JPWO2012081429A1 - 擬ポリロタキサンの製造方法 - Google Patents

擬ポリロタキサンの製造方法 Download PDF

Info

Publication number
JPWO2012081429A1
JPWO2012081429A1 JP2012548734A JP2012548734A JPWO2012081429A1 JP WO2012081429 A1 JPWO2012081429 A1 JP WO2012081429A1 JP 2012548734 A JP2012548734 A JP 2012548734A JP 2012548734 A JP2012548734 A JP 2012548734A JP WO2012081429 A1 JPWO2012081429 A1 JP WO2012081429A1
Authority
JP
Japan
Prior art keywords
pseudopolyrotaxane
aqueous dispersion
producing
cyclodextrin
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012548734A
Other languages
English (en)
Other versions
JP6013189B2 (ja
Inventor
山崎 智朗
智朗 山崎
慎哉 岡崎
慎哉 岡崎
宏紀 岡崎
宏紀 岡崎
茂生 濱本
茂生 濱本
長明 趙
長明 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
ASM Inc
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Advanced Softmaterials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd, Advanced Softmaterials Inc filed Critical Sumitomo Seika Chemicals Co Ltd
Publication of JPWO2012081429A1 publication Critical patent/JPWO2012081429A1/ja
Application granted granted Critical
Publication of JP6013189B2 publication Critical patent/JP6013189B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明は、高い包接率を有する粉末状擬ポリロタキサンを工業的に有利な方法で製造することができる擬ポリロタキサンの製造方法を提供することを目的とする。本発明は、ポリエチレングリコールとシクロデキストリンとを水性媒体中で混合し、シクロデキストリン分子の開口部に前記ポリエチレングリコールが串刺し状に包接された擬ポリロタキサン粒子を含有する水性分散体を得る包接工程と、前記包接工程で得られた擬ポリロタキサン水性分散体を乾燥して擬ポリロタキサンを得る乾燥工程とを有する擬ポリロタキサンの製造方法であって、前記乾燥工程において、擬ポリロタキサン水性分散体を噴霧し、加熱した気流中で乾燥することを特徴とする擬ポリロタキサンの製造方法である。

