JPWO2015012141A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
JPWO2015012141A1
JPWO2015012141A1 JP2015528235A JP2015528235A JPWO2015012141A1 JP WO2015012141 A1 JPWO2015012141 A1 JP WO2015012141A1 JP 2015528235 A JP2015528235 A JP 2015528235A JP 2015528235 A JP2015528235 A JP 2015528235A JP WO2015012141 A1 JPWO2015012141 A1 JP WO2015012141A1
Authority
JP
Japan
Prior art keywords
group
carbon atoms
general formula
component
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015528235A
Other languages
Japanese (ja)
Other versions
JP6484172B2 (en
Inventor
雅子 斎藤
雅子 斎藤
孝明 神林
孝明 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Publication of JPWO2015012141A1 publication Critical patent/JPWO2015012141A1/en
Application granted granted Critical
Publication of JP6484172B2 publication Critical patent/JP6484172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明は、被研削性が良好で高い耐熱耐光性を有する白色硬化物を与える硬化性樹脂組成物を提供することにあり、具体的には、(A)成分として、一般式(1)で表わされる基及び/又は一般式(2)で表わされる基が、一般式(3)〜(7)の何れかで表わされる化合物からビニル基を除いた残基で連結されたシロキサン化合物、(B)成分として、一般式(8)で表わされる鎖状シロキサン化合物、(C)成分として、熱ラジカル発生剤、及び(D)成分として、無機フィラーを含有する硬化性樹脂組成物を提供するものである。尚、一般式の具体的な内容は、本明細書に記載の通りである。The present invention is to provide a curable resin composition that gives a white cured product having good grindability and high heat and light resistance. Specifically, the component (A) is represented by the general formula (1). A siloxane compound in which a group represented by formula (2) and / or a group represented by formula (2) are linked by a residue obtained by removing a vinyl group from a compound represented by any one of formulas (3) to (7), (B ) A siloxane compound represented by the general formula (8) as a component, a thermal radical generator as a component (C), and a curable resin composition containing an inorganic filler as a component (D). is there. The specific contents of the general formula are as described in this specification.

Description

本発明は、ポリシロキサン系の硬化性樹脂組成物に関するものであり、高い耐熱耐光性を有し、良好な被研削性を有する硬化物が得られる硬化性樹脂組成物に関するものである。   The present invention relates to a polysiloxane-based curable resin composition, and relates to a curable resin composition having a high heat and light resistance and a cured product having good grindability.

発光ダイオード基板用の反射コーティング材、液晶表示装置のバックライトユニットに用いる反射コーティング材、太陽電池の集光パネル用の反射コーティング材、或いは建物の屋根や屋上或いは外壁に用いる反射コーティング材、照明器具に用いる反射コーティング材等、耐熱耐光性を有する、すなわち高温や高いエネルギーの光にさらされる環境下においても、高い光反射率を保つ反射コーティング材が求められている。   Reflective coating materials for light-emitting diode substrates, reflective coating materials used for backlight units of liquid crystal display devices, reflective coating materials for concentrating panels of solar cells, reflective coating materials used for roofs, rooftops, or outer walls of buildings, and lighting fixtures There is a need for a reflective coating material that has heat resistance and light resistance, such as a reflective coating material used for the above-mentioned, that is, that maintains a high light reflectance even in an environment exposed to high temperature or high energy light.

反射コーティング材用の硬化性樹脂組成物としては、エポキシ樹脂に白色顔料を充填したもの(例えば、特許文献1及び2を参照)や、シリコーン樹脂に白色顔料を充填したもの(例えば、特許文献3〜6を参照)が知られているが、エポキシ樹脂に白色顔料を充填したものは、耐熱耐光性が十分ではなく、高温や高いエネルギーの光に長時間さらされる環境下では徐々に着色して光反射率が低下するという問題があることから、高い耐熱耐光性が要求される分野では、シリコーン樹脂に白色顔料を充填したものが検討されている。   Examples of the curable resin composition for the reflective coating material include those in which an epoxy resin is filled with a white pigment (for example, see Patent Documents 1 and 2) and those in which a silicone resin is filled with a white pigment (for example, Patent Document 3). -6) is known, but epoxy resin filled with a white pigment does not have sufficient heat and light resistance, and gradually becomes colored in an environment exposed to high temperature or high energy light for a long time. In the field where high heat and light resistance is required due to the problem that the light reflectance is lowered, a silicone resin filled with a white pigment has been studied.

基板上に反射コーティング部分を形成する方法としては、反射コーティング部分のみに硬化性樹脂組成物を塗布し硬化させる方法、フォトリソグラフィーが可能な硬化性樹脂組成物を塗布し露光・現像する方法等が行われている。近年、反射コーティング部分の形成方法として、基板上に硬化性樹脂組成物を塗布し硬化後に不要部分を研削除去する方法(例えば、特許文献7を参照)が提案されているが、従来知られたシリコーン樹脂系の硬化物は被研削性が十分ではなく、被研削性の良好な硬化物が得られる硬化性樹脂組成物が求められている。   As a method of forming a reflective coating portion on a substrate, there are a method of applying and curing a curable resin composition only on the reflective coating portion, a method of applying a curable resin composition capable of photolithography, exposing and developing, and the like. Has been done. In recent years, as a method for forming a reflective coating portion, a method of applying a curable resin composition on a substrate and grinding and removing unnecessary portions after curing (see, for example, Patent Document 7) has been proposed. Silicone resin-based cured products do not have sufficient grindability, and there is a need for a curable resin composition that provides a cured product with good grindability.

特開2007−129173号公報JP 2007-129173 A 特開2009−194222号公報JP 2009-194222 A 特開2010−229382号公報JP 2010-229382 A 特開2011−105869号公報JP 2011-105869 A 特開2012−233035号公報JP 2012-233303 A 米国特許公開第2013/0075154号明細書US Patent Publication No. 2013/0075154 特開2012−253322号公報JP 2012-253322 A

本発明の目的は、被研削性が良好で高い耐熱耐光性を有する白色硬化物を与える硬化性樹脂組成物を提供することにある。   An object of the present invention is to provide a curable resin composition that gives a white cured product having good grindability and high heat and light resistance.

本発明者らは、上記に鑑み鋭意研究の結果、本発明に到達した。即ち本発明は、(A)成分として、下記一般式(1)で表わされる基及び/又は下記一般式(2)で表わされる基が、下記一般式(3)〜(7)の何れかで表わされる化合物からビニル基を除いた残基で連結されたシロキサン化合物、(B)成分として、下記一般式(8)で表わされる鎖状シロキサン化合物、(C)成分として、熱ラジカル発生剤、及び(D)成分として、無機フィラーを含有する硬化性樹脂組成物である。

Figure 2015012141
(式中、R1は炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わし、aは2〜5の数を表わす。但し、R1は全て同一の基でもよいし、異なる基でもよい。)
Figure 2015012141
(式中、bはa−b+1が0〜4の数となる2〜6の数を表わし、R1及びaは上記一般式(1)と同義である。)
Figure 2015012141
(式中、cは1又は2の数を表わす。)
Figure 2015012141
(式中、dは1又は2の数を表わす。)
Figure 2015012141
(式中、R2は炭素数1〜4のアルキル基、グリシジル基又はアリル基を表わす。)
Figure 2015012141
(式中、R3〜R5は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わし、eは1又は2の数を表わし、f及びgは各々独立して0〜6の数を表わす。)
Figure 2015012141
(式中、R6及びR7は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わす。)
Figure 2015012141
(式中、R8及びR9は各々独立して炭素数1〜4のアルキル基を表わし、R10は炭素数6〜10のアリール基を表わし、R11は炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わし、h及びjは一般式(8)で表される鎖状シロキサン化合物の質量平均分子量を1000〜100万とする数である。)The present inventors have reached the present invention as a result of intensive studies in view of the above. That is, in the present invention, as the component (A), the group represented by the following general formula (1) and / or the group represented by the following general formula (2) is any one of the following general formulas (3) to (7). A siloxane compound linked by a residue obtained by removing a vinyl group from the represented compound, a chain siloxane compound represented by the following general formula (8) as the component (B), a thermal radical generator as the component (C), and (D) It is a curable resin composition containing an inorganic filler as a component.
Figure 2015012141
(In the formula, R 1 represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, and a represents a number from 2 to 5. However, R 1 may all be the same group, Different groups may be used.)
Figure 2015012141
(In the formula, b represents a number of 2 to 6 in which ab + 1 is a number of 0 to 4, and R 1 and a have the same meaning as in the general formula (1).)
Figure 2015012141
(Wherein c represents a number of 1 or 2)
Figure 2015012141
(In the formula, d represents a number of 1 or 2.)
Figure 2015012141
(In the formula, R 2 represents an alkyl group having 1 to 4 carbon atoms, a glycidyl group, or an allyl group.)
Figure 2015012141
(In the formula, R 3 to R 5 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, e represents a number of 1 or 2, and f and g are each independently And represents a number from 0 to 6.)
Figure 2015012141
(Wherein R 6 and R 7 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms.)
Figure 2015012141
(In the formula, R 8 and R 9 each independently represent an alkyl group having 1 to 4 carbon atoms, R 10 represents an aryl group having 6 to 10 carbon atoms, and R 11 represents an alkyl group having 1 to 4 carbon atoms. Alternatively, it represents an aryl group having 6 to 10 carbon atoms, and h and j are numbers that make the mass average molecular weight of the chain siloxane compound represented by the general formula (8) 1000 to 1,000,000.)

本発明の効果は、被研削性が良好で高い耐熱耐光性を有する白色硬化物を与える硬化性樹脂組成物を提供したことにある。   The effect of this invention exists in providing the curable resin composition which gives the white hardened | cured material with favorable grindability and high heat-and-light resistance.

<(A)成分>
先ず、本発明の(A)成分である、下記一般式(1)で表わされる基及び/又は下記一般式(2)で表わされる基が、上記一般式(3)〜(7)の何れかで表わされる化合物からビニル基を除いた残基で連結されたシロキサン化合物について説明する。
<(A) component>
First, the group represented by the following general formula (1) and / or the group represented by the following general formula (2), which is the component (A) of the present invention, is any one of the above general formulas (3) to (7). The siloxane compound connected by the residue which remove | excluded the vinyl group from the compound represented by is demonstrated.

