。また、集光光学系13は、シリンドリカルレンズである。
波長分散光学素子14は、複数のビームが集光される位置に配置され、波長分散機能を有する。また、波長分散光学素子14は、回折格子またはプリズムである。
光学フィルター15は、波長分散光学素子14により回折されて同軸上に重畳された複数のビームの光路上に配置され、透過するビームの波長が周期的に異なっている。光学フィルター15は、光の波長に対して周期的な透過率分布を有しており、複数のビームの波長(λ1、λ2、・・・、λn)の光に対して透過率が高くなるように構成されている。
アパーチャ16は、波長分散光学素子14により回折されて同軸上に重畳された複数のビームの光路上に配置されている。なお、図1に示す例では、アパーチャ16は、円形開口となっているが、矩形開口でもよい。
部分反射鏡17は、アパーチャ16の後段であって、波長分散光学素子14により回折されて同軸上に重畳された複数のビームの光路上に配置されている。
半導体レーザバー11の背面には、部分反射鏡17によって反射されて半導体レーザバー11に戻ってきた波長の異なる複数のビームを反射する全反射鏡19が形成されている。
全反射鏡19で反射されて半導体レーザバー11から出射される波長の異なる複数のビームの各波長は、光学フィルター15により透過される波長と同一である。
図2は、半導体レーザ装置101の構成を示す上面図である。半導体レーザバー11から出射されたビームは、集光光学系13によって波長分散光学素子14の表面に集光される。波長分散光学素子14は、集光されたビームを各波長に対応した回折角で回折し、一つの光軸B1上に重畳する。一つの光軸B1上に重畳されたビームは、光学フィルター15に入射される。光学フィルター15は、予め定められた複数の波長のビームのみを透過する。光学フィルター15を透過したビームは、アパーチャ16を介して部分反射鏡17に入射される。
部分反射鏡17の反射率は、例えば5%から20%である。部分反射鏡17によって反射されたビームは、光路を逆方向にたどって、再び、半導体レーザバー11に入射される。半導体レーザバー11に入射されたビームは、半導体レーザバー11の全反射鏡19によって反射されて、半導体レーザバー11から出射される。上述のようにして、波長の異なる複数のビームは、全反射鏡19と部分反射鏡17との間を往復する。
半導体レーザバー11に入射されるときのビームの位置は、光学フィルター15を透過した波長のビームとなるため、ほぼ等間隔に決まった位置となる。ビームの形であるビームプロファイルは、アパーチャ16の開口の大きさで決まるモード選択によって、図2に示すように、ガウシアンプロファイルB2が形成される。また、半導体レーザバー11への入射時には、図2に示すように、全体として均一な分布のビームプロファイルB3となる。
ここで、光学フィルター15は、例えば、エタロンを用いる。図3は、エタロンの透過強度のスペクトルを示す。図3は、反射率が90%、屈折率が1.5、厚みが200μm、入射角が5deg.のソリッドエタロンの例である。また、図3中のΔλは、FSR(Free Spectral Range)と呼ばれており、透過率が高いピーク位置の波長の間隔を示している。
図3に示すように、FSRの値を適切に設計すると、複数の波長でピークを有する透過率特性になる。よって、予め定めた複数の波長のビームに対しては、ほぼ100%透過し、予め定めた複数の波長以外の波長のビームに対しては、ほとんど透過しない特性になる。
例えば、半導体レーザバー11の利得幅が900nmから930nmの範囲の場合、半導体レーザ装置101は、図3に示すように、22本の異なる波長によって発振し、22本のビームを重畳させることができる。また、重畳されたビームは、各波長がガウシアンプロファイルとなっているため、図2に示すように、部分反射鏡17から出射されるビームB4の形状もガウシアンプロファイルになる。
よって、半導体レーザ装置101は、光学フィルター15にエタロンを用いることにより、波長分散光学素子14で回折されるビームの回折角を制御することができ、半導体レーザバー11に入射するビームの位置を均等に配置できる。
なお、半導体レーザ装置101は、波長分散光学素子14の光路中にλ/2波長板等の波長板を挿入して波長分散光学素子14にS偏光で入射するようにしてもよい。当該構成によれば、半導体レーザ装置101は、波長分散光学素子14の回折効率を高めることができる。
従来の半導体レーザ装置では、半導体レーザの発光点とアウトプットカップラとの間で共振条件を満たすように、発光点の位置によってグレーティングの回折角が決まり、波長が自動的に決まる。
一方、実施の形態1にかかる半導体レーザ装置101では、半導体レーザバー11の発光領域10の全体から発光できるため、発光点の位置は発光領域10のどこでも可能となるため、半導体レーザバーのみではグレーティングの回折角は決まらない構成になっている。本発明の半導体レーザ装置101は、光学フィルター15を用いることによって発振波長を選択し、グレーティングの回折角を決めている。
次に、半導体レーザバー11内の温度および屈折率分布について説明する。図4は、半導体レーザバー11の詳細を示す斜視図である。例えば、半導体レーザバー11の遅軸方向であるX軸方向の幅は、10mm程度の大きさである。また、発光領域10が形成されている面は、AR(Anti Reflection)コーティングが施されている。
図5は、半導体レーザバー11を発光領域10の面からみたときの正面図と、遅軸方向の温度分布を示す。図6は、半導体レーザバー11の遅軸方向の屈折率分布を示す図である。半導体レーザバー11は、印加する電流が遅軸方向に関して均一であり、ゲイン分布が均一になる。これにより、発熱による温度分布は、図5に示すように、均一な分布になる。材料の屈折率温度依存性による屈折率分布も、図6に示すように、遅軸方向において均一な分布になる。
よって、半導体レーザバー11は、遅軸方向に屈折率境界がない。半導体レーザバー11を通過するビームは、ほとんど自由空間を伝搬するビームに等しい挙動を示すことになる。従来のブロードエリア型の半導体レーザでは遅軸方向に屈折率境界があり導波路モードで伝搬するため遅軸方向のビーム品質を向上させることが困難であるが、本発明による半導体レーザバー11は自由空間を伝搬するのに等しいためビーム品質を向上させることできる。
ここで、半導体レーザ装置101のレーザ発振をシミュレーションした結果について、図7から図12を用いて説明する。図7から図12は、部分反射鏡17と全反射鏡19との間で構成される共振器を往復するビームプロファイルを示す。
図7は、半導体レーザバー11から出射した複数のビームが共振器を1往復したときに半導体レーザバー11で観測される個々のビームプロファイルを示す図である。半導体レーザバー11は、初期値としてランダムな強度分布のビームを出射する。図7に示すビームプロファイルは、ビームが共振器を1往復し、半導体レーザバー11に入射する時のビームプロファイルであり、一例として、ビームの数を16本としている。
図8は、図7に示す個々のビームプロファイルを合成した場合の合成ビームプロファイルを示す図である。
図9は、半導体レーザバー11から出射した複数のビームが共振器を1往復したときに部分反射鏡17で観測される個々のビームプロファイルを示す図である。図9に示すビームプロファイルは、16本のビームを足し合わせた結果になっている。
