JPWO2012169066A1 - 電池の充電方法、及び電池の充電制御装置 - Google Patents

電池の充電方法、及び電池の充電制御装置 Download PDF

Info

Publication number
JPWO2012169066A1
JPWO2012169066A1 JP2013519330A JP2013519330A JPWO2012169066A1 JP WO2012169066 A1 JPWO2012169066 A1 JP WO2012169066A1 JP 2013519330 A JP2013519330 A JP 2013519330A JP 2013519330 A JP2013519330 A JP 2013519330A JP WO2012169066 A1 JPWO2012169066 A1 JP WO2012169066A1
Authority
JP
Japan
Prior art keywords
secondary battery
solid secondary
battery
temperature
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013519330A
Other languages
English (en)
Other versions
JP5679055B2 (ja
Inventor
靖 土田
靖 土田
重規 濱
重規 濱
政裕 川村
政裕 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2012169066A1 publication Critical patent/JPWO2012169066A1/ja
Application granted granted Critical
Publication of JP5679055B2 publication Critical patent/JP5679055B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Power Engineering (AREA)

Abstract

電池の充電方法は、正極活物質層、負極活物質層、並びに、正極活物質層および負極活物質層の間に形成された固体電解質層を有する固体二次電池を充電するために利用される。具体的には、電池の充電方法は、固体二次電池の温度を取得または推測する工程と、当該温度が所定温度以上である場合に、固体二次電池の充電工程前に、固体二次電池に対して過放電及び外部短絡のうちの少なくとも一方を行うことで、固体二次電池の電圧を定格電圧以下にまで低下させる過放電処理工程と、を有する。

