JPWO2012073308A1 - 光通信システム、光送信器及びトランスポンダ - Google Patents

光通信システム、光送信器及びトランスポンダ Download PDF

Info

Publication number
JPWO2012073308A1
JPWO2012073308A1 JP2012546591A JP2012546591A JPWO2012073308A1 JP WO2012073308 A1 JPWO2012073308 A1 JP WO2012073308A1 JP 2012546591 A JP2012546591 A JP 2012546591A JP 2012546591 A JP2012546591 A JP 2012546591A JP WO2012073308 A1 JPWO2012073308 A1 JP WO2012073308A1
Authority
JP
Japan
Prior art keywords
optical
signal
symbol time
ofdm
ofdm signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012546591A
Other languages
English (en)
Other versions
JP5583788B2 (ja
Inventor
慎也 佐々木
慎也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2012073308A1 publication Critical patent/JPWO2012073308A1/ja
Application granted granted Critical
Publication of JP5583788B2 publication Critical patent/JP5583788B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5563Digital frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/675Optical arrangements in the receiver for controlling the input optical signal for controlling the optical bandwidth of the input signal, e.g. spectral filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/223Demodulation in the optical domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Communication System (AREA)

Abstract

光OFDM通信システムにおいて、光受信器の所要帯域を低減する技術に関する。OFDMのシンボル時間毎に交互に異なるスペクトルの光OFDM信号を送信し、この光を光ファイバで伝送した後、遅延時間が1シンボル時間に等しい遅延干渉計とバランス型直接検波受信器で光−電気変換して受信する。

Description

本発明は、光通信システム、光送信器及びトランスポンダに係り、特に、マルチキャリアを用いた光OFDM通信システムに関し、より具体的には、光OFDM(Orthogonal Frequency Division Multiplexing、直交周波数分割多重)通信システムにおいて光受信器の所要帯域を低減する光通信システム、光送信器及びトランスポンダに関する。
今まで実用化されてきた光通信システムの多くは、光の強度を用いた2値の変復調技術を適用している。具体的には、送信側でディジタル情報の「0」と「1」を光の強度のオン−オフに変換して光ファイバに送信し、光ファイバを伝播した光は受信側で光電変換されてもとの情報を復元している。近年、インタ−ネットの爆発的普及に伴い、光通信システムに要求される通信容量は飛躍的に伸びている。通信容量の大容量化の要請に対して今までは、光のオン−オフする速度、つまり変調速度を上昇させることで対応してきた。しかしながら、この変調速度を上昇させて大容量化を実現するという手法では一般に、次に述べる課題がある。
変調速度を上昇させると、光ファイバの波長分散によって制限される伝送可能な距離は短くなる、という課題がある。一般に波長分散によって制限される伝送距離はビットレ−トの二乗で短くなる。つまり、ビットレ−トが2倍になると、波長分散により制限される伝送距離は1/4になる。同様に変調速度を上昇させると、光ファイバの偏波分散により制限される伝送可能な距離が短くなる、という課題もある。一般にビットレ−トが2倍になると、偏波分散によって制限される伝送距離は1/2になる。波長分散の影響を具体的に示すと、ビットレ−トが10Gbpsで通常分散ファイバを用いると波長分散で制限される伝送距離は60kmであるが、ビットレ−トが40Gbpsのシステムになると、其の距離はおよそ4kmと短くなる。さらに次世代の100Gbpsシステムの場合は波長分散によって制限される伝送距離は0.6kmとなり、このままでは、伝送距離が500km程度の幹線光通信システムを実現することはできない。超高速な幹線光通信システムを構築するために現在は、伝送路の波長分散を打ち消すために負の波長分散を持ったいわゆる分散補償ファイバという特殊な光ファイバを中継器や送受信機に設置している。この特殊ファイバは高価であり、また送受信機や光中継器内部に設置する分散補償ファイバの量を決定する高度な設計が必要になり、これら両者が光通信システムの価格を押し上げている。