図10は、半導体レーザバー11から出射した複数のビームが共振器を20往復したときに半導体レーザバー11で観測される個々のビームプロファイルを示す図である。
図11は、図10に示す個々のビームプロファイルを合成した場合の合成ビームプロファイルを示す図である。
図12は、半導体レーザバー11から出射した複数のビームが共振器を20往復したときに部分反射鏡17で観測される個々のビームプロファイルを示す図である。
半導体レーザバー11の遅軸方向の幅である利得の幅は、例として10mmとした。よって、波長の異なる各ビームの間隔は、0.6mmである。
半導体レーザバー11から出射した複数のビームが共振器を1往復した場合には、図7に示すように、16本の各ビームは、強度分布がばらばらである。また、16本のビームプロファイルを合成した場合、図8に示すように、合成ビームプロファイルは、強度分布の変化が大きい。また、半導体レーザバー11から出射した複数のビームが共振器を1往復したときの部分反射鏡17で観測されるビームプロファイルには、図9に示すように、サイドローブが発生している。
一方、半導体レーザ装置101の半導体レーザバー11から出射した複数のビームが共振器を20往復した場合には、半導体レーザバー11で観測される個々のビームプロファイルは、図10に示すように、ほぼガウシアンプロファイルになっている。また、16本のビームプロファイルを合成した場合、図11に示すように、合成プロファイルは、ほぼ均一な強度分布になっている。また、半導体レーザバー11から出射した複数のビームが共振器を20往復したときの部分反射鏡17で観測されるビームプロファイルは、図12に示すように、サイドローブを有しないガウシアンプロファイルになっている。
よって、半導体レーザ装置101は、ランダムな強度分布のビームを共振器内で何度も往復させることにより、ビームプロファイルを収束させ、最終的にサイドローブが発生していないガウシアンプロファイルのシングルモードでレーザ発振を行うことができる。
なお、実施の形態1では、ビームの数を16本で説明したが、ビームの本数は16本に限られず、複数本であれば何本であっても同様の効果が得られる。
また、従来の半導体レーザ装置では、遅軸方向のビームモードが発光点の遅軸方向の幅によって決まってしまう。一方、半導体レーザ装置101は、アパーチャ16によってビームモードを制限しており、ほぼ任意のモードで発振させることができ、アパーチャ16の開口径を小さくすることにより、シングルモードにすることもできる。例えば、図38は従来のブロードエリア型の半導体レーザのビームプロファイルの実測値であり、図38と本発明によるビームプロファイル図12とを比較すれば本発明によって劇的にビーム品質が向上することがわかる。さらに、図11に示した合成プロファイルはほぼ均一な強度分布となっており、半導体レーザバーのゲイン分布とほぼ同じ分布になる。つまりゲイン領域をビームが無駄なく通過することになり、発振効率が良い半導体レーザとなる。
よって、半導体レーザ装置101は、遅軸方向においてシングルモードで発振することができ、連続した発光領域から出射された波長の異なる複数のビームの品質を向上させ、さらに効率も向上させることができる。なお、ビームの品質が向上するとは、光の波長、位相および方向が揃っているということであり、集光性がよいことを示す。なお、実施の形態1では、光学フィルター15が波長分散光学素子14により回折されて同軸上に重畳された光路上に配置されているが、例えば、半導体レーザバー11と集光光学系13との間に配置される構成でもよい。また、ここでは連続した発光領域を生成するために、電極18を半導体レーザバー11の全面に形成しているが、活性層を半導体レーザバー側面方向の端から端まで形成してもよい。
実施の形態2.
つぎに、実施の形態2について説明する。図13は、実施の形態2にかかる半導体レーザ装置102の構成を示す斜視図である。実施の形態2にかかる半導体レーザ装置102と、実施の形態1にかかる半導体レーザ装置101とは、光学フィルター15と部分反射鏡17との間の構成が異なる。以下では、実施の形態1にかかる半導体レーザ装置101の構成と同一の構成には同一の符号を付し、説明を省略する。
半導体レーザ装置102は、矩形形状の開口を有するアパーチャ21と、アパーチャ21の前後にシリンドリカルレンズ22,23を有する。半導体レーザ装置102は、当該構成により、遅軸方向のビームに対して、アパーチャ21が配置されている場所で集光することができる。
よって、半導体レーザ装置102は、アパーチャ21が配置されている場所でフーリエ変換像ができ、明確にビームモードを制限することができる。
図14は、半導体レーザ装置102の部分反射鏡17と全反射鏡19との間で構成される共振器の光路上におけるビーム径の変化を示す図である。図14中に示す矢印は、発光領域10、集光光学系13、波長分散光学素子14、シリンドリカルレンズ22、アパーチャ21、シリンドリカルレンズ23および部分反射鏡17が配置されている場所を示すものである。また、図14には、第1の波長のビームの光軸B5と、第1の波長とは異なる第2の波長のビームの光軸B6と、第1の波長のビーム半径R1と、第2の波長のビーム半径R2とを示す。なお、図14では、説明の便宜上、2つのビームのみを示したが、実際には複数のビームが存在する。
半導体レーザ装置102は、波長の異なるビームを半導体レーザバー11内で重ね合わせることにより均一な強度分布を形成している。よって、ビームの重ね合わせ間隔と個々のビーム半径との関係が重要である。
図14に示す例では、ビーム半径と重ね合わせのピッチが等しくなっている。なお、ビーム半径とは、1/e半径のことであり、ビーム強度のピーク値に対して強度が1/eの値となる位置の径のことである。eは、自然対数を示している。
図15は、ビーム半径と重ね合わせのピッチが同じ場合のビームプロファイルを示す図である。図15に示すように、ビームプロファイルは、全体としてほぼ均一な分布となっていることが分かる。
また、図16は、ビーム半径が重ね合わせのピッチの半分の場合のビームプロファイルを示す図である。図16に示すように、ビームプロファイルは、均一な分布になっていない。つまり、半導体レーザバー11内の全体のビーム強度分布が均一になっていないことを示している。
ビーム強度の低い部分は、半導体レーザバー11の利得が残り、当該部分で共振器を介さず半導体レーザバー11のみで発振する可能性があり、ビーム品質の悪いレーザ光が混じりこむ原因になる。
図17は、ビーム半径と重ね合わせピッチとの比における半導体レーザバー11内の全体のビーム強度比b/aを示す図である。bは、図16中のビーム強度の低い部分であり、aは、図16中の全体のビーム強度を示している。ビーム強度比を0.85以上とする場合には、図17に示すように、ビーム半径と重ね合わせピッチの比は、0.8よりも大きい必要がある。
実施の形態2にかかる半導体レーザ装置102では、全反射鏡19で反射されて半導体レーザバー11から出射される波長の異なる複数のビームは、半導体レーザバー11の出射位置において、各ビーム半径と各ビームの光軸位置の間隔との比が0.8よりも大きい関係にある。
よって、半導体レーザ装置102は、半導体レーザバー11の出射位置において、各ビーム半径と各ビームの光軸位置の間隔との比を0.8よりも大きくすることにより、遅軸方向においてシングルモードで発振することができ、連続した発光領域から出射された波長の異なる複数のビームの品質を向上することができる。
実施の形態3.