Description

本発明は、擬ポリロタキサンの製造方法に関する。
架橋ポリロタキサンは、擬ポリロタキサンの両末端に封鎖基を導入したポリロタキサンを複数架橋することで得られる。例えば、擬ポリロタキサンが、ポリエチレングリコール(以下、「PEG」ともいう)と該PEGを包接するシクロデキストリンとからなる場合、得られる架橋ポリロタキサンは、PEGの直鎖分子上に串刺し状に貫通されているシクロデキストリンが、当該直鎖分子に沿って移動可能(滑車効果)なために、張力が加わっても滑車効果によりその張力を均一に分散させることができる。そのため、架橋ポリロタキサンは、クラックや傷が生じにくいなど、従来の架橋ポリマーにない優れた特性を有する。
架橋ポリロタキサンの製造に用いられる擬ポリロタキサンは、通常、PEGとシクロデキストリンとを水性媒体中で混合することにより生成するため、水性分散体として得られる。効率よく、しかも化学的に安定な結合により擬ポリロタキサンの両末端に封鎖基を導入してポリロタキサンを得るには、PEGの両末端を−COOH基とし、封鎖基を該−COOH基と反応する基、例えば−NH基、−OH基などとして反応させることが有効である。
しかしながら、このような擬ポリロタキサンの両末端に封鎖基を導入する反応においては系内の水分が反応を失活させるため、反応を効率よく進行させるには、反応系中に水が存在しないかまたは水分量を極めて微量に制御する必要があり、擬ポリロタキサンの水性分散体を遠心分離、濾過などにより固液分離した後、または水性分散体をそのまま乾燥し、充分に水を除去する必要があった。
特許文献1には、PEG/α−シクロデキストリン包接化合物(擬ポリロタキサン)の沈殿を水中に懸濁し、70℃以上の温度に加熱すると、包接力が弱まりシクロデキストリンが遊離することが開示されている。そのため、擬ポリロタキサンの水分散体を70℃以上の温度で乾燥させることは、包接率の低下を招く可能性があった。包接率が低下すると、架橋ポリロタキサンの滑車効果が損なわれ、所望の特性が得られなくなるため、従来、擬ポリロタキサン水性分散体の乾燥には、主に凍結乾燥法や70℃以下での減圧乾燥が行われてきた。
例えば、特許文献2には、擬ポリロタキサン水性分散体をアセトンの中で沈殿させ、ろ別した後、室温で真空乾燥する方法が開示されている。しかしながら、アセトンによる媒体置換とろ別では擬ポリロタキサン中の水を充分に除去することができないため、室温下での乾燥では水分が残留し、擬ポリロタキサンの両末端に封鎖基を導入する反応を阻害するという問題があった。
さらに、凍結乾燥法や70℃以下での減圧乾燥といった従来公知の乾燥方法では、得られた擬ポリロタキサンが塊状となるため、両末端に封鎖基を導入する反応の前に、粉砕、分級などにより粉末状にする必要があり、工程が煩雑となるという問題があった。
特開平3−237103号公報 特開2005−272664号公報
従来公知の乾燥方法では分散媒である水の沸点以下での乾燥となるため、非常に長い乾燥時間を要するだけでなく、凍結乾燥方式においては大きな設備コスト、ランニングコストが掛かる。
また、70℃以下の乾燥温度であっても含水状態で長時間加熱するとシクロデキストリンが遊離してしまうという問題があった。
さらに、乾燥後に粉砕、分級などの煩雑な工程を要さず、粉末状の擬ポリロタキサンが得られる乾燥方法が望まれていた。
本発明の目的は、上記の課題を解決し、高い包接率を有する粉末状擬ポリロタキサンを工業的に有利な方法で製造することができる擬ポリロタキサンの製造方法を提供することにある。
本発明は、PEGとシクロデキストリンとを水性媒体中で混合し、シクロデキストリン分子の開口部に前記PEGが串刺し状に包接された擬ポリロタキサン粒子を含有する水性分散体を得る包接工程と、前記包接工程で得られた擬ポリロタキサン水性分散体を乾燥して擬ポリロタキサンを得る乾燥工程とを有する擬ポリロタキサンの製造方法であって、前記乾燥工程において、擬ポリロタキサン水性分散体を噴霧し、加熱した気流中で乾燥する擬ポリロタキサンの製造方法である。
以下に本発明を詳述する。
本発明者らは、乾燥工程において、擬ポリロタキサン水性分散体を噴霧し、加熱した気流中で乾燥する方法を用いれば、高い包接率を有する粉末状擬ポリロタキサンを工業的に有利な方法で製造することができることを見出し、本発明を完成させるに至った。
本発明の擬ポリロタキサンの製造方法は、PEGとシクロデキストリンとを水性媒体中で混合し、シクロデキストリン分子の開口部に前記PEGが串刺し状に包接された擬ポリロタキサン粒子を含有する水性分散体を得る包接工程を有する。
前記PEGの重量平均分子量は1000〜50万であることが好ましく、1万〜30万であることがより好ましく、1万〜10万であることがさらに好ましい。前記PEGの重量平均分子量が1000未満であると、得られる架橋ポリロタキサンが特性の低いものとなることがある。前記PEGの重量平均分子量が50万を超えると、擬ポリロタキサン水性分散体の流動性が低く、乾燥工程において噴霧できない場合がある。
なお、本明細書において、前記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリエチレングリコール換算により求められる値である。GPCによってポリエチレングリコール換算による重量平均分子量を測定する際のカラムとしては、例えば、TSKgel SuperAWM−H(東ソー社製)等が挙げられる。
前記PEGは、好ましくは、両末端に反応性基を有する。前記PEGの両末端は、従来公知の方法により反応性基を導入することが出来る。
前記PEGの両末端に有する反応性基は、採用する封鎖基の種類により適宜変更することができ、特に限定されないが、水酸基、アミノ基、カルボキシル基、チオール基などが挙げられ、とりわけ、カルボキシル基が好ましい。前記PEGの両末端にカルボキシル基を導入する方法としては、例えば、TEMPO(2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル)と次亜塩素酸ナトリウムとを用いてPEGの両末端を酸化させる方法等が挙げられる。
前記包接工程において、PEGとシクロデキストリンとの重量比は1:2〜1:5であることが好ましく、1:2.5〜1:4.5であることがより好ましく、1:3〜1:4であることがさらに好ましい。シクロデキストリンの重量がPEGの重量の2倍未満であると、PEGを包接するシクロデキストリンの個数(包接量)が低下する場合がある。シクロデキストリンの重量がPEGの重量の5倍を超えても、包接量は増加せず経済的でない。
前記シクロデキストリンとしては、例えば、α−シクロデキストリン、β−シクロデキストリン、γ−シクロデキストリン、およびこれらの誘導体などが挙げられる。とりわけ、包接性の観点より、α−シクロデキストリンが好ましい。これらのシクロデキストリンは、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
