JPWO2014054390A1 - 微粒子センサ - Google Patents

微粒子センサ Download PDF

Info

Publication number
JPWO2014054390A1
JPWO2014054390A1 JP2014510338A JP2014510338A JPWO2014054390A1 JP WO2014054390 A1 JPWO2014054390 A1 JP WO2014054390A1 JP 2014510338 A JP2014510338 A JP 2014510338A JP 2014510338 A JP2014510338 A JP 2014510338A JP WO2014054390 A1 JPWO2014054390 A1 JP WO2014054390A1
Authority
JP
Japan
Prior art keywords
fine particle
particle sensor
electrode
needle
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014510338A
Other languages
English (en)
Other versions
JP6285353B2 (ja
Inventor
杉山 武史
武史 杉山
雅幸 本村
雅幸 本村
佳祐 田島
佳祐 田島
松岡 俊也
俊也 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of JPWO2014054390A1 publication Critical patent/JPWO2014054390A1/ja
Application granted granted Critical
Publication of JP6285353B2 publication Critical patent/JP6285353B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/68Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas
    • G01N27/70Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas and measuring current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

通気管(EP)内を流通する被測定ガス(EG)中の微粒子(S)を検知する微粒子センサ(1)は、通気管(EP)内に突出して内部空間(MX)を構成し、被測定ガス(EG)を内部空間(MX)に取り入れる取入口(43I)、及び取入口(43I)から取り入れた取入ガス(EGI)を内部空間(MX)から排出する排出口(48O)を含む空間形成部(12)と、気中放電でイオン(CP)を生成するイオン源(15)と、を備える。空間形成部(12)は、通気管(EP)内を流通する被測定ガス(EG)で排出口(48O)に生じた負圧により、内部空間(MX)内の取入ガス(EGI)を排出口(48O)から排出すると共に、被測定ガス(EG)を取入口(43I)から内部空間(MX)内に取り入れて、取入ガス(EGI)とイオン源(15)で生成したイオン(CP)とを混合する形態に構成されてなる。