そこで最近、通信容量を増加させる光変復調方式として、OFDM技術を用いた光通信システムの研究が脚光を浴びている。OFDM技術は、1シンボル時間内で互いに直交する、つまり1シンボル時間の逆数の整数倍の周波数を持つ、多数の正弦波(これをサブキャリアと呼ぶ)のそれぞれの振幅と位相を所定の値に設定することによって情報を乗せ(変調し)、これらのサブキャリアを束ねた信号でキャリア(搬送波)を変調し送信する技術である。このOFDM技術は、電話局と家庭の間で通信するVDSL(Very high bit rate Digital Subscriber Line)システムや、家庭内での電力線通信システム、さらには地上波ディジタルTVシステムで用いられ、実用化されている。さらには次世代の携帯電話システムでも用いられる予定である。
光OFDM通信システムは、光をキャリアとしてOFDM技術を適用した通信システムである。OFDM技術では、前述のように多数のサブキャリアを用いており、さらにおのおののサブキャリアの変調方式は、例えば、4−QAM、8−PSK、あるいは16−QAMなど多値変調方式が適用可能なため、1シンボル時間がビットレ−トの逆数より非常に長くなる。その結果として前述の波長分散や偏波分散によって制限される伝送距離が、光通信システムで想定される伝送距離(例えば、国内の幹線システムでは500km)より十分長くなり、前述の分散補償ファイバが不要となる。その結果、低コスト光通信システムが実現できる可能性がある。
直接検波受信方式を用いた光通信システムは、無線通信システムとは異なり、受信した光電流は光の電界の絶対値の二乗に比例する(一方、無線通信システムでは、受信アンテナに流れる電流は電界に比例する)。この特徴のため、直接検波受信方式を用いた光OFDM通では、無線OFDM通信には無い課題が発生する。つまり、受信した光電流は光電界の絶対値の二乗に比例するため、サブキャリア間のビ−ト信号が本来の信号に干渉するという、という課題である。この課題を以下ではサブキャリア間ビ−ト干渉と呼ぶことにする。
Brendon J.C.Schmidt、 Arthur J.Lowery and Liang B.Du、「Low Sampling Rate Transmitter for Direct−Detection OpticalOFDM」、OFC/NFOEC 2009、 OWM4、 2009
従来の光OFDM通信では、このサブキャリア間ビ−ト干渉を避ける提案がされている。それは、送信器から送信する光信号として、サブキャリア信号以外にキャリアも同時に送信し、さらにこれらキャリアとサブキャリア信号の間に周波数軸上でガ−ドバンドを設けるという提案である。この光OFDM信号のスペクトルを図3に示す。この図を見てもわかるように、OFDM信号である複数のサブキャリアとキャリアとを同時に送信しており、しかもキャリアとOFDM信号の間にはOFDM信号の帯域幅(B)とおおよそ等しい幅のガ−ドバンドを周波数軸上に設定している。この光OFDM信号を直接検波受信した場合の光電流のスペクトルを図4に示す。この図からわかるように、本来受信すべき信号(キャリアとサブキャリアとのビ−ト信号)の低周波側にサブキャリア間ビ−ト信号が存在し、これらは周波数軸上で分離できるため、受信特性に影響は現れない。これが従来光OFDM通信で提案されている、サブキャリア間ビ−ト干渉を避ける手法である。
このサブキャリア間ビ−ト干渉を避ける手法には二つ課題がある。まず、図3のスペクトルを持つ光OFDM信号を生成するためには、キャリアも含めて信号生成を行う必要があり、光送信器の高周波回路とくに、ディジタル−アナログ変換部(例えば、後述する図2の116、116−1に相当)は超高速動作が要求される。これが第一の課題である。より具体的に述べると、本来は2Bの速度でベースバンドOFDM信号を生成できるところ、キャリアを含めて信号生成する場合は4Bの速度で動作する必要がある。
第二の課題は受信器の帯域も広帯域性が要求されることである。図4の光電流を受信して信号を復調するためには、ガ−ドバンドBだけ、余分に広帯域な光−電気変換部を必要とする。さらに、アナログ−ディジタル変換部(後述する図11の221に相当)も超高速で動作する回路が必要となる。一般に高速動作の電子回路は非常に高価になり、あるいは最悪の場合、つまり実現しようとするビットレ−トが高すぎる場合は、入手困難になり、システムを実現できなくなる。
第一の課題、つまり光送信器(特にディジタル−アナログ変換部)の広帯域化に対する解決策のひとつは提案されており(非特許文献1)、これはキャリアをベースバンドOFDM信号の生成後に加算する、という手法である。
非特許文献1に記述されている技術は、第一の課題、つまり光送信器のディジタル−アナログ変換部の高速化を避けるためのものである。第二の課題、つまり光受信器、とくに光−電気変換部やアナログ−ディジタル変換部の広帯域化や高速化に対する対策は依然として未解決である。
本発明は、以上の点に鑑みてなされたものであり、光OFDM通信システムにおいて、サブキャリア間ビ−ト干渉の影響を受けず、さらに光受信器の帯域を広帯域化せずに実現できる光通信システム、光送信器及びトランスポンダを提供することを目的とする。
本発明では、OFDMのシンボル時間毎に交互に異なるスペクトルの光OFDM信号を送信し、この光を光ファイバで伝送した後、遅延時間が1シンボル時間に等しい遅延干渉計とバランス型直接検波受信器で光−電気変換する。
以下に課題を解決するための手段をより具体的に記述する。各図については、実施の形態でも説明するが、以下適宜参照する。
図1を用いて本発明を説明する。本発明の光通信システムでは、光送信器100と光受信器200は光ファイバ300で接続されている。光送信器100内部の送信信号処理部110では、入力端から入力された通信するデ−タを、ベースバンドOFDM信号に変換する。ここで送信信号処理部の構成は例えば、図2に示す通りである。
ベースバンドOFDM信号の実部と虚部は電気−光変換部120で光OFDM信号に変換されて光ファイバ300に送信される。この光OFDM信号は、図6に示すようにOFDMシンボル時間毎に交互に、図7に示す2通りのスペクトルを取る。
光ファイバ300を通ったこの光OFDM信号は、光受信器200に入射する。光受信器200は、遅延時間TがOFDMの1シンボル時間に等しい遅延干渉計230、バランス型光−電気変換部210および受信信号処理部220を備える。遅延干渉計230で1シンボル時間前の光信号と干渉した光OFDM信号はバランス型光−電気変換部210で電気信号に変換され、その電気信号は受信信号処理部220で情報であるデ−タに復調されて出力される。
