JPWO2012105297A1 - Method for producing functional colloidal silica solution, resin composition for ultraviolet curable hard coat using the same, and cured product thereof - Google Patents

Method for producing functional colloidal silica solution, resin composition for ultraviolet curable hard coat using the same, and cured product thereof Download PDF

Info

Publication number
JPWO2012105297A1
JPWO2012105297A1 JP2012504962A JP2012504962A JPWO2012105297A1 JP WO2012105297 A1 JPWO2012105297 A1 JP WO2012105297A1 JP 2012504962 A JP2012504962 A JP 2012504962A JP 2012504962 A JP2012504962 A JP 2012504962A JP WO2012105297 A1 JPWO2012105297 A1 JP WO2012105297A1
Authority
JP
Japan
Prior art keywords
colloidal silica
hard coat
parts
weight
ultraviolet curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012504962A
Other languages
Japanese (ja)
Inventor
俊夫 大和
俊夫 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Momentive Performance Materials Japan LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Materials Japan LLC filed Critical Momentive Performance Materials Japan LLC
Publication of JPWO2012105297A1 publication Critical patent/JPWO2012105297A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Graft Or Block Polymers (AREA)
  • Silicon Polymers (AREA)

Abstract

本発明は、硬さ、低硬化収縮を両立させ耐擦傷性、密着性、経済性に優れた紫外線硬化型ハードコート剤を可能とする機能性コロイダルシリカの製造方法を提供する。(A) 平均粒子径1〜30nm、水素イオン濃度(pH)6以下の水分散性コロイダルシリカ;シリカ分として100重量部(B) メタクリル基含有アルコキシシラン;20〜30重量部(C) 誘電率10以上の極性溶媒;50〜500重量部を(D) ラジカル重合禁止剤;0.001〜1重量部の存在下で加水分解反応させた後、(E) 1−メトキシ−2−プロパノールを用いて共沸脱水し溶媒置換することにより得られ、平均粒子径が1〜30nmであり、加水分解反応前後でのシリカの平均粒子径の差が1.5倍以内である機能性コロイダルシリカ溶液の製造方法。The present invention provides a method for producing functional colloidal silica that enables an ultraviolet curable hard coat agent that has both hardness and low curing shrinkage and is excellent in scratch resistance, adhesion and economy. (A) Water-dispersible colloidal silica having an average particle size of 1 to 30 nm and a hydrogen ion concentration (pH) of 6 or less; 100 parts by weight as silica content (B) Methoxy group-containing alkoxysilane; 20 to 30 parts by weight (C) Dielectric constant 10 or more polar solvents; 50 to 500 parts by weight of (D) radical polymerization inhibitor; after hydrolysis reaction in the presence of 0.001 to 1 part by weight, (E) 1-methoxy-2-propanol A functional colloidal silica solution obtained by azeotropic dehydration and solvent substitution, having an average particle diameter of 1 to 30 nm, and a difference in average particle diameter of silica before and after the hydrolysis reaction within 1.5 times. Production method.

Description

本発明は、ポリカーボネート等の光学フィルムおよびプラスチック部品の表面に、鉛筆硬度、耐摩耗性、低カール性、密着性および経済性に優れた保護皮膜を形成するために用いられる機能性コロイダルシリカ溶液の製造方法および紫外線硬化型ハードコート用樹脂組成物とその硬化物に関する。
背景技術
The present invention relates to a functional colloidal silica solution used for forming a protective film excellent in pencil hardness, abrasion resistance, low curling property, adhesion and economy on the surface of optical films such as polycarbonate and plastic parts. The present invention relates to a production method, an ultraviolet curable hard coat resin composition, and a cured product thereof.
Background art

ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、ポリエステル、トリアセチルセルロース等の光学フィルムおよびプラスチック部品は、生産時の取扱いにより表面に傷が付くのを防止するため、また、ユーザー使用による傷を防止するため、表面保護用のハードコート層を片面または両面に設けることが行なわれている。   Optical film and plastic parts such as polycarbonate, polymethylmethacrylate, polystyrene, polyester, triacetylcellulose, etc. are used to prevent the surface from being scratched by handling during production and to prevent scratches caused by user use. A protective hard coat layer is provided on one side or both sides.

このハードコート層は、膜厚が1〜20μmの範囲で、各種活性エネルギー線硬化樹脂、熱硬化性樹脂が使用されることが一般的である。しかしながら、ハードコート層を設ける場合、鉛筆硬度の不足、密着性不良、フィルムカーリングの発生があり、その改善が望まれていた。   As for this hard coat layer, it is common that various active energy ray hardening resin and a thermosetting resin are used in the range of a film thickness of 1-20 micrometers. However, when a hard coat layer is provided, there are insufficient pencil hardness, poor adhesion, and film curling, and improvements have been desired.

特開昭57−131214号公報(特許文献1)や特開2009−102503公報(特許文献2)では、水分散性コロイダルシリカの表面をメタクリロキシシランで表面処理した粒子とアクリレートとの組成物を、光硬化型のコーティング剤として用いることを開示している。このコーティング剤の特徴は、シリカ粒子の表面を特定の有機シランおよび特定の条件で処理することによりコーティング剤の性能を改善する点にある。
しかしながら、このようなコーティング剤は、必ずしも十分に満足できるものではなかった。すなわち、保護皮膜の硬度を改良するためには、硬化後の皮膜の架橋密度を上げる必要があるが、皮膜の硬度を高めると、硬化収縮に伴う反りやカールが大きくなり、硬度と低カール性とのバランスを取るのが困難であるという問題があった。
In Japanese Patent Application Laid-Open No. 57-131214 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2009-102503 (Patent Document 2), a composition of particles and an acrylate obtained by treating the surface of a water-dispersible colloidal silica with methacryloxysilane. And use as a photo-curing coating agent. This coating agent is characterized in that the performance of the coating agent is improved by treating the surface of the silica particles with a specific organosilane and a specific condition.
However, such a coating agent is not always satisfactory. In other words, in order to improve the hardness of the protective film, it is necessary to increase the crosslink density of the film after curing. However, if the hardness of the film is increased, warpage and curl due to curing shrinkage increase, and the hardness and low curling property are increased. There was a problem that it was difficult to balance.

特開2009−91448号公報(特許文献3)では、水分散性コロイダルシリカの表面をメタクリロキシシランで表面処理したシリカとペンタエリスリトールトリアクリレートを主成分とすることで皮膜の硬度と低カール性にある程度の改善を見たが、さらなる改善が望まれていた。   In JP 2009-91448 A (Patent Document 3), the surface of water-dispersible colloidal silica is surface-treated with methacryloxysilane and pentaerythritol triacrylate is used as a main component to reduce the film hardness and low curl properties. Although some improvement was seen, further improvement was desired.

一方、特開平7−109355号公報(特許文献4)では、溶剤分散性コロイダルシリカの表面をメタクリロキシシランで表面処理したシリカとアクリレートモノマーを主成分とすることで皮膜の硬度などは改善されたが、高価な溶剤分散性コロイダルシリカを出発原材料としているために得られる最終製品も高価になり、経済面で不利であった。   On the other hand, in JP-A-7-109355 (Patent Document 4), the hardness of the coating is improved by using silica and acrylate monomer as main components of the surface of solvent-dispersible colloidal silica treated with methacryloxysilane. However, since the expensive solvent-dispersible colloidal silica is used as a starting material, the final product obtained is also expensive, which is disadvantageous in terms of economy.

特開昭57−131214号公報JP-A-57-13214 特開2009−102503公報JP 2009-102503 A 特開2009−91448号公報JP 2009-91448 A 特開平7−109355号公報JP-A-7-109355

従来技術では、多官能性アクリレートモノマーを多用すること、あるいは表面を特定の有機シランにより処理したコロイダルシリカを添加することで表面硬度を上げていたが、多官能性アクリレートモノマーを多用する場合には特に硬化収縮に問題が生じることが多かった。
このような収縮の問題を解決するためには、アクリルモノマー樹脂骨格自体をすべて柔らかい成分に代えることにより収縮を少なくさせることが考えられるが、硬さが極度に落ち、光学用フィルムおよびプラスチック部品の表面保護のハードコート剤にはそぐわなくなるという問題があった。
In the prior art, the surface hardness was increased by using many polyfunctional acrylate monomers or adding colloidal silica whose surface was treated with a specific organosilane, but when using many polyfunctional acrylate monomers. In particular, problems often occur in curing shrinkage.
In order to solve such a shrinkage problem, it is conceivable to reduce the shrinkage by replacing the acrylic monomer resin skeleton itself with a soft component. There was a problem that the hard coating agent for surface protection was not suitable.