上記一般式(1)において、R1は、炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わす。但し、R1は全て同一の基でもよいし、異なる基でもよい。炭素原子数1〜4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、t−ブチル基等が挙げられる。炭素数6〜10のアリール基としては、例えば、フェニル基、エチルフェニル基、トリル基、クメニル基、キシリル基、プソイドクメニル基、メシチル基、t−ブチルフェニル基、フェネチル基等が挙げられる。R1としては、耐熱性が向上することから、メチル基、フェニル基が好ましく、メチル基が最も好ましい。In the general formula (1), R 1 represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms. However, R 1 may all be the same group or different groups. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, an isobutyl group, and a t-butyl group. Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, ethylphenyl group, tolyl group, cumenyl group, xylyl group, pseudocumenyl group, mesityl group, t-butylphenyl group, and phenethyl group. R 1 is preferably a methyl group or a phenyl group, and most preferably a methyl group, because heat resistance is improved.

上記一般式(1)において、aは2〜5の数を表わし、工業的な原料の入手が容易であることから、aは2〜4の数が好ましく、2〜3の数が更に好ましく、3の数が最も好ましい。   In the general formula (1), a represents a number of 2 to 5, and since industrial raw materials are easily available, a is preferably a number of 2 to 4, more preferably a number of 2 to 3, A number of 3 is most preferred.

上記一般式(2)において、bはa−b+1が0〜4の数となる2〜6の数を表わし、R1及びaは上記一般式(1)と同義である。In the general formula (2), b represents a number of 2 to 6 a-b + 1 is the number of 0 to 4, R 1 and a are as defined in the above general formula (1).

本発明の(A)成分は、上記一般式(1)で表わされる基及び/又は上記一般式(2)で表わされる基が、上記一般式(3)〜(7)の何れかで表わされる化合物からビニル基を除いた残基で連結されたシロキサン化合物である。上記一般式(3)〜(7)で表わされる化合物は、いずれも、1分子中に2つ又は3つのビニル基を有する化合物である。   In the component (A) of the present invention, the group represented by the general formula (1) and / or the group represented by the general formula (2) is represented by any one of the general formulas (3) to (7). It is a siloxane compound linked by a residue obtained by removing a vinyl group from a compound. All of the compounds represented by the general formulas (3) to (7) are compounds having two or three vinyl groups in one molecule.

上記一般式(3)で表わされる化合物は、1分子中に2つ又は3つのビニル基を有する化合物である。上記一般式(3)において、cは1又は2の数を表わす。cが1の数である一般式(3)で表わされる化合物としては、1,2−ジビニルベンゼン、1,3−ジビニルベンゼン、1,4−ジビニルベンゼンが挙げられる。cが2の数である一般式(3)で表わされる化合物としては、1,2,4−トリビニルベンゼン、1,3,5−トリビニルベンゼンが挙げられる。   The compound represented by the general formula (3) is a compound having two or three vinyl groups in one molecule. In the general formula (3), c represents a number of 1 or 2. Examples of the compound represented by the general formula (3) in which c is the number 1 include 1,2-divinylbenzene, 1,3-divinylbenzene, and 1,4-divinylbenzene. Examples of the compound represented by the general formula (3) in which c is a number of 2 include 1,2,4-trivinylbenzene and 1,3,5-trivinylbenzene.

上記一般式(4)で表わされる化合物は、1分子中に2つ又は3つのビニル基を有する化合物である。上記一般式(4)において、dは1又は2を表わす。dが1の数である上記一般式(4)で表わされる化合物としては、1,2−ジビニルシクロヘキサン、1,3−ジビニルシクロヘキサン、1,4−ジビニルシクロヘキサンが挙げられる。dが2の数である上記一般式(4)で表わされる化合物としては、1,2,4−トリビニルシクロヘキサン、1,3,5−トリビニルシクロヘキサンが挙げられる。   The compound represented by the general formula (4) is a compound having two or three vinyl groups in one molecule. In the general formula (4), d represents 1 or 2. Examples of the compound represented by the general formula (4) in which d is the number 1 include 1,2-divinylcyclohexane, 1,3-divinylcyclohexane, and 1,4-divinylcyclohexane. Examples of the compound represented by the general formula (4) in which d is a number of 2 include 1,2,4-trivinylcyclohexane and 1,3,5-trivinylcyclohexane.

上記一般式(5)で表わされる化合物は、1分子中に2つ又は3つのビニル基を有する化合物である。上記一般式(5)において、R2は炭素数1〜4のアルキル基、グリシジル基又はアリル基を表わす。R2としては、メチル基、エチル基、グリシジル基、アリル基が好ましい。上記一般式(5)で表わされる化合物の中で、好ましい化合物としては、1,3−ジアリル−5−メチルイソシアヌレート、1,3−ジアリル−5−エチルイソシアヌレート、1,3−ジアリル−5−グリシジルイソシアヌレート、1,3,5−トリアリルイソシアヌレート等挙げられる。The compound represented by the general formula (5) is a compound having two or three vinyl groups in one molecule. In the general formula (5), R 2 is an alkyl group, a glycidyl group or an allyl group having 1 to 4 carbon atoms. R 2 is preferably a methyl group, an ethyl group, a glycidyl group, or an allyl group. Among the compounds represented by the general formula (5), preferred compounds are 1,3-diallyl-5-methylisocyanurate, 1,3-diallyl-5-ethylisocyanurate, 1,3-diallyl-5. -Glycidyl isocyanurate, 1,3,5-triallyl isocyanurate, etc. are mentioned.

上記一般式(6)で表わされる化合物は、1分子中に2つ又は3つのビニル基を有する化合物である。上記一般式(6)において、R6及びR7は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わす。炭素数1〜4のアルキル基及び炭素数6〜10のアリール基としては、上記一般式(1)のR1で例示した基等が挙げられ、
耐熱性が良好であることから、メチル基、エチル基、プロピル基、フェニル基が好ましく、メチル基、エチル基、フェニル基が更に好ましく、メチル基が最も好ましい。eは1又は2の数を表わし、f及びgは各々独立して0〜6の数を表わす。
The compound represented by the general formula (6) is a compound having two or three vinyl groups in one molecule. In the general formula (6), R 6 and R 7 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms and the aryl group having 6 to 10 carbon atoms include the groups exemplified for R 1 in the general formula (1).
From the viewpoint of good heat resistance, a methyl group, an ethyl group, a propyl group, and a phenyl group are preferable, a methyl group, an ethyl group, and a phenyl group are more preferable, and a methyl group is most preferable. e represents a number of 1 or 2, and f and g each independently represents a number of 0 to 6.

eが1の数である上記一般式(6)で表わされる化合物の中で、好ましい化合物としては、ジメチルジビニルシラン、ジエチルジビニルシラン、ジフェニルジビニルシラン、1,1,3,3−テトラメチル−1,3−ジビニルジシロキサン、1,1,3,3−テトラエチル−1,3−ジビニルジシロキサン、1,1,3,3−テトラフェニル−1,3−ジビニルジシロキサン、1,1,5,5−テトラメチル−3,3−ジフェニル−1,5−ジビニルトリシロキサン、1,1,7,7−テトラメチル−3,3,5,5−テトラフェニル−1,7−ジビニルトリシロキサン等が挙げられ、ジメチルジビニルシラン、ジエチルジビニルシラン、ジフェニルジビニルシランが好ましく、1,1,3,3−テトラメチル−1,3−ジビニルジシロキサンが更に好ましい。eが2の数である上記一般式(6)で表わされる化合物の中で、好ましい化合物としては、メチルトリビニルシラン、エチルトリビニルシラン、フェニルトリビニルシラン、1,1,3,5,5−ペンタメチル−1,3,5−トリビニルトリシロキサン、1,1,5,5−テトラメチル−3−フェニル−1,3,5−トリビニルトリシロキサン、トリス(ジメチルビニルシロキシ)メチルシラン、トリス(ジメチルビニルシロキシ)フェニルシラン等が挙げられる。   Among the compounds represented by the general formula (6) in which e is the number 1, preferred compounds include dimethyldivinylsilane, diethyldivinylsilane, diphenyldivinylsilane, 1,1,3,3-tetramethyl-1 , 3-Divinyldisiloxane, 1,1,3,3-tetraethyl-1,3-divinyldisiloxane, 1,1,3,3-tetraphenyl-1,3-divinyldisiloxane, 1,1,5, 5-tetramethyl-3,3-diphenyl-1,5-divinyltrisiloxane, 1,1,7,7-tetramethyl-3,3,5,5-tetraphenyl-1,7-divinyltrisiloxane, etc. And dimethyldivinylsilane, diethyldivinylsilane, and diphenyldivinylsilane are preferable, and 1,1,3,3-tetramethyl-1,3-divinyldisiloxa is preferable. There further preferred. Among the compounds represented by the general formula (6) in which e is a number of 2, preferred compounds are methyltrivinylsilane, ethyltrivinylsilane, phenyltrivinylsilane, 1,1,3,5,5-pentamethyl- 1,3,5-trivinyltrisiloxane, 1,1,5,5-tetramethyl-3-phenyl-1,3,5-trivinyltrisiloxane, tris (dimethylvinylsiloxy) methylsilane, tris (dimethylvinylsiloxy) ) Phenylsilane and the like.

上記一般式(7)で表わされる化合物は、1分子中に2つのビニル基を有する化合物である。上記一般式(7)において、R6及びR7は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わす。炭素数1〜4のアルキル基及び炭素数6〜10のアリール基としては、上記一般式(1)のR1で例示した基等が挙げられ、耐熱性が良好であることから、メチル基、エチル基、プロピル基、フェニル基が好ましく、メチル基、エチル基、フェニル基が更に好ましく、メチルが最も好ましい。上記一般式(7)で表される化合物の中で、好ましい化合物としては、1,2−ビス(ジメチルビニルシリル)ベンゼン、1,3−ビス(ジメチルビニルシリル)ベンゼン、1,4−ビス(ジメチルビニルシリル)ベンゼン、1,2−ビス(ジエチルビニルシリル)ベンゼン、1,3−ビス(ジエチルビニルシリル)ベンゼン、1,4−ビス(ジエチルビニルシリル)ベンゼン等が挙げられ、1,2−ビス(ジメチルビニルシリル)ベンゼン、1,4−ビス(ジメチルビニルシリル)ベンゼンが好ましく、1,4−ビス(ジメチルビニルシリル)ベンゼンが更に好ましい。The compound represented by the general formula (7) is a compound having two vinyl groups in one molecule. In the general formula (7), R 6 and R 7 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms and the aryl group having 6 to 10 carbon atoms include the groups exemplified for R 1 in the above general formula (1), and since the heat resistance is good, a methyl group, An ethyl group, a propyl group, and a phenyl group are preferable, a methyl group, an ethyl group, and a phenyl group are more preferable, and methyl is most preferable. Among the compounds represented by the general formula (7), preferable compounds include 1,2-bis (dimethylvinylsilyl) benzene, 1,3-bis (dimethylvinylsilyl) benzene, 1,4-bis ( Dimethylvinylsilyl) benzene, 1,2-bis (diethylvinylsilyl) benzene, 1,3-bis (diethylvinylsilyl) benzene, 1,4-bis (diethylvinylsilyl) benzene and the like. Bis (dimethylvinylsilyl) benzene and 1,4-bis (dimethylvinylsilyl) benzene are preferred, and 1,4-bis (dimethylvinylsilyl) benzene is more preferred.