Description

本発明は、固体二次電池に対して充電制御を行う技術分野に関する。
近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム二次電池が注目を浴びている。
現在市販されているリチウム二次電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、電解液を固体電解質層に変えて、電池を固体化したリチウム固体二次電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
また、二次電池は繰り返しの充放電が可能であるが、過放電により電池性能が低下することが知られている。そのため、通常の二次電池には、放電時に電池の電圧を測定し、所定の電圧で放電を終止する手段が設けられている。一方、特許文献1には、リチウム二次電池の過放電を防止する過放電保護手段を備えない電池モジュールが開示されており、特許文献2には、リチウム二次電池の過放電を防止する過放電保護手段を備えない電動装置が開示されている。
特開2010−225581号公報 特開2010−225582号公報
固体二次電池は、充放電を繰り返すことにより内部抵抗が増加し、出力特性が低下するという問題がある。また、固体二次電池は、高温(例えば60℃程度)で保存すると、内部抵抗が増加し、出力特性が低下するという問題がある。さらに、一旦低下した出力特性を回復させることは通常困難である。
本発明は、上記のような問題点に鑑みてなされたものであり、電池の出力特性の回復及び電池の充電を効率良く行うことが可能な電池の充電方法、及び電池の充電制御装置を提供することを主目的とする。
上記目的を達成するために、本発明者等が鋭意研究を重ねた結果、一旦低下した出力特性を回復させるためには、意外にも、積極的(意図的)に過放電を行うことが有効であるとの知見を得た。本発明は、このような知見に基づいてなされたものである。
本発明の1つの観点では、正極活物質層、負極活物質層、並びに、前記正極活物質層および前記負極活物質層の間に形成された固体電解質層を有する固体二次電池を充電するための電池の充電方法は、前記固体二次電池の温度を取得または推測する工程と、前記温度が所定温度以上である場合に、前記固体二次電池の充電工程前に、前記固体二次電池に対して過放電及び外部短絡のうちの少なくとも一方を行うことで、前記固体二次電池の電圧を定格電圧以下にまで低下させる過放電処理工程と、を有する。
上記の電池の充電方法は、固体二次電池(言い換えると全部固体電池又は無機固体電解質電池)を充電するために好適に利用される。まず、最初の工程では、固体二次電池の温度を取得または推測する。この「取得」には、固体二次電池の温度を直接測定する構成だけでなく、固体二次電池の温度を代表する値を測定する構成も含まれるものとする。次に、固体二次電池の温度が所定温度以上である場合に、過放電処理工程が行われる。過放電処理工程は、固体二次電池の充電工程前に行われる。具体的には、過放電処理工程では、固体二次電池の電圧が定格電圧以下にまで低下するように、固体二次電池に対して過放電及び外部短絡のうちの少なくとも一方の処理(過放電処理)が行われる。このように固体二次電池の温度が所定温度以上である場合にのみ過放電処理を行うことで、固体二次電池の出力特性を回復させるのに長時間かかってしまうことを抑制することができる。即ち、固体二次電池の出力特性を早期に回復させることができ、固体二次電池の充電を効率良く行うことが可能となる。
上記の電池の充電方法の一態様では、前記過放電処理工程で、前記固体二次電池の温度に応じた時間だけ、前記固体二次電池の電圧を前記定格電圧以下に保持する。
この態様では、固体二次電池の電圧を定格電圧以下に保持することで出力特性が回復するまでに要する時間が、固体二次電池の温度に応じて変わることを考慮して制御を行う。これにより、固体二次電池の出力特性の回復及び充電を、より効率良く行うことが可能となる。
上記の電池の充電方法において好適には、前記過放電処理工程で、前記固体二次電池の温度が高い場合、前記固体二次電池の温度が低い場合に比して、前記固体二次電池の電圧を前記定格電圧以下に保持する時間を短くすることができる。
本発明の他の観点では、正極活物質層、負極活物質層、並びに、前記正極活物質層および前記負極活物質層の間に形成された固体電解質層を有する固体二次電池を充電するための電池の充電制御装置は、前記固体二次電池の温度を取得または推測する手段と、前記温度が所定温度以上である場合に、前記固体二次電池を充電する前に、前記固体二次電池に対して過放電及び外部短絡のうちの少なくとも一方を行うことで、前記固体二次電池の電圧を定格電圧以下にまで低下させる過放電処理手段と、を備える。
上記の電池の充電制御装置によっても、固体二次電池の出力特性を早期に回復させることができ、固体二次電池の充電を効率良く行うことが可能となる。
本実施形態におけるハイブリッド車両の概略構成図を示す。 本実施形態における固体二次電池の一例を示す概略断面図である。 本実施形態における固体二次電池システムの一例を示す模式図である。 固体二次電池システムの具体例を示す概略断面図である。 本実施形態に係る制御方法を具体的に説明するための図を示す。 本実施形態に係る制御フローを示す。 実施例1〜4及び比較例1、2の結果の一例を示す。 電池温度とリフレッシュ時間との関係の一例を示す。
以下、図面を参照して本発明の好適な実施の形態について説明する。
<ハイブリッド車両の構成>
図1は、本実施形態における電池の充電制御装置が搭載されたハイブリッド車両100の概略構成図を示す。なお、図1中の破線矢印は、信号の入出力を示している。
ハイブリッド車両100は、主に、エンジン(内燃機関)51と、車軸52と、駆動輪53と、第1のモータジェネレータMG1と、第2のモータジェネレータMG2と、動力分割機構54と、インバータ55と、図示しない固体二次電池を有する固体二次電池システム20と、ECU(Electronic Control Unit)60と、を備える。