また表面処理したコロイダルシリカを増量しても、十分な表面硬度の改善には至らず、皮膜の脆さや密着性の低下が認められる場合があった。   Further, even when the amount of the surface-treated colloidal silica was increased, the surface hardness was not sufficiently improved, and the brittleness of the film and the decrease in adhesion were sometimes observed.

そのため、硬さを維持しつつ硬化収縮を低減させることが基本的に困難であり、硬さと低硬化収縮を両立させ、なおかつ密着性に優れたハードコート剤が求められていた。   Therefore, it is basically difficult to reduce the curing shrinkage while maintaining the hardness, and there has been a demand for a hard coating agent that achieves both hardness and low curing shrinkage and is excellent in adhesion.

本発明は、上記課題を鑑みてなされたものであり、その目的は、光学フィルムやプラスチック部品の表面上にハードコート層を形成した時、鉛筆硬度、耐擦傷性、フィルムカーリング、密着性、経済性が改善されるハードコート用樹脂組成物に使用される機能性コロイダルシリカ溶液の製造方法および前記方法で得られた機能性コロイダルシリカ溶液を用いたハードコート用樹脂組成物を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to form a pencil hardness, scratch resistance, film curling, adhesion, economy when a hard coat layer is formed on the surface of an optical film or plastic part. The present invention provides a method for producing a functional colloidal silica solution used in a hard coat resin composition with improved properties, and a hard coat resin composition using the functional colloidal silica solution obtained by the method. .

本発明者は、上記従来技術の問題を解決し、硬さ、低硬化収縮を両立させ耐擦傷性、密着性、経済性に優れた紫外線硬化型ハードコート剤を提供すべく機能性コロイダルシリカなどについて鋭意検討した結果、下記の組成、プロセスによって合成される一定範囲の粒子径を有する機能性コロイダルシリカ溶液を使用した紫外線硬化型ハードコーティング剤が極めて有効であることを見出し、本発明を完成するに至った。   The present inventor has solved the above-mentioned problems of the prior art and provides a functional colloidal silica to provide an ultraviolet curable hard coat agent which has both hardness and low curing shrinkage and is excellent in scratch resistance, adhesion and economy. As a result of intensive studies, the inventors have found that an ultraviolet curable hard coating agent using a functional colloidal silica solution having a particle size in a certain range synthesized by the following composition and process is extremely effective, and completes the present invention. It came to.

即ち本発明は、
(A) 平均粒子径1〜30nm、水素イオン濃度(pH)6以下の水分散性コロイダルシリカ;シリカ分として100重量部
(B) メタクリル基含有アルコキシシラン;20〜30重量部
(C) 誘電率10以上の極性溶媒; 50〜500重量部を
(D) ラジカル重合禁止剤;0.001〜1重量部
の存在下で加水分解反応させた後、
(E) 1−メトキシ−2−プロパノールを用いて共沸脱水し溶媒置換することにより得られ、平均粒子径が1〜30nmであり、加水分解反応前後でのシリカの平均粒子径の差が1.5倍以内である機能性コロイダルシリカ溶液の製造方法、
及び
該機能性コロイダルシリカ溶液、アクリレート樹脂および/またはウレタンアクリレート樹脂、光重合開始剤を含有する紫外線硬化型ハードコート用樹脂組成物であって、該機能性コロイダルシリカ溶液に基づく固形分が全体の固形分に対して50%以上である紫外線硬化型ハードコート用樹脂組成物、
並びに
該紫外線硬化型ハードコート用樹脂組成物を塗布後、紫外線照射により硬化してなる厚さ1〜20μmのハードコート層を有する光学フィルムまたはプラスチック部品である。
That is, the present invention
(A) Water-dispersible colloidal silica having an average particle size of 1 to 30 nm and a hydrogen ion concentration (pH) of 6 or less; 100 parts by weight as silica content
(B) Methacrylic group-containing alkoxysilane; 20 to 30 parts by weight
(C) a polar solvent having a dielectric constant of 10 or more; 50 to 500 parts by weight
(D) radical polymerization inhibitor; after the hydrolysis reaction in the presence of 0.001 to 1 part by weight,
(E) Obtained by azeotropic dehydration using 1-methoxy-2-propanol and solvent substitution, the average particle size is 1 to 30 nm, and the difference in the average particle size of silica before and after the hydrolysis reaction is 1 A method for producing a functional colloidal silica solution within 5 times,
And the functional colloidal silica solution, an acrylate resin and / or a urethane acrylate resin, and a photopolymerization initiator, an ultraviolet curable hard coat resin composition, wherein the solid content based on the functional colloidal silica solution UV-curable hard coat resin composition having a solid content of 50% or more,
And an optical film or a plastic part having a hard coat layer having a thickness of 1 to 20 μm, which is formed by applying the ultraviolet curable hard coat resin composition and then curing by ultraviolet irradiation.

本発明により、光学フィルムおよびプラスチック部品上にハードコート層を形成した時、鉛筆硬度、耐擦傷性、密着性、フィルムカーリングが改善されるハードコート用樹脂組成物を比較的安価で提供することができる。
発明の詳細な説明
According to the present invention, when a hard coat layer is formed on an optical film and a plastic part, it is possible to provide a hard coat resin composition with improved pencil hardness, scratch resistance, adhesion, and film curling at a relatively low cost. it can.
Detailed Description of the Invention

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に用いる(A)成分は平均粒子径1〜30nm、水素イオン濃度(pH)6以下の水分散性コロイダルシリカである。
一般にコロイダルシリカ微粒子は、平均粒子径が1〜200mμの無水ケイ酸の超微粒子を水または有機溶媒に分散させたものである。
コロイダルシリカに使用される分散媒としては、水、メタノール、エタノール、イソプロパノール、n−プロパノール、イソブタノール、n−ブタノールなどのアルコール系溶剤、エチレングリコールなどの多価アルコール系溶剤、エチルセロソルブ、ブチルセロソルブなどの多価アルコール誘導体、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコールなどのケトン系溶剤、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレートなどのモノマー類があるが、中でも経済性の面から水分散タイプが好ましく、また、加水分解反応工程の面から水素イオン濃度(pH)6以下の水分散性コロイダルシリカが特に好ましい。
これらのコロイダルシリカは、公知の方法で製造され、主にシリカ分として5〜40%程度の濃度のものが好ましい。
平均粒子径は1〜30nmであり、好ましくは10〜30nm、より好ましくは15〜30nm、さらに好ましくは18〜25nmである。粒子径が1nmに満たないものは高価であり、また、反応工程においてゲル化が起こりやすい。また、粒子径が30nmを超えるものは、硬化皮膜の透明性が低下する。コロイダルシリカは硬化皮膜の耐擦傷性を著しく改善でき、また抗カール性の付与に有効である。
本発明では最終的にコロイダルシリカ中の水分を最終的に共沸脱水し溶媒置換するために経済性の面からコロイダルシリカ中のシリカ濃度が高い方が好ましく、前記濃度を高めることができるため、平均粒子径が18〜25nm程度のものが最適である。
本発明では、平均粒子径が18〜25nmの範囲で、シリカ分が30〜40%の範囲のものが好ましい。
The component (A) used in the present invention is water-dispersible colloidal silica having an average particle diameter of 1 to 30 nm and a hydrogen ion concentration (pH) of 6 or less.
Generally, colloidal silica fine particles are obtained by dispersing ultrafine particles of silicic anhydride having an average particle size of 1 to 200 mμ in water or an organic solvent.
Examples of the dispersion medium used for colloidal silica include alcohol solvents such as water, methanol, ethanol, isopropanol, n-propanol, isobutanol and n-butanol, polyhydric alcohol solvents such as ethylene glycol, ethyl cellosolve, and butyl cellosolve. Polyhydric alcohol derivatives, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, and monomers such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and tetrahydrofurfuryl acrylate. From the viewpoint of the hydrolysis reaction step, water-dispersible colloidal silica having a hydrogen ion concentration (pH) of 6 or less is particularly preferable.
These colloidal silicas are produced by known methods, and those having a concentration of about 5 to 40% mainly as the silica content are preferred.
An average particle diameter is 1-30 nm, Preferably it is 10-30 nm, More preferably, it is 15-30 nm, More preferably, it is 18-25 nm. Those having a particle diameter of less than 1 nm are expensive, and gelation tends to occur in the reaction process. Moreover, the thing with a particle diameter exceeding 30 nm reduces the transparency of a cured film. Colloidal silica can remarkably improve the scratch resistance of the cured film and is effective in imparting anti-curl properties.
In the present invention, since the water in the colloidal silica is finally azeotropically dehydrated and solvent-substituted, it is preferable that the silica concentration in the colloidal silica is high from the economical aspect, and the concentration can be increased. An average particle diameter of about 18 to 25 nm is optimal.
In the present invention, those having an average particle diameter of 18 to 25 nm and a silica content of 30 to 40% are preferable.