上記一般式(3)〜(7)で表わされる化合物からビニル基を除いた残基のうち、ハンドリング性の点からは、1分子中に2つのビニル基を有する化合物の残基が好ましいが、原料の入手の容易さと、反応性から、上記一般式(3)又は上記一般式(4)で表わされる化合物の残基が好ましい。   Among the residues obtained by removing the vinyl group from the compounds represented by the general formulas (3) to (7), from the viewpoint of handling properties, the residue of a compound having two vinyl groups in one molecule is preferable. The residue of the compound represented by the general formula (3) or the general formula (4) is preferable from the viewpoint of easy availability of raw materials and reactivity.

(A)成分の分子量は、耐熱性及びハンドリング性の点から、質量平均分子量で、5000〜20万であることが好ましく、5000〜15万であることが更に好ましく、1万〜10万であることが最も好ましい。なお、本発明において、質量平均分子量とは、テトラヒドロフランを溶媒としてGPC(Gel Permeation Chromatography)分析を行った場合のポリスチレン換算の質量平均分子量をいう。   The molecular weight of the component (A) is preferably 5,000 to 200,000, more preferably 5,000 to 150,000, and more preferably 10,000 to 100,000 in terms of mass average molecular weight from the viewpoint of heat resistance and handling properties. Most preferred. In the present invention, the mass average molecular weight means a mass average molecular weight in terms of polystyrene when GPC (Gel Permeation Chromatography) analysis is performed using tetrahydrofuran as a solvent.

(A)成分は、上記一般式(3)〜(7)で表わされる化合物のビニル基に下記一般式(1a)で表わされる環状シロキサン化合物のSiH基をヒドロシリル化反応させることにより得ることができる。

Figure 2015012141
(式中、R1及びaは一般式(1)と同義である。)The component (A) can be obtained by hydrosilylating the SiH group of the cyclic siloxane compound represented by the following general formula (1a) with the vinyl group of the compound represented by the general formulas (3) to (7). .
Figure 2015012141
(In the formula, R 1 and a have the same meaning as in general formula (1).)

このヒドロシリル化反応は、触媒を用いて行うことが好ましく、ヒドロシリル化触媒としては、例えば、白金系触媒、パラジウム系触媒、ロジウム系触媒等が挙げられる。白金系触媒としては、例えば、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体、白金−カルボニルビニルメチル錯体(Ossko触媒)、白金−ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)、白金−シクロビニルメチルシロキサン錯体、白金−オクチルアルデヒド錯体、白金−ホスフィン錯体(例えば、Pt[P(C6534、PtCl[P(C6533、Pt[P(C4934]、白金−ホスファイト錯体(例えば、Pt[P(OC6534)、Pt[P(OC4934)、ジカルボニルジクロロ白金等が挙げられる。パラジウム系触媒又はロジウム系触媒としては、例えば、上記白金系触媒の白金原子の代わりにパラジウム原子又はロジウム原子を含有する化合物が挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。ヒドロシリル化触媒としては、反応性の点から、白金系触媒が好ましく、白金−ジビニルテトラメチルジシロキサン錯体及び白金−カルボニルビニルメチル錯体が更に好ましく、白金−カルボニルビニルメチル錯体が最も好ましい。また、触媒の使用量は反応性の点から、各原料の合計量の5質量%以下が好ましく、0.0001〜1.0質量%が更に好ましく、0.001〜0.1質量%が最も好ましい。ヒドロシリル化の反応条件は特に限定されず、上記触媒を使用して従来公知の条件で行なえばよいが、反応速度の点から、室温(25℃)〜130℃で行なうのが好ましく、反応時にトルエン、ヘキサン、メチルイソブチルケトン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテート等の従来公知の溶媒を使用してもよい。This hydrosilylation reaction is preferably performed using a catalyst. Examples of the hydrosilylation catalyst include a platinum-based catalyst, a palladium-based catalyst, and a rhodium-based catalyst. Examples of platinum-based catalysts include chloroplatinic acid, complexes of chloroplatinic acid and alcohols, aldehydes, ketones, platinum-olefin complexes, platinum-carbonylvinylmethyl complexes (Ossko catalysts), platinum-divinyltetramethyldisiloxane complexes. (Karstedt catalyst), platinum-cyclovinylmethylsiloxane complex, platinum-octylaldehyde complex, platinum-phosphine complex (for example, Pt [P (C 6 H 5 ) 3 ] 4 , PtCl [P (C 6 H 5 ) 3 ] 3 , Pt [P (C 4 H 9 ) 3 ) 4 ], platinum-phosphite complex (for example, Pt [P (OC 6 H 5 ) 3 ] 4 ), Pt [P (OC 4 H 9 ) 3 ] 4 ), Dicarbonyldichloroplatinum and the like. Examples of the palladium catalyst or rhodium catalyst include compounds containing a palladium atom or a rhodium atom instead of the platinum atom of the platinum catalyst. These may be used alone or in combination of two or more. The hydrosilylation catalyst is preferably a platinum-based catalyst from the viewpoint of reactivity, more preferably a platinum-divinyltetramethyldisiloxane complex and a platinum-carbonylvinylmethyl complex, and most preferably a platinum-carbonylvinylmethyl complex. Further, the amount of the catalyst used is preferably 5% by mass or less, more preferably 0.0001 to 1.0% by mass, most preferably 0.001 to 0.1% by mass of the total amount of each raw material from the viewpoint of reactivity. preferable. The reaction conditions for hydrosilylation are not particularly limited, and may be carried out under the conditions known in the art using the above catalyst. From the viewpoint of reaction rate, it is preferably carried out at room temperature (25 ° C.) to 130 ° C. A conventionally known solvent such as hexane, methyl isobutyl ketone, cyclopentanone, propylene glycol monomethyl ether acetate may be used.

本反応では、通常、主成分として、上記一般式(1)で表わされる基と上記一般式(2)で表わされる基とを有する化合物が得られる。上記一般式(1)で表わされる基のみを有する化合物を選択的に得る場合には、上記一般式(1a)で表わされる環状シロキサン化合物に対して、上記一般式(3)〜(7)で表わされる化合物を大過剰に使用して反応させ、反応終了後、過剰の上記一般式(3)〜(7)で表わされる化合物を除去すればよい。   In this reaction, a compound having a group represented by the general formula (1) and a group represented by the general formula (2) as a main component is usually obtained. When the compound having only the group represented by the general formula (1) is selectively obtained, the above general formulas (3) to (7) are used for the cyclic siloxane compound represented by the general formula (1a). The compound represented may be used in a large excess and reacted, and after the reaction is completed, the excess compound represented by the above general formulas (3) to (7) may be removed.

次に、(B)成分である上記一般式(8)で表わされる鎖状シロキサン化合物について説明する。上記一般式(8)において、R8及びR9は各々独立して炭素数1〜4のアルキル基を表わし、R10は炭素数6〜10のアリール基を表わし、R11は炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わす。炭素数1〜4のアルキル基及び炭素数6〜10のアリール基としては、上記一般式(1)のR1で例示した基等が挙げられる。
8及びR9としては、耐熱性が良好であることから、メチル基、エチル基が好ましく、メチル基が更に好ましい。R10としては、耐熱性が良好であることから、フェニル基が好ましい。R11としては、耐熱性の点からは、炭素数6〜10のアリール基が好ましく、フェニル基が更に好ましいが、可撓性の点からは、炭素数1〜4のアルキル基が好ましく、メチル基、エチル基が更に好ましく、メチル基が最も好ましい。
Next, the chain siloxane compound represented by the general formula (8) as the component (B) will be described. In the above general formula (8), R 8 and R 9 each independently represents an alkyl group having 1 to 4 carbon atoms, R 10 represents an aryl group having 6 to 10 carbon atoms, and R 11 represents 1 to 1 carbon atoms. 4 alkyl group or an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms and the aryl group having 6 to 10 carbon atoms include the groups exemplified for R 1 in the general formula (1).
R 8 and R 9 are preferably a methyl group or an ethyl group, and more preferably a methyl group, because of good heat resistance. R 10 is preferably a phenyl group because of good heat resistance. R 11 is preferably an aryl group having 6 to 10 carbon atoms from the viewpoint of heat resistance, and more preferably a phenyl group, but an alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of flexibility, and methyl. More preferably an ethyl group, and most preferably a methyl group.

上記一般式(8)において、h及びjは上記一般式(8)で表される鎖状シロキサン化合物の質量平均分子量を3000〜100万とする数である。上記一般式(8)で表される鎖状シロキサン化合物の質量平均分子量が3000よりも小さい場合には耐熱性が低く、100万よりも大きい場合には、高粘度となりハンドリング性が低下する。上記一般式(8)で表される鎖状シロキサン化合物の質量平均分子量は5000〜5万が好ましく、8000〜2万が更に好ましい。   In the said General formula (8), h and j are numbers which make the mass mean molecular weight of the chain siloxane compound represented by the said General formula (8) 3000-1 million. When the weight average molecular weight of the chain siloxane compound represented by the general formula (8) is smaller than 3000, the heat resistance is low, and when it is larger than 1 million, the viscosity becomes high and the handling property is lowered. The mass average molecular weight of the chain siloxane compound represented by the general formula (8) is preferably 5,000 to 50,000, and more preferably 8,000 to 20,000.