つぎに、実施の形態3について説明する。図18は、実施の形態3にかかる半導体レーザ装置103の構成を示す斜視図である。実施の形態3にかかる半導体レーザ装置103と、実施の形態1にかかる半導体レーザ装置101とは、波長分散光学素子14以降の構成が異なる。以下では、実施の形態1にかかる半導体レーザ装置101の構成と同一の構成には同一の符号を付し、説明を省略する。
半導体レーザ装置103は、波長分散光学素子14で回折されて同軸上に重畳された複数のビームの光路上に配置されるアパーチャ25と、アパーチャ25の後段であって、複数のビームの光路上に配置される部分反射鏡26とを備える。
部分反射鏡26は、反射するビームの波長が周期的に異なっている。半導体レーザバー11の背面には、部分反射鏡26によって反射されて半導体レーザバー11に戻ってきた波長の異なる複数のビームを反射する全反射鏡19が形成されている。
全反射鏡19により反射された波長の異なる複数のビームの各波長は、部分反射鏡26により反射される波長と同一である。
アパーチャ25は、開口の大きさによってビームモードを選択する。また、部分反射鏡26のアパーチャ25に向き合っている面には、波長選択性を有する誘電体多層膜が形成されている。
図19は、部分反射鏡26に形成されている誘電体多層膜の反射率を示す図である。図20は、図19に示されている0.91μm付近から0.95μm付近を拡大した図である。
誘電体多層膜は、図19に示すように、反射率が高く波長に依存しない領域A1と、反射率が周期的に変化する領域A2が存在する。一般的に、誘電体多層膜では、反射率が高く波長に依存しない領域を用いて全反射膜として利用される。図19に示す例では、反射率が高く波長に依存しない領域は、波長域が0.97μmから1μm付近である。
誘電体多層膜の反射率は、図20に示すように、半導体レーザバー11の利得が存在する波長域である0.9μmから0.95μmの間において、0%から20%で周期的に変化している。
当該領域を共振器の部分反射鏡として使用すると、特定の複数の波長の帰還率が高くなり、当該波長において選択的にレーザ発振する。
半導体レーザ装置103は、部分反射鏡26に形成されている誘電体多層膜の反射率が高い複数の波長のみがアパーチャ25側に反射され、各波長のビームが波長分散光学素子14によって回折され、半導体レーザバー11の所望の異なる位置に入射させることができ、全体として均一なビーム強度分布を形成することができる。
よって、半導体レーザ装置103は、実施の形態1にかかる半導体レーザ装置101と同様に、遅軸方向においてシングルモードで発振することができ、連続した発光領域から出射された波長の異なる複数のビームの品質を向上し、効率も高めることができる。
また、実施の形態3にかかる半導体レーザ装置103では、全反射鏡19で反射され、半導体レーザバー11から出射される波長の異なる複数のビームは、半導体レーザバー11の出射位置において、各ビーム半径と各ビームの光軸位置の間隔との比が0.8よりも大きいことが好ましい。ビーム強度比を0.85以上とする場合には、図17に示すように、ビーム半径と重ね合わせピッチの比は、0.8よりも大きい必要があるからである。
よって、半導体レーザ装置103は、半導体レーザバー11の出射位置において、各ビーム半径と各ビームの光軸位置の間隔との比を0.8よりも大きくすることにより、遅軸方向においてシングルモードで発振することができ、連続した発光領域から出射された波長の異なる複数のビームの品質を向上し、効率も高めることができる。
実施の形態4.
つぎに、実施の形態4について説明する。図21は、実施の形態4にかかる半導体レーザ装置104の構成を示す斜視図である。実施の形態4にかかる半導体レーザ装置104と、実施の形態1にかかる半導体レーザ装置101とは、波長分散光学素子14以降の構成が異なる。以下では、実施の形態1にかかる半導体レーザ装置101の構成と同一の構成には同一の符号を付し、説明を省略する。
半導体レーザ装置104は、波長分散光学素子14で回折されて同軸上に重畳されたビームの光路上に配置され、ビームを集光する第2集光光学系である集光光学系31と、集光光学系31により集光されたビームが入射されるファイバーブラッググレーティング32とを備える。
ファイバーブラッググレーティング32は、半導体レーザバー11から出射される波長の異なる複数のビームの波長に対して反射率が高くなるように構成されている。
波長分散光学素子14から到来したビームは、集光光学系31により集光されて、ファイバーブラッググレーティング32に入射する。
ファイバーブラッググレーティング32は、グレーティング部において複数の異なる波長を部分反射するように構成されており、例えば、異なるピッチのグレーティングが複数刻みこまれている。ファイバーブラッググレーティング32によって選択的に反射された複数の波長の光のみが半導体レーザバー11に帰還する。
よって、半導体レーザ装置104は、実施の形態1にかかる半導体レーザ装置101と同様に、遅軸方向においてシングルモードで発振することができ、連続した発光領域から出射された波長の異なる複数のビームの品質を向上し、効率も高めることができる。
実施の形態5.
つぎに、実施の形態5について説明する。図22は、実施の形態5にかかる半導体レーザ装置105の構成を示す斜視図である。実施の形態5にかかる半導体レーザ装置105と、実施の形態4にかかる半導体レーザ装置104とは、ファイバーブラッググレーティング32の構成が異なる。以下では、実施の形態4にかかる半導体レーザ装置104の構成と同一の構成には同一の符号を付し、説明を省略する。
半導体レーザ装置105は、集光光学系31により集光されたビームが入射されるファイバーブラッググレーティング35を備える。ファイバーブラッググレーティング35の出射端には、部分反射鏡36が形成されている。
当該構成によれば、半導体レーザ装置105は、ファイバーブラッググレーティング35によって選択的に反射された複数の波長の光のみが半導体レーザバー11に帰還する。
よって、半導体レーザ装置105は、実施の形態1にかかる半導体レーザ装置101と同様に、遅軸方向においてシングルモードで発振することができ、連続した発光領域から出射された波長の異なる複数のビームの品質を向上し、効率も高めることができる。
実施の形態6.