(B)成分は、コロイダルシリカの有効成分量に対して一定量を配合することで、酸性水溶液下で加水分解によりコロイダルシリカと化学結合し、硬化皮膜の耐擦傷性を著しく改善することができる。
このようなシランとして、3−メタクリロキシプロピルトリメトキシシラン、2−メタクリロキシエチルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、2−メタクリロキシエチルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシランなどあるが、入手のし易さから3−メタクリロキシプロピルトリメトキシシランが好適である。
なお、配合量は(A)成分の有効成分量(シリカ分)100重量部に対して20〜30重量部であることが必要である。
20重量部未満ではコロイダルシリカの表面処理が十分に行われずに結果として、十分な耐摩耗性を得ることができない。また、加水分解後の脱水工程にてコロイダルシリカ粒子が凝集を起こしたりする。30重量部より多いと得られる機能性コロイダルシリカ溶液の粒子径の変化が大きくなり、紫外線硬化型ハードコート組成物に調製した際に十分な硬度や耐擦傷性を示さなくなる。また、加水分解時に過剰な(B)成分がオリゴマーを形成し、鉛筆硬度や耐摩耗性に影響を与える。さらにはフィルム基材に塗工した場合にカールが大きくなる。
By blending a certain amount of the component (B) with respect to the effective amount of the colloidal silica, it can be chemically bonded to the colloidal silica by hydrolysis under an acidic aqueous solution, and the scratch resistance of the cured film can be remarkably improved. .
As such silanes, 3-methacryloxypropyltrimethoxysilane, 2-methacryloxyethyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 2-methacryloxyethyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane However, 3-methacryloxypropyltrimethoxysilane is preferred because of its availability.
In addition, a compounding quantity needs to be 20-30 weight part with respect to 100 weight part of active ingredient amount (silica part) of (A) component.
If the amount is less than 20 parts by weight, the surface treatment of the colloidal silica is not sufficiently performed, and as a result, sufficient wear resistance cannot be obtained. Further, the colloidal silica particles may aggregate in the dehydration step after hydrolysis. When the amount is more than 30 parts by weight, the change in the particle size of the functional colloidal silica solution obtained becomes large, and sufficient hardness and scratch resistance are not exhibited when the ultraviolet curable hard coat composition is prepared. In addition, an excessive component (B) forms an oligomer during hydrolysis, which affects pencil hardness and wear resistance. Furthermore, the curl becomes large when applied to a film substrate.

(C)成分は、(A)成分と(B)成分を加水分解させるときに相溶性を向上ざせるために配合する。
誘電率10以上の極性溶媒としては、1−ブタノール、2−ブタノール、メタノール、エタノール、セロソルブなどがあるが、(A)成分と(B)成分との加水分解反応前後の相溶性、コロイダルシリカの粒径への影響、共沸脱水の効率などの面からイソプロピルアルコールおよび/または1−メトキシ−2−プロパノールが好ましい。相溶性や加水分解反応後の溶剤留去効率の面から50〜500重量部が好ましく、特に70〜150重量部が好ましい。
Component (C) is blended in order to improve compatibility when the components (A) and (B) are hydrolyzed.
Examples of polar solvents having a dielectric constant of 10 or more include 1-butanol, 2-butanol, methanol, ethanol, cellosolve, etc., but compatibility between components (A) and (B) before and after the hydrolysis reaction, colloidal silica Isopropyl alcohol and / or 1-methoxy-2-propanol are preferred from the standpoints of influence on the particle size and efficiency of azeotropic dehydration. 50 to 500 parts by weight are preferable, and 70 to 150 parts by weight are particularly preferable in terms of compatibility and efficiency of solvent distillation after hydrolysis.

(D)成分は、(A)成分と(B)成分の加水分解反応時に共存させておくことで、メタクリル基の重合を抑制し収率を向上させることができる。   By allowing the component (D) to coexist during the hydrolysis reaction of the component (A) and the component (B), polymerization of the methacrylic group can be suppressed and the yield can be improved.

ラジカル重合禁止剤としては特に限定されず、一般にラジカル重合防止剤として用いられるものであるならばいずれも使用することができる。
具体的には、ヒドロキノン、メトキシヒドロキノン、ベンゾキノン、p−tert−ブチルカテコール等のキノン系重合禁止剤;2,6−ジ−tert−ブチルフェノール、2,4−ジ−tert−ブチルフェノール、2−tert−ブチル−4,6−ジメチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,4,6−トリ−tert−ブチルフェノール等のアルキルフェノール系重合禁止剤;アルキル化ジフェニルアミン、N,N’−ジフェニル−p−フェニレンジアミン、フェノチアジン、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、1,4−ジヒドロキシ−2,2,6,6−テトラメチルピペリジン、1−ヒドロキシ−4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン等のアミン系重合禁止剤;ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅等のジチオカルバミン酸銅系重合禁止剤;2,2,6,6−テトラメチルピペリジン−1−オキシル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシルのエステル等の1−オキシル系重合禁止剤;等が挙げられる。
The radical polymerization inhibitor is not particularly limited, and any radical polymerization inhibitor can be used as long as it is generally used as a radical polymerization inhibitor.
Specifically, quinone polymerization inhibitors such as hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol; 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert- Alkylphenol polymerization inhibitors such as butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol; alkylated diphenylamine, N, N '-Diphenyl-p-phenylenediamine, phenothiazine, 4-hydroxy-2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 1,4-dihydroxy- 2,2,6,6-tetramethylpiperidine, 1-hydroxy-4- Amine polymerization inhibitors such as benzoyloxy-2,2,6,6-tetramethylpiperidine; copper dithiocarbamate polymerization inhibitors such as copper dimethyldithiocarbamate, copper diethyldithiocarbamate, copper dibutyldithiocarbamate; 2,2, 6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1 1-oxyl-based polymerization inhibitors such as esters of -oxyl and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl;

これらの中でも、好ましいラジカル重合禁止剤として、キノン系重合禁止剤、アミン系重合禁止剤、ジチオカルバミン酸銅系重合禁止剤、1−オキシル系重合禁止剤を挙げることができる。
特に好ましいラジカル重合禁止剤として、ヒドロキノン、メトキシヒドロキノン、ベンゾキノン、p−tert−ブチルカテコール、フェノチアジン、アルキル化ジフェニルアミン、ジブチルジチオカルバミン酸銅、2,2,6,6−テトラメチルピペリジン−1−オキシル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシルのエステル等を挙げることができる。配合量としては加水分解反応時のラジカル重合反応の抑制効果およびハードコート組成物に調製したときのハードコート組成物の紫外線に対する反応性の面から0.001〜1重量部が好ましく、特に0.01〜0.1重量部が好ましい。
Among these, preferable radical polymerization inhibitors include quinone polymerization inhibitors, amine polymerization inhibitors, copper dithiocarbamate polymerization inhibitors, and 1-oxyl polymerization inhibitors.
Particularly preferred radical polymerization inhibitors include hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol, phenothiazine, alkylated diphenylamine, copper dibutyldithiocarbamate, 2,2,6,6-tetramethylpiperidine-1-oxyl, 4 Examples include -hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, esters of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, and the like. The blending amount is preferably 0.001 to 1 part by weight from the viewpoint of the effect of suppressing the radical polymerization reaction during the hydrolysis reaction and the reactivity of the hard coat composition with respect to ultraviolet rays when prepared into a hard coat composition. 01-0.1 weight part is preferable.