上記一般式(8)において、炭素数1〜4のアルキル基と炭素数6〜10のアリール基との割合は、耐熱性の点からは炭素数6〜10のアリール基が多いほうが好ましい。このため、R11が炭素数1〜4のアルキル基である場合には、h:jは95:5〜0:100が好ましく、90:10〜0:100が更に好ましく、50:50〜0:100が最も好ましい。一方、R11が炭素数6〜10のアリール基である場合には、h:jのjの割合があまりに多い場合には、可撓性が低下する場合があることから、h:jは100:0〜50:50が好ましく、98:2〜65:35が更に好ましく、95:5〜70:30が最も好ましい。In the said General formula (8), it is preferable that the ratio of a C1-C4 alkyl group and a C6-C10 aryl group has many C6-C10 aryl groups from a heat resistant point. Therefore, when R 11 is an alkyl group having 1 to 4 carbon atoms, h: j is preferably 95: 5 to 0: 100, more preferably 90:10 to 0: 100, and 50:50 to 0 : 100 is most preferable. On the other hand, when R 11 is an aryl group having 6 to 10 carbon atoms, if the ratio of j in h: j is too large, flexibility may decrease. : 0-50: 50 is preferable, 98: 2-65: 35 is more preferable, and 95: 5-70: 30 is most preferable.

本発明の硬化性樹脂組成物において、ビニル基に対するSiH基の比は、硬化性及び被研削性の点からモル比で0.5〜10が好ましく、0.9〜5が更に好ましく、1〜3が最も好ましい。(A)成分と(B)成分の配合量は、このビニル基とSiH基との比に基づいて決めればよい。   In the curable resin composition of the present invention, the ratio of SiH groups to vinyl groups is preferably 0.5 to 10, more preferably 0.9 to 5, in terms of molar ratio in terms of curability and grindability. 3 is most preferred. What is necessary is just to determine the compounding quantity of (A) component and (B) component based on ratio of this vinyl group and SiH group.

次に、(C)成分の熱ラジカル発生剤について説明する。本発明において熱ラジカル発生剤とは、加熱によりラジカルを発生する化合物をいう。(C)成分から発生するラジカルは、SiH基やケイ素原子に結合したメチル基(Si−CH3基)を活性化させて、ビニル基やケイ素原子に結合したメチル基と反応させる働きをする。熱ラジカル発生剤としては、例えば、ジイソブチリルペルオキシド、クミルペルオキシネオデカノエート、3−ヒドロキシ−1,1−ジメチルブチルペルオキシネオデカノエート、ジプロピルペルオキシジカーボネート、ジイソプロピルペルオキシジカーボネート、ジ−sec−ブチルペルオキシジカーボネート、1,1,3,3,−テトラメチルブチルペルオキシネオデカノエート、ビス(4−t−ブチルシクロヘキシル)ペルオキシジカーボネート、ビス(2−エチルヘキシル)ペルオキシジカーボネート、t−ヘキシルペルオキシネオデカノエート、t−ブチルペルオキシネオデカノエート、t−ブチルペルオキシネオヘプタノエート、t−ヘプチルペルオキシピバラート、t−ブチルペルオキシピバラート、t−ペンチルペルオキシピバレート、ビス(3,5,5−トリメチルヘキサノイル)ペルオキシド、ジラウロリルペルオキシド、1,1,3,3,−テトラメチルブチルペルオキシ−2−エチルヘキサノエート、ジコハク酸ペルオキシド、1,1,3,3−テトラメチルブチルペルオキシ−2−エチルヘキサノエート、t−ペンチルペルオキシ−2−エチルヘキサノエート、t−ブチルペルオキシ−2−エチルヘキサノエート、1,1−ジ(t−ヘキシルペルオキシ)シクロヘキサン、1,1−ジ(t−ブチルペルオキシ)シクロヘキサン、1,1−ジ(t−ペンチルペルオキシ)シクロヘキサン、2,2−ビス(4,4−ジ(t−ブチルペルオキシ)シクロヘキシルプロパン、t−ヘキシルペルオキシイソプロピルモノカーボネート、t−ペンチルペルオキシイソプロピルカーボネート、t−ペンチルペルオキシノルマルオクトエート、t−ブチルペルオキシマレイン酸、1,1−ジ(t−ブチルペルオキシ)シクロヘキサン、t−ブチルペルオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルペルオキシラウレート、t−ブチルペルオキシイソプロピルモノヘキサノエート、t−ペンチルペルオキシ−2−エチルヘキシルカーボネート、t−ブチルペルオキシ−2−エチルヘキシルモノヘキサノエート、t−ヘキシルペルオキシベンゾエート、t−ペンチルペルオキシアセテート、2,5、−ジメチル−2,5−ジ(ベンゾイルペルオキシ)ヘキサン、t−ブチルペルオキシアセテート、2,2−ジ(t−ブチルペルオキシ)ブタン、t−ブチルペルオキシベンゾエート、ブチル−4,4−ジ(t−ブチルペルオキシ)バレレート、エチル3,3−ジ(t−ブチルパーオキシ)ブチレート、ビス(2−t−ブチルペルオキシイソプロピル)ベンゼン、ジクミルペルオキシド、ジ−t−ヘキシルペルオキシド、2,5ジメチル2,5ジ(t−ブチルパーオキシ)ヘキサン、ジーt−ブチルパーオキサイド、t−ブチルペルオキシイソフブチレート、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン等の有機過酸化物系熱ラジカル発生剤;Next, the thermal radical generator of component (C) will be described. In the present invention, the thermal radical generator refers to a compound that generates radicals by heating. The radical generated from the component (C) functions to activate a methyl group (Si—CH 3 group) bonded to a SiH group or a silicon atom to react with a methyl group bonded to a vinyl group or a silicon atom. Examples of the thermal radical generator include diisobutyryl peroxide, cumylperoxyneodecanoate, 3-hydroxy-1,1-dimethylbutylperoxyneodecanoate, dipropylperoxydicarbonate, diisopropylperoxydicarbonate, -Sec-butyl peroxydicarbonate, 1,1,3,3, -tetramethylbutylperoxyneodecanoate, bis (4-t-butylcyclohexyl) peroxydicarbonate, bis (2-ethylhexyl) peroxydicarbonate, t -Hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-butylperoxyneoheptanoate, t-heptylperoxypivalate, t-butylperoxypivalate, t-pentylperoxypi Bis (3,5,5-trimethylhexanoyl) peroxide, dilaurol peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, disuccinic acid peroxide, 1,1, 3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-pentylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, 1,1-di (t-hexylperoxy ) Cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, 1,1-di (t-pentylperoxy) cyclohexane, 2,2-bis (4,4-di (t-butylperoxy) cyclohexylpropane, t -Hexylperoxyisopropyl monocarbonate, t-pentylperoxyisopropyl Pyrcarbonate, t-pentylperoxynormal octoate, t-butylperoxymaleic acid, 1,1-di (t-butylperoxy) cyclohexane, t-butylperoxy-3,5,5-trimethylhexanoate, t-butyl Peroxylaurate, t-butylperoxyisopropylmonohexanoate, t-pentylperoxy-2-ethylhexyl carbonate, t-butylperoxy-2-ethylhexylmonohexanoate, t-hexylperoxybenzoate, t-pentylperoxyacetate, 2 , 5, -dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxyacetate, 2,2-di (t-butylperoxy) butane, t-butylperoxybenzoate, butyl-4,4-di ( -Butylperoxy) valerate, ethyl 3,3-di (t-butylperoxy) butyrate, bis (2-t-butylperoxyisopropyl) benzene, dicumyl peroxide, di-t-hexyl peroxide, 2,5 dimethyl 2, Organic peroxides such as 5-di (t-butylperoxy) hexane, di-t-butyl peroxide, t-butylperoxyisobutyrate, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane Thermal radical generators;

2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキシル−1−カルボニトリル)、2,2’−アゾビス(N−(2−プロペニル)−2−メチルプロピオンアミド)、1−((1−シアノ−1−メチルエチル)アゾ)ホルムアミド、2,2’−アゾビス(N−ブチル−2−メチルプロピオンアミド)、2,2’−アゾビス(N−シクロヘキシル−2−メチルプロピオンアミド)、2,2’−アゾビスイソブチロニトリル等のアゾ化合物系熱ラジカル発生剤等が挙げられる。   2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobisisobutyronitrile, 2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexyl-1-carbonitrile), 2,2′-azobis (N- (2-propenyl) -2-methylpropionamide), 1-((1-cyano-1-methylethyl) azo) formamide, 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (N-cyclohexyl-2-methylpropion) Amide), azo compound thermal radical generators such as 2,2′-azobisisobutyronitrile and the like.

(C)成分としては、本発明の硬化性樹脂組成物の製造時の異常反応の防止や、保存安定性の点からは半減期温度の高い化合物が好ましいが、あまりに半減期温度の高い化合物の場合には本発明の硬化性樹脂組成物の硬化温度が高くなり、作業性が悪化する。このため、(C)成分としては、1分間半減期温度が、130〜250℃、特に150〜200℃である化合物が好ましい。 As the component (C), a compound having a high half-life temperature is preferable from the viewpoint of prevention of abnormal reaction during production of the curable resin composition of the present invention and storage stability. In such a case, the curing temperature of the curable resin composition of the present invention is increased and workability is deteriorated. For this reason, as (C) component, the compound whose half-life temperature for 1 minute is 130-250 degreeC, especially 150-200 degreeC is preferable.