Description

本発明は、通気管内を流通する被測定ガス中の微粒子の量を検知する微粒子センサに関する。
内燃機関(例えば、ディーゼルエンジン、ガソリンエンジン)では、その排気ガス中にススなどの微粒子を含むことがある。このような微粒子を含む排気ガスは、フィルタで微粒子を捕集して浄化することが行われている。また、必要に応じてフィルタを高温にすることで、このフィルタに蓄積した微粒子を燃焼させて除去することも行われる。しかるに、フィルタが破損するなどの不具合を生じた場合には、未浄化の排気ガスが直接、フィルタの下流に排出されることとなる。そこで、排気ガス中の微粒子の量を直接計測したり、フィルタの不具合を検知すべく、排気ガス中の微粒子を検知可能な微粒子センサが求められている。
例えば、特許文献1には、粒子測定方法及び装置が開示されている。この特許文献1では、イオン化された正のイオン粒子を含む気体を、排気管からチャネル内に取り込んだ微粒子を含む排気ガスと混合して微粒子を帯電させ、その後、排気管に排出する。そして、排出された帯電微粒子の量に応じて流れる電流(信号電流)を検知して、微粒子の濃度を検知する手法が開示されている。
特表2011−513742号公報
ところで、このような微粒子センサにおいては、排気ガス(被測定ガス)の取り入れや排出、イオンとの混合等を行うため、排気管に装着される検知部の作動に圧縮空気を要する。このため、この微粒子センサを用いるシステムは、ポンプ等の圧縮空気を生成する圧縮空気源が必要である。ただし、このような圧縮空気源を用いることにより、システム全体が大型化し、コストアップにもなる。また、圧縮空気源としてポンプ等を用いた場合は、その寿命も問題となっていた。
本発明は、かかる問題点に鑑みてなされたものであって、圧縮空気源を用いることなく、被測定ガスの取り入れや排出を行う微粒子センサを提供するものである。
上記課題を解決するための本発明の一態様は、通気管に装着される検知部を有し、上記通気管内を流通する被測定ガス中の微粒子の量を検知する微粒子センサであって、上記検知部は、当該微粒子センサを上記通気管へ装着した状態において、上記通気管内に突出して内部空間を構成する空間形成部であって、上記被測定ガスを上記内部空間に取り入れる取入口、及び上記取入口から取り入れた取入ガスを上記内部空間から排出する排出口を含む空間形成部と、気中放電でイオンを生成するイオン源と、を備え、上記空間形成部は、上記通気管内を流通する上記被測定ガスで上記排出口に生じた負圧により、上記内部空間内の上記取入ガスを上記排出口から排出すると共に、上記被測定ガスを上記取入口から上記内部空間内に取り入れて、上記取入ガスと上記イオン源で生成した上記イオンとを混合する形態に構成されてなる微粒子センサである。
この微粒子センサでは、空間形成部が、通気管内を流通する被測定ガスで排出口に生じた負圧により、内部空間内の取入ガスを排出口から排出すると共に、被測定ガスを取入口から内部空間内に取り入れて、取入ガスとイオン源で生成したイオンとを混合する形態に構成されている。従って、この微粒子センサでは、ポンプ等の圧縮空気源を用いることなく、被測定ガスの取り入れや排出を行うことができる。
なお、空間形成部の形態としては、具体的には、例えば、先細の形状とされた筒状の先端部分に排出口を設けるなど、いわゆるベンチュリ効果により、排出口の外側で被測定ガスの流速を上昇させて、これにより、排出口に負圧を生じさせるものが挙げられる。
さらに、上述の微粒子センサであって、前記空間形成部は、自身の先端に前記排出口が開口し、これよりも基端側の外周面に前記取入口が開口してなり、前記装着した状態において、前記通気管内で、自身の軸線が上記通気管の軸線である管軸線に交差する方向に延びる形状を有する微粒子センサとすると良い。
このセンサでは、上述のように、空間形成部を、管軸線に交差する方向に延びる形状としており、しかも、その先端に排出口が開口している。これにより、排出口に負圧が生じ易くなり、被測定ガスの取り入れと排出をより適切に行うことができる。
なお、空間形成部の形状としては、例えば、円筒状などが挙げられる。
さらに、上述の微粒子センサであって、前記空間形成部は、先細の形状をなし、自身の先端に前記排出口が位置し、前記装着した状態において、当該排出口がなす開口の向きが前記管軸線に直交する方向を向く形態のテーパ部を有する微粒子センサとすると良い。
このセンサでは、空間形成部は、先細の形状をなすテーパ部を有しており、センサを通気管に装着した状態において、排出口がなす開口の向き、即ち、開口(排出口)で構成される面(仮想面)が向く方向が通気管の管軸線に直交する方向を向いている。このようなテーパ部を設けることにより、さらに効率よく排出口に負圧を生じさせることができ、被測定ガスの取り入れと排出がより適切に行える。
さらに、上述の微粒子センサであって、前記空間形成部は、前記取入口が、前記外周面の周方向に分散して複数配置されてなる微粒子センサとすると良い。
このセンサでは、空間形成部は、取入口が、基端側の外周面の周方向に分散して複数配置されている。取入口が複数配置されていることにより、より多くの被測定ガスを取り入れて、取入口から排出口に向かう取入ガスの流量を増やすことができ、被測定ガスの取り入れと排出をより適切に行うことができる。さらに、複数の取入口を外周面の周方向に均等に設ければ、例えば、通気管に微粒子センサをネジ込み式で固定するような場合であっても、通気管内における取入口の向きが問題となることがない。
さらに、上述のいずれかの微粒子センサであって、前記イオン源は、前記内部空間内に気中放電を生じさせて、前記イオンを上記内部空間内に生成する内部イオン源である微粒子センサとすると良い。
このセンサでは、イオン源は、内部空間内に気中放電を生じさせて、イオンをこの内部空間内に生成している。これにより、生成されたイオンの多くを取入ガスと混合することができ、取入ガス中の微粒子により多くのイオンを付着させることができる。また、生成したイオンを内部空間内に、別途導き入れる必要がないので、このために圧縮空気源やイオンの噴射孔等を用意する必要がない。
さらに、上述のいずれかの微粒子センサであって、前記検知部は、前記イオンのうち前記取入ガスとの混合で前記微粒子に付着しなかった浮遊イオンを捕集する捕集極と、前記内部空間内に配置されて、上記捕集極による上記浮遊イオンの捕集を補助する補助電極と、を備える微粒子センサとすると良い。
取入ガスとイオン源で生成したイオンとを混合すると、取入ガス中の微粒子にイオンが付着し、このイオンが付着した微粒子(以下、帯電微粒子という)が排出口から排出される。微粒子センサでは、この帯電微粒子に付着して排出されたイオンの量を、信号電流として検知することにより、被測定ガス中の微粒子の量を検知する。しかし、イオン源で生成されたイオンのうち、微粒子に付着しなかった浮遊イオンが、そのまま排出口から排出されると、微粒子の量に依存しない信号電流が増加し、微粒子の量を適切に検知できなくなる。そこで、浮遊イオンがそのまま排出されないように捕集すべく捕集極を設けている。加えてこのセンサでは、検知部は、捕集極のほか、補助電極を備えている。これにより、捕集極で確実に浮遊イオンを捕集することができるので、より適切に微粒子の量を検知することができる。
また、前述のいずれかの微粒子センサであって、前記検知部は、絶縁性のセラミック基体と、このセラミック基体と一体に形成されており、上記セラミック基体から露出し、先端が針状の針状電極部、及び、上記セラミック基体内に位置し、上記針状電極部に導通するリード部、を含む放電電極部と、を有し、前記空間形成部内に配置されて、上記針状電極部で気中放電を生じさせ、前記イオン源をなすセラミック素子を備える微粒子センサとすると良い。
このセンサでは、検知部が、絶縁性のセラミック基体と放電電極部とが一体に形成され、空間形成部内に配置されて、イオン源をなすセラミック素子を備えている。このセラミック素子は、放電電極部のうち、針状電極部がセラミック基体から露出しており、この露出した針状電極部で気中放電を生じさせて、イオン源をなす。このように、このセンサでは、イオン源がセラミック素子に予め一体に形成されているので、イオン源の検知部への組み込みが容易となり、低コストで生産性の高いセンサとすることができる。なお、セラミック素子をなすセラミック基体の形状としては、板状のほか、円柱状、円筒状、四角柱状、六角柱状などの形状が挙げられる。このうち、板状とすると、セラミックのシートの積層、切断により形成しやすく、セラミック素子を安価にできる。
さらに、上述のいずれかの微粒子センサであって、前記針状電極部は、針状をなす針状先端部を複数有する形態である微粒子センサとすると良い。
このセンサでは、針状電極部が、針状先端部を複数有している。これにより、気中放電を生じさせる部位が増加するので、より効率良く気中放電を生じさせて、イオンを生成することができる。また、針状先端部の損耗に対して、耐久性が向上し、長期にわたり安定した気中放電を行わせることができる。
さらに、上述のいずれかの微粒子センサであって、前記検知部は、前記イオンのうち前記取入ガスとの混合で前記微粒子に付着しなかった浮遊イオンを捕集する捕集極を備え、前記セラミック素子は、前記針状電極部よりも前記排出口寄りの部位に、上記捕集極による上記浮遊イオンの捕集を補助する補助電極を有する微粒子センサとすると良い。
このセンサは、捕集極のほか、セラミック素子の針状電極部よりも排出口寄りの部位に、補助電極を有している。これにより、捕集極で確実に浮遊イオンを捕集することができる。
さらに、上述の微粒子センサであって、前記補助電極は、前記セラミック基体内に埋設されてなる微粒子センサとすると良い。
このセンサでは、補助電極はセラミック基体内に埋設されている。これにより、補助電極をセラミック基体で保護し、補助電極の腐食などを防止することができる。
さらに、上述のいずれかの微粒子センサであって、前記セラミック素子は、前記針状電極部を加熱するヒータを有する微粒子センサとすると良い。
このセンサでは、セラミック素子はヒータを有している。これにより、セラミック素子から露出する針状電極部及びこの付近に付着した水滴や煤等の異物をヒータで加熱することにより除去し、イオン源に生じた絶縁性の低下を回復することができる。