図8に遅延干渉計の構成を、図9にバランス型光−電気変換部の構成を、図11に受信信号処理部の構成例を示す。
次にこの光送信器と光受信器の構成で、サブキャリア間ビ−ト干渉の影響がなく光受信器の帯域が従来方式より狭いことを示す。図7のスペクトルの光電界E(t)を次式で表わす。
Figure 2012073308
ここでE(t)はキャリアの電界を、E(t)はOFDM信号の電界をそれぞれ表す。図7からわかるように、キャリアの光周波数と複数のサブキャリアから構成されるOFDM信号の光周波数は、シンボルごとに交互に変化する。この光電界E(t)は光ファイバ300を通って遅延干渉計230に入射する。遅延干渉計230の出力ポ−ト1と2(図8参照)からの光電界はそれぞれ次式で表わせる。
Figure 2012073308
ここでTは、遅延干渉計230の遅延時間、すなわちOFDMのシンボル時間を表す。
これらの光はバランス型光−電気変換部210で電気信号に変換されるが、バランス型光−電気変換部210の2個のフォトダイオ−ドそれぞれに流れる電流は、
Figure 2012073308
と表わされ、その結果バランス型光−電気変換部210の出力V(t)は次式となる。
Figure 2012073308
式(4)右辺の第1項はキャリア間のビ−ト信号、第2項と第3項はキャリアとOFDM信号のビ−ト信号(所望の信号)、第4項はOFDM信号間のビ−ト信号、すなわちサブキャリア間ビ−ト信号をそれぞれ表わしている。
ここで図6の信号で、時刻tのシンボルがシンボルNo.2、時刻t+TのシンボルがシンボルNo.1の場合について説明する。スペクトル(図7)を見ると、シンボルNo.1のキャリア1の周波数(fLD1−fS1)とシンボルNo.2のOFDM信号の最低周波数(fLD2−B/2)との差はサブキャリア間の周波数Δfに設定してある。同様にシンボルNo.2のキャリア2の周波数(fLD2+fS2)とシンボルNo.1のOFDM信号の最低周波数(fLD1−B/2)との差はサブキャリア間の周波数Δfに設定してある。ここでBは、OFDM信号の帯域幅を表す。さらに、ガ−ドバンドの周波数幅Wは少なくともB以上とする。
以上の条件の下で、バランス型光−電気変換部の出力信号(式(4))のスペクトルを計算するとその結果は図10(a)となる。この図で白丸の信号はOFDM信号S1とS2の和(式(4)右辺の第2項と第3項の和)であり、黒丸の信号はOFDM信号S1とS2のサブキャリア間ビ−ト信号(式(4)右辺の第4項)を表す。
次に図6の信号で、時刻tのシンボルがシンボルNo.3、時刻t+TのシンボルがシンボルNo.2の場合について同様にスペクトルを計算すると図10(b)と求まる。
図10(a)と(b)から以下の2つの事がわかる。まず、サブキャリア間ビ−ト信号と所望の信号(この場合はS1とS2の和、またはS2とS3の和)は、周波数軸上で完全に分かれており、干渉による信号劣化は起こらない。さらに、従来方式(図4参照)と異なり、所望の信号がサブキャリア間ビ−ト信号の低周波側に分布しており、従って光受信機200に要求されるアナログ受信帯域は、従来の半分の、およそBとなる。その結果、アナログ−ディジタル変換回路221の所要サンプリング速度も従来の半分のおよそ2Bとなる。
なお、上記記述では、ガ−ドバンドの周波数幅Wは、サブキャリア間ビ−ト干渉が完全に起こらない最小値Bとした場合であるが、干渉による信号劣化を起こすことを多少許すとしても、
Figure 2012073308
は満たす必要がある。
バランス型光−電気変換部210の出力電気信号は、受信信号処理部220に入る。図11に受信信号処理部220の機能ブロック図を示す。バランス型光−電気変換部210の出力電気信号は、まず受信信号処理部220(図11)のアナログ−ディジタル変換回路221で、ディジタル信号に変換された後、サイクリックプリフィックス除去(CPR)部でサイクリックプリフィックスを取り除き、この信号をシリアル−パラレル変換部223でパラレルデ−タに変換し、このパラレルデ−タをFFT部224で各サブキャリアに変換する。各サブキャリアは時間的に前後する2つのシンボルの和(図10では、S1+S2、あるいはS2+S3)のデ−タで変調されているので、これを取り除くため、差動増幅器227と1シンボル時間Tだけ遅延する遅延回路228から構成された差分演算を実施する。これは各シンボル時間にS1+S2、S2+S3、S3+S4、...と同一シンボルが時間的につづいて現れるため、この差分演算によって各シンボル時間にS1、S2、S3、S4、...と各シンボルが一度だけ現れるように変換する目的で実施する。その後は従来のOFDM信号の受信信号処理と同じプロセスを行う。すなわち、サブキャリア復調部でサブキャリア毎にデ−タを復調し、これらのパラレルデ−タをパラレル/シリアル変換部226でシリアルデ−タに戻してデ−タとして出力する。
以上が本発明の基本動作原理である。本発明の本来の目的である、サブキャリア間ビ−ト干渉を避けかつ受信器のアナログ帯域が従来の半分となる、光OFDM通信システムが実現できる。
本発明の第1の解決手段によると、
光送信器が、シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、光ファイバを介して光信号で送信し、
光受信器が、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光通信システムであって、
前記光送信器は、
シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、変調されたサブキャリア信号からベースバンドOFDM信号を生成する送信信号処理部と、
該ベースバンドOFDM信号をレーザ光に変調し光OFDM信号を生成する電気―光変換部と
を備え、前記送信信号処理部と前記電気−光変換部によりシンボル時間ごとに交互に異なる2波長の光OFDM信号を送信し、