つぎに、実施の形態6について説明する。図23は、実施の形態6にかかる半導体レーザ装置106の構成を示す斜視図である。実施の形態6にかかる半導体レーザ装置106は、実施の形態4にかかる半導体レーザ装置104からアパーチャ16を省略した構成である。以下では、実施の形態4にかかる半導体レーザ装置104の構成と同一の構成には同一の符号を付し、説明を省略する。
ファイバーブラッググレーティング32は、シングルモード光ファイバーである。よって、半導体レーザ装置106は、ファイバーブラッググレーティング32がシングルモード光ファイバーであるので、ファイバーブラッググレーティング32内でシングルモードを選択することができ、アパーチャ16を省略することができ、製造コストを低減することができる。
実施の形態7.
つぎに、実施の形態7について説明する。図24は、実施の形態7にかかる半導体レーザ装置107の構成を示す斜視図である。実施の形態7にかかる半導体レーザ装置107と、実施の形態1にかかる半導体レーザ装置101とは、波長分散光光学素子14がプリズム41に置換されている構成が異なる。以下では、実施の形態1にかかる半導体レーザ装置101の構成と同一の構成には同一の符号を付し、説明を省略する。
実施の形態1にかかる半導体レーザ装置101の波長分散光学素子14は、反射型または透過型のグレーティングを想定した。実施の形態7にかかる半導体レーザ装置107は、波長分散光学素子14をプリズム41に置換した構成でも、実施の形態1にかかる半導体レーザ装置101と同様に、遅軸方向においてシングルモードで発振することができ、連続した発光領域から出射された波長の異なる複数のビームの品質を向上し、効率も高めることができる。
実施の形態8.
つぎに、実施の形態8について説明する。図25は、実施の形態8にかかる半導体レーザ装置108の構成を示す上面図である。実施の形態8にかかる半導体レーザ装置108と、実施の形態1にかかる半導体レーザ装置101とは、半導体レーザバー11の構成が異なる。以下では、実施の形態1にかかる半導体レーザ装置101の構成と同一の構成には同一の符号を付し、説明を省略する。
半導体レーザ装置108は、複数の発光領域を有し、各発光領域から波長の異なる複数のビームを出射する半導体レーザバー45を備える。
半導体レーザバー45は、例えば、2つの電極46,47により構成され、発光領域が2つに分かれている。
波長分散光学素子14は、集光されたビームを各波長に応じた回折角で回折し、一つの光軸B7上に重畳する。一つの光軸B7上に重畳されたビームは、光学フィルター15に入射される。光学フィルター15は、予め定められた複数の波長のビームのみを透過する。光学フィルター15を透過したビームは、アパーチャ16を介して部分反射鏡17に入射される。
半導体レーザバー45に入射されるときのビームの位置は、光学フィルター15を透過した波長のビームとなるため、ほぼ等間隔に決まった位置となる。ビームの形であるビームプロファイルは、アパーチャ16の開口の大きさで決まるモード選択によって、図25に示すように、ガウシアンプロファイルB8が形成される。また、半導体レーザバー45への入射時には、図25に示すように、全体として均一な分布の二つのビームプロファイルB9、B10となる。
また、半導体レーザバー45から出射した複数のビームは、部分反射鏡17と全反射鏡19との間で構成される共振器で複数回往復した後、部分反射鏡17からガウシアンプロファイルのビームB11として出射される。
よって、実施の形態8にかかる半導体レーザ装置108は、半導体レーザバー45の中で発光領域が複数に分かれていても、半導体レーザバー45の発光領域内に複数の波長のビームが入射し、発光領域内でほぼ均一な分布のビームプロファイルB9、B10を得ることができる。
よって、半導体レーザ装置108は、実施の形態1にかかる半導体レーザ装置101と同様に、遅軸方向においてシングルモードで発振することができ、連続した発光領域から出射された波長の異なる複数のビームの品質を向上し、効率も高めることができる。ここで発光領域は電極を2つにわけることによって2つに分けているが、活性層を2つにわけることによって発光領域を2つにわけてもよい。
実施の形態9.
つぎに、実施の形態9について説明する。図26は、実施の形態9にかかる半導体レーザ装置109の構成を示す斜視図である。実施の形態9にかかる半導体レーザ装置109と、実施の形態1にかかる半導体レーザ装置101とは、部分反射鏡17の位置に光学フィルター51を配置し、部分反射鏡17を備えない構成が異なる。以下では、実施の形態1にかかる半導体レーザ装置101の構成と同一の構成には同一の符号を付し、説明を省略する。
半導体レーザ装置109は、波長分散光学素子14で回折されて同軸上に重畳された複数のビームの光路上に配置されたアパーチャ16と、アパーチャ16の後段であって、同軸上に重畳された複数のビームの光路上に配置され、反射するビームの波長が周期的に異なっている光学フィルター51とを備える。
半導体レーザバー11の背面には、光学フィルター51によって反射されて半導体レーザバー11に戻ってきた波長の異なる複数のビームを反射する全反射鏡19が形成されている。
全反射鏡19で反射されて半導体レーザバー11から出射される波長の異なる複数のビームの各波長は、光学フィルター51により反射される波長と同一である。
光学フィルター51は、エタロンである。半導体レーザ装置109は、エタロンを垂直入射で使用する。
また、図27は、図26に示すエタロンの反射率を示す図である。反射率は、波長に対して周期的に変化している。反射率が高い部分は、10%であり、反射率が低い部分は、0%、つまり100%の透過になっている。
半導体レーザ装置109は、部分反射鏡の代わりにエタロンを用いることにより、反射率が高い複数の波長のみが帰還し、帰還した波長によってレーザ発振することができる。
よって、半導体レーザ装置109は、実施の形態1にかかる半導体レーザ装置101と同様に、遅軸方向においてシングルモードで発振することができ、連続した発光領域から出射された波長の異なる複数のビームの品質を向上し、効率も高めることができる。
実施の形態10.