(E)成分は、加水分解反応後に系中から水や副生成物などを蒸留除去する際に使用する。
従来は1,6−ヘキサンジオールジアクリレートやトリプロピレングリコールジアクリレートなどのような低粘度を有するアクリレートを配合し、水や副生成物などを蒸留除去したり、イソブタノール、トルエン、IPA(イソプロパノール)やDMF(ジメチルホルムアミド)などのような溶媒を用いて脱水もしくは共沸脱水を行っていた。これらの材料を用いて脱水を行った場合、最終的に得られる機能性コロイダルシリカ溶液中のシリカ粒子径が大きくなってしまい、結果としてハードコート用樹脂組成物に調製した際に鉛筆硬度、耐摩耗性、低カール性などに影響が見られた。
また、低粘度を有するアクリレートを配合した場合には得られた機能性コロイダルシリカはすでに特定のアクリレートを含有してしまっているために最終的に調製すべきハードコート組成物の特性が限定されてしまうために汎用性のあるマスターバッチ的な機能性コロイダルシリカとして扱うことができなくなるために価値が限定されてしまう。
また、このような低粘度を有するアクリレートはいずれも2官能性であり、これを配合した組成は高硬度、耐擦傷性を目的とする本発明にそぐわない。
一方、1−メトキシ−2−プロパノールを用いた場合、加水分解前後で機能性コロイダルシリカ溶液中のシリカ粒子径の変化がほとんどない。また、脱水の際の共沸比率高いために脱水効率が高く生産性に優れている。
また、機能性コロイダルシリカとの相溶性に優れているために粘度・チクソ性の上昇なく高濃度に濃縮することができる。また、アクリレートなどを一切含有していないために汎用性の高いマスターバッチとして取り扱うことができる。
さらに1−メトキシ−2−プロパノールは、ポリカーボネートのような有機溶剤の影響を受け侵食され易いプラスチック基材に対して影響を与えないためにフィルムや各種プラスチック用のハードコート樹脂組成物に好適である。なお、配合量は共沸脱水に必要で、さらに、得られた機能性コロイダルシリカを安定分散できる量があれば特に限定されない。
The component (E) is used when water or by-products are distilled off from the system after the hydrolysis reaction.
In the past, acrylates with low viscosity such as 1,6-hexanediol diacrylate and tripropylene glycol diacrylate were blended to remove water and by-products by distillation, isobutanol, toluene, IPA (isopropanol) Dehydration or azeotropic dehydration was performed using a solvent such as DMF (dimethylformamide). When dehydration is performed using these materials, the silica particle diameter in the finally obtained functional colloidal silica solution becomes large, and as a result, when prepared into a resin composition for hard coat, pencil hardness, There was an effect on wear and low curl properties.
In addition, when an acrylate having a low viscosity is blended, the obtained functional colloidal silica already contains a specific acrylate, so the properties of the hard coat composition to be finally prepared are limited. Therefore, since it cannot be treated as a versatile masterbatch-like functional colloidal silica, its value is limited.
In addition, any acrylate having such a low viscosity is bifunctional, and a composition containing this acrylate is not suitable for the present invention aiming at high hardness and scratch resistance.
On the other hand, when 1-methoxy-2-propanol is used, there is almost no change in the silica particle diameter in the functional colloidal silica solution before and after hydrolysis. Further, since the azeotropic ratio during dehydration is high, the dehydration efficiency is high and the productivity is excellent.
Moreover, since it is excellent in compatibility with functional colloidal silica, it can be concentrated to a high concentration without an increase in viscosity and thixotropy. Moreover, since it does not contain acrylate or the like, it can be handled as a versatile master batch.
Furthermore, 1-methoxy-2-propanol is suitable for a hard coat resin composition for films and various plastics because it does not affect a plastic substrate that is easily affected by an organic solvent such as polycarbonate. . The blending amount is not particularly limited as long as it is necessary for azeotropic dehydration and there is an amount capable of stably dispersing the obtained functional colloidal silica.

本機能性コロイダルシリカ溶液を製造するには、第1の工程で、(A)〜(C)成分を(D)成分の存在下で加水分解させる。この際の条件は特に制限されないが、一般に70〜120℃、より好ましくは還流温度で2時間以上が適当である。   In order to produce this functional colloidal silica solution, the components (A) to (C) are hydrolyzed in the presence of the component (D) in the first step. The conditions in this case are not particularly limited, but generally 70 to 120 ° C., more preferably 2 hours or more at the reflux temperature is appropriate.

次に第2の工程で、(E)成分を用いて共沸脱水し、機能性コロイダルシリカ溶液を得る。共沸脱水の条件は特に制限されないが、溶液温度が50℃以上にならぬ様に減圧下で共沸脱水を行うことが好ましい。   Next, in the second step, azeotropic dehydration is performed using the component (E) to obtain a functional colloidal silica solution. The conditions for azeotropic dehydration are not particularly limited, but azeotropic dehydration is preferably performed under reduced pressure so that the solution temperature does not become 50 ° C. or higher.

なお、本発明の特性を損なわない範囲で、シランカップリング剤、レベリング剤、アクリレートやウレタンアクリレート、希釈溶媒などの添加剤を配合することができる。   In addition, an additive such as a silane coupling agent, a leveling agent, an acrylate, a urethane acrylate, or a diluting solvent can be blended within a range that does not impair the characteristics of the present invention.

本発明では、上記の通り、メタクリル基含有アルコキシシランの配合量を制御すると共に、共沸脱水用として1−メトキシ−2−プロパノールを選択使用することにより、加水分解反応前後でのシリカの平均粒子径の差が1.5倍以内である機能性コロイダルシリカ溶液を製造することができる。   In the present invention, as described above, the average amount of silica particles before and after the hydrolysis reaction is controlled by controlling the blending amount of the methacrylic group-containing alkoxysilane and selectively using 1-methoxy-2-propanol for azeotropic dehydration. A functional colloidal silica solution having a diameter difference of 1.5 times or less can be produced.

本機能性コロイダルシリカ溶液を用いて紫外線硬化型ハードコート用樹脂組成物を調製するには、バインダー成分としてアクリレート樹脂やウレタンアクリレート樹脂を配合し、光重合開始剤、必要に応じて希釈溶媒、レベリング剤などを配合することにより得られるが、本質的に高硬度の紫外線硬化型ハードコート用樹脂組成物を得るためにはバインダー成分として、3官能以上の多官能タイプのアクリレートやウレタンアクリレートを主として使用することが好ましい。   In order to prepare a resin composition for an ultraviolet curable hard coat using this functional colloidal silica solution, an acrylate resin or a urethane acrylate resin is blended as a binder component, a photopolymerization initiator, a diluting solvent if necessary, and leveling. It can be obtained by blending agents, but in order to obtain a UV-hardening hard coat resin composition with essentially high hardness, a trifunctional or higher polyfunctional type acrylate or urethane acrylate is mainly used as a binder component. It is preferable to do.