さらに、上述の微粒子センサであって、前記ヒータは、前記セラミック基体内に埋設されてなる微粒子センサとすると良い。
このセンサでは、ヒータはセラミック基体内に埋設されている。これにより、ヒータがセラミック基体で保護され、安定した特性を維持できる。
さらに、上述のいずれかの微粒子センサであって、前記セラミック素子は、同時焼成により形成されてなる微粒子センサとすると良い。
このセンサでは、セラミック素子は、同時焼成により形成されている。これにより、放電電極部等とセラミック基体とを良好に一体化したセラミック素子を、容易に得ることができる。
実施形態にかかり、車両に搭載したエンジンの排気管に微粒子センサを含む微粒子検知システムを適用した状態を説明する説明図である。 実施形態にかかる微粒子センサを含む微粒子検知システムの概略構成を示す説明図である。 実施形態にかかる微粒子センサの構造を示す縦断面図である。 実施形態にかかる微粒子センサの構造を示す断面図であって、図3の断面とは直交する縦断面における縦断面図である。 実施形態にかかる微粒子センサのうち、微粒子帯電部内での、微粒子の取り入れ、帯電、排出の様子を模式的に説明する説明図である。 変形形態にかかる微粒子センサの構造を示す縦断面図である。 変形形態にかかる微粒子センサのうち、セラミック素子の全体を示す斜視図である。 変形形態にかかる微粒子センサのうち、セラミック素子の構造を示す分解斜視図である。 変形形態にかかかる微粒子センサのうち、微粒子帯電部内での、微粒子の取り入れ、帯電、排出の様子を模式的に説明する説明図である。
本実施形態に係る微粒子センサ1を含む微粒子検知システム2について、図面を参照して説明する。本実施形態の微粒子センサ1は、車両AMに搭載したエンジンENG(内燃機関)の排気管EPに装着され、排気管EP内を流れる排気ガスEG中の微粒子S(ススなど)の量を検知する(図1参照)。微粒子センサ1は、排気ガスEGに接触する検知部10を有する。そして、この微粒子センサ1のほか、これに接続されるケーブル160、回路部201等により、微粒子検知システム2が構成されている(図2参照)。
微粒子センサ1の検知部10は、排気管EP(通気管)のうち、取付開口EPOが穿孔された取付部EPTに装着されている。そして、この検知部10の一部(図2中、取付部EPTよりも右側(先端側))は、取付開口EPOを通じて排気管EP内に配置されており、排気ガスEG(被測定ガス)に接触する。
回路部201は、排気管EP外で、複数の配線材からなるケーブル160を介して微粒子センサ1の検知部10に接続されている。この回路部201は、検知部10を駆動するとともに、後述する信号電流Isを検知する回路を有している。
先ず、図2を参照して、微粒子検知システム2の回路部201について、その電気回路上の構成を説明する。回路部201は、計測制御回路220と、イオン源電源回路210と、補助電極電源回路240とを有している。このうち、イオン源電源回路210は、第1電位PV1とされる第1出力端211と、第2電位PV2とされる第2出力端212とを有している。第2電位PV2は、具体的には、第1電位PV1に対して、正の高電位とされている。さらに具体的には、第2出力端212からは、第1電位PV1に対し、100kHz程度の正弦波を半波整流した、1〜2kV0-pの正のパルス電圧が出力される。なお、イオン源電源回路210は、その出力電流についてフィードバック制御され、自律的に、その実効値が予め定めた電流値(例えば、5μA)を保つ定電流電源を構成している。
一方、補助電極電源回路240は、第1出力端211に導通して第1電位PV1とされる補助第1出力端241と、補助電極電位PV3とされる補助第2出力端242とを有している。この補助電極電位PV3は、具体的には、第1電位PV1に対して、正の直流高電位であるが、第2電位PV2のピーク電位(1〜2kV)よりも低い、例えば、DC100〜200Vの電位にされている。
さらに、計測制御回路220の一部をなす信号電流検知回路230は、イオン源電源回路210の第1出力端211に接続する信号入力端231と、接地電位PVEに接続する接地入力端232とを有している。この信号電流検知回路230は、信号入力端231と接地入力端232の間を流れる信号電流Isを検知する。
加えて、この回路部201において、イオン源電源回路210及び補助電極電源回路240は、第1電位PV1とされる内側回路ケース250に包囲されている。イオン源電源回路210の第1出力端211、補助電極電源回路240の補助第1出力端241、及び、信号電流検知回路230の信号入力端231は、この内側回路ケース250に接続している。なお、本実施形態では、この内側回路ケース250は、イオン源電源回路210、補助電極電源回路240及び絶縁トランス270の二次側鉄心271Bを収容して包囲すると共に、ケーブル160の第1電位配線165に導通している。
一方、絶縁トランス270は、その鉄心271が、一次側コイル272を捲回した一次側鉄心271Aと、電源回路側コイル273及び補助電極電源側コイル274が捲回された二次側鉄心271Bとに、分離して構成されている。このうち、一次側鉄心271Aは、接地電位PVEに導通し、二次側鉄心271Bは、第1電位PV1(イオン源電源回路210の第1出力端211)に導通している。
さらに、イオン源電源回路210、補助電極電源回路240、内側回路ケース250、及び、信号電流検知回路230を含む計測制御回路220は、信号電流検知回路230の接地入力端232に導通して接地電位PVEとされる外側回路ケース260に包囲されている。さらに、信号電流検知回路230の接地入力端232の他、絶縁トランス270の一次側鉄心271Aは、この外側回路ケース260に接続している。なお、本実施形態では、この外側回路ケース260は、内部にイオン源電源回路210、補助電極電源回路240、内側回路ケース250、信号電流検知回路230を含む計測制御回路220及び絶縁トランス270の一次側鉄心271Aを収容して包囲すると共に、ケーブル160の接地電位配線167に導通している。
計測制御回路220は、レギュレータ電源PSを内蔵している。なお、このレギュレータ電源PSは、電源配線BCを通じて外部のバッテリBTで駆動される。また、計測制御回路220は、マイクロプロセッサ202を含み、通信線CCを介して内燃機関を制御する制御ユニットECUと通信可能となっており、前述した信号電流検知回路230の測定結果(信号電流Isの大きさ)、これを微粒子量などに換算した値、あるいは、微粒子量が所定量を超えたか否かなどの信号を、制御ユニットECUに送信可能となっている。これにより、制御ユニットECUで、内燃機関の制御や、フィルタ(図示しない)の不具合警告を発するなどの動作が可能となる。
外部からレギュレータ電源PSを通じて計測制御回路220に入力された電力の一部は、絶縁トランス270を介して、イオン源電源回路210及び補助電極電源回路240に分配される。なお、絶縁トランス270においては、計測制御回路220の一部をなす一次側コイル272と、イオン源電源回路210の一部をなす電源回路側コイル273と、補助電極電源回路240の一部をなす補助電極電源側コイル274と、鉄心271(一次側鉄心271A,二次側鉄心271B)とは、互いに絶縁されている。このため、計測制御回路220から、イオン源電源回路210及び補助電極電源回路240に電力を分配できる一方、これら同士間の絶縁を保つことができる。なお、本実施形態では、絶縁トランス270は、補助電極電源回路240に電力を供給する補助電極絶縁トランスをも兼ねている。
次いで、ケーブル160について説明する(図2参照)。このケーブル160の中心部分には、銅線からなる第2電位配線161及び補助電位配線162が配置されている。そして、これらの径方向周囲を、図示しない絶縁体層を挟んで、銅細線を編んだ編組からなる第1電位配線165及び接地電位配線167が包囲している。
前述したように、回路部201は、このケーブル160と接続している(図2参照)。具体的には、イオン源電源回路210の第2出力端212は第2電位PV2とされ、第2電位配線161に接続、導通している。また、補助電極電源回路240の補助第2出力端242は補助電極電位PV3とされ、補助電位配線162に接続、導通している。さらに、イオン源電源回路210の第1出力端211は第1電位PV1とされ、補助電極電源回路240の補助第1出力端241、信号電流検知回路230の信号入力端231、内側回路ケース250及び第1電位配線165に接続、導通している。加えて、信号電流検知回路230の接地入力端232は、外側回路ケース260及び接地電位配線167に接続、導通して、接地電位PVEとされている。
次いで、微粒子センサ1の検知部10について、その機械的構成を、図3,図4の縦断面図を参照して説明する。なお、図3,図4において図中上方を先端側とし、図中下方を基端側とする。また、図3,図4に図示しない基端側(図中下方)の部分については、機械的構成の説明を省略する。
前述したように、微粒子センサ1の検知部10は、エンジンENG(内燃機関)の排気管EP(通気管)のうち取付開口EPOを有する取付部EPTに装着され、排気ガスEG(被測定ガス)に接触する。この検知部10は、その電気的機能において、大別して、イオン源15、微粒子帯電部12、第1導通部材13、針状電極体20及び補助電極体50から構成されている。
ケーブル160の先端側(図3,図4において図示外)には、金属製で中空円筒状の内筒80が外嵌されている。内筒80は、ケーブル160の第1電位配線165に接続され、この第1電位配線165と導通し、第1電位PV1とされている。さらに、この内筒80の先端側には、図3,図4に示すように、後述する金属製の第2パイプホルダ61が嵌め込まれている。
また、ケーブル160の第2電位配線161の先端側(図3,図4において図示外)は、内筒80内で、針状電極体20の延出部21に接続されている。この針状電極体20は、タングステン線からなり、概略直棒状の延出部21と、その先端部分(図中上端部)に位置し、針状に尖った形態とされた針状先端部22とからなる。また、針状電極体20の延出部21は、その周囲をアルミナ等の絶縁セラミックからなる円筒状の針状電極絶縁パイプ75で被覆され、金属製の第1パイプホルダ60及び第2パイプホルダ61に穿孔した針状電極挿通孔60H,61H内に挿通されて、針状電極絶縁パイプ75と共に第1パイプホルダ60及び第2パイプホルダ61に保持されている。