前記水性媒体としては、例えば、水、水とDMF、DMSOなどの水性有機溶媒との水性混合物などが挙げられ、とりわけ水が好ましく用いられる。
包接工程におけるPEGとシクロデキストリンとの混合条件としては、両者を前記水性媒体中に添加して混合すればよいが、PEGとシクロデキストリンとを水性媒体に溶解させることが好ましい。具体的には、通常50〜100℃、好ましくは60〜90℃、より好ましくは70〜80℃に加熱、溶解することによりほぼ透明な混合溶液を得ることが出来る。
PEGとシクロデキストリンとの混合溶液を冷却することにより、PEGとシクロデキストリンからなる擬ポリロタキサン粒子が析出し、概ね白色状の擬ポリロタキサン水性分散体が得られる。
前記混合溶液を冷却する際に、混合溶液を流動させながら連続的または断続的に冷却し、擬ポリロタキサン粒子を析出させることにより、流動性がよく、経時的に流動性が低下しない擬ポリロタキサン水性分散体を得ることができるため、乾燥工程において擬ポリロタキサン水性分散体を容易に噴霧することが出来る。
なお、前記混合溶液を冷却する際に、静置下で冷却して擬ポリロタキサン粒子を析出させた場合には、極めて流動性の低いペースト状やクリーム状、または流動性のないゲル状の擬ポリロタキサン水性分散体が得られる。ペースト状やクリーム状で得られた擬ポリロタキサン水性分散体であっても経時的に流動性を失うため、乾燥工程において噴霧する前に適当な条件下で攪拌、混合するなどにより、流動性を付与しておくことが好ましい。
前記混合溶液を冷却する際、冷却後の到達温度は、0〜30℃であることが好ましく、1〜20℃であることがより好ましく、1〜15℃であることがさらに好ましい。0℃未満まで冷却した場合、凍結などにより得られる擬ポリロタキサン水性分散体の流動性が低下することがある。30℃を超える場合、擬ポリロタキサン粒子が充分に析出しないことがある。
前記混合溶液を冷却する際の冷却速度は、0.01〜30℃/分であることが好ましく、0.05〜20℃/分であることがより好ましく、0.05〜10℃/分であることがさらに好ましい。前記混合溶液を冷却する際の冷却速度が0.01℃/分未満であると、析出する擬ポリロタキサン粒子が微細となりすぎるため、得られる擬ポリロタキサン水性分散体の流動性が低下する場合がある。前記混合溶液を冷却する際の冷却速度が30℃/分を超えると、擬ポリロタキサン粒子が大きくなるため分散安定性が低下し、沈降分離する場合がある。
上述したように、擬ポリロタキサン粒子をより完全に析出させるため、断続的に冷却することも可能であり、また、冷却の過程で冷却速度や前記混合溶液の流動状態を変化させることも可能である。
前記混合溶液を冷却し、所望の温度に到達した後、得られた擬ポリロタキサン水性分散体の流動状態を保持する時間は、通常数秒〜1週間、好ましくは数時間〜3日である。
前記混合溶液を冷却する際に、混合溶液を流動させる方法としては、攪拌翼による攪拌、超音波照射など従来公知の方法を使用することができる。
混合溶液を流動させる程度は特に限定されず、緩やかな攪拌により混合溶液が僅かに流動する程度からホモジナイザー等での強攪拌による激しい流動状態まで任意に選択することが出来るが、過小な流動状態では析出する擬ポリロタキサン粒子が大きくなるため分散安定性が低下し、沈降分離する場合があり、過大な流動状態では析出する擬ポリロタキサン粒子が微細となりすぎるため得られる擬ポリロタキサン水性分散体の流動性が低下する場合がある。
一方、混合溶液を流動させない状態で冷却した場合、極めて流動性が低いか流動性のないゲル状の擬ポリロタキサン水性分散体となる。
擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は、冷却速度、冷却後の到達温度、冷却する際の混合溶液の流動状態などにより変化するが、擬ポリロタキサン水性分散体の流動性、分散安定性の観点より、1〜200μmであることが好ましく、1〜100μmであることがより好ましく、1〜50μmであることがさらに好ましい。擬ポリロタキサン水性分散体中の粒子の体積平均粒子径が1μm未満であると、分散体の流動性が低下するか流動性を示さない場合がある。擬ポリロタキサン水性分散体中の粒子の体積平均粒子径が200μmを超えると、擬ポリロタキサン水性分散体中の粒子が沈降分離することがある。
なお、本明細書において前記擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は、レーザー回折式粒度分布測定装置により分析することが出来る。
擬ポリロタキサン水性分散体に占める擬ポリロタキサンの濃度(以下、固形分濃度という)は、5〜25wt%であることが好ましく、5〜20wt%であることがより好ましく、10〜20wt%であることがさらに好ましい。前記擬ポリロタキサン水性分散体の固形分濃度が5wt%未満であると、経済的でない。前記擬ポリロタキサン水性分散体の固形分濃度が25wt%を超えると、擬ポリロタキサン水性分散体の流動性が低下するため、乾燥工程において噴霧することが難しくなる場合がある。
本発明の擬ポリロタキサンの製造方法は、前記包接工程で得られた擬ポリロタキサン水性分散体を乾燥して擬ポリロタキサンを得る乾燥工程を有する。本発明の擬ポリロタキサンの製造方法によれば、当該乾燥工程により、粉末状の擬ポリロタキサンを得ることができる。
前記乾燥工程では、擬ポリロタキサン水性分散体を噴霧し、加熱した気流中で乾燥する。
前記乾燥工程において、擬ポリロタキサン水性分散体を噴霧する方法としては、例えば、圧力ノズル、二流体ノズル、四流体ノズル、超音波ノズルなどを用いるノズル法や、回転ディスク法などが挙げられる。
前記ノズル法は、擬ポリロタキサン水性分散体の流動性が高い場合に好適に用いることができる。
前記ノズル法に用いられる装置としては、例えば、ノズルアトマイザー式噴霧乾燥装置などが挙げられる。前記ノズルアトマイザー式噴霧乾燥装置では、熱風の吹き出し方向に対向して擬ポリロタキサン水性分散体を噴霧する並向流式、熱風の吹出し方向と同一方向に擬ポリロタキサン水性分散体を噴霧する並流式に大別され、並向流式では噴霧した擬ポリロタキサン水性分散体の滞留時間を長く、並流式では噴霧した擬ポリロタキサン水性分散体の滞留時間を短くすることが出来る。ノズルアトマイザー式噴霧乾燥装置では、ノズル径を変化させるなどにより、噴霧する液滴径を調整し、得られる擬ポリロタキサンの粒子径を任意に調整することが出来る。
前記回転ディスク法は、擬ポリロタキサン水性分散体の流動性が低かったり、擬ポリロタキサン水性分散体中の擬ポリロタキサン粒子が比較的大きかったりする場合に好適に用いることができる。
前記回転ディスク法に用いられる装置としては、例えば、ロータリーアトマイザー式噴霧乾燥装置が挙げられる。前記ロータリーアトマイザー式噴霧乾燥装置では、ディスクの回転数を変化させることにより、噴霧する液滴径を調整し、得られる粉末状擬ポリロタキサンの粒子径を任意に調整することが出来る。