また、硬度、耐擦傷性、低カール性の面から、機能性コロイダルシリカ溶液に基づく固形分(有効成分)が全体の固形分(有効成分)に対して50%以上であるように紫外線硬化型ハードコート用樹脂組成物を調製することが必要であり、特に60%以上にすることが好ましい。   In addition, from the viewpoints of hardness, scratch resistance, and low curl properties, the UV curable type is such that the solid content (active ingredient) based on the functional colloidal silica solution is 50% or more of the total solid content (active ingredient). It is necessary to prepare a resin composition for hard coat, and it is particularly preferably 60% or more.

上記条件を満足する組成物であれば本発明所期の効果が得られるが、具体的な組成としては、機能性コロイダルシリカ溶液;シリカ分として100重量部に対して、アクリレート樹脂および/またはウレタンアクリレート樹脂40〜100重量部、光重合開始剤4〜16重量部、総溶媒分として200〜1000重量部が適当である。   If the composition satisfies the above conditions, the effect of the present invention can be obtained. As a specific composition, a functional colloidal silica solution; an acrylate resin and / or urethane with respect to 100 parts by weight as a silica component An acrylate resin of 40 to 100 parts by weight, a photopolymerization initiator of 4 to 16 parts by weight, and a total solvent content of 200 to 1000 parts by weight are suitable.

本発明に用いるアクリレート樹脂、ウレタンアクリレート樹脂、光重合開始剤、希釈溶媒としては、従来より紫外線硬化型ハードコート用樹脂組成物に用いられているものであれば特に制限はなく、アクリレート樹脂としては、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート等が挙げられる。   The acrylate resin, urethane acrylate resin, photopolymerization initiator, and diluting solvent used in the present invention are not particularly limited as long as they are conventionally used in ultraviolet curable hard coat resin compositions. Dipentaerythritol hexaacrylate, pentaerythritol pentaacrylate, dipentaerythritol pentaacrylate, pentaerythritol tetraacrylate, dipentaerythritol tetraacrylate and the like.

また、ウレタンアクリレート樹脂としてはJSR(株)製ウレタンアクリレート「紫光UV−1700B」、「紫光UV−6300B」、「紫光UV−7640B」、ダイセル・サイテック社製Ebecryl 1290、共栄社化学製「UA−306H」などが挙げられる。   In addition, as urethane acrylate resins, urethane acrylates “purple light UV-1700B”, “purple light UV-6300B”, “purple light UV-7640B” manufactured by JSR Corporation, Ebecryl 1290 manufactured by Daicel-Cytec, “UA-306H” manufactured by Kyoeisha Chemical Co., Ltd. Or the like.

光重合開始剤としては、公知の一般に入手可能なものがいずれも使用可能であるが、特に可視領域における透明性を確保するために、UV吸収の最大波長ピークが400nm以下のものが望ましい。
このような重合開始剤として、アセトフェノン系の1−ヒドロキシ−シクロヘキシル−フェニルケトン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1−オン、フォスフィンオキシド系の2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、さらにはベンゾフェノンと重合促進剤のエチル−4−ジメチルアミノベンゾエート、2−エチルヘキシル−4−ジメチルアミノベンゾエートといった組み合わせのものも使用できる。
As the photopolymerization initiator, any known and generally available ones can be used, but those having a maximum wavelength peak of UV absorption of 400 nm or less are particularly desirable in order to ensure transparency in the visible region.
As such a polymerization initiator, acetophenone-based 1-hydroxy-cyclohexyl-phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-2-methyl-1-phenyl-propane -1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone -1-one, phosphine oxide-based 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, benzophenone and polymerization accelerators ethyl-4-dimethylaminobenzoate, 2-ethylhexyl-4-dimethylaminobenzoate Combinations such as these can also be used.

希釈溶媒としては、1−メトキシ−2−プロパノールなどのアルコール系溶媒、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、酢酸エチル、酢酸ブチルなどのエステル系溶媒など公知の一般に入手可能なものが使用可能であり、単独でも混合溶媒系でも用いることが可能である。   As the diluting solvent, known solvents such as alcohol solvents such as 1-methoxy-2-propanol, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and ester solvents such as ethyl acetate and butyl acetate can be used. It can be used alone or in a mixed solvent system.

なお、本ハードコート用樹脂組成物は、使用前にフィルターろ過されることが望ましい。フィルター材質はPTFE、ポリプロピレンなど、アクリル化合物によって容易侵食されないものが望ましく、ろ過時のフィルター径は0.2〜10ミクロン程度のものが入手も容易であり望ましい。特にフィルター径を2段階に分け、初期に2〜10ミクロン、後期に0.2〜1ミクロンのものを通すことにより、コロイドシリカの凝集物とアクリル樹脂由来のゲル物、および大気より混入する塵を効率良く除くことができ、最終的な皮膜の外観を良好に保つことができる。   In addition, as for this resin composition for hard-coats, it is desirable to filter-filter before use. It is desirable that the filter material is not easily eroded by an acrylic compound such as PTFE or polypropylene, and that the filter diameter during filtration is about 0.2 to 10 microns because it is easily available. In particular, the filter diameter is divided into two stages, with the passage of 2 to 10 microns in the initial stage and 0.2 to 1 micron in the latter stage, so that colloidal silica aggregates and gels derived from acrylic resin and dust mixed in from the air are more efficient It can be removed well and the final appearance of the film can be kept good.

上に述べた紫外線硬化型ハードコート組成物はロール、ワイヤーバー、ドクターブレード、フロー、スプレーおよびはけ塗り等により光学フィルムあるいはプラスチック部品基材表面に塗工し、市販されている光照射装置で紫外線を照射することにより硬化させることができる。紫外線光源としては、紫外線を発生する光源であれば制限なく使用できる。
例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、フュージョンランプ等を用いることができる。
照射条件はそれぞれのランプによって異なるが、照射光量はフュージョンランプ(Hバルブ)の場合、紫外線UV−Bの波長領域では50〜1000mJ/cm程度が好ましい。紫外線硬化型ハードコート組成物は塗布乾燥中または後に、紫外線を照射するのがよく、照射時間としては0.5秒〜5分が好ましく、紫外線硬化性樹脂の硬化効率または作業効率の観点から3秒〜2分がより好ましい。
The UV curable hard coat composition described above is applied to the surface of an optical film or plastic part substrate by roll, wire bar, doctor blade, flow, spray, brushing, etc. It can be cured by irradiating with ultraviolet rays. As the ultraviolet light source, any light source that generates ultraviolet light can be used without limitation.
For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a fusion lamp, or the like can be used.
Irradiation conditions vary depending on each lamp, but in the case of a fusion lamp (H bulb), the amount of irradiation light is preferably about 50 to 1000 mJ / cm 2 in the ultraviolet UV-B wavelength region. The ultraviolet curable hard coat composition is preferably irradiated with ultraviolet rays during or after coating and drying, and the irradiation time is preferably 0.5 seconds to 5 minutes. From the viewpoint of curing efficiency or work efficiency of the ultraviolet curable resin, 3 More preferred is seconds to 2 minutes.

本発明において紫外線硬化型ハードコート剤の形成厚さは1〜20μm、好ましくは5〜15μmである。膜厚が少なくなると、光硬化時に酸素による重合阻害の影響が大きくなり、窒素などの不活性ガス下による硬化システムが必要となる。また膜厚が極度に大きくなると硬化収縮における基材の変形が大きくなる不具合がある。
実施例
In the present invention, the formation thickness of the ultraviolet curable hard coat agent is 1 to 20 μm, preferably 5 to 15 μm. When the film thickness decreases, the influence of polymerization inhibition by oxygen during photocuring increases, and a curing system under an inert gas such as nitrogen is required. Further, when the film thickness becomes extremely large, there is a problem that the deformation of the base material during curing shrinkage becomes large.
Example

以下、本発明の実施例を挙げるが、本発明は以下の実施例に限定されるものではない。また、実施例中、部は重量部を示す。   Examples of the present invention will be described below, but the present invention is not limited to the following examples. Moreover, a part shows a weight part in an Example.