車軸52は、エンジン51及び第2のモータジェネレータMG2の動力を車輪53に伝達する動力伝達系の一部である。車輪53は、ハイブリッド車両100の車輪であり、説明の簡略化のため、図1では特に左右前輪のみが表示されている。エンジン51は、例えばガソリンエンジンで構成され、ハイブリッド車両100の主たる推進力を出力する動力源として機能する。エンジン51は、ECU60によって種々の制御が行われる。
第1のモータジェネレータMG1は、主として、固体二次電池システム20が有する固体二次電池を充電するための発電機、或いは第2のモータジェネレータMG2に電力を供給するための発電機として機能するように構成されており、エンジン51の出力により発電を行う。第2のモータジェネレータMG2は、主としてエンジン51の出力をアシスト(補助)する電動機として機能するように構成されている。また、第2のモータジェネレータMG2は、エンジンブレーキ時やフットブレーキによる制動時に回生ブレーキとして機能し、回生運転を行うことで発電する。これらのモータジェネレータMG1、MG2は、例えば同期電動発電機として構成され、外周面に複数個の永久磁石を有するロータと、回転磁界を形成する三相コイルが巻回されたステータとを備える。
動力分割機構54は、サンギヤやリングギヤなどを有して構成されるプラネタリギヤ(遊星歯車機構)に相当し、エンジン51の出力を第1のモータジェネレータMG1及び車軸52へ分配することが可能に構成されている。
インバータ55は、固体二次電池システム20が有する固体二次電池と、第1のモータジェネレータMG1及び第2のモータジェネレータMG2との間の電力の入出力を制御する直流交流変換機である。例えば、インバータ55は、第1のモータジェネレータMG1によって発電された交流電力を直流電力に変換して固体二次電池に供給すると共に、固体二次電池から取り出した直流電力を交流電力に変換して第2のモータジェネレータMG2に供給する。
固体二次電池システム20が有する固体二次電池は、第1のモータジェネレータMG1及び/又は第2のモータジェネレータMG2を駆動するための電源として機能することが可能に構成されると共に、第1のモータジェネレータMG1及び/又は第2のモータジェネレータMG2が発電した電力を充電可能に構成されている。また、固体二次電池には、電池温度(言い換えるとセル温度)を検出可能に構成された温度センサ40が設けられている。温度センサ40は、検出した電池温度に対応する検出信号をECU60に供給する。
ECU60は、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)などを備え、ハイブリッド車両100内の各構成要素に対して種々の制御を行う。ECU60は、例えばハイブリッドECU、エンジンECU、及びモータECUを具備して構成されている。詳細は後述するが、ECU60は、本発明における「過放電処理」の一例に相当する。
なお、上記では本発明をハイブリッド車両に適用する例を示したが、本発明は、外部充電により得られた電力を動力として使用する所謂プラグインハイブリッド車両にも適用することができる。
<固体二次電池システム>
次に、本実施形態に係る固体二次電池システム20について説明する。
図2は、本実施形態に係る固体二次電池の一例を示す概略断面図である。図2に示すように、固体二次電池10は、正極活物質層1と、負極活物質層2と、正極活物質層1および負極活物質層2の間に形成された固体電解質層3と、正極活物質層1の集電を行う正極集電体4と、負極活物質層2の集電を行う負極集電体5とを有する。
図3は、本実施形態の固体二次電池システムの一例を示す模式図である。図3に示すように、固体二次電池システム20は、固体二次電池10と、過放電処理部11と、スイッチ12a、12bとを有する。
過放電処理部11は、固体二次電池10を過放電状態にするための過放電処理を行う。具体的には、過放電処理部11は、固体二次電池10に対して、過放電及び外部短絡のうちの少なくとも一方を行う。1つの例では、過放電処理部11は、少なくとも抵抗を有する回路によって構成され、固体二次電池10を外部短絡させる。他の例では、過放電処理部11は、放電装置(充放電装置)によって構成され、固体二次電池10の電圧を例えば0Vまで放電する。更に他の例では、過放電処理部11は、固体二次電池10が転極する(電圧が負になる)ように放電する。
なお、「外部短絡」とは、正極活物質層1及び負極活物質層2を、外部回路を通じて短絡(ショート)させることを意味する。また、「過放電状態」とは、固体二次電池10の電圧が定格電圧以下である状態を意味する。例えば、固体二次電池10の電圧が概ね0Vである状態や、固体二次電池10のSOCが概ね0%である状態が、「過放電状態」に相当する。更に、本明細書では、抵抗などを用いた外部短絡と、放電装置などによる過放電とを含めて、「過放電処理」と呼ぶ。
スイッチ12a、12bは、上記したECU60によって制御される。スイッチ部12aがオンであり、スイッチ部12bがオフである場合には、固体二次電池10の電力によって、ハイブリッド車両100内のモータジェネレータMGや補機などが作動される。一方、スイッチ部12aがオフであり、スイッチ部12bがオンである場合には、過放電処理部11によって過放電処理が行われる。つまり、固体二次電池10に対して、過放電及び外部短絡のうちの少なくとも一方が行われる。
ここで、図4を参照して、上記した固体二次電池システム20の具体例について説明する。図4は、固体二次電池システム20aの概略断面図に相当する。図4に示すように、固体二次電池システム20aは、固体二次電池10と、固定用金属板31a、31bと、圧電素子32と、抵抗体コイル33と、導線34とを有する。固体二次電池10は、電極体10a、電池ケース10b及び端子10cを有する。電極体10aは、上記した正極活物質層1、負極活物質層2、固体電解質層3、正極集電体4及び負極集電体5を有する。端子10cには、上記した温度センサ40が設けられている。