1分間半減期温度が150〜200℃の有機過酸化物系熱ラジカル発生剤としては、1,1−ジ(t−ブチルペルオキシ)シクロヘキサン、1,1−ジ(t−ペンチルペルオキシ)シクロヘキサン、2,2−ビス(4,4−ジ(t−ブチルペルオキシ)シクロヘキシルプロパン、t−ヘキシルペルオキシイソプロピルモノカーボネート、t−ペンチルペルオキシイソプロピルカーボネート、t−ペンチルペルオキシノルマルオクトエート、t−ブチルペルオキシマレイン酸、1,1−ジ(t−ブチルペルオキシ)シクロヘキサン、t−ブチルペルオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルペルオキシラウレート、t−ブチルペルオキシイソプロピルモノヘキサノエート、t−ペンチルペルオキシ−2−エチルヘキシルカーボネート、t−ブチルペルオキシ−2−エチルヘキシルモノヘキサノエート、t−ヘキシルペルオキシベンゾエート、t−ペンチルペルオキシアセテート、2,5、−ジメチル−2,5−ジ(ベンゾイルペルオキシ)ヘキサン、t−ブチルペルオキシアセテート、2,2−ジ(t−ブチルペルオキシ)ブタン、t−ブチルペルオキシベンゾエート、ブチル−4,4−ジ(t−ブチルペルオキシ)バレレート、エチル3,3−ジ(t−ブチルパーオキシ)ブチレート、ビス(2−t−ブチルペルオキシイソプロピル)ベンゼン、ジクミルペルオキシド、ジ−t−ヘキシルペルオキシド、2,5ジメチル2,5ジ(t−ブチルパーオキシ)ヘキサン、ジーt−ブチルパーオキサイド、t−ブチルペルオキシイソフブチレート、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサンが挙げられる。
1分間半減期温度が150〜200℃のアゾ化合物系熱ラジカル発生剤としては、2,2’−アゾビス(N−(2−プロペニル)−2−メチルプロピオンアミド)、1−((1−シアノ−1−メチルエチル)アゾ)ホルムアミド、2,2’−アゾビス(N−ブチル−2−メチルプロピオンアミド)、2,2’−アゾビス(N−シクロヘキシル−2−メチルプロピオンアミド)が挙げられる。
Examples of the organic peroxide thermal radical generator having a 1-minute half-life temperature of 150 to 200 ° C. include 1,1-di (t-butylperoxy) cyclohexane, 1,1-di (t-pentylperoxy) cyclohexane, 2 , 2-bis (4,4-di (t-butylperoxy) cyclohexylpropane, t-hexylperoxyisopropyl monocarbonate, t-pentylperoxyisopropyl carbonate, t-pentylperoxynormal octoate, t-butylperoxymaleic acid, 1 , 1-di (t-butylperoxy) cyclohexane, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxyisopropylmonohexanoate, t-pentylperoxy- 2-ethylhexylcar Nate, t-butylperoxy-2-ethylhexyl monohexanoate, t-hexylperoxybenzoate, t-pentylperoxyacetate, 2,5, -dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxyacetate 2,2-di (t-butylperoxy) butane, t-butylperoxybenzoate, butyl-4,4-di (t-butylperoxy) valerate, ethyl 3,3-di (t-butylperoxy) butyrate, Bis (2-t-butylperoxyisopropyl) benzene, dicumyl peroxide, di-t-hexyl peroxide, 2,5 dimethyl 2,5 di (t-butylperoxy) hexane, di-t-butyl peroxide, t-butyl Peroxyisobutyrate, 2,5-dimethyl- , 5-di (t-butylperoxy) hexane and the like.
Examples of the azo compound-based thermal radical generator having a 1-minute half-life temperature of 150 to 200 ° C. include 2,2′-azobis (N- (2-propenyl) -2-methylpropionamide), 1-((1-cyano -1-methylethyl) azo) formamide, 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (N-cyclohexyl-2-methylpropionamide).

(C)成分の配合量は、(C)成分の種類や硬化温度により異なるが、あまりに少ないと、本発明の硬化性樹脂組成物の硬化が不十分となり、また、あまりに多いと、配合量に見合う増量効果が得られないばかりか、却って硬化物の物性に悪影響を及ぼすことがあることから、(A)成分と(B)成分の合計量100質量部に対して、0.001〜5質量部が好ましく、0.05〜3質量部がより好ましく、0.1〜2質量部がさらに好ましく、0.1〜1.5質量部が最も好ましい。 The amount of component (C) varies depending on the type of component (C) and the curing temperature, but if it is too small, curing of the curable resin composition of the present invention will be insufficient, and if too large, In addition to not being able to obtain a suitable increase effect, the physical properties of the cured product may be adversely affected, so 0.001 to 5 masses per 100 mass parts of the total amount of component (A) and component (B). Part is preferred, 0.05-3 parts by weight is more preferred, 0.1-2 parts by weight is more preferred, and 0.1-1.5 parts by weight is most preferred.

次に、(D)成分である上記無機フィラーについて説明する。本発明において、無機フィラーは、白色無機顔料と無機充填材に分けられ、白色無機顔料とは、可視領域に特定の吸収を有せず、屈折率が大きい無機フィラーであり、無機充填材とは白色無機顔料以外の無機フィラーをいう。白色無機顔料としては、酸化チタン、チタン酸カリウム、チタン酸カルシウム、チタン酸バリウム、酸化ジルコニウム、酸化亜鉛、酸化マグネシウム、酸化アンチモン、酸化ストロンチウム、酸化ニオブ、酸化ベリリウム、窒化ホウ素、硫化亜鉛、硫酸バリウム等が挙げられる。また、無機充填材としては、溶融シリカ、溶融球状シリカ、結晶性シリカ、コロイダルシリカ、ヒュームドシリカ、シリカゲル等のシリカ類;酸化アルミニウム、酸化鉄、三酸化アンチモン、窒化ケイ素、窒化アルミニウム、窒化ホウ素、炭化ケイ素、炭酸カルシウム、ケイ酸カルシウム、炭酸マグネシウム、炭酸バリウム、マイカ、モンモリロナイト、カオリン、タルク、グラファイト、カーボンブラック等が挙げられる。白色無機顔料としては、光反射率の点から、酸化チタンが好ましい。酸化チタンには結晶構造からルチル型、アナタース型、ブルカイト型に分類されるが、硬化物の熱安定性や光安定性の点から、ルチル型が好ましい。無機充填材としては、本発明の樹脂組成物の流動性と、硬化物の被研削性の点からシリカが好ましい。無機フィラーは1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。本発明の樹脂組成物を反射コーティング材用途で使用する場合には、(D)成分として白色無機顔料を用いて白色硬化性樹脂組成物とすることが好ましい。   Next, the said inorganic filler which is (D) component is demonstrated. In the present invention, the inorganic filler is divided into a white inorganic pigment and an inorganic filler, and the white inorganic pigment is an inorganic filler that has no specific absorption in the visible region and has a large refractive index. An inorganic filler other than a white inorganic pigment. Examples of white inorganic pigments include titanium oxide, potassium titanate, calcium titanate, barium titanate, zirconium oxide, zinc oxide, magnesium oxide, antimony oxide, strontium oxide, niobium oxide, beryllium oxide, boron nitride, zinc sulfide, and barium sulfate. Etc. Examples of inorganic fillers include fused silica, fused spherical silica, crystalline silica, colloidal silica, fumed silica, silica gel, and the like; aluminum oxide, iron oxide, antimony trioxide, silicon nitride, aluminum nitride, boron nitride , Silicon carbide, calcium carbonate, calcium silicate, magnesium carbonate, barium carbonate, mica, montmorillonite, kaolin, talc, graphite, carbon black and the like. As the white inorganic pigment, titanium oxide is preferable from the viewpoint of light reflectance. Titanium oxide is classified into a rutile type, anatase type, and brookite type from the crystal structure, but the rutile type is preferred from the viewpoint of thermal stability and light stability of the cured product. As the inorganic filler, silica is preferable from the viewpoint of fluidity of the resin composition of the present invention and grindability of the cured product. Only one type of inorganic filler may be used, or two or more types may be used in combination. When the resin composition of the present invention is used for a reflective coating material, it is preferable to use a white inorganic pigment as the component (D) to obtain a white curable resin composition.

(D)成分の無機フィラーの粒径は、被研削性の点から、平均粒径で0.01〜5μmであることが好ましく、0.05〜3μmであることが更に好ましく、0.1〜1μmであることが最も好ましくい。なお、平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(又はメジアン径)として求めることができる。The particle size of the inorganic filler of component (D) is preferably 0.01 to 5 μm, more preferably 0.05 to 3 μm in terms of average particle size from the viewpoint of grindability, Most preferably, it is 1 μm. The average particle size can be determined as a mass average value D 50 in the particle size distribution measurement by laser diffraction method (or median diameter).

また、(D)成分の配合量は、被研削性の点から、本発明の組成物(但し、(D)成分を除く)100質量部に対して、40〜500質量部であることが好ましく、60〜300質量部であることが更に好ましい。   Moreover, it is preferable that the compounding quantity of (D) component is 40-500 mass parts with respect to 100 mass parts of compositions (however, except (D) component) of this invention from the point of grindability. 60 to 300 parts by mass is even more preferable.

本発明の硬化性樹脂組成物は、架橋密度が上がり、硬化物の被研削性が向上することから、更に、(E)成分として、下記一般式(9)で表わされるシロキサン化合物を含有することが好ましい。

Figure 2015012141
(式中、R12及びR13は各々独立して炭素数6〜10のアリール基を表わし、kは1〜5の数を表わす。)The curable resin composition of the present invention contains a siloxane compound represented by the following general formula (9) as the component (E) because the crosslink density is increased and the grindability of the cured product is improved. Is preferred.
Figure 2015012141
(Wherein R 12 and R 13 each independently represents an aryl group having 6 to 10 carbon atoms, and k represents a number of 1 to 5)

上記一般式(9)において、R12及びR13は各々独立して炭素数6〜10のアリール基を表わす。炭素数6〜10のアリール基としては、一般式(1)のR1で例示した炭素数6〜10のアリール基が挙げられる。R12及びR13としては、被研削性の向上効果が高いことからフェニル基が好ましい。kは1〜5の数を表わし、被研削性の向上効果が高いことから1〜2の数が好ましく、1の数が更に好ましい。一般式(9)で表わされる鎖状シロキサン化合物の中で、好ましい化合物としては、1,1,5,5−テトラメチル−3,3−ジフェニル−1,5−ジビニルトリシロキサン、1,1,7,7−テトラメチル−3,3,5,5−テトラフェニル−1,7−ジビニルトリシロキサン等が挙げられる。In the general formula (9), R 12 and R 13 each independently represents an aryl group having 6 to 10 carbon atoms. As a C6-C10 aryl group, the C6-C10 aryl group illustrated by R < 1 > of General formula (1) is mentioned. As R 12 and R 13 , a phenyl group is preferable because the effect of improving grindability is high. k represents a number of 1 to 5, and is preferably a number of 1 or 2 and more preferably a number of 1 because the effect of improving the grindability is high. Among the chain siloxane compounds represented by the general formula (9), preferred compounds include 1,1,5,5-tetramethyl-3,3-diphenyl-1,5-divinyltrisiloxane, 1,1,5, Examples include 7,7-tetramethyl-3,3,5,5-tetraphenyl-1,7-divinyltrisiloxane.