前記乾燥工程において、気流には空気、または窒素などのガスを使用することが出来る。
前記乾燥工程における気流の温度は70〜200℃であることが好ましく、70〜180℃であることがより好ましく、70〜170℃であることがさらに好ましい。前記乾燥工程における気流の温度が70℃未満であると、乾燥が不充分となる場合がある。前記乾燥工程における気流の温度が200℃を超えると、擬ポリロタキサンが分解し、包接率が低下するおそれがある。
前記乾燥工程における系の圧力は特に限定されないが、通常、大気圧に近い圧力で乾燥を行う。また、減圧下で乾燥することも可能であり、大気圧以下の圧力で乾燥を行うことが好ましい。
噴霧した擬ポリロタキサン水性分散体の滞留時間は、通常数秒から数分であり、シクロデキストリンの遊離を抑制するため、3分以下であることが好ましく、2分以下であることがより好ましい。また、噴霧した擬ポリロタキサン水性分散体の滞留時間が短すぎると、乾燥が不充分となる。
擬ポリロタキサン水性分散体を噴霧する際の液滴の直径は、1〜2000μmであることが好ましく、5〜500μmであることがより好ましい。上記液滴の直径が1μm未満であると、気流との同伴により乾燥収率が低下する場合がある。上記液滴の直径が2000μmを超えると、全液滴の総表面積が小さくなり、乾燥速度が遅くなることがある。
得られる粉末状擬ポリロタキサンや架橋ポリロタキサンの用途、使用目的によるが、本発明によれば、当該粉末状擬ポリロタキサンの包接率を6〜60%とすることができる。前記包接率が6%未満であると、滑車効果が発現しないことがある。前記包接率が60%を超えると、環状分子であるシクロデキストリンが密に配置され過ぎてシクロデキストリンの可動性が低下することがある。シクロデキストリンが適度な可動性を有し、より高い包接率とするためには、包接率は15〜40%が好ましく、20〜30%がより好ましい。
なお、本明細書において前記包接率とは、PEGへのシクロデキストリンの最大包接量に対するPEGを包接しているシクロデキストリンの包接量の割合であり、PEGとシクロデキストリンの混合比、水性媒体の種類などを変化させることにより、任意に調整することが出来る。また、前記最大包接量とは、PEG鎖の繰り返し単位2つに対し、シクロデキストリンが1つ包接された最密包接状態とした場合のシクロデキストリンの個数をいう。
前記包接率は、H−NMRにより測定することが出来るが、得られた粉末状擬ポリロタキサンを溶解させ分析した場合、シクロデキストリンが遊離し正確な包接率を得ることが出来ないため、通常、シクロデキストリンが遊離しないように当該擬ポリロタキサンの両末端に封鎖基を導入したポリロタキサンに変性した後、分析され、得られた包接率は、作製した粉末状擬ポリロタキサンの包接率とみなすことが出来る。具体的には、包接率は、DMSO−dに擬ポリロタキサンの両末端に封鎖基を導入したポリロタキサンを溶解し、NMR測定装置(VARIAN Mercury−400BB)により測定し、4〜6ppmのシクロデキストリン由来の積分値と3〜4ppmのシクロデキストリン及びPEGの積分値の比較で算出することができる。
本発明の擬ポリロタキサンの製造方法により得られる粉末状擬ポリロタキサンの体積平均粒子径は1〜300μmであることが好ましく、5〜70μmであることがより好ましく、5〜50μmであることがさらに好ましい。得られる粉末状擬ポリロタキサンの体積平均粒子径が1μm未満であると、気流との同伴により乾燥収率が低下する場合がある。得られる粉末状擬ポリロタキサンの体積平均粒子径が300μmを超えると、乾燥装置内に付着が生じるおそれがある。
本発明の擬ポリロタキサンの製造方法により得られる粉末状擬ポリロタキサンの含水率は、10wt%以下であることが好ましく、7wt%以下であることがより好ましく、5wt%以下であることがさらに好ましい。得られる粉末状擬ポリロタキサンの含水率が10wt%を超えると、シクロデキストリンが遊離しないように擬ポリロタキサンの両末端に封鎖基を導入する反応において、反応系中の水分が多くなるため、反応が進行しないか、または封鎖基の導入率が低下する場合がある。
本発明によれば、高い包接率を有する粉末状擬ポリロタキサンを工業的に有利な方法で製造することができる擬ポリロタキサンの製造方法を提供することができる。
以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されない。以下、PEGを酸化して両末端にカルボキシル基を有するPEGの製造方法について、国際公開第05/052026号パンフレットに記載された方法を参考にして行った。
(製造例1)
1L容のフラスコ内で、PEG(重量平均分子量35000)100g、TEMPO(2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル)1g、臭化ナトリウム10gを水1Lに溶解させた。次いで、次亜塩素酸ナトリウム水溶液(有効塩素濃度5%)50mLを添加し、室温で30分間撹拌した。余った次亜塩素酸ナトリウムを分解させるために、エタノールを50mL添加して反応を終了させた。
分液ロートを用い、500mLの塩化メチレンを用いた抽出を3回繰り返して有機層を分取した後、エバポレーターで塩化メチレンを留去し、2Lの温エタノールに溶解させてから冷凍庫(−4℃)中で一晩静置し、両末端にカルボキシル基を有するPEGのみを析出させ、回収し、減圧乾燥することにより両末端にカルボキシル基を有するPEG100gを得た。
(製造例2)
1L容のフラスコ内で、高分子量PEG(重量平均分子量10万)100g、TEMPO(2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル)1g、臭化ナトリウム10gを水1Lに溶解させた。次いで、次亜塩素酸ナトリウム水溶液(有効塩素濃度5%)50mLを添加し、室温で30分間撹拌した。余った次亜塩素酸ナトリウムを分解させるために、エタノールを50mL添加して反応を終了させた。
分液ロートを用い、500mLの塩化メチレンを用いた抽出を3回繰り返して有機層を分取した後、エバポレーターで塩化メチレンを留去し、2Lの温エタノールに溶解させてから冷凍庫(−4℃)中で一晩静置し、両末端にカルボキシル基を有するPEGのみを析出させ、回収し、減圧乾燥することにより両末端にカルボキシル基を有するPEG100gを得た。
(実施例1)
(1)両末端にカルボキシル基を有するPEGとα−シクロデキストリンとを用いた擬ポリロタキサン水性分散体の調製
攪拌機付きの1L容のフラスコ内に、水650mLを加え、製造例1で調製した両末端にカルボキシル基を有するPEG20g及びα−シクロデキストリン80gを70℃まで加熱し、溶解させた。
攪拌翼を用い、700rpmの回転速度で攪拌しながら、0.4℃/分の冷却速度にて5℃まで冷却し、さらに同温度にて10時間攪拌し続けることにより、流動性のよい乳液状の擬ポリロタキサン水性分散体(固形分濃度13wt%)を得た。