加えて、ケーブル160の補助電位配線162の先端側(図3,図4において図示外)は、内筒80内で、補助電極体50の延出部51に接続されている。この補助電極体50は、ステンレス線からなり、概略直棒状の延出部51と、その先端側でU字状に曲げ返された曲げ返し部52と、補助電極部53(補助電極)とからなる。なお、補助電極部53の先端部分も針状に尖った形状とされ、針状先端部53Sとなっている。また、補助電極体50の延出部51は、その周囲をアルミナ等の絶縁セラミックからなる円筒状の補助電極絶縁パイプ77で被覆され、第1パイプホルダ60及び第2パイプホルダ61に穿孔した補助電極挿通孔60I,61I内に挿通されて、補助電極絶縁パイプ77と共に第1パイプホルダ60及び第2パイプホルダ61に保持されている。
さて、図3,図4に示す、第1パイプホルダ60及び第2パイプホルダ61は、いずれもステンレスからなる。このうち、第1パイプホルダ60は、概略円柱状の本体部63と、本体部63のうち基端側寄りの位置から径方向外側に膨出する円環状のホルダフランジ部66を有している。また、第2パイプホルダ61は、概略円柱状であり、第1パイプホルダ60の基端側に嵌め込まれて、これと一体をなす。また、これら第1パイプホルダ60及び第2パイプホルダ61には、それぞれ図中上下方向に延びる、針状電極挿通孔60H,61H、及び、補助電極挿通孔60I,61Iが穿孔されており、前述したように、針状電極挿通孔60H,61H内に針状電極体20の延出部21が、補助電極挿通孔60I,61I内に補助電極体50の延出部51が挿通、保持されている。また、第1パイプホルダ60は第2パイプホルダ61に、第2パイプホルダ61は内筒80に、それぞれ嵌め込まれ固定されると共に、これらは電気的にも互いに導通している。
さらに、第1パイプホルダ60の先端側(図中、上方)には、先端側が底となる有底円筒状の中継筒部材30が嵌め込まれている。この中継筒部材30も、ステンレスからなり、先端側の底部31と、この底部31の周縁から基端側に延出した円筒状の筒壁部33とからなる。このうち、底部31には、針状電極挿通孔30H、及び補助電極挿通孔30Iが穿孔されており、第1パイプホルダ60から先端側に向けて突出した針状電極体20の延出部21、及び補助電極体50の延出部51が、それぞれ挿通、保持されている。なお、この中継筒部材30は、第1パイプホルダ60に嵌め込まれ固定されると共に、電気的にも導通している。そして、この中継筒部材30のほか、第1パイプホルダ60,第2パイプホルダ61及び内筒80は、針状電極体20の延出部21及び補助電極体50の延出部51を包囲する第1導通部材13をなし、第1電位PV1とされている。
また、中継筒部材30の先端側の底部31には、取入混合部材40が嵌め込まれている。この取入混合部材40も、ステンレスからなり、自身の外周面をなす円筒状の壁部43と、この壁部43の先端側(図4中、上方)から内側に膨出して、肉厚とされた捕集極42とからなる。また、壁部43の基端側には、その周方向に分散して、複数(本実施形態では8個)の取入口43I(図4参照)が穿孔されている。この取入口43Iは、後述するように、排気ガスEGを、中継筒部材30の底部31と取入混合部材40とで形成される混合領域MX(後述する)に取り入れるための開口である。
また、この取入混合部材40の先端側には、蓋部材48が被せられている。この蓋部材48は、取入混合部材40の壁部43に繋がる筒状の側壁部47と、先端側の先端面48Sと、側壁部47から先端面48Sに向けて先細の形状をなすテーパ部48Tと、からなる。さらに、先端面48Sの中央には、取入混合部材40の軸線AX上に位置するように、排出口48Oが穿孔されている。なお、蓋部材48及び取入混合部材40は、中継筒部材30に嵌め込まれ固定されると共に、電気的にも導通して、第1電位PV1とされている。
また、取入混合部材40のうち、その先端側は、内側に膨出した捕集極42により、内側の空間が狭められた形態とされている。一方、基端側の壁部43の内部には、円柱状の空間が形成されている。これにより、中継筒部材30の底部31と、取入混合部材40の壁部43と、捕集極42との間で、概略円柱状の空間が形成される。この空間は、後述する混合領域MXのうち、第1混合領域MX1をなす。一方、取入混合部材40の捕集極42により狭められた空間は、第2混合領域MX2をなす。また、捕集極42よりも先端側(図中、上方)の蓋部材48内の空間は、排出口48Oに連通する排出路EXをなす。
なお、中継筒部材30の底部31のうち、針状電極挿通孔30Hに挿通された針状電極体20の針状先端部22は、混合領域MXの第1混合領域MX1内で、針状電極絶縁パイプ75から露出している。これにより、針状先端部22と、混合領域MXを構成する取入混合部材40の内周面40Mとの間に高電圧を印加すると、混合領域MX内に気中放電を生じて、大気中のN2,O2等を電離させ、正イオン(例えば、N3+,O2+。以下、イオンCPともいう)を生成することができる。
ところで、図4に示すように、取入混合部材40は、円筒状で、微粒子センサ1を排気管EPへ装着した状態において、排気管EP内で、自身の軸線AXが排気管EPの軸線である管軸線PJに直交する方向に延びている。また、取入混合部材40の先端側の蓋部材48の先端面48Sに排出口48Oが位置しており、この排出口48Oがなす開口の向き(開口(排出口48O)で構成される面(仮想面)が向く方向)も管軸線PJに直交する方向を向いている。加えて、蓋部材48には、排出口48Oの周囲に、先細の形状をなすテーパ部48Tが設けられている。また、排気ガスEGは、排気管EP内を、管軸線PJに沿って、図4中、右から左に向けて流通している。これにより、排気管EP内を流通する排気ガスEGが、蓋部材48及び取入混合部材40の周囲を通るとその流速が、排出口48Oの外側で上昇し、いわゆるベンチュリ効果により、排出口48Oに負圧を生じさせることができる。すると、この負圧により、混合領域MX内に取り入れられた取入排気ガスEGIが、排出路EXを経由して排出口48Oから排出される。さらにこれと共に、取入口43I周囲の排気ガスEGが、取入口43Iから混合領域MX内に取り入れられる。
一方、第1混合領域MX1内では、気中放電によりイオンCPが生成される。このため、取り入れられた取入排気ガスEGIは、混合領域MXでイオンCPと混合された上で、排出路EXを経由して、排出口48Oから排出される。
また、補助電極体50の延出部51及びこれを囲む補助電極絶縁パイプ77は、取入混合部材40内を、捕集極42よりも先端側(図中上方)まで延びて、延出部51に連なる曲げ返し部52が、蓋部材48内(排出路EX)に位置している。そして、基端側(図中下方)を向く補助電極部53(補助電極)は、取入混合部材40の捕集極42がなす第2混合領域MX2内に位置している。
また、図3に示すように、第1パイプホルダ60のホルダフランジ部66の先端側(図中上方)には、アルミナ等の絶縁セラミックからなり、第1パイプホルダ60の本体部63及び中継筒部材30との連結部分を取り囲む概略円筒状の第1絶縁スペーサ121が配置されている。また、ホルダフランジ部66の基端側(図中下方)にも、アルミナ等の絶縁セラミックからなり、第1パイプホルダ60のうち基端側の部分及び第2パイプホルダ61を取り囲む概略円筒状の第2絶縁スペーサ122が配置されている。さらに、これらの径方向周囲(図中左右方向)には、ステンレスからなる主体金具90が配置されている。
主体金具90は、筒状部91とフランジ部95とからなる。このうち、概略円筒状の筒状部91は、自身の内部に第1パイプホルダ60、第2パイプホルダ61、第1絶縁スペーサ121、及び第2絶縁スペーサ122を保持する保持孔91Hを有している。一方、フランジ部95は、筒状部91の先端部分から径方向外側に張り出した板状で、外形概略長円板形状を有している。また、自身の厚み方向に貫通するボルト貫通孔95H,95Hを有している(本実施形態では2箇所)。
検知部10の取付けに当たっては、図4に示すように、排気管EPのうち、取付部EPTの取付開口EPOから、中継筒部材30、取入混合部材40等を排気管EP内に挿入すると共に、取付開口EPOに隣在して設けられているスタッドボルトEPB,EPBを、フランジ部95のボルト貫通孔95Hにそれぞれ挿通し、ナットEPNで締結する。これにより、主体金具90を含め、検知部10が、排気管EPの取付部EPTに固定される。なお、主体金具90は、図3,図4において図示外の複数の部材と共に、微粒子センサ1の外装部材14をなして、ケーブル160の接地電位配線167に導通している。従って、外装部材14は、ケーブル160の接地電位配線167及び外側回路ケース260を通じて、排気管EPとともに、接地電位PVEとされている。
次いで、本実施形態の微粒子センサ1の各部の電気的機能及び動作について、図2〜図4のほか、図5をも参照して説明する。なお、この図5は、本微粒子センサ1の検知部10の電気的機能及び動作を理解容易のため模式的に示したものである。
針状電極体20は、ケーブル160の第2電位配線161を介して、イオン源電源回路210の第2出力端212に接続、導通している。従って、この針状電極体20は、前述したように、第1電位PV1に対して、100kHz,1〜2kV0-pの正の半波整流パルス電圧である、第2電位PV2とされる。また、補助電極体50は、ケーブル160の補助電位配線162を介して、補助電極電源回路240の補助第2出力端242に接続、導通している。従って、この補助電極体50は、前述したように、第1電位PV1に対して、100〜200Vの正の直流電位である、補助電極電位PV3とされる。
さらに、取入混合部材40,蓋部材48,第1導通部材13をなす内筒80,第1パイプホルダ60,第2パイプホルダ61及び中継筒部材30は、ケーブル160の第1電位配線165を介して、イオン源電源回路210の第1出力端211、補助電極電源回路240の補助第1出力端241、これらの回路を囲む内側回路ケース250、及び信号電流検知回路230の信号入力端231に接続、導通している。これらは、第1電位PV1とされる。加えて、主体金具90を含む外装部材14は、ケーブル160の接地電位配線167を介して、信号電流検知回路230を含む計測制御回路220を囲む外側回路ケース260及び信号電流検知回路230の接地入力端232に接続、導通しており、排気管EPとともに、接地電位PVEとされる。