本発明の(E)成分である上記一般式(9)で表わされるシロキサン化合物の配合量があまりに少ない場合には、被研削性の向上効果が十分ではなく、またあまりに多い場合には、架橋密度が上がり過ぎて逆に被研削性が低下する場合があることから、(E)成分の配合量は、(A)成分100質量部に対して、20〜80質量部であることが好ましく、30〜70質量部であることが更に好ましい。(E)成分を配合する場合には、上記のビニル基とSiH基との比に基づいて(B)成分の量を決めればよい。   When the amount of the siloxane compound represented by the general formula (9), which is the component (E) of the present invention, is too small, the effect of improving the grindability is not sufficient, and when it is too large, the crosslinking density Since the grindability may decrease on the contrary, the blending amount of the component (E) is preferably 20 to 80 parts by mass with respect to 100 parts by mass of the component (A). More preferably, it is -70 mass parts. When the component (E) is blended, the amount of the component (B) may be determined based on the ratio of the vinyl group and the SiH group.

本発明の硬化性樹脂組成物は、硬化物と基材との密着性が向上することから、更にイソシアヌル酸構造を有する化合物を含有することが好ましい。イソシアヌル酸構造を有する化合物としては、例えば、上記一般式(5)で表わされる化合物に加えて、イソシアヌル酸、1,3,5−トリグリシジルイソシアヌル酸、1−アリル−3,5−ジグリシジルイソシアヌル酸、トリス(2−ヒドロキシエチル)イソシアヌル酸、トリス(2,3−ジヒドロキシプロピル)イソシアヌル酸等が挙げられる。   The curable resin composition of the present invention preferably further contains a compound having an isocyanuric acid structure because the adhesion between the cured product and the substrate is improved. Examples of the compound having an isocyanuric acid structure include isocyanuric acid, 1,3,5-triglycidyl isocyanuric acid, 1-allyl-3,5-diglycidyl isocyanuric in addition to the compound represented by the general formula (5). Examples thereof include acid, tris (2-hydroxyethyl) isocyanuric acid, and tris (2,3-dihydroxypropyl) isocyanuric acid.

本発明の硬化性樹脂組成物は、この他に、酸化防止剤、紫外線吸収剤、離型剤、帯電防止剤、白金系ヒドロシリル化触媒、硬化遅延剤、カップリング剤、難燃剤、有機溶剤等を本発明の目的及び効果を損なわない範囲において添加することができる。   In addition to this, the curable resin composition of the present invention includes an antioxidant, an ultraviolet absorber, a release agent, an antistatic agent, a platinum-based hydrosilylation catalyst, a curing retarder, a coupling agent, a flame retardant, an organic solvent, and the like. Can be added within a range not impairing the object and effects of the present invention.

本発明の硬化性樹脂組成物は、流動性に優れており、基板等の対象物に塗布した後、加熱して硬化させることができる。本発明の硬化性樹脂組成物を対象材料に塗布する方法としては、例えば、スピンコート法、ディップコート法、ナイフコート法、ロールコート法、スプレーコート法、スリットコート法、スクリーン印刷法等が挙げられる。   The curable resin composition of the present invention is excellent in fluidity, and can be cured by heating after being applied to an object such as a substrate. Examples of the method for applying the curable resin composition of the present invention to a target material include spin coating, dip coating, knife coating, roll coating, spray coating, slit coating, and screen printing. It is done.

本発明の硬化性樹脂組成物は、加熱することにより硬化させることができ、硬化物とすることができる。この硬化反応は、(C)成分の種類によっても異なるが、作業性の点から、80〜350℃が好ましく、100〜250℃がより好ましい。硬化時間は2〜120分が好ましく、20〜60分がより好ましい。   The curable resin composition of the present invention can be cured by heating and can be a cured product. Although this hardening reaction changes with kinds of (C) component, 80-350 degreeC is preferable from the point of workability | operativity, and 100-250 degreeC is more preferable. The curing time is preferably 2 to 120 minutes, more preferably 20 to 60 minutes.

本発明の硬化性樹脂組成物の硬化物は、耐熱性、耐光性、耐クラック性、着色性等の諸物性に優れており、例えば、封止材、モールド材、コーティング材、絶縁材、反射材として使用でき、特にLED等の発光素子の反射材として好適に使用できる。
また、本発明の硬化性樹脂組成物の硬化物は被研削性に優れているため、ダイヤモンド製等の硬質刃を回転板の半径方向に複数配置した硬質回転刃を有する研削装置を使用する方法や、サンダ、ベルトサンダ、グラインダ、平面研削盤、硬質砥粒成形品等を用いる方法等により研削できる。本発明の硬化性樹脂組成物の硬化物は、研削装置を使用すると、当該硬質回転刃を回転させながら、固定支持された配線基板の上面に沿って移動させることによって、上面を平坦化することができる。また、研磨の方法としては、ベルトサンダ、バフ研磨等により軽く研磨する方法が挙げられる。
The cured product of the curable resin composition of the present invention is excellent in various physical properties such as heat resistance, light resistance, crack resistance, and colorability. For example, a sealing material, a molding material, a coating material, an insulating material, a reflective material, and the like. It can be used as a material, and can be suitably used as a reflective material for light emitting elements such as LEDs.
Further, since the cured product of the curable resin composition of the present invention is excellent in grindability, a method of using a grinding apparatus having a hard rotating blade in which a plurality of hard blades made of diamond or the like are arranged in the radial direction of the rotating plate is used. Further, it can be ground by a method using a sander, a belt sander, a grinder, a surface grinder, a hard abrasive molded product or the like. When using a grinding apparatus, the cured product of the curable resin composition of the present invention flattens the upper surface by moving the hard rotary blade along the upper surface of the fixedly supported wiring board. Can do. Moreover, as a grinding | polishing method, the method of lightly grind | polishing by a belt sander, buff grinding | polishing, etc. is mentioned.

以下、実施例により本発明を更に説明するが、本発明はこれらの実施例によって限定されるものではない。尚、特に限定のない限り、実施例中の「部」や「%」は質量基準によるものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited by these Examples. Unless otherwise specified, “parts” and “%” in the examples are based on mass.

[合成例1](A)成分:化合物A1の合成
窒素ガス導入管、温度計、冷却管及び攪拌装置を備えた反応容器に2,4,6,8−テトラメチルシクロテトラシロキサン48.0g(0.20mol)、ジビニルベンゼン26.0g(0.20mol)、触媒として白金-ジビニルテトラメチルジシロキサン錯体0.002g及び溶媒としてトルエン150gを仕込み、105℃で2時間反応させた。その後、70℃で溶媒を減圧留去し化合物A1を得た。化合物A1のGPC分析により求めた重量平均分子量は10,000であり、H−NMR分析により求めた1gあたりのSiH基の含有量は5.40mmolである。
[Synthesis Example 1] Component (A): Synthesis of Compound A1 48.0 g of 2,4,6,8-tetramethylcyclotetrasiloxane was added to a reaction vessel equipped with a nitrogen gas introduction tube, a thermometer, a cooling tube and a stirring device. 0.20 mol), 26.0 g (0.20 mol) of divinylbenzene, 0.002 g of platinum-divinyltetramethyldisiloxane complex as a catalyst, and 150 g of toluene as a solvent were reacted at 105 ° C. for 2 hours. Thereafter, the solvent was distilled off under reduced pressure at 70 ° C. to obtain Compound A1. The weight average molecular weight calculated | required by GPC analysis of compound A1 is 10,000, and content of the SiH group per g calculated | required by H-NMR analysis is 5.40 mmol.

[合成例2](A)成分:化合物A2の合成
1,4−ジビニルベンゼンの配合量を26.0g(0.20mol)から18.2g(0.14mol)に変更した以外は、合成例1と同様の操作を行い、化合物A2を得た。化合物A2のGPC分析により求めた重量平均分子量は14000であり、H−NMR分析により求めた1gあたりのSiH基の含有量は7.85mmolである。
[Synthesis Example 2] Component (A): Synthesis of Compound A2 Synthesis Example 1 except that the amount of 1,4-divinylbenzene was changed from 26.0 g (0.20 mol) to 18.2 g (0.14 mol). The same operation was carried out to obtain compound A2. The weight average molecular weight calculated | required by GPC analysis of compound A2 is 14000, and content of the SiH group per g calculated | required by H-NMR analysis is 7.85 mmol.

[合成例3](A)成分:化合物A3の合成
1,4−ジビニルベンゼン26.0g(0.20mol)の代わりに1,4−ビス(ジメチルビニルシリル)ベンゼン49.3g(0.20mol)を使用した以外は合成例1と同様の操作を行い、化合物A3を得た。化合物A3のGPC分析により求めた重量平均分子量は10,000であり、H−NMR分析により求めた1gあたりのSiH基の含有量は2.27mmolである。
[Synthesis Example 3] Component (A): Synthesis of Compound A3 49.3 g (0.20 mol) of 1,4-bis (dimethylvinylsilyl) benzene instead of 26.0 g (0.20 mol) of 1,4-divinylbenzene The same procedure as in Synthesis Example 1 was carried out except that was used to obtain compound A3. The weight average molecular weight determined by GPC analysis of Compound A3 is 10,000, and the content of SiH groups per gram determined by H-NMR analysis is 2.27 mmol.

[合成例4](A)成分:化合物A4の合成
1,4−ジビニルベンゼン26.0g(0.20mol)の代わりに1,3,5−トリアリルイソシアヌレート29.9g(0.12mol)を使用した以外は合成例1と同様の操作を行い、化合物A3を得た。化合物A3のGPC分析により求めた重量平均分子量は8,000であり、H−NMR分析により求めた1gあたりのSiH基の含有量は5.65mmolである。
[Synthesis Example 4] Component (A): Synthesis of Compound A4 19.9 g (0.12 mol) of 1,3,5-triallyl isocyanurate was used instead of 26.0 g (0.20 mol) of 1,4-divinylbenzene. The same operation as in Synthesis Example 1 was carried out except that the compound A3 was used. The weight average molecular weight determined by GPC analysis of Compound A3 is 8,000, and the content of SiH groups per gram determined by H-NMR analysis is 5.65 mmol.