前記光受信器は、
光ファイバを介して前記光送信器から受信した光OFDM信号の一部をシンボル時間遅延させて光OFDM信号と干渉させる遅延干渉部と、干渉された光信号を電気信号に変換するバランス型光−電気変換部との少なくともひとつの組と、
前記光−電気変換部の出力からサブキャリア信号を得、このサブキャリア信号からデータを復調して元のディジタルデータを再生する受信信号処理部と
を有する前記光通信システムが提供される。
本発明の第2の解決手段によると、
光送信器が、シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、光ファイバを介して光信号で送信し、
光受信器が、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光通信システムにおける前記光送信器であって、
シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、変調されたサブキャリア信号からベースバンドOFDM信号を生成する送信信号処理部と、
該ベースバンドOFDM信号をレーザ光に変調し光OFDM信号を生成する電気―光変換部と
を備え、前記送信信号処理部と前記電気−光変換部によりシンボル時間ごとに交互に異なる2波長の光OFDM信号を送信する前記光送信器が提供される。
本発明の第3の解決手段によると、
光送信器が、シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、光ファイバを介して光信号で送信し、
光受信器が、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光通信システムにおけるトランスポンダであって、
前記光送信器及び前記光受信器を備え、
前記光送信器は、
シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、変調されたサブキャリア信号からベースバンドOFDM信号を生成する送信信号処理部と、
該ベースバンドOFDM信号をレーザ光に変調し光OFDM信号を生成する電気―光変換部と
を備え、前記送信信号処理部と前記電気−光変換部によりシンボル時間ごとに交互に異なる2波長の光OFDM信号を送信し、
前記光受信器は、
光ファイバを介して前記光送信器から受信した光OFDM信号の一部をシンボル時間遅延させて光OFDM信号と干渉させる遅延干渉部と、干渉された光信号を電気信号に変換するバランス型光−電気変換部との少なくともひとつの組と、
前記光−電気変換部の出力からサブキャリア信号を得、このサブキャリア信号からデータを復調して元のディジタルデータを再生する受信信号処理部と
を有する前記トランスポンダが提供される。
本発明によると、光OFDM通信システムにおいて、サブキャリア間ビ−ト干渉の影響を受けず、さらに光受信器の帯域を広帯域化せずに実現できる光通信システム、光送信器及びトランスポンダを提供することができる。
本発明の光OFDM通信システムの機能ブロック図。 送信信号処理部の機能ブロック図。 従来の光OFDM通信システムにおける光OFDM信号光のスペクトルの模式図。 従来の光OFDM通信システムにおける受信電気信号のスペクトルの模式図。 電気―光変換部の機能ブロック図の説明図。 本発明における光OFDM信号の時系列を説明する模式図。 本発明における光OFDM信号光のスペクトルの一例を説明する模式図。 遅延干渉部の構成図。 バランス型光−電気変換部の構成図。 本発明における受信電気信号のスペクトルの一例を説明する模式図。 本発明の第1の実施の形態の受信信号処理部の機能ブロック図。 本発明の第1の実施の形態の電気−光変換部の構成図。 本発明の第2の実施の形態の電気−光変換部の構成図。 本発明の第2の電気−光変換部とともに用いる光フィルタの透過特性を説明するスペクトルの模式図。 本発明の第3の実施の形態の送信信号処理部の機能ブロック図。 本発明の第3の実施の形態の電気−光変換部の構成図。 本発明の第3の実施の形態の電気−光変換部の各部での光スペクトルの模式図。 本発明の第3の実施の形態の光OFDM信号の時系列を説明する模式図。 本発明の第3の実施の形態の光OFDM信号光のスペクトルを説明する模式図。 本発明の第4の実施の形態の光受信器の機能ブロック図。 本発明の第4の実施の形態の光受信器とともに用いる光フィルタの透過特性を説明するスペクトルの模式図。 本発明の第4の実施の形態の光受信器の受信電気信号のスペクトルの模式図。 本発明の第4の実施の形態の光受信器の受信信号処理部の機能ブロック図。
以下、本実施の形態を説明する。
1.第1の実施の形態
図1等を参照して第1の実施の形態を説明する。ここでは説明のためサブキャリアの変調は4−QAMと仮定するが、本実施の形態はこれに制限されるものではなく、任意のサブキャリア変調方式に対して適用可能である。またサブキャリアの本数はN本(Nは整数)とする。
図1に、本実施の形態の光OFDM通信システムの構成図を示す。
光OFDM通信システムは、例えば、光送信器100と、光ファイバ300と、光受信器200とを備える。光送信器100は、例えば、送信信号処理部110と電気−光変換部120を有する。光受信器200は、遅延干渉計230と、バランス型光−電気変換部210と、受信信号処理部220を有する。光送信器100と光受信器200は、光ファイバ300を介して接続される。
本来通信すべきディジタルデ−タが光送信器100に入力すると、光送信器100の内部の送信信号処理部110でベースバンドOFDM信号に変換され、この信号は電気−光変換部120で光OFDM信号に変換される。この光OFDM信号は伝送路である光ファイバ300を通って直接検波光受信器200に到達する。光OFDM信号は光−電気変換部210で直接検波受信されて電気信号に変換される。この電気信号は理想的には前述のベースバンドOFDM信号であり、この信号は受信信号処理部220で本来通信すべきディジタルデ−タに復調されて出力される。
図2は、第1の実施の形態における送信信号処理部110の機能ブロック図を示す。