レーザー回折式粒径測定装置を用いて測定した結果、擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は10μmであった。
(2)擬ポリロタキサン水性分散体の乾燥
調製した擬ポリロタキサン水性分散体750gをノズルアトマイザー式噴霧乾燥装置(大川原化工機社製、「L−8」)を用いて、乾燥機気流入口温度160℃、出口温度70℃にて常圧下で乾燥し(滞留時間1分)、粉末状擬ポリロタキサン93gを得た。得られた粉末状擬ポリロタキサンの含水率は2.2wt%、体積平均粒子径は35μmであった。
(実施例2)
擬ポリロタキサン水性分散体の調製において、溶解させる水の量を500ml(擬ポリロタキサン水性分散体の固形分濃度17wt%)とした以外は実施例1と同様にして粉末状擬ポリロタキサンを得た。調製した擬ポリロタキサン水性分散体は、流動性のある乳液状であり、中位粒子径は18μmであった。得られた粉末状擬ポリロタキサンの含水率は1.4wt%、体積平均粒子径は46μmであった。
(実施例3)
擬ポリロタキサン水性分散体の乾燥において、乾燥機気流入口温度を188℃、出口温度を90℃、滞留時間を20秒とした以外は実施例1と同様に粉末状擬ポリロタキサンを得た。得られた粉末状擬ポリロタキサンの含水率は0.9wt%、体積平均粒子径は28μmであった。
(実施例4)
擬ポリロタキサン水性分散体の乾燥において、乾燥機気流入口温度を120℃、出口温度を70℃、滞留時間を1分とした以外は実施例1と同様に粉末状擬ポリロタキサンを得た。得られた粉末状擬ポリロタキサンの含水率は4.8wt%、体積平均粒子径は32μmであった。
(実施例5)
擬ポリロタキサン水性分散体の調製において、冷却速度を0.05℃/分、擬ポリロタキサン水性分散体の乾燥において、乾燥機気流入口温度を170℃、出口温度を80℃とした以外は、実施例1と同様にして粉末状擬ポリロタキサンを得た。調製した擬ポリロタキサン水性分散体は、流動性のある乳液状であり、中位粒子径は5μmであった。
得られた粉末状擬ポリロタキサンの含水率は1.7wt%、体積平均粒子径は40μmであった。
(実施例6)
擬ポリロタキサン水性分散体の調製において、攪拌翼の攪拌速度を600rpm、冷却速度を10℃/分とした以外は、実施例1と同様にして粉末状擬ポリロタキサンを得た。調製した擬ポリロタキサン水性分散体は、やや流動性のある乳液状であり、中位粒子径は38μmであった。得られた粉末状擬ポリロタキサンの含水率は2.1wt%、体積平均粒子径は35μmであった。
(実施例7)
擬ポリロタキサン水性分散体の調製において、攪拌翼の攪拌速度を75rpm、冷却速度を0.1℃/分とした以外は、実施例1と同様にして粉末状擬ポリロタキサンを得た。調製した擬ポリロタキサン水性分散体は、流動性のよい乳液状であり、中位粒子径は50μmであった。得られた粉末状擬ポリロタキサンの含水率は1.9wt%、体積平均粒子径は33μmであった。
(実施例8)
擬ポリロタキサン水性分散体の調製において、攪拌翼の攪拌速度を7000rpm、冷却速度を20℃/分とした以外は、実施例2と同様にして粉末状擬ポリロタキサンを得た。調製した擬ポリロタキサン水性分散体は、やや流動性のある乳液状であり、中位粒子径は2μmであった。得られた粉末状擬ポリロタキサンの含水率は1.3wt%、体積平均粒子径は9μmであった。
(実施例9)
擬ポリロタキサン水性分散体の調製において、攪拌することなく静置下で冷却した以外は、実施例1と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、僅かな流動性しかなく、ペースト状であったため水150gで希釈後(擬ポリロタキサン水性分散体の固形分濃度11wt%)、スパチュラで攪拌し、流動性のある状態とした後、実施例1と同様にして乾燥し、粉末状擬ポリロタキサンを得た。得られた粉末状擬ポリロタキサンの含水率は3.6wt%、体積平均粒子径は11μmであった。
(実施例10)
製造例2で調製した両末端にカルボキシル基を有するPEGを使用した以外は、実施例1と同様にして粉末状擬ポリロタキサンを得た。調製した擬ポリロタキサン水性分散体は、やや流動性のある乳液状の分散体であり、中位粒子径は15μmであった。得られた粉末状擬ポリロタキサンの含水率は1.6wt%、体積平均粒子径は33μmであった。
(実施例11)
擬ポリロタキサン水性分散体の調製において、攪拌することなく静置下で冷却した以外は、実施例10と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、全く流動性を示さなかったため水250gで希釈後(擬ポリロタキサン水性分散体の固形分濃度10wt%)、スパチュラで攪拌し、やや流動性のある状態とした後、実施例1と同様にして乾燥し、粉末状擬ポリロタキサンを得た。得られた粉末状擬ポリロタキサンの含水率は3.5wt%、体積平均粒子径は14μmであった。
(比較例1)
擬ポリロタキサン水性分散体を凍結乾燥(−10〜20℃にて48時間乾燥)した以外は、実施例1と同様にして擬ポリロタキサンを得た。得られた擬ポリロタキサンは多孔質の塊状物であり、含水率は1.2wt%であった。
(比較例2)
擬ポリロタキサン水性分散体を20℃にて96時間減圧乾燥した以外は、実施例1と同様にして擬ポリロタキサンを得た。得られた擬ポリロタキサンは硬い塊状物であり、含水率は4.0wt%であった。
<評価>
実施例及び比較例で得られた擬ポリロタキサンについて、以下の方法により包接率を測定した。結果を表1に示した。
(1)アダマンタンアミンとBOP試薬反応系を用いた擬ポリロタキサンの封鎖
1L容のフラスコ内で、室温でジメチルホルムアミド(DMF)170mLにアダマンタンアミン0.5gを溶解し、得られた擬ポリロタキサン50gに添加した後、速やかによく振りまぜた。
続いて、BOP試薬(ベンゾトリアゾール−1−イル−オキシ−トリス(ジメチルアミノ)ホスホニウム・ヘキサフルオロフォスフェート)1.3gをDMF80mLに溶解したものを添加し、速やかによく振りまぜた。
さらに、ジイソプロピルエチルアミン0.50mLをDMF80mLに溶解したものを添加し、速やかによく振り混ぜた。得られた混合物を冷蔵庫中で一晩静置した。
(2)ポリロタキサンの精製と包接率の測定
その後、DMF300mLを加えてよく混ぜ、遠心分離して上澄みを捨てる洗浄操作を行った。このDMFによる洗浄操作を合計2回繰り返した後、得られた沈澱を2000mLの熱水(70℃)に分散させ、よく攪拌し濾過する洗浄操作を行った。
この熱水による洗浄操作を合計4回繰り返し、回収した沈殿を凍結乾燥させ最終的に精製ポリロタキサンを得た。
得られたポリロタキサンの包接率は、H−NMRで同定した。得られた包接率は、擬ポリロタキサンの包接率とみなすことが出来る。
Figure 2012081429
本発明によれば、高い包接率を有する粉末状擬ポリロタキサンを工業的に有利な方法で製造することができる擬ポリロタキサンの製造方法を提供することができる。