つぎに、実施の形態10について説明する。図28は、実施の形態10にかかる半導体レーザ装置110の構成を示す上面図である。実施の形態10にかかる半導体レーザ装置110と実施の形態1にかかる半導体レーザ装置101とは、半導体レーザバーおよび集光光学系から構成されるレーザ集光群を複数備える構成が異なる。以下では、実施の形態1にかかる半導体レーザ装置101の構成と同一の構成には同一の符号を付し、説明を省略する。
半導体レーザ装置110は、半導体レーザバー11a、ビーム発散角度補正光学系12aおよび集光光学系13aから構成されるレーザ集光群55aと、半導体レーザバー11b、ビーム発散角度補正光学系12bおよび集光光学系13bから構成されるレーザ集光群55bと、半導体レーザバー11c、ビーム発散角度補正光学系12cおよび集光光学系13cから構成されるレーザ集光群55cとを備える。
複数のレーザ集光群55a,55b,55cは、波長分散光学素子14の表面上の同一の場所でビームが集光されるように配置される。
半導体レーザバー11aの発光面に対向する面には、全反射鏡19aが形成されている。半導体レーザバー11bの発光面に対向する面には、全反射鏡19bが形成されている。半導体レーザバー11cの発光面に対向する面には、全反射鏡19cが形成されている。
半導体レーザ装置110は、複数のレーザ集光群55a,55b,55cを用いて波長分散光学素子14上に集光し、波長重畳させた構成である。
半導体レーザ装置110は、より多くの波長のビームを重畳させることができるのでビームの高品質を保ったまま高出力化ができる。なお、実施の形態10では、半導体レーザ装置110が3つのレーザ集光群により構成される例を示したが、2つのレーザ集光群または4つ以上のレーザ集光群で構成されてもよい。
実施の形態11.
つぎに、実施の形態11について説明する。図29は、実施の形態11にかかる半導体レーザ装置111の構成を示す斜視図である。実施の形態11にかかる半導体レーザ装置111と実施の形態1にかかる半導体レーザ装置101とは、ビーム発散角度補正光学系12以降の構成が異なる。以下では、実施の形態1にかかる半導体レーザ装置101の構成と同一の構成には同一の符号を付し、説明を省略する。
半導体レーザ装置111は、透過するビームの波長が周期的に異なっている光学フィルター61と、光学フィルター61を透過した複数のビームを集光する集光光学系13と、アパーチャ62と、アパーチャ62の後段であって、複数のビームが集光される位置に配置され、波長分散機能を有する波長分散光学素子63とを備える。
波長分散光学素子63は、入射されたビームの一部を反射する。半導体レーザバー11の背面には、波長分散光学素子63によって反射されて半導体レーザバー11に戻ってきた波長の異なる複数のビームを反射する全反射鏡19が形成されている。
全反射鏡19で反射されて半導体レーザバー11から出射される波長の異なる複数のビームの各波長は、光学フィルター61により透過される波長と同一である。
光学フィルター61は、実施の形態1にかかる半導体レーザ装置101の光学フィルター15と同様に、光の波長に対して周期的な透過率分布を有しており、複数のビームの波長(λ1、λ2、・・・、λn)の光に対して透過率が高くなるように構成されている。
波長分散光学素子63は、0次の反射光が入射光軸と同じ軸上に戻るように構成されてもよい。また、波長分散光学素子63の反射率は、例えば、実施の形態1にかかる半導体レーザ装置101の部分反射鏡17の反射率と同じ5%から20%に構成されてもよい。当該構成の場合、波長分散光学素子63の回折効率は、95%から80%である。
波長分散光学素子63によって反射された0次の反射光は、波長分散光学素子63と半導体レーザバー11の背面に形成されている全反射鏡19との間を往復し、レーザ発振する。つまり、実施の形態11にかかる半導体レーザ装置111は、波長分散光学素子63がアウトプットカップラとなり、波長分散光学素子63による回折光がアウトプットカップラの出力となる。ビームモードは、波長分散光学素子63の直前に配置されているアパーチャ62によって選択する。
よって、半導体レーザ装置111は、部分反射鏡を構成要素から除くことができ、装置全体を小型化することができる。
実施の形態12.
つぎに、実施の形態12について説明する。図30は、実施の形態12にかかる半導体レーザ装置112の構成を示す斜視図である。これは、実施の形態1に示した構成とAR(Anti Reflection)コーティング71を除いて同じものである。ARコーティング71は、半導体レーザバー11の全反射鏡19が施されている全反射面および電極18が施されている面と垂直な面である半導体レーザバー11の側面88に施されている。
次にこのARコーティング71の効果について説明する。図31は、実施の形態1〜11における半導体レーザバー11の内部の不要な光の伝搬径路を示す上面図である。図31では、実施の形態1にかかる半導体レーザ装置101の半導体レーザバー11の場合を一例として示している。ここで図31における破線両矢印72は、半導体レーザバー11内を伝搬する光を示している。
つまり実施の形態1では、場合によっては、破線両矢印72に示したように半導体レーザバー11の側面方向に光が伝搬し、半導体レーザバー11の側面88で反射され、半導体レーザバー11の側面88間で光が往復することにより寄生発振が生じる恐れがある。また実線片矢印73は、半導体レーザバー11の側面88および全反射面および発光面で反射し、半導体レーザバー11内を巡回する光を示している。このような光が存在すると発光面から傾きの大きな光が出射することになり、全反射面と垂直方向に発振するレーザ光に不要な光が混じり込むことになる。これはレーザ光のビーム品質を悪化させる原因となる。
一方、実施の形態12では、図32に示すように半導体レーザバー11の側面88にARコーティング71を施すことにより、上記の破線両矢印72および実線片矢印73のような光は半導体レーザバー11の側面88で反射せずに、出射されるため半導体レーザバー11の内部ではほとんど存在せず、寄生発振が起こること、および不要な光が混じり込むことを防ぐことができる。なお、このときのARコーティング71の反射率は、1%以下が望ましい。
上記の説明では、半導体レーザバー11の側面88にARコーティング71を施すことを実施の形態1の構成に適用した場合を例示したが、実施の形態1〜11の何れの構成にも適用可能である。
実施の形態13.
つぎに、実施の形態13について説明する。図33は、実施の形態13にかかる半導体レーザ装置113の構成を示す上面図である。これは、実施の形態1に示した構成と半導体レーザバー75の側面90が傾いていることを除いて同じものである。実施の形態13では、半導体レーザバー75の側面90が図33に示されているように全反射膜19が施されている面あるいは発光領域10の面に対して垂直ではなく傾いている。
上記のように構成すると、実施の形態12で示したように半導体レーザバー11の側面方向に伝搬する光が存在しても半導体レーザバー75の側面間で光が往復することはなく、寄生発振を防ぐことができる。側面90の角度は全反射鏡19が施されている面あるいは発光領域10の面に対して垂直から僅かに傾いていれば良く、例えば垂直から1°傾いていれば十分である。
上記の説明では、半導体レーザバー75の側面90に傾きを施すことを実施の形態1の構成に適用した場合を例示したが、実施の形態1〜12の何れの構成にも適用可能である。
実施の形態14.