送信信号処理部110は、例えば、シリアル−パラレル(S/P)変換部111と、サブキャリア変調部112と、逆FFT部(逆高速フ−リエ変換部)113と、パラレル−シリアル(P/S)変換部114と、ディジタル−アナログ(D/A)変換部116、116−1を備える。なお、P/S変換部114とD/A変換部116、116−1の間にサイクリックプリフィックス挿入(CPI)部115を設け、サイクリックプリフィックスを付加しても良いのはいうまでもない。
本来通信すべきデ−タは、S/P変換部111で2N個のパラレルデ−タに変換される。ここでNはデ−タを乗せるサブキャリアの本数である。サブキャリアの変調が4−QAMの場合は2N個のパラレルデ−タであるが、これが例えば16−QAMの場合は4N個となる。つまりシリアルデ−タは、「1シンボルのビット数×サブキャリアの本数」個のパラレルデ−タに変換する。サブキャリア変調部112は、このパラレルデ−タを用いてN本のサブキャリアに変調をかける。この変調されたサブキャリア(C、k=0、1、・・・N−1)は逆FFT部113に入力される。入力された信号は、逆FFT部(逆高速フ−リエ変換部)113で時間軸のデ−タに変換され、P/S変換部114でシリアルデ−タに変換される。このシリアルデ−タの実部と虚部はそれぞれD/A変換部116と116−1を通過してアナログ信号に変換されて出力される。この出力された信号をベースバンドOFDM信号と呼ぶ。
本実施の形態の電気−光変換部120の構成および動作を説明する前に、理解の助けとして図5に示す電気−光変換部の例をまず説明する。送信信号処理部110のD/A変換部116、116−1の出力信号であるベースバンドOFDM信号の実部と虚部は、RF発振器123の出力RF信号(周波数f)の余弦波(cos成分)と正弦波(sin成分。余弦波の位相を90°ずらすため移相器124を通して生成しても良い)を加算器125と125−1でそれぞれ加算され、光I−Q変調器122のIポ−トとQポ−トにそれぞれ印加される。光I−Q変調器122は例えばLiNbO(ニオブ酸リチウム)基板上に作成した光導波路での電気光学効果を利用したデバイスが良く知られているが、これに限るものではなく、例えばInP基板上に作成されたデバイスでも良い。
レ−ザ(光源)121は光周波数fLDの光を出し、この光は光I−Q変調器122に入射する。光I−Q変調器122では、この光のI成分をIポ−トに入力した電気信号で変調し、光のQ成分をQポ−トに入力した電気信号で変調し、それら2つの成分、すなわち変調されたI成分の光とQ成分の光は加算されて出力される。光I−Q変調器122の出力光(以下では光OFDM信号と呼ぶ)のスペクトルは、光周波数fLDを中心に複数のサブキャリアの集まりであるOFDM信号と周波数fのRF信号によって生成される光の下側帯波成分(周波数はfLD−fS。以下ではキャリアと呼ぶ)で構成される(キャリアが上側帯波成分fLD+fでも良いのは言うまでもない)。ここでfは、ベースバンドOFDM信号の帯域をB、所望のガ−ドバンド幅をWとすると、例えばW+B/2と設定する。するとこの場合の光I−Q変調器122の出力光のスペクトルは、図3となる(図3ではW≒Bとしている)。この例に基づいて、本実施の形態の電気−光変換部の構成とその動作を次に説明する。
図12に、本発明の第一の実施の形態の電気−光変換部の構成を示す。
送信信号処理部110の出力であるベースバンドOFDM信号の実部と虚部をRF信号のcos成分とsin成分とそれぞれ加算してこれを光I−Q変調器122のI−ポ−トとQ−ポ−トに印加して、レ−ザ121−1からの光に変調をかけるという基本動作は上述の例と同じである。
上述の例と異なる点は、まず、レ−ザ121−1からの光はOFDM信号のシンボル時間毎に2つの異なる光周波数fLD1とfLD2のどちらかを交互に取るようにRF発振器126で制御されている点である。この光周波数の切り替えは、例えばレ−ザ121−1を半導体レ−ザで実現し、この半導体レ−ザの駆動電流をRF発振器126の出力信号に応じてわずかに変化させる事によって、実現できる。なお、2つの光周波数差fLD1−fLD2(fLD1>fLD2と仮定)をいくらに設定するかは後述する。これに限らず、他の手法で2つの光周波数の光を発生させる光源部であってもよい。
また、ベースバンドOFDM信号の実部と虚部に加算されるRF信号は、2つのRF発振器123−1と123−2の出力(それぞれの発振周波数はfS1とfS2)のどちらか一方の出力を2x1電気スイッチ127−1と127−2で選択する点も上述の例と異なっている。さらに、RF発振器123−1と123−2のそれぞれの出力の正弦波成分は互いに180°位相がずれている(つまり逆相になっている。なお、余弦成分は同相)。これは移相器124−1と124−2の設定をそれぞれ−90°と+90°に設定することによって実現できる。なお、他の手法で2つの周波数の正弦波成分と余弦波成分をそれぞれ発生させる発振部であってもよい。
2x1電気スイッチ127−1と127−2の切り替えは、OFDM信号のシンボル時間毎に同期して行う。また切り替えは、前述のレ−ザ121−1の光周波数のシンボル時間毎の切り替え(これは、RF発振器126で制御されている)とも同期させている。さらに、このシンボル時間毎の切り替えは、送信信号処理部110のクロックと同期している。つまり、光送信器100のすべての論理回路、発振器、切り替えスイッチは同一のクロックで同期が取れている。
この時の光OFDM信号(つまり光I−Q変調器122の出力光)は、図6のように模式的に表わすことができる。すなわち、あるシンボル(仮にシンボルNo.1と呼ぶと)は、レ−ザ121−1からの光の周波数はfLD1であり、ベースバンドOFDM信号に加算されるRF信号の周波数はfS1である。この次のシンボルNo.2は、レ−ザ121−1からの光の周波数はfLD2であり、ベースバンドOFDM信号に加算されるRF信号の周波数はfS2である。さらにこれに続くシンボル、つまりシンボルNo.3、5、...はシンボルNo.1と同じ光周波数fLD1とRF信号周波数fS1を用い、シンボルNo.4、6、...はシンボルNo.2と同じ光周波数fLD2とRF信号周波数fS2を用いる。