[合成例5](F)成分:化合物F2の合成
WO2011/155459号公報の合成例1の方法に準じて(1/10のスケール)、フェニルトリメトキシシラン19.8g(0.1mol)、ビニルトリメトキシシラン7.4g(0.05mol)、メチルトリメトキシシラン6.8g(0.05mol)及びジメチルジメトキシシラン3.0g(0.025mol)を用いてケイ素含有重合体である化合物F2を得た(ビニル基含量:1.05mmol/g)。
[Synthesis Example 5] Component (F): Synthesis of Compound F2 According to the method of Synthesis Example 1 of WO2011 / 155559 (scale of 1/10), 19.8 g (0.1 mol) of phenyltrimethoxysilane, vinyl Compound F2 which is a silicon-containing polymer was obtained using 7.4 g (0.05 mol) of trimethoxysilane, 6.8 g (0.05 mol) of methyltrimethoxysilane and 3.0 g (0.025 mol) of dimethyldimethoxysilane. (Vinyl group content: 1.05 mmol / g).

[実施例1〜8及び比較例1〜6]硬化性樹脂組成物の調製及び評価
以上の合成例で得られた各化合物、及び下記化合物を用い、[表1]に示す組成で、(A)成分〜(F)成分等を配合して、本発明及び比較用の硬化性樹脂組成物を得た。得られた硬化性樹脂組成物について、シェア硬度、全反射率、被研削性及び密着性の評価を、それぞれ以下に示す方法で行った。
[Examples 1 to 8 and Comparative Examples 1 to 6] Preparation and Evaluation of Curable Resin Composition Using the respective compounds obtained in the above synthesis examples and the following compounds, the compositions shown in [Table 1] (A ) Component- (F) component etc. were mix | blended and the curable resin composition for this invention and a comparison was obtained. About the obtained curable resin composition, shear hardness, total reflectance, grindability, and evaluation of adhesion were performed by the methods shown below.

<硬化性樹脂組成物のその他の原料>
(B)成分
化合物B1:

Figure 2015012141
(ビニル基含量:0.173mmol/g)
化合物B2:
Figure 2015012141
(ビニル基含量:0.177mmol/g)
(C)成分
C1:2,5−ジメチル−2,5−ジ(t−ブチルパ−オキシ)ヘキサン
(D)成分
D1:ルチル型酸化チタン(平均粒径0.25μm)
D2:球状シリカ(平均粒径5μm)
D3:酸化亜鉛(平均粒径10μm)
(E)成分
化合物E1:1,1,5,5−テトラメチル−3,3−ジフェニル−1,5−ジビニルトリシロキサン
(ビニル基含量:5.20mmol/g)
混合物E2:1,1,5,5−テトラメチル−3,3−ジフェニル−1,5−ジビニルトリシロキサンと1,1,7,7−テトラメチル−3,3,5,5−テトラフェニル−1,7−ジビニルトリシロキサンの質量比2:1混合物(ビニル基含量:5.00mmol/g)
(F)その他
F1:白金-ジビニルテトラメチルジシロキサン錯体
F3:2,4,6,8−テトラメチル−2,4,6,8−テトラビニルシクロテトラシロキサン(ビニル基含量:2.09mmol/g)
F4:プロピレングリコールモノメチルエーテルアセテート(溶剤として使用)<Other raw materials of curable resin composition>
(B) Component Compound B1:
Figure 2015012141
(Vinyl group content: 0.173 mmol / g)
Compound B2:
Figure 2015012141
(Vinyl group content: 0.177 mmol / g)
(C) Component C1: 2,5-Dimethyl-2,5-di (t-butylperoxy) hexane (D) Component D1: Rutile type titanium oxide (average particle size 0.25 μm)
D2: Spherical silica (average particle size 5 μm)
D3: Zinc oxide (average particle size 10 μm)
Component (E) Compound E1: 1,1,5,5-tetramethyl-3,3-diphenyl-1,5-divinyltrisiloxane (vinyl group content: 5.20 mmol / g)
Mixture E2: 1,1,5,5-tetramethyl-3,3-diphenyl-1,5-divinyltrisiloxane and 1,1,7,7-tetramethyl-3,3,5,5-tetraphenyl- 1,7-divinyltrisiloxane mass ratio 2: 1 mixture (vinyl group content: 5.00 mmol / g)
(F) Others F1: Platinum-divinyltetramethyldisiloxane complex F3: 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (vinyl group content: 2.09 mmol / g )
F4: Propylene glycol monomethyl ether acetate (used as solvent)

Figure 2015012141
Figure 2015012141

<シェア硬度>
〔試験片の作成〕
直径10cmのガラスシャーレに硬化後の厚さが10mmとなるように実施例1〜8又は比較例1〜5の硬化性樹脂組成物を流し込み、150℃の恒温槽で1時間硬化して、硬化物を、容器から取り出し試験片を調製した。
〔硬度測定方法〕
JIS Z2246(ショア硬さ試験−試験方法)に準拠し、ショア硬度を測定した。結果を[表2]に示す。
<全反射率>
シェア硬度の測定に用いた試験片について、紫外可視分光光度計により300〜800nmにおける全反射率を測定した。なお測定には積分球を用いた。結果を[表2]に示す。
<Share hardness>
[Preparation of specimen]
Pour the curable resin composition of Examples 1-8 or Comparative Examples 1-5 into a glass petri dish with a diameter of 10 cm so that the thickness after curing is 10 mm, and cure for 1 hour in a thermostatic bath at 150 ° C. The thing was taken out from the container and the test piece was prepared.
[Hardness measurement method]
Shore hardness was measured according to JIS Z2246 (Shore hardness test-test method). The results are shown in [Table 2].
<Total reflectance>
About the test piece used for the measurement of shear hardness, the total reflectance in 300-800 nm was measured with the ultraviolet visible spectrophotometer. An integrating sphere was used for the measurement. The results are shown in [Table 2].

<被研削性>
〔試験片の作成〕
幅1mm、長さ20mm、間隔1mmで5本の銅線パターンが形成されたガラスエポキシ基板上に、バーコーターを用いて膜厚が100μmとなるように実施例1〜8及び比較例1〜5の硬化性組成物を塗布した。この基板を150℃の恒温槽で1時間加熱することにより、試験片を調製した。
〔被研削性評価方法〕
試験片の表面を、P220の研磨紙で、銅線パターンが現れるまで研磨し、銅線パターンの近傍の樹脂部の状態により下記の基準により被研削性を評価した。結果を[表2]に示す。
・評価基準
○:凹部が見られず、被研削性に優れる。
△:凹部がやや見られ、被研削性にやや劣る。
×:凹部が多く、被研削性に劣る。
<Grindability>
[Preparation of specimen]
Examples 1 to 8 and Comparative Examples 1 to 5 have a thickness of 100 μm using a bar coater on a glass epoxy substrate on which 5 copper wire patterns are formed with a width of 1 mm, a length of 20 mm, and an interval of 1 mm. The curable composition was applied. A test piece was prepared by heating the substrate in a thermostatic bath at 150 ° C. for 1 hour.
[Grindability evaluation method]
The surface of the test piece was polished with a P220 polishing paper until a copper wire pattern appeared, and the grindability was evaluated according to the following criteria according to the state of the resin part in the vicinity of the copper wire pattern. The results are shown in [Table 2].
-Evaluation standard (circle): A recessed part is not seen but it is excellent in grindability.
(Triangle | delta): A recessed part is seen a little and it is a little inferior to grindability.
X: There are many recessed parts and it is inferior to grindability.

<密着性>
〔試験片の作成〕
幅50mm、長さ100mm及び厚さ0.3mmの銅板上に、バーコーターを用いて膜厚が100μmとなるように実施例1〜8及び比較例1〜5の硬化性組成物を塗布後、150℃の恒温槽で1時間加熱することにより、試験片を調製した。結果を[表2]に示す。〔密着性評価方法〕
試験片の硬化膜の中央部分に1mm間隔で縦6本、横6本の格子状のクロスカットを入れる。この試験片を外径140mmの硬質塩化ビニル管に押し付けてクロスカット部分を反らせ、クロスカット部分の剥離等の有無により、下記の基準により密着性を評価した。結果を[表2]に示す。
・評価基準
○:剥離が見られず、密着性に優れる。
△:1〜10箇所で剥離が見られ、密着性にやや劣る。
×:11箇所以上で剥離が見られ、密着性に劣る。
<Adhesion>
[Preparation of specimen]
After applying the curable compositions of Examples 1 to 8 and Comparative Examples 1 to 5 on a copper plate having a width of 50 mm, a length of 100 mm and a thickness of 0.3 mm using a bar coater, the film thickness becomes 100 μm. A test piece was prepared by heating in a thermostatic bath at 150 ° C. for 1 hour. The results are shown in [Table 2]. [Adhesion evaluation method]
A grid-like crosscut of 6 vertical and 6 horizontal grids is made at 1 mm intervals in the center of the cured film of the test piece. The test piece was pressed against a hard polyvinyl chloride tube having an outer diameter of 140 mm to warp the crosscut portion, and the adhesion was evaluated according to the following criteria depending on whether or not the crosscut portion was peeled off. The results are shown in [Table 2].
-Evaluation standard (circle): Peeling is not seen but it is excellent in adhesiveness.
(Triangle | delta): Peeling is seen in 10-10 places, and it is somewhat inferior to adhesiveness.
X: Peeling is observed at 11 or more places, and the adhesion is poor.