固定用金属板31aは、端子10cに接続されており、固定用金属板31bは、圧電素子32に電圧が付与されていない状態で、端子10cと離間した場所に位置する。圧電素子32は、導線34より電圧が付与され、電圧が付与された際に矢印A1の方向に伸びていく。これにより、固定用金属板31bが端子10cに接触することで、抵抗体コイル33が固定用金属板31a、31bを介して2つの端子10cに接続した状態となる。この状態は、固体二次電池10を外部短絡させた状態に相当する。
なお、固定用金属板31a、31b及び圧電素子32は、上記したスイッチ12bに相当し、抵抗体コイル33は、上記した過放電処理部11に相当する。ECU60は、導線34を介して圧電素子32に電圧を付与する制御を行うことで、固体二次電池10を外部短絡させる(つまり過放電処理を行う)。
以上説明したような本実施形態によれば、過放電処理部11を設けることにより、内部抵抗を低減することができ、出力特性を回復させることができる。そのため、固体二次電池10の長寿命化が図れる。従来、過放電により電池性能が低下することが知られているため、通常の固体二次電池には、過放電を防止する過放電保護手段が設けられている。これに対して、本実施形態においては、サイクル劣化した固体二次電池10に対して、積極的に過放電処理を行うことで、内部抵抗を低減でき、出力特性を回復させることができる。
ここで、過放電処理により内部抵抗が低減できるメカニズムは、以下のように推測される。固体二次電池10では、電池反応が固体/固体界面で起こるため、界面に新たな皮膜(SEI、Solid Electrolyte Interphase)が生じ、この皮膜の抵抗が大きいために、結果として内部抵抗の増加が生じる。これに対して、本実施形態においては、過放電処理を行うことで、この皮膜を除去でき、内部抵抗を低減できると考えられる。また、この皮膜は、固体二次電池10における任意の固体/固体界面で生じている可能性があるが、特に活物質と固体電解質材料との界面において多く生じていると考えられる。その理由は、活物質は、その表面で金属イオンの吸蔵放出というアクティブな反応を行い、固体電解質材料は、通常、活物質に接触する面積が大きいからである。中でも、活物質および固体電解質材料が、互いに異なる種類の化合物に由来する組み合わせである場合に、皮膜が生じやすい傾向にあると考えられる。一例を挙げると、酸化物活物質(酸化物に由来)と、硫化物固体電解質材料(硫化物に由来)とは、相対的に反応しやすく、皮膜が生成しやすいと考えられる。
<制御方法>
次に、本実施形態においてECU60が行う制御方法について説明する。本実施形態では、ECU60は、固体二次電池10の電池温度が所定温度以上である場合に、固体二次電池10の充電を行う前に、固体二次電池10の電圧(以下、単に「電池電圧」とも表記する。)を定格電圧以下にまで低下させる制御を行う。つまり、ECU60は、電池温度が所定温度以上である場合には、過放電処理を行ってから充電を行う。逆に、ECU60は、電池温度が所定温度未満である場合には、過放電処理を行わずに、固体二次電池10の充電を速やかに行う。
具体的には、ECU60は、電池温度が所定温度以上である場合に、固体二次電池10の充電を行う前に、電池電圧を定格電圧以下に保持する制御を行う。例えば、ECU60は、電池電圧を0Vに保持する。この場合、ECU60は、電池温度に応じた時間だけ、電池電圧を定格電圧以下に保持する制御を継続する。つまり、ECU60は、電池温度に応じて、電池電圧を定格電圧以下に保持する時間(以下、「保持時間」と呼ぶ。)を変える。詳しくは、ECU60は、電池温度が高い場合、電池温度が低い場合に比して、保持時間を短くする。
このような制御を行う理由を、図5を参照して説明する。図5は、電池温度とリフレッシュ時間との関係を模式的に示した図である。「リフレッシュ時間」は、電池電圧を定格電圧以下(例えば0V)に保持することで固体二次電池10の抵抗が所定値以下に低下するまでに要した時間(保持時間)に相当する。図5に示すような電池温度とリフレッシュ時間との関係は、例えば種々の電池温度及び種々の保持時間を用いて実験を行うことで得られる。
図5より、電池温度が高くなるほど、リフレッシュ時間が短いことがわかる(言い換えると、電池温度が低くなるほど、リフレッシュ時間が長いことがわかる)。これは、電池温度が高いほど、固体二次電池10の皮膜(SEI)が除去される速度が速くなり、早期に内部抵抗が低下したためであると推測される。このように内部抵抗が低下した状態では、出力特性が回復しており、固体二次電池10の充電を効率良く行うことができる。
以上より、本実施形態では、電池温度とリフレッシュ時間との関係を考慮して、過放電処理及び充電についての制御を行う。具体的には、本実施形態では、ECU60は、リフレッシュ時間が非駆的短いような電池温度である場合にのみ、つまり過放電処理により固体二次電池10の内部抵抗を所定値以下に低下させるまでに要する時間が非駆的短いような電池温度である場合にのみ、固体二次電池10の充電を行う前に、電池電圧を定格電圧以下に保持する制御を行う。これにより、固体二次電池10の出力特性を回復させるのに長時間かかってしまうことを抑制することができる。即ち、固体二次電池10の出力特性を早期に回復させることができる。そして、出力特性が回復した状態にある固体二次電池10に対して充電を行うことで、固体二次電池10の充電を効率良く行うことが可能となる。
更に、本実施形態では、図5に示したような電池温度とリフレッシュ時間との関係に応じた保持時間だけ、電池電圧を定格電圧以下に保持する制御を行う。具体的には、電池温度とリフレッシュ時間との関係に基づいて、電池温度に対して用いるべき保持時間をマップに予め定めておき、ECU60は、このようなマップを参照することで、現在の電池温度に対応する保持時間を取得し、電池電圧を定格電圧以下に保持する制御を行う。こうすることで、固体二次電池10の出力特性の回復及び充電を、より効率良く行うことが可能となる。なお、1つの例では、リフレッシュ時間を保持時間として用いることができ、他の例では、リフレッシュ時間よりも若干長い時間又は若干短い時間を保持時間として用いることができる。