評価方法は以下の通りである。
(平均粒子径)
ベックマン・コールター社製サブミクロン粒度分布測定装置Coulter N4 Plusにて測定した。
(鉛筆硬度)
硬化皮膜を形成したフィルム表面にJIS K 5600−5−4の試験法に準じて行った。ただし、23℃、50%RHの条件で16時間以上状態調節した後、荷重は1kgとし、同一硬度スケールの鉛筆で5回試験を行い、目視により圧痕の種別を調べ、各硬度スケールごとの塑性変形や凝集破壊の無い回数/試験回数で評価した。
(耐擦傷性)
JIS K 7204、JIS K 7105に記載されたテーバー摩耗試験を摩耗輪CS10F、片輪250g荷重で2輪用い、500回転させた時点での曇度(ヘイズ)を初期の曇度から差し引くことにより、摩耗性を評価した。値が低いほど耐摩耗性に優れている。
(カール性)
試料を100mm×100mm角のサイズでサンプルを切り出し、23℃、50%RHの条件で16時間以上状態調節した後、サンプルの4隅の浮き上がり距離を測定して平均値を求めた。
(密着性)
硬化皮膜を形成したフィルム表面にJIS K 5600−5−6の試験法に準じて格子状のクロスカットを作成し、25mm幅のセロハンテープ剥離試験を行った。密着性の評価は、残存ます目数/全ます目数で示した。
The evaluation method is as follows.
(Average particle size)
The measurement was performed with a submicron particle size distribution analyzer Coulter N4 Plus manufactured by Beckman Coulter.
(Pencil hardness)
It carried out according to the test method of JISK5600-5-4 on the film surface in which the cured film was formed. However, after conditioning for 16 hours or more under the conditions of 23 ° C. and 50% RH, the load is 1 kg, the test is performed five times with a pencil of the same hardness scale, the type of indentation is visually examined, and the plasticity for each hardness scale Evaluation was performed by the number of times without deformation or cohesive failure / number of tests.
(Abrasion resistance)
Using the Taber abrasion test described in JIS K 7204 and JIS K 7105 using two wheels with a wear wheel CS10F and a load of 250 g on one wheel, and subtracting the haze (haze) at the time of 500 rotations from the initial haze, Abrasion was evaluated. The lower the value, the better the wear resistance.
(Curl property)
The sample was cut out with a size of 100 mm × 100 mm square, and conditioned for 16 hours or more under the conditions of 23 ° C. and 50% RH, and then the lifted distances at the four corners of the sample were measured to obtain an average value.
(Adhesion)
A lattice-shaped crosscut was created on the surface of the film on which the cured film was formed according to the test method of JIS K 5600-5-6, and a cellophane tape peeling test with a width of 25 mm was performed. The evaluation of adhesion was shown by the number of remaining eyes / total number of eyes.

合成例1
イソプロピルアルコール(IPA)430部、日産化学工業(株)製スノーテックスO−40(水分散性コロイドシリカ;シリカ分40%、pH約3、粒子径16.7nm)1340部、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製TSL8370(3−メタクリロキシプロピルトリメトキシシラン)140部、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシフリーラジカル0.35部の混合物を加熱して約82℃にて3時間攪拌還流させた。
Synthesis example 1
430 parts of isopropyl alcohol (IPA), Snowtex O-40 manufactured by Nissan Chemical Industries, Ltd. (water-dispersible colloidal silica; silica content 40%, pH about 3, particle size 16.7 nm), 1340 parts, Momentive Performance Material A mixture of 140 parts of TSL8370 (3-methacryloxypropyltrimethoxysilane) and 0.35 parts of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxy free radical manufactured by The mixture was refluxed with stirring at about 82 ° C. for 3 hours.

冷却後、1−メトキシ−2−プロパノール(PGM)500部を加え、イソプロピルアルコールや副生したメタノールを減圧留去した。さらに1−メトキシ−2−プロパノール850部を数回に分けて加え、不揮発分が60%となるように共沸により水を減圧留去した。なお、不揮発分は150℃/30分の条件で測定した。最終的に不揮発分60%の機能性コロイダルシリカの1−メトキシ−2−プロパノール溶液(FCS−1)を作製した。   After cooling, 500 parts of 1-methoxy-2-propanol (PGM) was added, and isopropyl alcohol and by-produced methanol were distilled off under reduced pressure. Further, 850 parts of 1-methoxy-2-propanol was added in several portions, and water was distilled off under reduced pressure by azeotropic distillation so that the nonvolatile content was 60%. The nonvolatile content was measured under the condition of 150 ° C./30 minutes. Finally, a 1-methoxy-2-propanol solution (FCS-1) of functional colloidal silica having a nonvolatile content of 60% was prepared.

合成例2
合成例1で使用したイソプロピルアルコール430部を1−メトキシ−2−プロパノール830部に置き換え、また、減圧留去の際に使用する1−メトキシ−2−プロパノールの総量を1350部から620部(メタノール等の減圧留去と共沸による水の減圧留去に使用した比率は合成例1と同じである。以下、同様。)に置き換えて、合成例1と同様な合成手順にて最終的に不揮発分60%の機能性コロイダルシリカの1−メトキシ−2−プロパノール溶液(FCS−2)を作製した。
Synthesis example 2
430 parts of isopropyl alcohol used in Synthesis Example 1 was replaced with 830 parts of 1-methoxy-2-propanol, and the total amount of 1-methoxy-2-propanol used for distillation under reduced pressure was changed from 1350 parts to 620 parts (methanol). The ratio used for the vacuum distillation of the water and the like by azeotropic distillation is the same as in Synthesis Example 1. The same applies hereinafter. A 1-methoxy-2-propanol solution (FCS-2) of functional colloidal silica having a content of 60% was prepared.

合成例3
冷却後、1−メトキシ−2−プロパノール500部を加える際に一緒にペンタエリスリトールトリアクリレート275部を加え、また、減圧留去の際に使用する1−メトキシ−2−プロパノールの総量を1350部から1530部に置き換えて、合成例1と同様な手順にて最終的に不揮発分60%の機能性コロイダルシリカの1−メトキシ−2−プロパノール溶液(FCS−3)を作製した。
Synthesis example 3
After cooling, when adding 500 parts of 1-methoxy-2-propanol, 275 parts of pentaerythritol triacrylate are added together, and the total amount of 1-methoxy-2-propanol used for distillation under reduced pressure is increased from 1350 parts. Substituting 1530 parts, a 1-methoxy-2-propanol solution (FCS-3) of functional colloidal silica having a nonvolatile content of 60% was finally produced in the same procedure as in Synthesis Example 1.

合成例4
イソプロピルアルコール430部、日産化学工業(株)製スノーテックスO−40(水分散性コロイドシリカ;シリカ分40%、pH約3、粒子径16.7nm)1340部、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製TSL8370(3−メタクリロキシプロピルトリメトキシシラン)140部、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシフリーラジカル0.35部の混合物を加熱して約82℃にて3時間攪拌還流させた。
Synthesis example 4
430 parts of isopropyl alcohol, Snowtex O-40 manufactured by Nissan Chemical Industries, Ltd. (water-dispersible colloidal silica; silica content 40%, pH about 3, particle size 16.7 nm), 1340 parts, Momentive Performance Materials Japan A mixture of 140 parts TSL8370 (3-methacryloxypropyltrimethoxysilane) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxy free radical 0.35 parts produced by heating The mixture was stirred and refluxed at 82 ° C. for 3 hours.

冷却後、1,6−ヘキサンジオールジアクリレート(HDDA)357部を加え、イソプロピルアルコールや副生したメタノール、水を減圧留去し、不揮発分が98%以上となるように調整した。最終的に不揮発分98%以上の機能性コロイダルシリカの溶液(FCS−4;内機能性シリカ分約60%)を作製した。   After cooling, 357 parts of 1,6-hexanediol diacrylate (HDDA) was added, and isopropyl alcohol, by-produced methanol and water were distilled off under reduced pressure to adjust the nonvolatile content to 98% or more. Finally, a solution of functional colloidal silica having a nonvolatile content of 98% or more (FCS-4; internal functional silica content of about 60%) was prepared.