また、すでに述べたように、2つのRF信号の正弦成分は互いに逆相なので、周波数がfS1のRF信号を用いて生成する、シンボルNo.1、3、5、...のキャリアは下側帯波となり、周波数がfS2のRF信号を用いて生成する、シンボルNo.2、4、6、...のキャリアは上側帯波となる。さらにRF信号の周波数fS1とfS2を例えば後述のように異なる値に設定すると、光OFDM信号のスペクトルは、図7のようにできる。図7の上の図はシンボルNo.1、3、5、...の時のスペクトルであり、図7の下の図はシンボルNo.2、4、6、...の時のスペクトルである。
RF発振器123−1と123−2の出力であるRF信号の周波数fS1とfS2は、例えば次のように決定する。すなわち、ガ−ドバンドの帯域幅をWとWとし、OFDM信号の帯域をBとすると、
Figure 2012073308
で与えられる(図7参照)。ガ−ドバンドの帯域幅WとWは、光のスペクトル利用効率を上げるためには、なるべく狭く設定する必要がある一方、直接検波時に発生するサブキャリア間ビ−ト信号による干渉を避けるためには広く設定する必要ある。
サブキャリア間のビ−ト信号による干渉を完全に避ける場合(図10の場合)、ガ−ドバンドの帯域幅WとWの最小値は、それぞれおおよそ2BとBである。より正確に述べると、
Figure 2012073308
なる関係を満たす必要がある。ここでΔfは、サブキャリア間の周波数間隔を表し、
Figure 2012073308
なる関係がある。
さて、レ−ザの光周波数差fLD1−fLD2は図7と式(7)より次式で与えられる。
Figure 2012073308
なお、サブキャリア間のビ−ト信号による干渉を完全に避けない場合、つまり多少はサブキャリア間ビ−ト干渉による信号品質劣化を許容する場合のガ−ドバンドの帯域幅WとWは少なくとも、それぞれおおよそ3B/2とB/2以上は必要である。この場合、受信したOFDM信号のうち高周波側のサブキャリア(全サブキャリアのおよそ半分)がサブキャリア間ビ−ト干渉の影響を受け、残りの半分の低周波側のサブキャリアは干渉の影響を受けず受信信号品質の劣化は無い状態である。
本実施の形態の説明では、式(6)と式(7)の最小値との両条件が満たされた場合、つまり、サブキャリア間のビ−ト信号による干渉を完全に避ける場合について、以下に説明を続ける。この場合のスペクトルは図7に示す通りである。すなわち、シンボルNo.1、3、...のキャリア1と、シンボルNo.2、4、...のOFDM信号のうちの最低周波数側サブキャリアとの周波数間隔はΔfである。同様に、シンボルNo.2、4、...のキャリア2と、シンボルNo.1、3、...のOFDM信号のうちの最低周波数側サブキャリアとの周波数間隔はΔfである。
上記の電気−光変換部120で生成された光OFDM信号は、光送信器100の送信光として伝送路である光ファイバ300を伝搬し、光受信器200に到達する。光受信器200では、まず、遅延干渉計230に入射する。
図8に、遅延干渉計230の構造を示す。遅延干渉計230の入力ポ−トから入射した光は、光カプラ231で二つの光に分離され、一方は遅延時間部233でOFDMの1シンボル時間Tだけ遅延された後、分離された他方の光と光カプラ232で合成されて出力ポ−ト1と出力ポ−ト2から出力される。
図9に、バランス型光−電気変換部210の具体的な構成を示す。遅延干渉計230の2つの出力ポ−トからの光はバランス型光−電気変換部210で電気信号に変換される。バランス型光−電気変換部は、例えば2個のフォトダイオ−ドとプリアンプから構成されており、フォトダイオ−ドで光から電流に変換された2つの信号は引き算されてバランス型光−電気変換部210から出力される。
図10に、バランス型光−電気変換部210の出力信号のスペクトルを示す。図10(a)は図6の光OFDM信号のシンボルNo.1とシンボルNo.2が遅延干渉部230で合成された場合のスペクトルであり、図10(b)は図6の光OFDM信号のシンボルNo.2とシンボルNo.3が遅延干渉部230で合成された場合のスペクトルである。この図10は、式(6)と式(7)の最小値との両条件が満たされた光OFDM信号の場合である。
図10から、低周波側には、受信すべきOFDM信号の和(S1+S2、S2+S3、...)が得られ、高周波側には異なるシンボル時間のサブキャリア間のビ−ト信号が得られる事がわかる。式(6)と式(7)の両条件が満たされると、OFDM信号とサブキャリア間ビ−ト信号はスペクトル上で完全に分離できる。さらに、従来方式(図4参照)と異なり、低周波側に求めるOFDM信号が現れ、不要なサブキャリア間ビ−ト信号は高周波側に表れているので、光受信器200のアナログ部品、たとえば、フォトダイオ−ド、プリアンプ、A/D変換器に必要とされる帯域は、OFDM信号の帯域幅B程度で十分である。
図11に受信信号処理部220の機能ブロック図を示す。バランス型光−電気変換部210の出力信号は、受信信号処理部220に入力する。光−電気変換部210―1の出力信号は、アナログ−ディジタル(A/D)変換部221でディジタル化され、サイクリックプリフィックス除去(CPR)部222でサイクリックプリフィックスを取り除き、シリアルーパラレル(S/P)変換部223でN本のパラレルデータに変換される。これらのパラレルデータはFFT(高速フーリエ変換)部224においてN本のサブキャリア信号に分離される。その後サブキャリア復調部225にて各サブキャリアに乗っているデータが復調され、パラレル−シリアル(P/S)変換部226にてシリアルデータに変換され、受信情報データとして出力される。
本実施の形態の受信信号処理部220では、FFT部224で各サブキャリアに分離された後、その信号は1シンボル前の信号と差を取って次段の復調部225に渡される。具体的には、FFT部224の出力の各サブキャリアは、差動増幅器227、227−1に入力される。この差動増幅器の出力は遅延回路228、228−1でOFDMの1シンボル時間Tだけ遅延されて、差動増幅器227、227−1の他方の入力に接続されている。したがって、この差動増幅器227、227−1では現シンボルの信号と1シンボル時間前の信号の差が出力される。