従って、前述したように、混合領域MX内において、第1電位PV1とされる取入混合部材40の内周面40Mと、これよりも正の高電位である第2電位PV2とされる針状先端部22との間では、気中放電、具体的にはコロナ放電が生じる。さらに具体的には、正極となる針状先端部22の周りにコロナが発生する正針コロナPCを生じる。これにより、その雰囲気をなす大気(空気)のN2,O2等が電離等して、正のイオンCPが発生する。本実施形態では、針状電極体20(針状電極)の針状先端部22(先端部)及び取入混合部材40の内周面40Mがイオン源15に相当する。
なお、前述したように、蓋部材48及び取入混合部材40は、排気管EP内を流通する排気ガスEGの流速を排出口48Oの外側で上昇させ、排出口48Oに負圧を生じさせる。したがって、この排気管EP内を流通する排気ガスEGで排出口48Oに生じた負圧により、混合領域MX(第1混合領域MX1、第2混合領域MX2)内の取入排気ガスEGIが、排出路EXを経由して排出口48Oから排出され、これと共に、取入口43I周囲の排気ガスEGが、取入口43Iから混合領域MX内に取り入れられる。その際、排気ガスEG中に、ススなどの微粒子Sが含まれていた場合、図5に示すように、この微粒子Sも混合領域MX内に取り入れられる。混合領域MX内では、生成されたイオンCPが取入排気ガスEGIに混合されるので、取り入れられたススなどの微粒子Sは、イオンCPが付着して、正に帯電した帯電微粒子SCとなり、この状態で、混合領域MX内から排出路EXを通って、取入排気ガスEGIと共に、排出口48Oから排出される。一方、混合領域MX内で生成されたイオンCPのうち、微粒子Sに付着しなかった浮遊イオンCPFは、補助電極体50の補助電極部53(補助電極)から斥力を受け、第1電位PV1とされた捕集極42をなす取入混合部材40に各部に付着し、排出されない(捕捉される)。
従って、この帯電微粒子SCにより排出された排出イオンCPHの電荷量に対応する信号電流Isを信号電流検知回路230で検知することにより、排気ガスEG中の微粒子Sの量が検知できる。本実施形態では、混合領域MX及び捕集極42をなす、中継筒部材30の底部31,取入混合部材40,蓋部材48により、微粒子帯電部12を形成し、この微粒子帯電部12が空間形成部に相当する。また、混合領域MX(第1混合領域MX1、第2混合領域MX2)及び排出路EXが、内部空間に相当する。
以上で説明したように、本実施形態の微粒子センサ1では、微粒子帯電部12(空間形成部)が、排気管EP内を流通する排気ガスEG(被測定ガス)で排出口48Oに生じた負圧により、混合領域MX(内部空間)内の取入排気ガスEGI(取入ガス)を排出口48Oから排出すると共に、排気ガスEGを取入口33Iから混合領域MX内に取り入れて、取入排気ガスEGIとイオン源15で生成したイオンCPとを混合する形態に構成されている。従って、本実施形態の微粒子センサ1では、ポンプ等の圧縮空気源を用いることなく、排気ガスEG(被測定ガス)の取り入れや排出を行うことができる。
さらに、本実施形態の微粒子センサ1では、微粒子帯電部12は、円筒状をなし、センサ1を排気管EPに装着した状態において、排気管EP内で、自身の軸線AXが管軸線PJに交差(直交)する方向に延びている。そして、自身の先端(蓋部材48の先端面48S)に排出口48Oが開口し、これよりも基端側の微粒子帯電部12の外周面をなす取入混合部材40の壁部43に取入口43Iが開口している。これにより、排出口48Oに負圧を生じさせ易くなり、排気ガスEGの取り入れと排出を適切に行うことができる。
さらに、本実施形態の微粒子センサ1では、微粒子帯電部12は、先細の形状をなすテーパ部48Tを有しており、センサ1を排気管EPに装着した状態において、排出口48Oがなす開口の向き(開口(排出口48O)で構成される面(仮想面)が向く方向)が排気管EPの管軸線PJに直交する方向を向いている。これにより、さらに効率よく排出口48Oに負圧を生じさせることができ、排気ガスEGの取り入れと排出がより適切に行える。
さらに、本実施形態の微粒子センサ1では、微粒子帯電部12は、取入口43Iが、微粒子帯電部12の外周面をなす壁部43の周方向に分散して複数(本実施形態では8個)配置されている。取入口43Iが複数配置されていることにより、より多くの排気ガスEG(被測定ガス)を取り入れて、取入口43Iから排出口48Oに向かう取入排気ガスEGIの流量を増やすことができ、排気ガスEGの取り入れと排出をより適切に行うことができる。
さらに、本実施形態の微粒子センサ1では、イオン源15は、混合領域MX(内部空間)内に気中放電を生じさせて、イオンCPをこの混合領域MX内に生成している。これにより、生成されたイオンCPの多くを取入排気ガスEGIと混合することができ、取入排気ガスEGI中の微粒子Sにより多くのイオンCPを付着させることができる。また、生成したイオンCPを混合領域MX内に、別途導き入れる必要がないので、圧縮空気源やイオンCPの噴射孔等を用意する必要がない。
さらに、本実施形態の微粒子センサ1では、検知部10は、捕集極42を有しているほか、補助電極(補助電極体50の補助電極部53)を備えている。これにより、捕集極42で確実に浮遊イオンCPFを捕集することができ、より適切に微粒子Sの量を検知することができる。
(変形形態)
次いで、上述の実施形態の変形形態について、図6〜図9を参照して説明する。図6に、本変形形態に係る微粒子センサ1Aの構造を示す。この図6に示すように、本変形形態の微粒子センサ1Aの検知部10Aは、実施形態の中継筒部材30(図4参照)に相当する部材は有さず、取入混合部材40よりやや長い取入混合部材40Aを有する。一方、蓋部材48は、実施形態と同様の形態であり、取入混合部材40A及び蓋部材48で空間形成部に相当する微粒子帯電部12Aを形成している。この微粒子帯電部12Aの内部には、実施形態と同様、混合領域MX及び捕集極42が形成されている。加えて、本変形形態の微粒子センサ1Aの検知部10Aは、実施形態の針状電極体20及び補助電極体50に代えて、これらに相当する放電電極部20A及び補助電極部50Aが一体に形成され、混合領域MX内に配置された矩形板状のセラミック素子100を備えている点で、実施形態と異なる。また、このセラミック素子100を保持する排気管EP外の構造も、実施形態と異なる。
図7は、セラミック素子100の全体図であり、図8は、その内部構造を示す分解斜視図である。なお、図7及び図8において、図中上方が、セラミック素子100の先端側GSであり、セラミック素子100は、この先端側GSを、図6中上方に向けた状態で、混合領域MX内に配置されている。まず、本変形形態の微粒子センサ1Aのうち、セラミック素子100を保持する検知部10Aの排気管EP外の構造について説明する。
図6に示すように、排気管EP外に位置する第1絶縁スペーサ121及び第2絶縁スペーサ122の径方向内側には、実施形態の第1パイプホルダ60及び第2パイプホルダ61(図4参照)に代えて、第1導通部材13をなす筒状の筒金具110が配置されている。この筒金具110は、径方向外側に膨出する円環状のフランジ部111を有しており、このフランジ部111が、第1絶縁スペーサ121と第2絶縁スペーサ122とに挟まれて、固定されている。また、筒金具110の基端側(図中下方)は、第1導通部材13をなす内筒80に嵌め込まれ固定されている一方、筒金具110の先端側(図中上方)には、取入混合部材40Aが嵌め込まれ固定されている。
一方、筒金具110の内部には、底部に穴が空いてセラミック素子100が挿通されたカップ状の金属カップ112が配設されると共に、先端側(図中上方)から基端側(図中下方)に向けて順に、セラミック素子100の周りに、アルミナからなりセラミック素子100を保持する筒状のセラミックホルダ113、絶縁粉末を圧縮して構成した第1粉末充填層114及び第2粉末充填層115、さらには、アルミナからなる筒状のセラミックスリーブ116が配設されている。なお、このうち、セラミックホルダ113及び第1粉末充填層114は、金属カップ112内に位置している。なお、第1粉末充填層114及び第2粉末充填層115に用いる絶縁粉末として、本変形形態では滑石粉末を用いたが、BN(窒化ホウ素)粉末、ガラス粉末、バーミキュライト粉末などを用いることもできる。
さらに、内筒80内に位置する筒金具110の基端部110Kと、セラミックスリーブ116との間には、加締リング117が配置されており、筒金具110の基端部110Kは、径方向内側に屈曲して加締められ、加締リング117を介してセラミックスリーブ116を押圧している。これにより、第2粉末充填層115の粉末が圧縮されて、筒金具110内に金属カップ112及びセラミックスリーブ116が固定されると共に、セラミック素子100が支持される。
また、セラミック素子100の基端側GK(図7,図8参照)は、後述する接続端子部23,54、ヒータ端子部78a,78bに接触導通するリード端子を有する図示外の端子構造体に挿入されている。これにより、この端子構造体のリード端子、及びこれに接続する第2電位配線161,補助電位配線162(図2参照)等を介して、セラミック素子100の接続端子部23,54等は、イオン源電源回路210等に電気的に接続されている。かくして、セラミック素子100は、検知部10Aに取り付けられ、保持されている。
次いで、セラミック素子100の構造の詳細について説明する。セラミック素子100は、図7及び図8示すように、板状に成形されたアルミナからなる絶縁性のセラミック基体101を有しており、このセラミック基体101内に、放電電極部20A、補助電極部50A及びヒータ78が埋設されて一体焼結されている。