合成例5
イソプロピルアルコール430部、日産化学工業(株)製スノーテックスO−40(水分散性コロイドシリカ;シリカ分40%、pH約3、粒子径16.7nm)1340部、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製TSL8370(3−メタクリロキシプロピルトリメトキシシラン)140部、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシフリーラジカル0.35部の混合物を加熱して約82℃にて3時間攪拌還流させた。
Synthesis example 5
430 parts of isopropyl alcohol, Snowtex O-40 manufactured by Nissan Chemical Industries, Ltd. (water-dispersible colloidal silica; silica content 40%, pH about 3, particle size 16.7 nm), 1340 parts, Momentive Performance Materials Japan A mixture of 140 parts TSL8370 (3-methacryloxypropyltrimethoxysilane) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxy free radical 0.35 parts produced by heating The mixture was stirred and refluxed at 82 ° C. for 3 hours.

冷却後、イソブタノール(IBA)500部を加え、イソプロピルアルコールや副生したメタノールを減圧留去した。さらにイソブタノール1720部を数回に分けて加え、最終的に不揮発分60%の機能性コロイダルシリカのイソブタノール溶液(FCS−5)を作製した。   After cooling, 500 parts of isobutanol (IBA) was added, and isopropyl alcohol and by-product methanol were distilled off under reduced pressure. Further, 1720 parts of isobutanol was added in several portions, and finally an isobutanol solution (FCS-5) of functional colloidal silica having a nonvolatile content of 60% was prepared.

合成例6
TSL8370の配合量を140部から240部に増量して、合成例1と同様な合成手順にて最終的に不揮発分60%の機能性コロイダルシリカの1−メトキシ−2−プロパノール溶液(FCS−6)を作製した。
Synthesis Example 6
The compounding amount of TSL8370 was increased from 140 parts to 240 parts, and finally a 1-methoxy-2-propanol solution (FCS-6) of functional colloidal silica having a nonvolatile content of 60% was synthesized by the same synthesis procedure as in Synthesis Example 1. ) Was produced.

実施例1〜4
表1に記載の紫外線硬化型ハードコート組成物となるように合成例1〜3で得られた機能性コロイダルシリカ溶液、ペンタエリスリトールトリアクリレート(PETA)、JSR(株)製ウレタンアクリレート(UA;紫光UV−7640B)、BASFジャパン(株)製イルガキュア184(光重合開始剤)、1−メトキシ−2−プロパノールなどを調製した後、加圧ろ過を行いハードコート液を得た。なお、表中の単位は重量部である。
Examples 1-4
Functional colloidal silica solutions obtained in Synthesis Examples 1 to 3 so as to be the ultraviolet curable hard coat compositions described in Table 1, pentaerythritol triacrylate (PETA), urethane acrylate (UA; manufactured by JSR Corporation) UV-7640B), BASF Japan Co., Ltd. Irgacure 184 (photopolymerization initiator), 1-methoxy-2-propanol, and the like were prepared, followed by pressure filtration to obtain a hard coat solution. The unit in the table is part by weight.

このようにして得られたハードコート液を188μ厚の易接着PETフィルム(東レ(株)製ルミラーU34)にコーティング厚10μとなるようにバーコーターで塗工し、90℃で1分間養生した後に、フュージョン社製F450T−10、Hバルブを使用して200mJ/cm(UV-Aとして)の紫外線照射条件で4回照射してハードコート皮膜を形成した。評価結果を表1に示す。The hard coat solution thus obtained was applied to a 188 μ-thick easy-adhesive PET film (Lumilar U34 manufactured by Toray Industries Inc.) with a bar coater so as to have a coating thickness of 10 μm, and after curing at 90 ° C. for 1 minute. Using a F450T-10, H bulb manufactured by Fusion Co., Ltd., a hard coat film was formed by irradiating 4 times under an ultraviolet irradiation condition of 200 mJ / cm 2 (as UV-A). The evaluation results are shown in Table 1.

比較例1〜4
実施例1〜4と同様に、表1に記載の紫外線硬化型ハードコート組成物となるように合成例4〜6で得られた機能性コロイダルシリカ溶液、ペンタエリスリトールトリアクリレート、JSR(株)製ウレタンアクリレート(紫光UV−7640B)、BASFジャパン(株)製イルガキュア184(光重合開始剤)、1−メトキシ−2−プロパノールなどを調製した。なお、比較例1はFCS−1を添加して表1の組成となるように調製した。実験例1〜4と同様の方法でハードコート皮膜を形成した。評価結果を表1に示す。
Comparative Examples 1-4
Similar to Examples 1 to 4, the functional colloidal silica solution, pentaerythritol triacrylate obtained in Synthesis Examples 4 to 6 so as to be the ultraviolet curable hard coat composition described in Table 1, manufactured by JSR Corporation Urethane acrylate (purple light UV-7640B), BASF Japan K.K. Irgacure 184 (photopolymerization initiator), 1-methoxy-2-propanol, and the like were prepared. In Comparative Example 1, FCS-1 was added to prepare the composition shown in Table 1. A hard coat film was formed in the same manner as in Experimental Examples 1 to 4. The evaluation results are shown in Table 1.

Figure 2012105297
Figure 2012105297

表1に示すように、合成例1〜3の如くメタクリル基含有アルコキシシランの配合量を制御すると共に、共沸脱水用として1−メトキシ−2−プロパノールを選択使用することにより、加水分解反応前後でのシリカの平均粒子径の差が1.5倍以内である機能性コロイダルシリカ溶液を製造することができる。これに対し、共沸脱水用として1,6−ヘキサンジオールジアクリレート(HDDA)やイソブタノール(IBA)を用いた合成例4、5やメタクリル基含有アルコキシシランの配合量が多すぎる合成例6では、平均粒子径の大きなものしか得られなかった。   As shown in Table 1, while controlling the blending amount of the methacrylic group-containing alkoxysilane as in Synthesis Examples 1 to 3, by using 1-methoxy-2-propanol selectively for azeotropic dehydration, before and after the hydrolysis reaction A functional colloidal silica solution having a difference in average particle diameter of silica within 1.5 times can be produced. In contrast, in Synthesis Examples 4 and 5 using 1,6-hexanediol diacrylate (HDDA) or isobutanol (IBA) for azeotropic dehydration and in Synthesis Example 6 in which the amount of methacrylic group-containing alkoxysilane is too large, Only a large average particle size was obtained.

そして、本発明の機能性コロイダルシリカ溶液を用いた実施例1〜4では、鉛筆硬度、耐擦傷性、カール性、密着性に優れた皮膜が得られた。   And in Examples 1-4 which used the functional colloidal silica solution of this invention, the film | membrane excellent in pencil hardness, abrasion resistance, curl property, and adhesiveness was obtained.

Claims (4)