図10で説明したように、受信したサブキャリア信号は、遅延干渉計230の働きによって、連続する2つのシンボルの和となっているので、この様な遅延回路と差動増幅器をサブキャリア毎に用いると、それぞれの差動増幅器の出力には、各シンボルの信号(S1、S2、S3、...)が得られる。
差動増幅器227、227−1の出力は、上述のようにサブキャリア復調部225で復調され、続くパラレル−シリアル変換部226でシリアルデ−タに変換されて光受信器200の出力信号として出力される。これが受信したデ−タである。
2.第2の実施の形態
第2の実施の形態を図13を用いて説明する。本実施の形態では、電気−光変換部120が第1の実施の形態と異なっており、他の部分はすべて第1の実施の形態と同じであり、その説明は省く。
図13は第2の実施の形態の電気−光変換部120の機能ブロックと光フィルタ130を示す図である。
送信信号処理部110の出力である、ベースバンドOFDM信号の実部は、2x1スイッチ127で選択された周波数fS1のRF発振器123−1あるいは周波数fS2のRF発振器123−2の出力である余弦波(COS)と加算器125で加算されて光I−Q変調器122のIポ−トに印加される。一方、ベースバンドOFDM信号の虚部は、そのまま光I−Q変調器122のQポ−トに印加される。光I−Q変調器122に入射する光は、OFDMシンボル時間毎に光の周波数がfLD1とfLD2に交互に変化する光であり、この光は、レ−ザ121−1から出射される光である。レ−ザ121−1は、例えば半導体レ−ザで実現でき、その場合、半導体レ−ザの駆動電流をRF発振器126の出力に応じてOFDMシンボル時間毎にわずかに変化させることによって、光の周波数をfLD1とfLD2とに切り替える事ができる。
尚、上記の2x1スイッチ127の切り替えタイミングも、レ−ザからの光の周波数の切り替え(これは、RF発振器126で制御されている)も、OFDM信号のシンボル時間毎に同期して行う。さらに、このシンボル時間毎の切り替えは、送信信号処理部110のクロックと同期している。つまり、光送信器100のすべての論理回路、発振器、切り替えスイッチは同一のクロックで同期が取れている。
さて、本実施の形態の電気−光変換部120では、第1の実施の形態の電気−光変換部と同じく、OFDMシンボル時間毎にRF信号(周波数がfS1あるいはfS2)と光の周波数(fLD1とfLD2)が切り替わる。このRF信号と光の周波数とガ−ドバンドの帯域幅WとWとの関係も第1の実施の形態と同じである。
第1の実施の形態と異なる点は、RF信号(周波数がfS1あるいはfS2)が光I−Q変調器のIポ−トのみに印加されているため、この電気−光変換部120の出力光のスペクトルは、複数のサブキャリアで構成されるOFDM信号とその高周波側と低周波側に上記RF信号によって生成されるキャリアが存在することである(第1の実施の形態では、キャリアはOFDM信号の高周波側あるいは低周波側のみに表れる。図7参照)。
本実施の形態の電気−光変換部120の光を光フィルタ130に通過させる。図14は光フィルタ130の透過特性と、この光フィルタ130の出力光のスペクトルを示す。光フィルタは、帯域通過フィルタであり、OFDM信号の両側にあるキャリア(周波数fLD1±fS1とfLD2±fS2)の一方を遮断するように設置する。例えば、少なくとも周波数fLD1+fS1(図14では上側の図においてOFDM信号の高周波側に現れるキャリア(図示せず))と、周波数fLD2−fS2(図14では下側の図においてOFDM信号の低周波側に現れるキャリア(図示せず))とを遮断する。その結果、光フィルタ130の出力光のスペクトルは図14のように、OFDMシンボルがNo.1、No.3、...の時は低周波側のキャリア(周波数fLD1−fS1)とOFDM信号S1、S3、...から構成され、OFDMシンボルがNo.2、No.4、...の時は高周波側のキャリア(周波数fLD2+fS2)とOFDM信号S2、S4、...から構成される。
なお、光フィルタ130は、例えば誘電体多層膜で作られた光フィルタ、光導波路で作った光インタ−リ−バなどで実現できる。更に、この光フィルタは、波長多重システムの場合、各光送信器100に個別に搭載する場合と、各光送信器100の出力光を合波するいわゆる合波器を用いて実現することもできる。この場合、合波器はいわゆるAWG(Arrayed Waveguide Grating)で実現できる。
さて、以上の本実施の形態の説明から明らかなように、伝送路である光ファイバ中の光OFDM信号、つまり光フィルタ130の出力光は、第1の実施の形態の光と同一の光である。したがって光受信器200の構成とその各部の働きは第1の実施の形態と同一であり、詳細な説明は省略する。
以上が、第2の実施の形態の説明である。なお、本実施の形態では、送信器の構成が第1の実施の形態のそれと比べて簡単になっているのが特徴のひとつである。
3.第3の実施の形態
図15〜図18等を用いて第3の実施の形態を説明する。
本実施の形態では、ベースバンドOFDM信号とRF信号をディジタル信号処理で加算する。
光送信器100と光受信器200が伝送路である光ファイバ300を介して接続されているのは、第1の実施の形態と同一である。
図15に、送信信号処理部110−2の機能ブロック図を示す。光送信器100では、送信すべきデ−タは送信信号処理部110−2でベースバンドOFDM信号に変換される。送信すべきディジタルデ−タは、第一の実施の形態や第二の実施の形態と同様に信号処理され、サイクリックプリフィクス挿入部115から出力される。この出力はベースバンドOFDM信号の実部と虚部に対応する。これらの出力は1x2電気スイッチ117−1と117−2を通過する。この1x2電気スイッチ117−1と117−2はそれぞれ、OFDMシンボル時間T毎に2つの出力を交互に切り替えている。このスイッチの切り替えタイミングは、OFDMシンボルの切り替わりと同期している。したがって、OFDMシンボルNo.1、No.3、...の出力とシンボルNo.2、No.4、...の出力が異なる。これらの出力のうち、ベースバンドOFDM信号の実部は、送信信号処理部の内部の周波数fのRF発振器123−3の余弦波(cos)出力と加算器125、125−2で加算され、OFDM信号の虚部は、RF発振器123−3の正弦波(sin)出力と加算器125−1、125−3で加算される。RF信号が加算されたベースバンドOFDM信号は、4台のディジタル−アナログ変換(A/D)回路116で出力される。尚、RF発振器123−3の周波数fは、