さらに具体的には、このセラミック基体101は、アルミナからなる板状の3つのセラミック層102,103,104と、これらの層間または表面に形成されたアルミナからなる3つの絶縁被覆層105,106,107とを有する。なお、これらは、図8に示すように、図8中左下から図8中右上に向けて、絶縁被覆層105,セラミック層102,絶縁被覆層106,セラミック層103,絶縁被覆層107,セラミック層104の順に積層されている。そして、絶縁被覆層105とセラミック層102の間に放電電極部20Aが、絶縁被覆層106とセラミック層103の間にヒータ78が、セラミック層103と絶縁被覆層107の間に補助電極部50Aが、それぞれ配置されている。また、セラミック基体101の内部のうち、絶縁被覆層107とセラミック層104の間には、GND層108が形成されている。そして、これらが一体化してセラミック素子100が形成されている。
放電電極部20Aは、気中放電、具体的にはコロナ放電を生じさせる針状電極部22A、この針状電極部22Aに導通するリード部21A及び、このリード部21Aに導通し、図6において図示外の第2電位配線161(図2参照)との接続に用いる接続端子部23を有する。そして、この放電電極部20Aは、針状電極部22Aをセラミック素子100の先端側GS(図8中上方)に、接続端子部23をセラミック素子100の基端側GK(図8中下方)にそれぞれ向けて、セラミック層102上に形成されている。なお、この放電電極部20Aのうち、針状電極部22A及び接続端子部23は、セラミック層102の表面に露出する一方、リード部21Aは、絶縁被覆層105で被覆されている。
ここで、接続端子部23及び後述するGND接続端子を兼ねたヒータ端子部78bを介して、セラミック基体101(セラミック層102)上に露出した針状電極部22Aと、セラミック基体101内のGND層108との間に高電圧を印加すると、針状電極部22Aの周囲にコロナ放電が生じる。これにより、セラミック素子100の針状電極部22Aは、イオン源15Aをなし、実施形態と同様に、混合領域MX内でイオンCPが生成される。なお、針状電極部22Aは、針状をなす3つの針状先端部22S1,22S2,22S3が並んだ形態とされている。これにより、コロナ放電を生じさせる部位が増加するので、より効率よくコロナ放電を生じさせて、イオンを生成することができる。また、針状先端部22の損耗に対して、耐久性が向上し、長期にわたり安定したコロナ放電を行わせることができる。
また、補助電極部50Aは、セラミック素子100の先端側GS(図8中上方)に配置され、矩形状をなす補助電極53Aと、この補助電極53Aに導通し、セラミック素子100の基端側GK(図8中下方)に延びるリード部51Aとを有する。また、セラミック層104の基端側GKの表面には、リード部51Aに導通し、図6において図示外の補助電位配線162(図2参照)との接続に用いる接続端子部54が設けられている。
なお、補助電極53Aは、セラミック素子100のうち、針状電極部22Aよりも先端側GSに位置する部位に配置されている。すなわち、セラミック素子100が、検知部10Aに配置された状態(図6参照)において、補助電極53Aは、針状電極部22Aよりも排出口48O寄り(図6中上方)の部位に位置する。これにより、補助電極53Aは、実施形態と同様に、所定の電位(例えば、GND層108のGND電位に対して、100〜200Vの正の直流電位)とすることにより、混合領域MX内で生成されたイオンCPのうち、微粒子Sに付着しなかった浮遊イオンCPFに斥力を与える。そして、浮遊イオンCPFを捕集極42をなす微粒子帯電部12A内の各部に付着させ、捕集極42による浮遊イオンCPFの捕集を補助する。これにより、捕集極42で確実に浮遊イオンCPFを捕集することができる。
また、ヒータ78は、セラミック素子100を平面視したとき、針状電極部22Aを取り囲むように、セラミック素子100の先端側GSに配置され、通電によりこの針状電極部22Aを加熱する発熱部78hと、この発熱部78hに導通し、セラミック素子100の基端側GKに延びる2本のリード部78r1,78r2とを有する。なお、発熱部78hは、リード部78r1,78r2に繋がる部位が、それぞれ先端側GSに延びる一方、発熱部78hの中央部分は、針状電極部22Aを取り囲むように、基端側GKに向けてU字状に曲げ返された形状をなしている。また、セラミック層104の基端側GKの表面には、リード部78r1,78r2に導通し、ヒータ78への通電に用いるヒータ端子部78a,78bが、補助電極部50Aの接続端子部54を挟むように配置されている。なお、ヒータ端子部78bは、GND層108にも導通しており、GND接続端子を兼ねている。そして、このヒータ78のヒータ端子部78aと78bの間に通電し、セラミック素子100から露出する針状電極部22Aを加熱することにより、針状電極部22A及びこの付近に付着した水滴や煤等の異物を除去し、イオン源15A(針状電極部22A)に生じた絶縁性の低下を回復できる。
なお、セラミック素子100の形成にあたっては、まず、未焼成のセラミック層102,103,104を用意する。次いで、未焼成のセラミック層102のうち、図8中左下を向く一方面に、金属ペーストを印刷して、放電電極部20Aを形成する。さらに、針状電極部22A及び接続端子部23を露出させ、リード部21Aを覆うように、セラミック層102上に絶縁被覆層105を印刷する。また、未焼成のセラミック層103の一方面上にヒータ78を、他方面上に補助電極部50Aを、それぞれ印刷する。さらに、ヒータ78が印刷されたセラミック層103の一方面全体を覆うように、絶縁被覆層106を印刷する。また、未焼成のセラミック層104の一方面上にGND層108を、他方面上に補助電極部50Aの接続端子部54及びヒータ端子部78a,78bを、それぞれ印刷する。さらに、GND層108が印刷されたセラミック層104の一方面全体を覆うように、絶縁被覆層107を印刷する。
そして、これらセラミック層102,103,104を積層し、同時焼成によってセラミック素子100を形成する。この同時焼成により、放電電極部20A、補助電極部50A及びヒータ78とセラミック基体101とを良好に一体化したセラミック素子100を、容易に得ることができる。
また、図9は、実施形態の図5と同様に、本変形形態の微粒子センサ1Aの検知部10Aの電気的機能及び動作を模式的に示したものである。この図9に示すように、いわゆるベンチュリ効果により、排出口48Oに負圧が生じると、取入口43I周囲の排気ガスEGが、取入口43Iから混合領域MX内に取り入れられる。すると、この排気ガスEGと共に取り入れられた微粒子Sに、セラミック素子100の針状電極部22A(イオン源15A)で生成したイオンCPが付着して、帯電微粒子SCとなる。この帯電微粒子SCは、混合領域MX内から排出路EXを通って、取入排気ガスEGIと共に、排出口48Oから排出される。一方、混合領域MX内で生成されたイオンCPのうち、微粒子Sに付着しなかった浮遊イオンCPFは、セラミック素子100の針状電極部22Aよりも排出口48O寄りの部位に配置され、所定の電位(例えば、DC100〜200V)とされた補助電極53Aから斥力を受け、捕集極42をなす微粒子帯電部12A内の各部に付着する。このように、浮遊イオンCPFは、排出口48Oから排出されることなく、捕集極42に捕集される。
以上で説明したように、本変形形態の微粒子センサ1Aでは、検知部10Aが、絶縁性のセラミック基体101と放電電極部20Aとが一体に形成され、混合領域MX内に配置されて、イオン源15Aをなすセラミック素子100を備えている。この微粒子センサ1Aでは、イオン源15A(針状電極部22A)がセラミック素子100に予め一体に形成されているので、イオン源15Aの検知部10Aへの組み込みが容易となり、低コストで生産性の高いセンサとすることができる。
また、この微粒子センサ1Aでは、補助電極53A及びヒータ78は、セラミック素子100のセラミック基体101内に埋設されており、外部に露出していない。これにより、補助電極53Aをセラミック基体101で保護し、補助電極53Aの腐食などを防止することができる。また、ヒータ78がセラミック基体101で保護されることにより、ヒータ78について、安定した特性を維持できる。
以上において、本発明を実施形態及び変形形態に即して説明したが、本発明は上述の実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施形態では、微粒子センサ1の検知部10が、ケーブル160を介して微粒子検知システム2の回路部201に接続された例を示したが、ケーブル160を介さず、検知部10と回路部201とを連設する(一体化する)など、その形態は適宜変更が可能である。
EP 排気管(通気管)
EPO 取付開口
EG 排気ガス(被測定ガス)
EGI 取入排気ガス(取入ガス)
S 微粒子
SC 帯電微粒子
CP イオン
CPF 浮遊イオン
CPH 排出イオン
Is 信号電流
1,1A 微粒子センサ
2 微粒子検知システム
10,10A 検知部
12,12A 微粒子帯電部(空間形成部)
15,15A イオン源
20 針状電極体
21 (針状電極体の)延出部
22 (針状電極体の)針状先端部(イオン源)
20A 放電電極部
21A (放電電極部の)リード部
22A 針状電極部(イオン源)
22S1,22S2,22S3 針状先端部
30 中継筒部材(第1導通部材)
31 (中継筒部材の)底部(微粒子帯電部)
PV1 第1電位
PV2 第2電位
PV3 補助電極電位
PVE 接地電位
40,40A 取入混合部材(微粒子帯電部)
40M (取入混合部材の)内周面(イオン源)
MX 混合領域(内部空間)
MX1 第1混合領域(内部空間)
MX2 第2混合領域(内部空間)
EX 排出路(内部空間)
42 捕集極
43 (混合排出部材の)筒壁部(外周面)
43I 取入口
48 蓋部材(微粒子帯電部)
48O 排出口
48T テーパ部
50 補助電極体
53 (補助電極体の)補助電極部(補助電極)
50A 補助電極部
53A 補助電極
60 第1パイプホルダ(第1導通部材)
61 第2パイプホルダ(第1導通部材)
80 内筒(第1導通部材)
90 主体金具(外装部材)
201 回路部
210 イオン源電源回路
220 計測制御回路
230 信号電流検知回路
240 補助電極電源回路
100 セラミック素子
101 セラミック基体
78 ヒータ