(A) 平均粒子径1〜30nm、水素イオン濃度(pH)6以下の水分散性コロイダルシリカ;シリカ分として100重量部
(B) メタクリル基含有アルコキシシラン;20〜30重量部
(C) 誘電率10以上の極性溶媒;50〜500重量部を
(D) ラジカル重合禁止剤;0.001〜1重量部
の存在下で加水分解反応させた後、
(E) 1−メトキシ−2−プロパノールを用いて共沸脱水し溶媒置換することにより得られ、平均粒子径が1〜30nmであり、加水分解反応前後でのシリカの平均粒子径の差が1.5倍以内である機能性コロイダルシリカ溶液の製造方法。
(A) Water-dispersible colloidal silica having an average particle size of 1 to 30 nm and a hydrogen ion concentration (pH) of 6 or less; 100 parts by weight as silica content
(B) Methacrylic group-containing alkoxysilane; 20 to 30 parts by weight
(C) a polar solvent having a dielectric constant of 10 or more; 50 to 500 parts by weight
(D) radical polymerization inhibitor; after the hydrolysis reaction in the presence of 0.001 to 1 part by weight,
(E) Obtained by azeotropic dehydration using 1-methoxy-2-propanol and solvent substitution, the average particle size is 1 to 30 nm, and the difference in the average particle size of silica before and after the hydrolysis reaction is 1 The manufacturing method of the functional colloidal silica solution which is less than 5 times.
請求項1記載の製造方法で得られた機能性コロイダルシリカ溶液、アクリレート樹脂および/またはウレタンアクリレート樹脂、光重合開始剤を含有する紫外線硬化型ハードコート用樹脂組成物であって、請求項1記載の機能性コロイダルシリカ溶液に基づく固形分が全体の固形分に対して50%以上である紫外線硬化型ハードコート用樹脂組成物。   An ultraviolet curable hard coat resin composition comprising a functional colloidal silica solution obtained by the production method according to claim 1, an acrylate resin and / or a urethane acrylate resin, and a photopolymerization initiator, The resin composition for an ultraviolet curable hard coat whose solid content based on the functional colloidal silica solution is 50% or more based on the total solid content. アクリレート樹脂および/またはウレタンアクリレート樹脂が3官能以上のものである請求項2記載の紫外線硬化型ハードコート用樹脂組成物。   The ultraviolet curable hard coat resin composition according to claim 2, wherein the acrylate resin and / or the urethane acrylate resin is trifunctional or higher. 請求項2または3記載の紫外線硬化型ハードコート用樹脂組成物を塗布後、紫外線照射により硬化してなる厚さ1〜20μmのハードコート層を有する光学フィルムまたはプラスチック部品。   An optical film or a plastic part having a hard coat layer having a thickness of 1 to 20 µm, which is formed by applying the ultraviolet curable hard coat resin composition according to claim 2 or 3 and then curing by ultraviolet irradiation.
JP2012504962A 2011-01-31 2012-01-16 Method for producing functional colloidal silica solution, resin composition for ultraviolet curable hard coat using the same, and cured product thereof Pending JPWO2012105297A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011017432 2011-01-31
JP2011017432 2011-01-31
PCT/JP2012/050661 WO2012105297A1 (en) 2011-01-31 2012-01-16 Process for producing functional colloidal silica solution, ultraviolet-curable resin composition for hard coats using same, and cured product thereof

Publications (1)

Publication Number Publication Date
JPWO2012105297A1 true JPWO2012105297A1 (en) 2014-07-03

Family

ID=46602518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012504962A Pending JPWO2012105297A1 (en) 2011-01-31 2012-01-16 Method for producing functional colloidal silica solution, resin composition for ultraviolet curable hard coat using the same, and cured product thereof

Country Status (3)

Country Link
JP (1) JPWO2012105297A1 (en)
TW (1) TW201235095A (en)
WO (1) WO2012105297A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013146477A1 (en) * 2012-03-30 2015-12-10 新日鉄住金化学株式会社 Silica-containing coating resin composition and laminate
KR20170020632A (en) * 2015-08-13 2017-02-23 주식회사 케이씨씨 UV Curable Coating Compositions for automobile parts
CN108698388A (en) * 2016-02-16 2018-10-23 株式会社凸版巴川光学薄膜 Hard coat film, polarizer, hard coat film processed goods, display unit using the hard coat film
CN113583284B (en) * 2021-07-27 2023-05-05 宁波惠之星新材料科技股份有限公司 Preparation method of optical hard coating film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100797A (en) * 1992-06-25 1994-04-12 General Electric Co <Ge> Radiation-curble hard coating composition
WO1997011129A1 (en) * 1995-09-20 1997-03-27 Mitsubishi Rayon Co., Ltd. Coating composition forming wear-resistant coat and article covered with the coat
JP2007070449A (en) * 2005-09-06 2007-03-22 Mitsubishi Rayon Co Ltd Curable composition
JP2007145965A (en) * 2005-11-28 2007-06-14 Momentive Performance Materials Japan Kk Resin composition for hardcoat
JP2008150484A (en) * 2006-12-18 2008-07-03 Momentive Performance Materials Japan Kk Composition for hard coat
WO2009028741A1 (en) * 2007-08-31 2009-03-05 Dow Corning Toray Co., Ltd. Photocurable resin composition
JP2009091448A (en) * 2007-10-09 2009-04-30 Momentive Performance Materials Japan Kk Resin composition for hard coating
WO2010058754A1 (en) * 2008-11-18 2010-05-27 日産化学工業株式会社 Method for producing composition of polymerizable organic compound containing silica particles
WO2010098481A1 (en) * 2009-02-25 2010-09-02 東レ・ダウコーニング株式会社 Ultraviolet ray shielding layered coating, substrate with said layered coating, and production method therefor
JP2011012145A (en) * 2009-07-01 2011-01-20 Momentive Performance Materials Inc Resin composition for antistatic hard coat

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100797A (en) * 1992-06-25 1994-04-12 General Electric Co <Ge> Radiation-curble hard coating composition
WO1997011129A1 (en) * 1995-09-20 1997-03-27 Mitsubishi Rayon Co., Ltd. Coating composition forming wear-resistant coat and article covered with the coat
JP2007070449A (en) * 2005-09-06 2007-03-22 Mitsubishi Rayon Co Ltd Curable composition
JP2007145965A (en) * 2005-11-28 2007-06-14 Momentive Performance Materials Japan Kk Resin composition for hardcoat
JP2008150484A (en) * 2006-12-18 2008-07-03 Momentive Performance Materials Japan Kk Composition for hard coat
WO2009028741A1 (en) * 2007-08-31 2009-03-05 Dow Corning Toray Co., Ltd. Photocurable resin composition
JP2009091448A (en) * 2007-10-09 2009-04-30 Momentive Performance Materials Japan Kk Resin composition for hard coating
WO2010058754A1 (en) * 2008-11-18 2010-05-27 日産化学工業株式会社 Method for producing composition of polymerizable organic compound containing silica particles
WO2010098481A1 (en) * 2009-02-25 2010-09-02 東レ・ダウコーニング株式会社 Ultraviolet ray shielding layered coating, substrate with said layered coating, and production method therefor
JP2011012145A (en) * 2009-07-01 2011-01-20 Momentive Performance Materials Inc Resin composition for antistatic hard coat

Also Published As

Publication number Publication date
WO2012105297A1 (en) 2012-08-09
TW201235095A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
JP3616118B2 (en) Radiation curable hard coating composition
JP2008150484A (en) Composition for hard coat
JP4750914B2 (en) Radiation curable coating with improved weather resistance
EP0565310B1 (en) Method of making a UV-curable hardcoat compositions
JP5731817B2 (en) Water-absorbent resin composition and laminate using the same
JP2016011365A (en) Ultraviolet-curable hard coat agent
JP4678561B2 (en) Curable resin composition
JPWO2016093014A1 (en) Method for producing inorganic fine particle dispersion and method for producing cured product for optical member
JPH05306374A (en) Uv-curable abrasion-resistant coating with improved weatherability
JP2011051340A (en) Laminated film for forming hard coat, roll film, and curable composition for forming hard coat
CN1399666A (en) Resin composition comprising inorganic particles and polymerizable phosphates and the products prepared therefrom
JP5326994B2 (en) Photo-curable resin composition and article having cured film thereof
CN1053804A (en) The attrition resistant cyclic ether acrylate coating composition of radiation-hardenable
JP2009084398A (en) Resin composition and process for production thereof
JPWO2012105297A1 (en) Method for producing functional colloidal silica solution, resin composition for ultraviolet curable hard coat using the same, and cured product thereof
JP5760522B2 (en) PHOTOCURABLE RESIN COMPOSITION, ARTICLE HAVING CURED CURTAIN THEREOF, AND PRODUCTION METHOD THEREFOR
JP5509920B2 (en) PHOTOCURABLE RESIN COMPOSITION, ARTICLE HAVING THE CURED CELL
JP2011012145A (en) Resin composition for antistatic hard coat
JP2016041774A (en) Surface-treated inorganic particle and curable resin composition
JP2011201930A (en) Composition for hardcoat and base material coated therewith
JP2000248198A (en) Crosslinking particle, composition containing it and its cured material
JP2009091448A (en) Resin composition for hard coating
JP4299513B2 (en) Coating composition and article
JP2024011746A (en) Active energy ray-curable resin composition, cured coated film, and laminate
JP7277674B2 (en) Active energy ray-curable composition and method for producing matte coating film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612