つぎに、実施の形態14について説明する。図34は、実施の形態14にかかる半導体レーザ装置114の構成を示す上面図であり、図35は実施の形態14にかかる半導体レーザバー76の発光領域10の面からみたときの正面図である。これは、実施の形態1に示した構成と半導体レーザバー76の側面92が傾いていることを除いて同じものである。側面92が図35に示されているように電極18が施されている面に対して垂直ではなく傾いている。
上記のように構成すると、実施の形態12で示したように半導体レーザバー11の側面方向に伝搬する光が存在しても半導体レーザバー76の側面92で反射した光は、半導体レーザバー76内の活性層で形成される発光領域には戻らないため半導体レーザバー76の側面92間で光が往復することはない。このことにより、寄生発振を防ぐことができる。側面92の角度は、電極18面に対して垂直から僅かに傾いていれば良く、例えば垂直から0.1°傾いていれば十分である。
上記の説明では、半導体レーザバー側面に傾きを施すことを実施の形態1の構成に適用した場合を例示したが、実施の形態1〜12の何れの構成にも適用可能である。
実施の形態15.
つぎに、実施の形態15について説明する。図36は、実施の形態15にかかる半導体レーザ装置115の構成を示す上面図である。これは、実施の形態1に示した構成と半導体レーザバー77の電極18面が半導体レーザバー77の全面に施されておらず、レーザ光の光軸と直角方向の半導体レーザバー77の側面94に近い領域には電流が流れないようにしていることを除いて同じものである。図37は、実施の形態15にかかる半導体レーザバー77の発光領域10の面からみたときの正面図である。図37に示されているように電極18および発光領域10は、半導体レーザバー77の端の方、すなわち側面94の近くには存在しない。
上記のように構成すると、実施の形態12で示したように半導体レーザバー11の側面方向に伝搬する光が存在しても、半導体レーザバー77の側面94に到達する前に半導体レーザバー77内で吸収され、側面94まで到達せず光は半導体レーザバー77内の活性層で形成される発光領域には戻らない。このため、半導体レーザバー77の側面94間で光が往復することはない。このことにより、寄生発振を防ぐことができる。電流が流れない領域は、側面方向に100μmあれば十分である。一般のストライプ電極型のLDバーでは、隣り合う電極間距離は100μm程度であり、隣り合う活性領域でレーザ光は十分に分離されている。つまり、100μm離れていれば光が伝搬することはなく、十分吸収されると考えられる。
また、上記では、電極18によって発光領域を制限していたが、活性層によって発光領域を制限してもよい。つまり側面94から100μm程度は活性層を形成しないことによっても発光領域を制限できる。
上記では、半導体レーザバー77の側面94に傾きを施すことを実施の形態1の構成に適用した場合を例示したが、実施の形態1〜14の何れの構成にも適用可能である。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。例えば、ビーム径を調整するために図示していないレンズ等を光路中に用いてもよい。
101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 半導体レーザ装置、10 発光領域、11,11a,11b,11c,45 半導体レーザバー、12,12a,12b,12c ビーム発散角度補正光学系、13,13a,13b,13c 集光光学系、14,63 波長分散光学素子、15,51,61 光学フィルター、16,21,25,62 アパーチャ、17,26,36 部分反射鏡、18,46,47 電極、19,19a,19b,19c 全反射鏡、22,23 シリンドリカルレンズ、31 集光光学系、32,35 ファイバーブラッググレーティング、41 プリズム、55a,55b,55c レーザ集光群、71 AR(Anti Reflection)コーティング、72 半導体レーザバーの側面方向を往復する光、73 半導体レーザバー内を周回する光、75 側面が傾いた半導体レーザバー、76 側面が傾いた半導体レーザバー、77 側面の近くに電極および発光領域がない半導体レーザバー、88,90,92,94 側面。

Claims (13)

  1. 連続した発光領域から波長の異なる複数のビームを出射する半導体レーザバーと、
    前記複数のビームを集光する集光レンズと、
    前記複数のビームが集光される位置に配置され、波長分散機能を有する波長分散光学素子と、
    透過するビームの波長が周期的に異なっている光学フィルターと、
    アパーチャと、を備え、
    前記半導体レーザバーの背面には、全反射鏡が形成されており、
    前記全反射鏡で反射されて前記半導体レーザバーから出射される波長の異なる複数のビームの各波長は、前記光学フィルターにより透過される複数の波長と同一であることを特徴とする半導体レーザ装置。
  2. 前記アパーチャの後段であって、前記波長分散光学素子により回折されて同軸上に重畳された前記複数の波長のビームの光路上に部分反射鏡を配置したことを特徴とする請求項1に記載の半導体レーザ装置。
  3. 前記波長分散光学素子は、半導体レーザバーから入射された前記複数のビームの一部を入射されたビームそれぞれに対して同軸上に反射し、他のビームは回折されて同軸上に重畳されたビームを形成することを特徴とする請求項1に記載の半導体レーザ装置。
  4. 前記アパーチャは前記波長分散光学素子により回折されて同軸上に重畳された前記複数の波長のビームの光路上に配置され、
    前記光学フィルターは、前記波長分散光学素子により回折されて同軸上に重畳された前記複数の波長のビームの光路上に配置、または、前記半導体レーザバーと前記集光光学系との間に配置されることを特徴とする請求項1から3のいずれか一項に記載の半導体レーザ装置。
  5. 前記光学フィルターは、エタロンであることを特徴とする請求項1から4のいずれか一項に記載の半導体レーザ装置。
  6. 連続した発光領域から波長の異なる複数のビームを出射する半導体レーザバーと、
    前記複数のビームを集光する集光レンズと、
    前記複数のビームが集光される位置に配置され、波長分散機能を有する波長分散光学素子と、
    前記波長分散光学素子で回折されて同軸上に重畳された前記複数の波長のビームの光路上に配置されたアパーチャと、
    前記アパーチャの後段であって、前記同軸上に重畳された前記複数の波長のビームの光路上に配置され、反射するビームの波長が周期的に異なっている部分反射鏡と、を備え、
    前記半導体レーザバーの背面には、前記部分反射鏡によって反射されて前記半導体レーザバーに戻ってきた波長の異なる複数のビームを反射する全反射鏡が形成されており、
    前記全反射鏡で反射されて前記半導体レーザバーから出射される波長の異なる複数のビームの各波長は、前記部分反射鏡により反射される波長と同一であることを特徴とする半導体レーザ装置。
  7. 連続した発光領域から波長の異なる複数のビームを出射する半導体レーザバーと、
    前記複数のビームを集光する第1集光レンズと、
    前記複数のビームが集光される位置に配置され、波長分散機能を有する波長分散光学素子と、
    前記波長分散光学素子で回折されて同軸上に重畳されたビームの光路上に配置され、ビームを集光する第2集光レンズと、
    前記第2集光レンズにより集光されたビームが入射されるファイバーブラッググレーティングと、を備え、
    前記ファイバーブラッググレーティングは、前記半導体レーザバーから出射される波長の異なる複数のビームの波長に対して反射率が高いことを特徴とする半導体レーザ装置。
  8. 前記半導体レーザバーは、複数の発光領域を有し、各発光領域それぞれから波長の異なる複数のビームを出射することを特徴とする請求項1から7のいずれか一項に記載の半導体レーザ装置。
  9. 前記半導体レーザバーおよび前記集光レンズから構成されるレーザ集光群を複数備え、
    前記複数のレーザ集光群は、前記波長分散光学素子の表面上の同一の場所でビームが集光されるように配置されることを特徴とする請求項1から3のいずれか一項に記載の半導体レーザ装置。
  10. 前記半導体レーザバーの発光面と全反射膜面と電極面とはいずれも異なる側面に反射率1%以下の無反射膜を施したことを特徴とする請求項1から9のいずれか一項に記載の半導体レーザ装置。
  11. 前記半導体レーザバーの発光面と全反射膜面と電極面とはいずれも異なる側面は発光面との角度が垂直から1°以上傾いていることを特徴とする請求項1から10のいずれか一項に記載の半導体レーザ装置。
  12. 前記半導体レーザバーの発光面と全反射膜面と電極面とはいずれも異なる側面は電極面との角度が垂直から0.1°以上傾いていることを特徴とする請求項1から11のいずれか一項に記載の半導体レーザ装置。