Figure 2015012141
Figure 2015012141

Claims (4)

(A)成分として、下記一般式(1)で表わされる基及び/又は下記一般式(2)で表わされる基が、下記一般式(3)〜(7)の何れかで表わされる化合物からビニル基を除いた残基で連結されたシロキサン化合物、(B)成分として、下記一般式(8)で表わされる鎖状シロキサン化合物、(C)成分として、熱ラジカル発生剤、及び(D)成分として、無機フィラーを含有する硬化性樹脂組成物。
Figure 2015012141
(式中、R1は炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わし、aは2〜5の数を表わす。但し、R1は全て同一の基でもよいし、異なる基でもよい。)
Figure 2015012141
(式中、bはa−b+1が0〜4の数となる2〜6の数を表わし、R1及びaは上記一般式(1)と同義である。)
Figure 2015012141
(式中、cは1又は2の数を表わす。)
Figure 2015012141
(式中、dは1又は2の数を表わす。)
Figure 2015012141
(式中、R2は炭素数1〜4のアルキル基、グリシジル基又はアリル基を表わす。)
Figure 2015012141
(式中、R3〜R5は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わし、eは1又は2の数を表わし、f及びgは各々独立して0〜6の数を表わす。)
Figure 2015012141
(式中、R6及びR7は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わす。)
Figure 2015012141
(式中、R8及びR9は各々独立して炭素数1〜4のアルキル基を表わし、R10は炭素数6〜10のアリール基を表わし、R11は炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表わし、h及びjは一般式(8)で表される鎖状シロキサン化合物の質量平均分子量を1000〜100万とする数である。)
As the component (A), a group represented by the following general formula (1) and / or a group represented by the following general formula (2) is converted from a compound represented by any one of the following general formulas (3) to (7) to vinyl. As a siloxane compound linked by a residue excluding a group, as a component (B), a chain siloxane compound represented by the following general formula (8), as a component (C), as a thermal radical generator, and as a component (D) A curable resin composition containing an inorganic filler.
Figure 2015012141
(In the formula, R 1 represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, and a represents a number from 2 to 5. However, R 1 may all be the same group, Different groups may be used.)
Figure 2015012141
(In the formula, b represents a number of 2 to 6 in which ab + 1 is a number of 0 to 4, and R 1 and a have the same meaning as in the general formula (1).)
Figure 2015012141
(Wherein c represents a number of 1 or 2)
Figure 2015012141
(In the formula, d represents a number of 1 or 2.)
Figure 2015012141
(In the formula, R 2 represents an alkyl group having 1 to 4 carbon atoms, a glycidyl group, or an allyl group.)
Figure 2015012141
(In the formula, R 3 to R 5 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, e represents a number of 1 or 2, and f and g are each independently And represents a number from 0 to 6.)
Figure 2015012141
(Wherein R 6 and R 7 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms.)
Figure 2015012141
(In the formula, R 8 and R 9 each independently represent an alkyl group having 1 to 4 carbon atoms, R 10 represents an aryl group having 6 to 10 carbon atoms, and R 11 represents an alkyl group having 1 to 4 carbon atoms. Alternatively, it represents an aryl group having 6 to 10 carbon atoms, and h and j are numbers that make the mass average molecular weight of the chain siloxane compound represented by the general formula (8) 1000 to 1,000,000.)
更に、(E)成分として、下記一般式(9)で表わされるシロキサン化合物を含有する請求項1に記載の硬化性樹脂組成物。
Figure 2015012141
(式中、R12及びR13は各々独立して炭素数6〜10のアリール基を表わし、kは1〜5の数を表わす。)
Furthermore, the curable resin composition of Claim 1 containing the siloxane compound represented by following General formula (9) as (E) component.
Figure 2015012141
(Wherein R 12 and R 13 each independently represents an aryl group having 6 to 10 carbon atoms, and k represents a number of 1 to 5)
(D)成分である無機フィラーが白色無機顔料である請求項1又は2に記載の白色硬化性樹脂組成物。   The white curable resin composition according to claim 1 or 2, wherein the inorganic filler as component (D) is a white inorganic pigment. 請求項3に記載の白色硬化性樹脂組成物を硬化した反射コーティング材。   A reflective coating material obtained by curing the white curable resin composition according to claim 3.
JP2015528235A 2013-07-24 2014-07-14 Curable resin composition Active JP6484172B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013153498 2013-07-24
JP2013153498 2013-07-24
PCT/JP2014/068684 WO2015012141A1 (en) 2013-07-24 2014-07-14 Curable resin composition

Publications (2)

Publication Number Publication Date
JPWO2015012141A1 true JPWO2015012141A1 (en) 2017-03-02
JP6484172B2 JP6484172B2 (en) 2019-03-13

Family

ID=52393185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015528235A Active JP6484172B2 (en) 2013-07-24 2014-07-14 Curable resin composition

Country Status (5)

Country Link
JP (1) JP6484172B2 (en)
KR (1) KR102215439B1 (en)
CN (1) CN104995260B (en)
TW (1) TWI631169B (en)
WO (1) WO2015012141A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490973B2 (en) * 2015-01-29 2019-03-27 旭化成株式会社 Organopolysiloxane and thermosetting resin composition containing the same
KR20200117978A (en) * 2018-02-13 2020-10-14 가부시키가이샤 아데카 Coating composition, method for curing the composition, method for producing barrier film and cured product
JP6981933B2 (en) * 2018-08-15 2021-12-17 信越化学工業株式会社 A curable composition, a cured product of the composition, and a semiconductor device using the cured product.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090609A1 (en) * 2005-02-24 2006-08-31 Adeka Corporation Silicon-containing curable composition and its cured product
WO2008133228A1 (en) * 2007-04-23 2008-11-06 Adeka Corporation Silicon-containing compound, curable composition and cured product
WO2008133227A1 (en) * 2007-04-23 2008-11-06 Adeka Corporation Silicon-containing compound, curable composition and cured product
WO2008133229A1 (en) * 2007-04-23 2008-11-06 Adeka Corporation Silicon-containing compound, curable composition and cured product
JP2010018719A (en) * 2008-07-11 2010-01-28 Adeka Corp Silicon-containing curable composition
WO2011048894A1 (en) * 2009-10-21 2011-04-28 株式会社Adeka Silicon-containing curable composition and cured product thereof
WO2011155459A1 (en) * 2010-06-11 2011-12-15 株式会社Adeka Silicon-containing curable composition, cured product of the silicon-containing curable composition and lead frame substrate formed of the silicon-containing curable composition
WO2013021717A1 (en) * 2011-08-10 2013-02-14 株式会社Adeka Silicon-containing curable composition and cured product of same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303097B2 (en) 2005-10-07 2013-10-02 日立化成株式会社 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP2009194222A (en) 2008-02-15 2009-08-27 Denki Kagaku Kogyo Kk White alkali-developable photocurable and thermosetting solder resist composition, and metal-base circuit substrate using the same
JP5532384B2 (en) 2009-02-19 2014-06-25 山栄化学株式会社 Si-based resin-containing curable resin composition
JP2011105869A (en) 2009-11-18 2011-06-02 Kaneka Corp White curable composition and reflective coating material
JP5522116B2 (en) 2011-04-28 2014-06-18 信越化学工業株式会社 Addition-curing silicone composition and optical semiconductor device using the same
JP6121099B2 (en) 2011-05-11 2017-04-26 株式会社ダイワ工業 Light-emitting element mounting substrate and manufacturing method thereof
CN103125380A (en) * 2011-11-30 2013-06-05 江苏美尚生态景观股份有限公司 Method for restraining butterfly orchid tissue from browning
KR20130075154A (en) 2011-12-27 2013-07-05 대우조선해양 주식회사 Chilling module and method using carbon dioxide
JP2013159776A (en) * 2012-02-09 2013-08-19 Adeka Corp Silicon-containing curable white resin composition, cured product thereof, and optical semiconductor package and reflecting material using the cured product
JP5985867B2 (en) * 2012-04-18 2016-09-06 株式会社Adeka Silicon-containing curable composition and cured product thereof
JP2013256587A (en) * 2012-06-12 2013-12-26 Adeka Corp Curable composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090609A1 (en) * 2005-02-24 2006-08-31 Adeka Corporation Silicon-containing curable composition and its cured product
WO2008133228A1 (en) * 2007-04-23 2008-11-06 Adeka Corporation Silicon-containing compound, curable composition and cured product
WO2008133227A1 (en) * 2007-04-23 2008-11-06 Adeka Corporation Silicon-containing compound, curable composition and cured product
WO2008133229A1 (en) * 2007-04-23 2008-11-06 Adeka Corporation Silicon-containing compound, curable composition and cured product
JP2010018719A (en) * 2008-07-11 2010-01-28 Adeka Corp Silicon-containing curable composition
WO2011048894A1 (en) * 2009-10-21 2011-04-28 株式会社Adeka Silicon-containing curable composition and cured product thereof
WO2011155459A1 (en) * 2010-06-11 2011-12-15 株式会社Adeka Silicon-containing curable composition, cured product of the silicon-containing curable composition and lead frame substrate formed of the silicon-containing curable composition
WO2013021717A1 (en) * 2011-08-10 2013-02-14 株式会社Adeka Silicon-containing curable composition and cured product of same

Also Published As

Publication number Publication date
TWI631169B (en) 2018-08-01
KR20160034242A (en) 2016-03-29
WO2015012141A1 (en) 2015-01-29
KR102215439B1 (en) 2021-02-16
CN104995260A (en) 2015-10-21
JP6484172B2 (en) 2019-03-13
CN104995260B (en) 2018-09-11
TW201510051A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6135675B2 (en) Epoxy and alkoxysilyl group-containing silsesquioxane and composition thereof
JP5336161B2 (en) Metal oxide fine particle-containing curable resin composition, cured product thereof, and light diffusing material
JP5426064B2 (en) Curable composition
JP6148204B2 (en) Curable composition and semiconductor device
JP5625210B2 (en) Curable composition
WO2012164636A1 (en) Silicone composition for sealing semiconductor
JP6484172B2 (en) Curable resin composition
JP6227884B2 (en) Curable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode
JP5367962B2 (en) Curable composition
JP6337336B2 (en) Alkoxysilyl group-containing silsesquioxane and composition thereof
WO2015163355A1 (en) Curable resin composition, cured product thereof, glycoluril derivative, and method for producing same
JP6038824B2 (en) Curable composition, semiconductor device, and organosilicon compound containing ester bond
WO2015178475A1 (en) Branched-chain polyorganosiloxycyl alkylene, method for producing same, curable resin composition, and semiconductor device
JP5442941B2 (en) Curable composition
JP5972544B2 (en) Organopolysiloxane composition and cured product
JP2011105869A (en) White curable composition and reflective coating material
JP5829466B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5620151B2 (en) Optical device
JP5943104B2 (en) Curable composition, cured film, polysiloxane, and optical semiconductor device
JP6766334B2 (en) Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors.
JP6726517B2 (en) Resin composition for LED sealing agent and LED sealing agent
JP2005330405A (en) Method of improving surface smoothness of cured product and cured product with improved surface smoothness
JP6075939B2 (en) Polysiloxane composition
JP2012224743A (en) Polysiloxane modified compound with polyhedral structure, composition containing the same, and cured product obtained by curing the composition
JP2013035880A (en) Curing agent for epoxy resin, and epoxy resin composition containing the curing agent for epoxy resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R150 Certificate of patent or registration of utility model

Ref document number: 6484172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150