次に、図6を参照して、本実施形態に係る制御フローについて説明する。当該制御フローは、ECU60によって所定の周期で繰り返し実行される。
まず、ステップS101では、ECU60は、固体二次電池10が充電可能な状態であるか否かを判定する。例えば、固体二次電池10が満充電状態などにある場合、ECU60は、固体二次電池10が充電可能な状態でないと判定する。
固体二次電池10が充電可能な状態である場合(ステップS101;Yes)、処理はステップS102に進み、固体二次電池10が充電可能な状態でない場合(ステップS101;No)、処理は終了する。ステップS102では、ECU60は、温度センサ40が検出した固体二次電池10の温度(電池温度)を取得する。そして、処理はステップS103に進む。
ステップS103では、ECU60は、電池温度が所定温度以上であるか否かを判定する。ここでは、ECU60は、リフレッシュ時間が非駆的短いような電池温度であるか否か、言い換えると過放電処理により固体二次電池10の内部抵抗を所定値以下に低下させるまでに要する時間が非駆的短いような電池温度であるか否かを判定している。1つの例では、所定温度は、図5に示したような関係より定まる、所定時間以下のリフレッシュ時間に対応する電池温度に基づいて決定される。他の例では、固体二次電池10の充電が電力使用後に行われる傾向にあることを考慮して、所定温度は、固体二次電池10の電力使用後に想定される電池温度に基づいて決定される。好適には、所定温度として30℃が用いられる。
電池温度が所定温度以上である場合(ステップS103;Yes)、処理はステップS104に進む。これに対して、電池温度が所定温度未満である場合(ステップS103;No)、処理はステップS107に進む。この場合には、ECU60は、電池電圧を定格電圧以下に保持する制御を行わずに(つまり過放電処理を行わずに)、固体二次電池10の充電を開始する(ステップS107)。そして、処理は終了する。
ステップS104では、ECU60は、上記したような電池電圧と保持時間とが対応付けられたマップを参照して、ステップS102で取得した電池温度に対応する保持時間を取得する。そして、処理はステップS105に進む。
ステップS105では、ECU60は、電池電圧を定格電圧以下に保持する制御を行う。好適には、ECU60は、電池電圧を0Vに保持する制御を行う。1つの例では、過放電処理部11が外部短絡を行う場合には、ECU60は、固体二次電池10の外部短絡状態を維持する制御を行う。他の例では、過放電処理部11が放電装置である場合には、ECU60は、電池電圧が0Vに保持されるように、定電圧放電(CV放電)を継続させる制御を行う。そして、処理はステップS106に進む。なお、ステップS105の処理の開始時に電池電圧がある程度高い場合には、放電装置などを用いた過放電により電池電圧を一旦低下させた後に、電池電圧を0Vに保持する制御を行っても良い。
ステップS106では、ECU60は、ステップS104で取得した保持時間が経過したか否かを判定する。保持時間が経過していない場合(ステップS106;No)、処理はステップS105に戻り、ECU60は、電池電圧を定格電圧以下に保持する制御を継続する。これに対して、保持時間が経過している場合(ステップS106;Yes)、ECU60は、電池電圧を定格電圧以下に保持する制御を終了し、固体二次電池10の充電を開始する(ステップS107)。そして、処理は終了する。
以上説明した制御フローによれば、固体二次電池10の出力特性の回復及び充電を効率良く行うことが可能となる。
<制御方法の変形例>
ここでは、上記した制御方法の変形例について説明する。
図6では、電池温度に応じた保持時間を取得した後に、その保持時間を変更せずに(つまり保持時間を固定して)、電池電圧を定格電圧以下に保持する制御を行う例を示した。他の例では、制御中に電池温度が変化することを考慮して、電池温度の変化に合わせて変化させた保持時間を用いて、電池電圧を定格電圧以下に保持する制御を行うことができる。これにより、出力特性の回復及び充電を、さらに効率良く行うことが可能となる。
上記では、電池電圧を0Vに保持する例を示したが、各電池に定められた定格電圧以下の電圧であれば、電池電圧を0Vに保持することに限定はされない。
上記では、電池電圧を定格電圧以下に低下させた後に電池電圧を保持する制御を行う例を示したが、電池電圧を保持する制御を行わずに、電池電圧を定格電圧以下にまで低下させる制御のみを行うこととしても良い。例えば、電池電圧を0Vまで低下させる制御のみを行うことができる。
上記では、固体二次電池10の温度(電池温度)を温度センサ40によって直接検出する例を示したが、他の例では、電池温度を間接的に検出しても良い。具体的には、電池温度を代表する値を検出しても良い。更に他の例では、このようにセンサで検出する代わりに、所定の演算式やマップなどに基づいて、電池温度を推定しても良い。
<実施例>
以下に実施例および比較例を示して本発明をさらに具体的に説明する。
[実施例1]
(硫化物固体電解質材料の合成)
出発原料として、硫化リチウム(LiS、日本化学工業社製)および五硫化二リン(P、アルドリッチ社製)を用いた。次に、Ar雰囲気下(露点−70℃)のグローブボックス内で、LiSおよびPを、75LiS・25Pのモル比(LiPS、オルト組成)となるように秤量した。この混合物2gを、メノウ乳鉢で5分間混合した。その後、得られた混合物2gを、遊星型ボールミルの容器(45cc、ZrO製)に投入し、脱水ヘプタン(水分量30ppm以下)4gを投入し、さらにZrOボール(φ=5mm)53gを投入し、容器を完全に密閉した(Ar雰囲気)。この容器を遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数500rpmで、40時間メカニカルミリングを行った。その後、得られた試料を、ホットプレート上でヘプタンを除去するように乾燥させ、硫化物固体電解質材料(75LiS・25Pガラス)を得た。
なお、固体電解質は、硫化物以外にも、酸化物や、窒化物や、ハロゲン化物を用いても良く、結晶、非結晶、ガラスセラミックスのいずれも用いることができる。