Claims (13)

  1. 通気管に装着される検知部を有し、上記通気管内を流通する被測定ガス中の微粒子の量を検知する微粒子センサであって、
    上記検知部は、
    当該微粒子センサを上記通気管へ装着した状態において、上記通気管内に突出して内部空間を構成する空間形成部であって、上記被測定ガスを上記内部空間に取り入れる取入口、及び上記取入口から取り入れた取入ガスを上記内部空間から排出する排出口を含む空間形成部と、
    気中放電でイオンを生成するイオン源と、を備え、
    上記空間形成部は、
    上記通気管内を流通する上記被測定ガスで上記排出口に生じた負圧により、上記内部空間内の上記取入ガスを上記排出口から排出すると共に、上記被測定ガスを上記取入口から上記内部空間内に取り入れて、上記取入ガスと上記イオン源で生成した上記イオンとを混合する形態に構成されてなる
    微粒子センサ。
  2. 請求項1に記載の微粒子センサであって、
    前記空間形成部は、
    自身の先端に前記排出口が開口し、これよりも基端側の外周面に前記取入口が開口してなり、
    前記装着した状態において、前記通気管内で、自身の軸線が上記通気管の軸線である管軸線に交差する方向に延びる形態を有する
    微粒子センサ。
  3. 請求項2に記載の微粒子センサであって、
    前記空間形成部は、
    先細の形状をなし、自身の先端に前記排出口が位置し、前記装着した状態において、当該排出口がなす開口の向きが前記管軸線に直交する方向を向く形態のテーパ部を有する
    微粒子センサ。
  4. 請求項2または請求項3に記載の微粒子センサであって、
    前記空間形成部は、
    前記取入口が、前記外周面の周方向に分散して複数配置されてなる
    微粒子センサ。
  5. 請求項1〜請求項4のいずれか一項に記載の微粒子センサであって、
    前記イオン源は、
    前記内部空間内に気中放電を生じさせて、前記イオンを上記内部空間内に生成する内部イオン源である
    微粒子センサ。
  6. 請求項1〜請求項5のいずれか一項に記載の微粒子センサであって、
    前記検知部は、
    前記イオンのうち前記取入ガスとの混合で前記微粒子に付着しなかった浮遊イオンを捕集する捕集極と、
    前記内部空間内に配置されて、上記捕集極による上記浮遊イオンの捕集を補助する補助電極と、を備える
    微粒子センサ。
  7. 請求項1〜請求項5のいずれか一項に記載の微粒子センサであって、
    前記検知部は、
    絶縁性のセラミック基体と、
    このセラミック基体と一体に形成されており、
    上記セラミック基体から露出し、先端が針状の針状電極部、及び、
    上記セラミック基体内に位置し、上記針状電極部に導通するリード部、を含む
    放電電極部と、を有し、
    前記空間形成部内に配置されて、上記針状電極部で気中放電を生じさせ、前記イオン源をなすセラミック素子を備える
    微粒子センサ。
  8. 請求項7に記載の微粒子センサであって、
    前記針状電極部は、針状をなす針状先端部を複数有する形態である
    微粒子センサ。
  9. 請求項7または請求項8に記載の微粒子センサであって、
    前記検知部は、
    前記イオンのうち前記取入ガスとの混合で前記微粒子に付着しなかった浮遊イオンを捕集する捕集極を備え、
    前記セラミック素子は、
    前記針状電極部よりも前記排出口寄りの部位に、上記捕集極による上記浮遊イオンの捕集を補助する補助電極を有する
    微粒子センサ。
  10. 請求項9に記載の微粒子センサであって、
    前記補助電極は、
    前記セラミック基体内に埋設されてなる
    微粒子センサ。
  11. 請求項7〜請求項10のいずれか一項に記載の微粒子センサであって、
    前記セラミック素子は、
    前記針状電極部を加熱するヒータを有する
    微粒子センサ。
  12. 請求項11に記載の微粒子センサであって、
    前記ヒータは、
    前記セラミック基体内に埋設されてなる
    微粒子センサ。
  13. 請求項7〜請求項12のいずれか一項に記載の微粒子センサであって、
    前記セラミック素子は、同時焼成により形成されてなる
    微粒子センサ。
JP2014510338A 2012-10-04 2013-09-10 微粒子センサ Active JP6285353B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012221931 2012-10-04
JP2012221931 2012-10-04
PCT/JP2013/074424 WO2014054390A1 (ja) 2012-10-04 2013-09-10 微粒子センサ