  13. 波長の異なる複数のビームを出射する半導体レーザバーと、
    前記複数のビームを集光する集光レンズと、
    前記複数のビームが集光される位置に配置され、波長分散機能を有する波長分散光学素子と、
    透過するビームの波長が周期的に異なっている光学フィルターと、
    アパーチャと、
    前記アパーチャの後段であって、前記波長分散光学素子により回折されて同軸上に重畳された前記複数の波長のビームの光路上に配置される部分反射鏡と、を備え、
    前記半導体レーザバーの背面には、前記部分反射鏡によって反射されて前記半導体レーザバーに戻ってきた波長の異なる複数のビームを反射する全反射鏡が形成されており、
    前記全反射鏡で反射されて前記半導体レーザバーから出射される波長の異なる複数のビームの各波長は、前記光学フィルターにより透過される波長と同一であることを特徴とする半導体レーザ装置。
JP2017532352A 2015-08-04 2015-12-25 半導体レーザ装置 Pending JPWO2017022142A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015154260 2015-08-04
JP2015154260 2015-08-04
PCT/JP2015/086380 WO2017022142A1 (ja) 2015-08-04 2015-12-25 半導体レーザ装置

Publications (1)

Publication Number Publication Date
JPWO2017022142A1 true JPWO2017022142A1 (ja) 2017-11-30

Family

ID=57942650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017532352A Pending JPWO2017022142A1 (ja) 2015-08-04 2015-12-25 半導体レーザ装置

Country Status (5)

Country Link
US (1) US20180175590A1 (ja)
JP (1) JPWO2017022142A1 (ja)
CN (1) CN107925218A (ja)
DE (1) DE112015006769T5 (ja)
WO (1) WO2017022142A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163598A1 (ja) 2017-03-09 2018-09-13 三菱電機株式会社 波長結合レーザ装置
WO2019160038A1 (ja) * 2018-02-14 2019-08-22 古河電気工業株式会社 半導体レーザモジュール
WO2019224601A2 (en) * 2018-05-24 2019-11-28 Panasonic intellectual property Management co., Ltd Exchangeable laser resonator modules with angular adjustment
JPWO2020017214A1 (ja) * 2018-07-20 2021-07-15 パナソニック株式会社 発光装置、光学装置及び波長合成方法
CN208753726U (zh) * 2018-09-13 2019-04-16 上海高意激光技术有限公司 非稳腔光谱合束装置
CN112805886B (zh) * 2018-10-10 2023-12-22 三菱电机株式会社 激光器装置
JP7440492B2 (ja) * 2019-03-25 2024-02-28 パナソニックホールディングス株式会社 半導体レーザ装置
JP7280498B2 (ja) 2019-06-10 2023-05-24 日亜化学工業株式会社 光源装置
JP7411957B2 (ja) 2020-01-28 2024-01-12 パナソニックIpマネジメント株式会社 波長ビーム結合システム
US20220019034A1 (en) * 2020-07-14 2022-01-20 Waymo Llc Stabilizing Power Output
CN115769448A (zh) * 2020-07-22 2023-03-07 松下控股株式会社 激光光源装置以及激光加工装置
CN111906094B (zh) * 2020-07-29 2022-09-20 中国南方电网有限责任公司超高压输电公司柳州局 一种激光清洗剂除锈环形接头装置

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593987A (ja) * 1982-06-29 1984-01-10 Fujitsu Ltd 半導体発光装置
JPH01202885A (ja) * 1988-02-09 1989-08-15 Seiko Epson Corp 集積型半導体レーザ
JPH02148874A (ja) * 1988-11-30 1990-06-07 Sony Corp レーザ装置
JPH10178223A (ja) * 1996-12-17 1998-06-30 Mitsui Chem Inc 固体レーザ装置
JPH11307879A (ja) * 1998-04-20 1999-11-05 Nec Corp 波長可変レーザー
JP2000174368A (ja) * 1998-12-04 2000-06-23 Photonetics Sa 多数波長レ―ザ源
US6192062B1 (en) * 1998-09-08 2001-02-20 Massachusetts Institute Of Technology Beam combining of diode laser array elements for high brightness and power
US20030193974A1 (en) * 2002-04-16 2003-10-16 Robert Frankel Tunable multi-wavelength laser device
US6665471B1 (en) * 2001-08-13 2003-12-16 Nlight Photonics Corporation System and method for optimizing the performance of multiple gain element laser
WO2005013446A1 (ja) * 2003-07-31 2005-02-10 Hamamatsu Photonics K.K. 半導体レーザ装置
JP2006339451A (ja) * 2005-06-02 2006-12-14 Mitsubishi Electric Corp 半導体レーザ装置及び半導体増幅装置
JP2009152277A (ja) * 2007-12-19 2009-07-09 Sony Corp 半導体レーザアレイ、発光装置、表示装置、加工装置および駆動方法
JP2009283735A (ja) * 2008-05-23 2009-12-03 Sony Corp 半導体レーザ組立体
JP2010129812A (ja) * 2008-11-28 2010-06-10 Denso Corp 半導体レーザ
JP2010243629A (ja) * 2009-04-02 2010-10-28 Seiko Epson Corp 液晶装置および電子機器
WO2014087726A1 (ja) * 2012-12-03 2014-06-12 三菱電機株式会社 半導体レーザ装置
JP2014120560A (ja) * 2012-12-14 2014-06-30 Mitsubishi Electric Corp 半導体レーザ装置および半導体レーザ装置のレーザ光発生方法
JP2014216361A (ja) * 2013-04-23 2014-11-17 三菱電機株式会社 レーザ装置および光ビームの波長結合方法
JP2015056469A (ja) * 2013-09-11 2015-03-23 昭和オプトロニクス株式会社 外部共振器により波長制御されたダイオードレーザモジュール
WO2015107792A1 (ja) * 2014-01-14 2015-07-23 三菱電機株式会社 半導体レーザ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274393A (ja) * 1995-03-30 1996-10-18 Hitachi Ltd スラブレーザおよびレーザ加工機
JP4063908B2 (ja) * 1997-01-29 2008-03-19 富士通株式会社 光源装置、光増幅器及び光通信システム
JPH10303495A (ja) * 1997-04-30 1998-11-13 Fujitsu Ltd 半導体レーザ