(固体二次電池の作製)
LiNi1/3Co1/3Mn1/3(正極活物質、日亜化学社製)を12.03mg、VGCF(気相成長炭素繊維、導電化材、昭和電工社製)を0.51mg、上記の硫化物固体電解質材料を5.03mg秤量し、これらを混合することで正極合材を得た。また、グラファイト(負極活物質、三菱化学社製)を9.06mg、上記の硫化物固体電解質材料を8.24mg秤量し、これらを混合することで負極合材を得た。
次に、上記の硫化物固体電解質材料18mgを、1cmの金型に添加し、1ton/cmの圧力でプレスすることにより、固体電解質層を形成した。得られた固体電解質層の一方の表面側に、上記の正極合材を17.57mg添加し、1ton/cmの圧力でプレスすることにより、正極活物質層を形成した。次に、固体電解質層の他方の表面側に、上記の負極合材を17.3mg添加し、4ton/cmの圧力でプレスすることにより、発電要素を得た。そして、正極集電体に15μmのAl箔(日本製箔社製)を用い、負極集電体に10μmのCu箔(日本製箔社製)を用いて、固体二次電池を得た。
なお、正極は、Liイオン電池に使用できる活物質であれば、上記したものを用いることに限定はされない。LiCoOやLiNiOなどの層状正極活物や、オリビン型正極活物質や、スピネル型正極活物質なども用いることができる。また、正極の導電助剤は、VGCF以外にも炭素材料や金属材料を用いることができる。更に、負極は、Liイオン電池に使用できる活物質であれば、上記したものを用いることに限定はされない。加えて、集電体に、上記したような箔を用いることに限定はされない。
(過放電処理)
固体二次電池の作製後、1.5mAで0VまでCC放電し、0Vで10時間CV放電を行った。その後、開回路電圧が0.5V以下であることを確認して、80℃で15min保持した。
なお、CC放電を行う電流値は、上記したものに限定はされない。但し、電流値が小さいとCC放電の時間がかかり、電流値が大きいと過電圧が大きくなるため、例えば0.1mAh〜10mAhの範囲内であることが好ましい。
(抵抗の測定)
過放電処理後、0.3mAで4.2VまでCC充電し、その後、0.3mAで2.5VまでCC放電を行った。次に、3.6Vに充電して電圧を調整し、インピーダンスアナライザ(ソーラトロン社製)でインピーダンス解析を行い、抵抗を求めた。この結果については後述する。
[実施例2]
実施例2では、過放電処理において60℃で60min保持した。これ以外は、実施例1と同様である。
[実施例3]
実施例3では、過放電処理において40℃で240min保持した。これ以外は、実施例1と同様である。
[実施例4]
実施例4では、過放電処理において30℃で450min保持した。これ以外は、実施例1と同様である。
[比較例1]
比較例1では、過放電処理において25℃で15min保持した。これ以外は、実施例1と同様である。
[比較例2]
比較例2では、過放電処理において25℃で600min保持した。これ以外は、実施例1と同様である。
[抵抗の比較]
図7に、上記した実施例1〜4及び比較例1、2の結果の一例を示す。図7より、実施例1〜4及び比較例2では、固体二次電池の抵抗が適切に低下していることがわかる。これは、実施例1〜4及び比較例2では、電池温度に応じた適切な時間だけ保持を行ったからであると考えられる。一方で、比較例1では、固体二次電池の抵抗があまり低下していないことがわかる。これは、比較例1では、電池温度に応じた適切な時間だけ保持を行っていなかったからであると考えられる。具体的には、保持時間が短すぎたからであると考えられる。
[電池温度とリフレッシュ時間との関係]
図8に、電池温度とリフレッシュ時間との関係の一例を示す。このような関係は、種々の電池温度及び種々の保持時間を用いて実験を行うことで得られる。図8より、電池温度が高くなるほど、リフレッシュ時間が短くなることが確認された。言い換えると、電池温度が低くなるほど、リフレッシュ時間が長くなることが確認された。このような結果に基づいて、前述した制御に用いる保持時間が決定される。
本発明は、固体二次電池を充電するために利用することができる。
1 正極活物質層
2 負極活物質層
3 固体電解質層
4 正極集電体
5 負極集電体
10 固体二次電池
11 過放電処理部
12a、12b スイッチ部
20 固体二次電池システム
40 温度センサ
60 ECU
100 ハイブリッド車両
本発明の1つの観点では、正極活物質層、負極活物質層、並びに、前記正極活物質層および前記負極活物質層の間に形成された固体電解質層を有する固体二次電池を充電するための電池の充電方法であって、前記固体二次電池の温度を取得または推測する工程と、前記温度が所定温度以上である場合に、前記固体二次電池の充電工程前に、前記固体二次電池に対して過放電及び外部短絡のうちの少なくとも一方を行うことで、前記固体二次電池の電圧を定格電圧以下にまで低下させる過放電処理工程と、を有し、前記過放電処理工程で、前記固体二次電池の温度に応じた時間だけ、前記固体二次電池の電圧を前記定格電圧以下に保持する。
さらに、この態様では、固体二次電池の電圧を定格電圧以下に保持することで出力特性が回復するまでに要する時間が、固体二次電池の温度に応じて変わることを考慮して制御を行う。これにより、固体二次電池の出力特性の回復及び充電を、より効率良く行うことが可能となる。
本発明の他の観点では、正極活物質層、負極活物質層、並びに、前記正極活物質層および前記負極活物質層の間に形成された固体電解質層を有する固体二次電池を充電するための電池の充電制御装置であって、前記固体二次電池の温度を取得または推測する手段と、前記温度が所定温度以上である場合に、前記固体二次電池を充電する前に、前記固体二次電池に対して過放電及び外部短絡のうちの少なくとも一方を行うことで、前記固体二次電池の電圧を定格電圧以下にまで低下させる過放電処理手段と、を備え、前記過放電処理手段は、前記固体二次電池の温度に応じた時間だけ、前記固体二次電池の電圧を前記定格電圧以下に保持する。