Claims (9)

  1. ポリエチレングリコールとシクロデキストリンとを水性媒体中で混合し、シクロデキストリン分子の開口部に前記ポリエチレングリコールが串刺し状に包接された擬ポリロタキサン粒子を含有する擬ポリロタキサン水性分散体を得る包接工程と、前記包接工程で得られた擬ポリロタキサン水性分散体を乾燥して擬ポリロタキサンを得る乾燥工程とを有する擬ポリロタキサンの製造方法であって、
    前記乾燥工程において、擬ポリロタキサン水性分散体を噴霧し、加熱した気流中で乾燥する
    ことを特徴とする擬ポリロタキサンの製造方法。
  2. ポリエチレングリコールの重量平均分子量が1000〜50万である請求項1記載の擬ポリロタキサンの製造方法。
  3. ポリエチレングリコールとシクロデキストリンとの重量比が1:2〜1:5である請求項1または2記載の擬ポリロタキサンの製造方法。
  4. 包接工程において、ポリエチレングリコールとシクロデキストリンとを、水性媒体中に溶解して混合溶液を調製した後、前記混合溶液を流動させながら連続的または断続的に冷却し、擬ポリロタキサン粒子を析出させることにより、擬ポリロタキサン水性分散体を得る請求項1、2または3記載の擬ポリロタキサンの製造方法。
  5. 冷却速度が0.01〜30℃/分である請求項4記載の擬ポリロタキサンの製造方法。
  6. 擬ポリロタキサン水性分散体の固形分濃度が5〜25wt%である請求項1、2、3、4または5記載の擬ポリロタキサンの製造方法。
  7. 擬ポリロタキサン水性分散体中の粒子の体積平均粒子径が1〜200μmである請求項1、2、3、4、5または6記載の擬ポリロタキサンの製造方法。
  8. 乾燥工程における気流の温度が70〜200℃である請求項1、2、3、4、5、6または7記載の擬ポリロタキサンの製造方法。
  9. 乾燥工程における系の圧力が大気圧以下である請求項1、2、3、4、5、6、7または8記載の擬ポリロタキサンの製造方法。
JP2012548734A 2010-12-16 2011-12-05 擬ポリロタキサンの製造方法 Active JP6013189B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010280264 2010-12-16
JP2010280264 2010-12-16
PCT/JP2011/078015 WO2012081429A1 (ja) 2010-12-16 2011-12-05 擬ポリロタキサンの製造方法