JP2000261101A (ja) * 1999-03-09 2000-09-22 Fuji Photo Film Co Ltd 波長変換装置
US6723538B2 (en) * 1999-03-11 2004-04-20 Micromet Ag Bispecific antibody and chemokine receptor constructs
JP3814495B2 (ja) * 2001-05-10 2006-08-30 日本電信電話株式会社 波長可変モード同期レーザ
AU2003214020A1 (en) * 2002-03-04 2003-09-16 Forskningscenter Riso High-power diode laser system
JP2007110039A (ja) * 2005-10-17 2007-04-26 Mitsubishi Electric Corp 固体レーザ励起モジュール
KR100778820B1 (ko) * 2006-04-25 2007-11-22 포항공과대학교 산학협력단 금속 전극 형성 방법 및 반도체 발광 소자의 제조 방법 및질화물계 화합물 반도체 발광 소자
JP5832455B2 (ja) 2010-03-05 2015-12-16 テラダイオード, インコーポレーテッド 選択的再配置および回転波長ビーム結合システムならびに方法
EP2687279B1 (de) * 2012-07-18 2018-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gehäuse für einen Einwegbeutelfilter

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593987A (ja) * 1982-06-29 1984-01-10 Fujitsu Ltd 半導体発光装置
JPH01202885A (ja) * 1988-02-09 1989-08-15 Seiko Epson Corp 集積型半導体レーザ
JPH02148874A (ja) * 1988-11-30 1990-06-07 Sony Corp レーザ装置
JPH10178223A (ja) * 1996-12-17 1998-06-30 Mitsui Chem Inc 固体レーザ装置
JPH11307879A (ja) * 1998-04-20 1999-11-05 Nec Corp 波長可変レーザー
US6192062B1 (en) * 1998-09-08 2001-02-20 Massachusetts Institute Of Technology Beam combining of diode laser array elements for high brightness and power
JP2000174368A (ja) * 1998-12-04 2000-06-23 Photonetics Sa 多数波長レ―ザ源
US6665471B1 (en) * 2001-08-13 2003-12-16 Nlight Photonics Corporation System and method for optimizing the performance of multiple gain element laser
US20030193974A1 (en) * 2002-04-16 2003-10-16 Robert Frankel Tunable multi-wavelength laser device
WO2005013446A1 (ja) * 2003-07-31 2005-02-10 Hamamatsu Photonics K.K. 半導体レーザ装置
JP2006339451A (ja) * 2005-06-02 2006-12-14 Mitsubishi Electric Corp 半導体レーザ装置及び半導体増幅装置
JP2009152277A (ja) * 2007-12-19 2009-07-09 Sony Corp 半導体レーザアレイ、発光装置、表示装置、加工装置および駆動方法
JP2009283735A (ja) * 2008-05-23 2009-12-03 Sony Corp 半導体レーザ組立体
JP2010129812A (ja) * 2008-11-28 2010-06-10 Denso Corp 半導体レーザ
JP2010243629A (ja) * 2009-04-02 2010-10-28 Seiko Epson Corp 液晶装置および電子機器
WO2014087726A1 (ja) * 2012-12-03 2014-06-12 三菱電機株式会社 半導体レーザ装置
JP2014120560A (ja) * 2012-12-14 2014-06-30 Mitsubishi Electric Corp 半導体レーザ装置および半導体レーザ装置のレーザ光発生方法
JP2014216361A (ja) * 2013-04-23 2014-11-17 三菱電機株式会社 レーザ装置および光ビームの波長結合方法
JP2015056469A (ja) * 2013-09-11 2015-03-23 昭和オプトロニクス株式会社 外部共振器により波長制御されたダイオードレーザモジュール
WO2015107792A1 (ja) * 2014-01-14 2015-07-23 三菱電機株式会社 半導体レーザ装置

Also Published As

Publication number Publication date
CN107925218A (zh) 2018-04-17
DE112015006769T5 (de) 2018-05-03
WO2017022142A1 (ja) 2017-02-09
US20180175590A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2017022142A1 (ja) 半導体レーザ装置
US10804679B2 (en) Wavelength beam combining laser systems utilizing etalons
US6763054B2 (en) Optical system for improving the brightness of a stack of lensed diode lasers
US9331457B2 (en) Semiconductor laser apparatus
US9350141B2 (en) Stabilization of wavelength beam combining laser systems in the non-wavelength beam combining direction
JP6157194B2 (ja) レーザ装置および光ビームの波長結合方法
US8340151B2 (en) V-shaped resonators for addition of broad-area laser diode arrays
JP7126137B2 (ja) 波長合成技術用レーザシステムにおけるパワー及びスペクトラムのモニタリング
JP4947367B2 (ja) 外部共振器型の波長可変光源
WO2018163598A1 (ja) 波長結合レーザ装置
WO2014103117A1 (en) Laser emitting apparatus and master oscillator power amplifier system
EP3761463A1 (en) Light resonator and laser processing machine
JP2016096333A (ja) 半導体レーザ装置
JP6268004B2 (ja) 半導体レーザ装置
JP6223650B1 (ja) レーザ発振装置
JP7296605B2 (ja) 波長ビーム結合共振器のアライメントのためのシステムおよび方法
JP2007207886A (ja) 半導体レーザ装置
JP6763121B2 (ja) レーザ装置
CN106663917B (zh) 激光束发生装置以及用于调节激光束的波长的方法
JP2011018779A (ja) 波長可変光源
WO2023021675A1 (ja) 半導体レーザ装置、および、照明装置
WO2022163245A1 (ja) 光共振器及びレーザ加工装置
JP2011077076A (ja) 外部共振型半導体レーザ
US9331455B1 (en) Frequency locked diode laser devices exhibiting low power penalty
JP2006269990A (ja) 外部共振型半導体レーザ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191008