Claims (4)

  1. 正極活物質層、負極活物質層、並びに、前記正極活物質層および前記負極活物質層の間に形成された固体電解質層を有する固体二次電池を充電するための電池の充電方法であって、
    前記固体二次電池の温度を取得または推測する工程と、
    前記温度が所定温度以上である場合に、前記固体二次電池の充電工程前に、前記固体二次電池に対して過放電及び外部短絡のうちの少なくとも一方を行うことで、前記固体二次電池の電圧を定格電圧以下にまで低下させる過放電処理工程と、を有することを特徴する電池の充電方法。
  2. 前記過放電処理工程で、前記固体二次電池の温度に応じた時間だけ、前記固体二次電池の電圧を前記定格電圧以下に保持する請求項1に記載の電池の充電方法。
  3. 前記過放電処理工程で、前記固体二次電池の温度が高い場合、前記固体二次電池の温度が低い場合に比して、前記固体二次電池の電圧を前記定格電圧以下に保持する時間を短くする請求項2に記載の電池の充電方法。
  4. 正極活物質層、負極活物質層、並びに、前記正極活物質層および前記負極活物質層の間に形成された固体電解質層を有する固体二次電池を充電するための電池の充電制御装置であって、
    前記固体二次電池の温度を取得または推測する手段と、
    前記温度が所定温度以上である場合に、前記固体二次電池を充電する前に、前記固体二次電池に対して過放電及び外部短絡のうちの少なくとも一方を行うことで、前記固体二次電池の電圧を定格電圧以下にまで低下させる過放電処理手段と、を備えることを特徴とする電池の充電制御装置。
JP2013519330A 2011-06-10 2011-06-10 電池の充電方法、及び電池の充電制御装置 Active JP5679055B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063368 WO2012169066A1 (ja) 2011-06-10 2011-06-10 電池の充電方法、及び電池の充電制御装置