Publications (2)

Publication Number Publication Date
JPWO2012081429A1 true JPWO2012081429A1 (ja) 2014-05-22
JP6013189B2 JP6013189B2 (ja) 2016-10-25

Family

ID=46244537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012548734A Active JP6013189B2 (ja) 2010-12-16 2011-12-05 擬ポリロタキサンの製造方法

Country Status (8)

Country Link
US (1) US9938382B2 (ja)
EP (1) EP2653481B1 (ja)
JP (1) JP6013189B2 (ja)
KR (1) KR101817379B1 (ja)
CN (1) CN103249743B (ja)
CA (1) CA2821887C (ja)
ES (1) ES2552210T3 (ja)
WO (1) WO2012081429A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840504B1 (ko) 2010-12-16 2018-03-20 스미또모 세이까 가부시키가이샤 유사 폴리로탁산 수성 분산체의 제조 방법
KR101817380B1 (ko) 2010-12-16 2018-01-11 스미또모 세이까 가부시키가이샤 유사 폴리로탁산의 제조 방법
WO2012124217A1 (ja) 2011-03-14 2012-09-20 住友精化株式会社 粉末状親水性修飾ポリロタキサンの製造方法
WO2012124218A1 (ja) 2011-03-14 2012-09-20 住友精化株式会社 親水性修飾ポリロタキサンの製造方法
CN103642190B (zh) * 2013-12-12 2017-01-18 东华大学 一种聚乙二醇改性环糊精及其制备和应用
US10308772B2 (en) 2015-01-09 2019-06-04 Sumitomo Seika Chemicals Co., Ltd. Method for producing pseudopolyrotaxane aqueous dispersion
WO2019082869A1 (ja) * 2017-10-24 2019-05-02 アドバンスト・ソフトマテリアルズ株式会社 低包接率ポリロタキサンの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237103A (ja) * 1990-02-15 1991-10-23 Japan Organo Co Ltd α―サイクロデキストリンの包接化合物及びα―サイクロデキストリンの分離精製法
JP2002508401A (ja) * 1998-12-09 2002-03-19 シエーリング アクチエンゲゼルシヤフト ポリロタキサン
JP2005080469A (ja) * 2003-09-02 2005-03-24 Japan Radio Co Ltd 蓄電器の充電装置
JP2005272664A (ja) * 2004-03-25 2005-10-06 Hitachi Ltd 可溶性シクロデキストリンポリマー及びその製造方法
JP2006316089A (ja) * 2005-05-10 2006-11-24 Jsr Corp 樹脂組成物
JP2007063412A (ja) * 2005-08-31 2007-03-15 Nissan Motor Co Ltd 親水性修飾ポリロタキサン及び架橋ポリロタキサン