Publications (2)

Publication Number Publication Date
JPWO2014054390A1 true JPWO2014054390A1 (ja) 2016-08-25
JP6285353B2 JP6285353B2 (ja) 2018-02-28

Family

ID=50434721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014510338A Active JP6285353B2 (ja) 2012-10-04 2013-09-10 微粒子センサ

Country Status (4)

Country Link
US (1) US9915587B2 (ja)
EP (1) EP2905600B1 (ja)
JP (1) JP6285353B2 (ja)
WO (1) WO2014054390A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5681655B2 (ja) * 2012-02-21 2015-03-11 日本特殊陶業株式会社 微粒子検知システム
US9700857B1 (en) 2012-03-23 2017-07-11 Life Technologies Corporation Fluid mixing system with drive shaft steady support
JP6251515B2 (ja) * 2013-08-21 2017-12-20 日本特殊陶業株式会社 微粒子検知システム
JP6182018B2 (ja) * 2013-08-21 2017-08-16 日本特殊陶業株式会社 微粒子検知システム
JP6426976B2 (ja) * 2014-10-24 2018-11-21 日本特殊陶業株式会社 粒子検知システム
JP6506600B2 (ja) * 2015-04-21 2019-04-24 日本特殊陶業株式会社 微粒子検知システム
US10124083B2 (en) * 2015-06-18 2018-11-13 Dm Tec, Llc Sanitizer with an ion generator and ion electrode assembly
JP6412470B2 (ja) * 2015-07-07 2018-10-24 日本特殊陶業株式会社 微粒子センサ
JP6335861B2 (ja) * 2015-10-27 2018-05-30 日本特殊陶業株式会社 微粒子測定システム
US10094757B2 (en) * 2015-10-27 2018-10-09 Ngk Spark Plug Co., Ltd. Particulate measurement apparatus and particulate measurement system
JP6396881B2 (ja) * 2015-12-08 2018-09-26 日本特殊陶業株式会社 微粒子測定システム
JP6603612B2 (ja) * 2016-04-28 2019-11-06 日本特殊陶業株式会社 微粒子センサ
CN112285286A (zh) * 2020-03-20 2021-01-29 施令 一种适应于排气管方位的废气排放浓度检测方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123761A (ja) * 1983-12-07 1985-07-02 Ngk Spark Plug Co Ltd 排ガス中粒子状物質検出装置
JP2000171430A (ja) * 1998-08-05 2000-06-23 Ngk Spark Plug Co Ltd ガスセンサ
JP2002296219A (ja) * 2001-03-29 2002-10-09 Kyocera Corp ガスセンサ
JP2006153746A (ja) * 2004-11-30 2006-06-15 Horiba Ltd 排気ガス分析装置及び混合システム
JP2007107970A (ja) * 2005-10-12 2007-04-26 Shimadzu Corp アスベストの測定方法
JP2007514923A (ja) * 2003-06-24 2007-06-07 デカティ オイ 燃焼機関の排気ガスからの粒子放出を測定する方法およびセンサ装置
JP2010078429A (ja) * 2008-09-25 2010-04-08 Ngk Insulators Ltd 粒子状物質検出装置
JP2011513742A (ja) * 2008-03-04 2011-04-28 ぺガソー オーワイ 粒子測定方法及び装置
EP2500709A1 (en) * 2011-03-17 2012-09-19 NGK Spark Plug Co., Ltd. Fine particle sensor and mounting structure therefor
WO2013125181A1 (ja) * 2012-02-21 2013-08-29 日本特殊陶業株式会社 微粒子センサ
JP2013170950A (ja) * 2012-02-21 2013-09-02 Ngk Spark Plug Co Ltd 微粒子検知システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69943331D1 (de) 1998-08-05 2011-05-19 Ngk Spark Plug Co Gassensor
US7434449B2 (en) 2004-11-30 2008-10-14 Horiba, Ltd. Exhaust gas analyzer
US20080016946A1 (en) * 2006-07-18 2008-01-24 Honeywell International Inc. Gas sensor packaging for elevated temperature and harsh environment and related methods
JP2010210533A (ja) 2009-03-12 2010-09-24 Ngk Insulators Ltd 粒子状物質検出装置
FIU20100090U0 (fi) * 2010-02-25 2010-02-25 Pegasor Oy Pakokaasuanturi

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123761A (ja) * 1983-12-07 1985-07-02 Ngk Spark Plug Co Ltd 排ガス中粒子状物質検出装置
JP2000171430A (ja) * 1998-08-05 2000-06-23 Ngk Spark Plug Co Ltd ガスセンサ
JP2002296219A (ja) * 2001-03-29 2002-10-09 Kyocera Corp ガスセンサ
JP2007514923A (ja) * 2003-06-24 2007-06-07 デカティ オイ 燃焼機関の排気ガスからの粒子放出を測定する方法およびセンサ装置
JP2006153746A (ja) * 2004-11-30 2006-06-15 Horiba Ltd 排気ガス分析装置及び混合システム
JP2007107970A (ja) * 2005-10-12 2007-04-26 Shimadzu Corp アスベストの測定方法
JP2011513742A (ja) * 2008-03-04 2011-04-28 ぺガソー オーワイ 粒子測定方法及び装置
JP2010078429A (ja) * 2008-09-25 2010-04-08 Ngk Insulators Ltd 粒子状物質検出装置
EP2500709A1 (en) * 2011-03-17 2012-09-19 NGK Spark Plug Co., Ltd. Fine particle sensor and mounting structure therefor
WO2013125181A1 (ja) * 2012-02-21 2013-08-29 日本特殊陶業株式会社 微粒子センサ
JP2013170950A (ja) * 2012-02-21 2013-09-02 Ngk Spark Plug Co Ltd 微粒子検知システム

Also Published As

Publication number Publication date
US9915587B2 (en) 2018-03-13
EP2905600A1 (en) 2015-08-12
JP6285353B2 (ja) 2018-02-28
EP2905600B1 (en) 2021-04-14
WO2014054390A1 (ja) 2014-04-10
US20150204759A1 (en) 2015-07-23
EP2905600A4 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP6285353B2 (ja) 微粒子センサ
EP2824453B1 (en) Microparticle sensor
JP5537487B2 (ja) 微粒子検知システム
US10006883B2 (en) Particulate sensor
JP6626435B2 (ja) 微粒子センサ
JP6426976B2 (ja) 粒子検知システム
JP2015040738A (ja) 微粒子検知システム
JP5588471B2 (ja) 微粒子検知システム
JP6225033B2 (ja) 微粒子センサ
JP6523978B2 (ja) 微粒子センサ、及び、微粒子検知システム
JP2013170951A (ja) 微粒子検知システム
JP2014010099A (ja) 微粒子センサ
JP5841016B2 (ja) 微粒子検知システム
JP6329494B2 (ja) 微粒子センサ、及び、微粒子検知システム
JP6196936B2 (ja) 微粒子検知システム
JP5848670B2 (ja) 微粒子検知システム
JP6603612B2 (ja) 微粒子センサ
JP6397686B2 (ja) 微粒子センサ
CN111094935A (zh) 具有平坦的、露出的电晕放电电极的颗粒传感器
JP2019002804A (ja) 微粒子センサ
JP6454237B2 (ja) 微粒子センサ
JP2017026368A (ja) 微粒子センサ
JP2017026369A (ja) 微粒子センサ
JP2017146146A (ja) 微粒子検知システム
JP2017020801A (ja) 微粒子センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180201

R150 Certificate of patent or registration of utility model

Ref document number: 6285353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250