Publications (2)

Publication Number Publication Date
JPWO2012169066A1 true JPWO2012169066A1 (ja) 2015-02-23
JP5679055B2 JP5679055B2 (ja) 2015-03-04

Family

ID=47295667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013519330A Active JP5679055B2 (ja) 2011-06-10 2011-06-10 電池の充電方法、及び電池の充電制御装置

Country Status (3)

Country Link
US (1) US9240694B2 (ja)
JP (1) JP5679055B2 (ja)
WO (1) WO2012169066A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2946433B1 (en) * 2013-01-16 2017-12-20 Bathium Canada Inc. Electrochemical cell or battery with reduced impedance and method for producing same
JP6779505B2 (ja) * 2015-12-18 2020-11-04 昭和電工株式会社 セロオリゴ糖の製造方法
WO2018074021A1 (ja) * 2016-10-18 2018-04-26 株式会社村田製作所 充放電装置、充放電方法、電子機器、電動車両及び電力システム
KR102314575B1 (ko) * 2018-01-12 2021-10-20 주식회사 엘지에너지솔루션 이차전지의 충방전기 및 이를 포함하는 이차전지의 활성화 공정 장치
JP7017137B2 (ja) * 2018-11-22 2022-02-08 トヨタ自動車株式会社 全固体二次電池の製造方法
JP7284923B2 (ja) * 2021-04-09 2023-06-01 株式会社安川電機 エンコーダ、サーボモータ、サーボシステム
CN114243133A (zh) * 2021-05-19 2022-03-25 江苏申港锅炉有限公司 一种全固态锂电池温度控制方法及温度控制***
CN116936971B (zh) * 2023-09-15 2024-01-05 中石油深圳新能源研究院有限公司 一种全固态锂电池充电温度控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137371A (ja) * 1990-09-26 1992-05-12 Sony Corp 二次電池の保護装置
JPH10224998A (ja) * 1997-02-10 1998-08-21 Nissan Motor Co Ltd 2次電池の保護装置
JP2000113909A (ja) * 1998-08-04 2000-04-21 Furukawa Battery Co Ltd:The リチウム二次電池の保管方法
JP2001076764A (ja) * 1999-09-07 2001-03-23 Tokyo R & D Co Ltd 時計手段を有する電動装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240722B2 (ja) * 2000-01-27 2009-03-18 三洋電機株式会社 電池の満充電表示方法
JP3857146B2 (ja) * 2002-01-16 2006-12-13 本田技研工業株式会社 ハイブリッド車両の制御装置
WO2004008808A1 (ja) * 2002-07-12 2004-01-22 Ricoh Company, Ltd. 加熱装置、補助電力供給装置、補助電力供給システム、定着装置及び画像形成装置
JP5020546B2 (ja) * 2006-06-01 2012-09-05 株式会社リコー 充放電保護回路、該充放電保護回路を組み込んだバッテリーパック、該バッテリーパックを用いた電子機器、携帯ゲーム機
JP5419743B2 (ja) 2009-02-24 2014-02-19 出光興産株式会社 電動装置及び電動装置の使用方法
JP2010225582A (ja) 2009-02-24 2010-10-07 Idemitsu Kosan Co Ltd 電動装置
JP5508646B2 (ja) 2011-05-27 2014-06-04 トヨタ自動車株式会社 固体二次電池システムおよび再生固体二次電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137371A (ja) * 1990-09-26 1992-05-12 Sony Corp 二次電池の保護装置
JPH10224998A (ja) * 1997-02-10 1998-08-21 Nissan Motor Co Ltd 2次電池の保護装置
JP2000113909A (ja) * 1998-08-04 2000-04-21 Furukawa Battery Co Ltd:The リチウム二次電池の保管方法
JP2001076764A (ja) * 1999-09-07 2001-03-23 Tokyo R & D Co Ltd 時計手段を有する電動装置

Also Published As

Publication number Publication date
WO2012169066A1 (ja) 2012-12-13
US9240694B2 (en) 2016-01-19
JP5679055B2 (ja) 2015-03-04
US20140097800A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5679055B2 (ja) 電池の充電方法、及び電池の充電制御装置
JP6123642B2 (ja) 全固体電池の充電システム
CN108075199B (zh) 用于车辆的电池***及其控制方法
JP4413888B2 (ja) 蓄電池システム、車載電源システム、車両、および蓄電池システムの充電方法
JP5673826B2 (ja) リチウム固体二次電池システム
JP5508646B2 (ja) 固体二次電池システムおよび再生固体二次電池の製造方法
JP6347254B2 (ja) 蓄電装置、蓄電システムおよび電動車両
JP5900244B2 (ja) 固体電池の製造方法
WO2012169065A1 (ja) 固体二次電池システム
JP2019106285A (ja) 二次電池システムおよび二次電池の活物質の応力推定方法
US11183706B2 (en) Lithium-ion second battery controller for reducing charging loss while preventing deterioration from lithium deposition
CN115799601A (zh) 锂离子电池
US20210152010A1 (en) Method for charging battery and charging system
JP2009199929A (ja) リチウム二次電池
KR101833964B1 (ko) 배터리 셀용 진성 과충전 보호
JP7131002B2 (ja) 二次電池の劣化推定装置
JP6879136B2 (ja) 二次電池の充放電制御装置
US20210152001A1 (en) Method for charging battery and charging system
JP2008199767A (ja) 電池パックの制御装置
JP2012257367A (ja) 電池の制御装置
JP5664460B2 (ja) 固体二次電池システム
JP7020177B2 (ja) 電池システム
JP2020114066A (ja) 二次電池の充放電制御装置
JP2019220260A (ja) 電池システム
JP2018006239A (ja) 電池システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R151 Written notification of patent or utility model registration

Ref document number: 5679055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151