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699141B2 (ja) 1994-09-24 2005-09-28 伸彦 由井 超分子構造の生体内分解性医薬高分子集合体及びその調製方法
DE19545257A1 (de) 1995-11-24 1997-06-19 Schering Ag Verfahren zur Herstellung von morphologisch einheitlichen Mikrokapseln sowie nach diesem Verfahren hergestellte Mikrokapseln
JP2972861B2 (ja) 1997-05-08 1999-11-08 北陸先端科学技術大学院大学長 超分子構造の血液適合性材料
DE19758118A1 (de) 1997-12-17 1999-07-01 Schering Ag Polyrotaxane
US6100329A (en) 1998-03-12 2000-08-08 Virginia Tech Intellectual Properties, Inc. Reversible, mechanically interlocked polymeric networks which self-assemble
JP3475252B2 (ja) 2000-04-28 2003-12-08 株式会社先端科学技術インキュベーションセンター 架橋ポリロタキサンを有する化合物
US20060069168A1 (en) 2002-10-29 2006-03-30 Norikazu Tabata Vascular embolization material
US7220755B2 (en) 2003-11-12 2007-05-22 Biosensors International Group, Ltd. 42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same
JP4461252B2 (ja) 2003-11-28 2010-05-12 国立大学法人 東京大学 ポリロタキサン及びその製造方法
US7309500B2 (en) 2003-12-04 2007-12-18 The Board Of Trustees Of The University Of Illinois Microparticles
CN1910218B (zh) 2004-01-08 2010-09-15 国立大学法人东京大学 包含交联聚轮烷的化合物及其制造方法
CN1910219B (zh) 2004-01-08 2010-09-08 国立大学法人东京大学 交联聚轮烷及其制造方法
WO2005095493A1 (ja) 2004-03-31 2005-10-13 The University Of Tokyo ポリロタキサンを有するポリマー材料、並びにその製造方法
US20080003296A1 (en) * 2005-07-11 2008-01-03 Ketner Rodney J Amorphous Cyclodextrin Compositions
JP2007092024A (ja) 2005-09-02 2007-04-12 Univ Of Tokyo ポリロタキサンのポリマーブレンド及びその使用
PT1942163E (pt) 2005-10-06 2012-01-02 Univ Tokyo Material para um material de revestimento de superfície, curável, à base de um solvente, e material de revestimento e filme de revestimento compreendendo o referido material ou formados a partir do mesmo
JP2008310286A (ja) 2007-05-14 2008-12-25 Fujifilm Corp ポリロタキサンを含有する光学フィルム、反射防止フィルム、反射防止フィルムの製造方法、偏光板、それを用いた画像表示装置
DE102007055776A1 (de) 2007-12-12 2009-06-18 Wacker Chemie Ag Cyclodextrin-Silankomplexe
KR101817380B1 (ko) 2010-12-16 2018-01-11 스미또모 세이까 가부시키가이샤 유사 폴리로탁산의 제조 방법
KR101840504B1 (ko) * 2010-12-16 2018-03-20 스미또모 세이까 가부시키가이샤 유사 폴리로탁산 수성 분산체의 제조 방법
CA2821879C (en) 2010-12-16 2018-07-10 Sumitomo Seika Chemicals Co., Ltd. Method for producing refined polyrotaxane
WO2012124218A1 (ja) 2011-03-14 2012-09-20 住友精化株式会社 親水性修飾ポリロタキサンの製造方法
WO2012124217A1 (ja) 2011-03-14 2012-09-20 住友精化株式会社 粉末状親水性修飾ポリロタキサンの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237103A (ja) * 1990-02-15 1991-10-23 Japan Organo Co Ltd α―サイクロデキストリンの包接化合物及びα―サイクロデキストリンの分離精製法
JP2002508401A (ja) * 1998-12-09 2002-03-19 シエーリング アクチエンゲゼルシヤフト ポリロタキサン
JP2005080469A (ja) * 2003-09-02 2005-03-24 Japan Radio Co Ltd 蓄電器の充電装置
JP2005272664A (ja) * 2004-03-25 2005-10-06 Hitachi Ltd 可溶性シクロデキストリンポリマー及びその製造方法
JP2006316089A (ja) * 2005-05-10 2006-11-24 Jsr Corp 樹脂組成物
JP2007063412A (ja) * 2005-08-31 2007-03-15 Nissan Motor Co Ltd 親水性修飾ポリロタキサン及び架橋ポリロタキサン

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
化学大辞典編集委員会編, 「化学大辞典2」, vol. 初版, JPN6012004983, 1960, pages 658 - 659, ISSN: 0003228070 *
化学大辞典編集委員会編, 「化学大辞典8」, vol. 初版, JPN6012004985, 1962, pages 214 - 215, ISSN: 0003228071 *

Also Published As

Publication number Publication date
CN103249743B (zh) 2016-03-09
KR101817379B1 (ko) 2018-01-11
JP6013189B2 (ja) 2016-10-25
EP2653481A4 (en) 2014-07-09
CA2821887A1 (en) 2012-06-21
US9938382B2 (en) 2018-04-10
WO2012081429A1 (ja) 2012-06-21
US20130296546A1 (en) 2013-11-07
CA2821887C (en) 2018-07-10
EP2653481B1 (en) 2015-09-30
CN103249743A (zh) 2013-08-14
EP2653481A1 (en) 2013-10-23
KR20130132535A (ko) 2013-12-04
ES2552210T3 (es) 2015-11-26

Similar Documents

Publication Publication Date Title
JP6111072B2 (ja) 精製ポリロタキサンの製造方法
JP6013189B2 (ja) 擬ポリロタキサンの製造方法
JP6013190B2 (ja) 擬ポリロタキサンの製造方法
KR101840504B1 (ko) 유사 폴리로탁산 수성 분산체의 제조 방법
JP6013318B2 (ja) 粉末状親水性修飾ポリロタキサンの製造方法
EP2687545B1 (en) Hydrophilic modified polyrotaxane composition
EP2899221A1 (en) Method for manufacturing polyrotaxane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160921

R150 Certificate of patent or registration of utility model

Ref document number: 6013189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250