=B/2+Δf 、 (10)
とする。この設定は、スペクトル幅を最小にする設定である。ここで、BはベースバンドOFDM信号の帯域幅、Δfはサブキャリアの周波数間隔である。
ベースバンドOFDM信号とRF信号をディジタル信号処理で加算する方法は図15以外にもある。例えば、図15の逆FFT変換部113の入力に必要なRF周波数ポ−トとゼロパディング用のポ−トを加え逆FFT変換を行う、という方法でもよい。
さて、送信信号処理部110−2の4つの出力信号(ベースバンドOFDM信号S1、S3、...とRF信号の和の実部とその虚部、ならびにベースバンドOFDM信号S2、S4、...とRF信号の和の実部とその虚部)は、図16の電気−光変換部120−2に導かれる。
電気−光変換部120−2は、固定波長で発振しているレ−ザ121と、その光を変調するMach−Zehnder光変調器128とそれを駆動するRF発振器123−4と、この光変調器128の出力の光を分波する光フィルタ129と、分波された2つの光にそれぞれ変調をかける2台の光I−Q変調器122−1と122−2と、これらの出力を合波する光フィルタ400を有する。
次にこの電気−光変換部120−2の動作を図17を用いて説明する。レ−ザ121は発振周波数が(fLD1+fLD2)/2に設定されている(図17(a)参照)。レ−ザ121としては通常半導体レ−ザを用いる。このレ−ザ121の出射光はMach−Zehnder光変調器128に入射する。このMach−Zehnder光変調器128は、バイアス点をその透過特性の消光点に設定してあり、駆動信号としては、周波数(fLD1−fLD2)/2のRF発振器123−4の正弦波出力を用いる。この時、Mach−Zehnder光変調器128の出力光のスペクトルは図17(b)となる。すなわち、この光は2つのスペクトル成分(周波数fLD1とfLD2)を持つ。この光を光フィルタ129に入射させる。光フィルタ129は、Mach−Zehnder光変調器128の出力光に含まれている2つのスペクトル成分を分離して2つの出力ポ−トにそれぞれ出射させる。この光フィルタ129としては、いわゆる光インタリ−バなどが実用化されている。なお、光周波数fLD1−fLD2の設定は式(9)に従う(fLD1>fLD2と仮定している)。
光フィルタ129の2つの出力はそれぞれ周波数fLD1の光と、周波数fLD2の光である。これらの光はそれぞれ光I−Q変調器122−1と122−2で変調され、出力される。
光I−Q変調器122−1の駆動信号は、ベースバンドOFDM信号S1、S3、...とRF信号(周波数f)との和信号である。同様に、光I−Q変調器122−2の駆動信号は、ベースバンドOFDM信号S2、S4、...とRF信号との和信号である。各駆動信号は、電気スイッチ117−1、117−2がシンボル時間毎に切替えられることで、シンボル時間毎に光I−Q変調器122−1、122−2に交互に入力される。なお、電気スイッチ117−1、117−2以外にも適宜の手法で光I−Q変調器に交互に駆動信号が入力されるようにしてもよい。
これらの信号で駆動された光I−Q変調器122−1と122−2の出力光のスペクトルを示したのが、図17(c)〜図17(f)である。すなわち、図17(c)は、光I−Q変調器122−1の出力光でOFDMシンボルがNo.1、No.3、...の時のスペクトルを、図17(d)は、光I−Q変調器122−1の出力光でOFDMシンボルがNo.2、No.4、...の時のスペクトルを、図17(e)は、光I−Q変調器122−2の出力光でOFDMシンボルがNo.1、No.3、...の時のスペクトルを、図17(f)は、光I−Q変調器122−2の出力光でOFDMシンボルがNo.2、No.4、...の時のスペクトルを、それぞれ表わしている。ここでは、式(10)が成立している場合を図示している。
2つの光I−Q変調器122−1と122−2の出力光は、光フィルタ400で合波され、この光が、光送信器100の出力光として、伝送路である光ファイバ300に送信される。
光フィルタ400としては、前述の光フィルタ129と同様の光インタリ−バでも良いし、単なる光カプラでも良い。
光ファイバ300を伝搬してきた光信号は、光受信器200に入射する。この光受信器は、第1の実施の形態や第2の実施の形態で用いた光受信器200である。
以上が第3の実施の形態である。
尚、本実施の形態の光フィルタ400の出力光、すなわち光送信器100の出力光のスペクトルは図19となる。図19と図7を比較すると、本実施の形態のスペクトルは、キャリアが増えているのがわかる。すなわちシンボルNo.1、No.3、...の時刻のキャリア2、及びシンボルNo.2、No.4、...の時刻のキャリア1である。これら余分なキャリアは、光受信器で余計な信号すなわち、シンボルNo.1、No.3、...の時刻のキャリア2とシンボルNo.2、No.4、...の時刻のOFDM信号S2、S4、...とのビ−ト信号、さらに、シンボルNo.2、No.4、...の時刻のキャリア1とシンボルNo.1、No.3、...の時刻のOFDM信号S1、S3、...とのビ−ト信号を生成する。しかし、これらは、本来受信したい信号、すなわちシンボルNo.1、No.3、...の時刻のキャリア1とシンボルNo.2、No.4、...の時刻のOFDM信号S2、S4、...とのビ−ト信号、またシンボルNo.2、No.4、...の時刻のキャリア2とシンボルNo.1、No.3、...の時刻のOFDM信号S1、S3、...とのビ−ト信号と比較すると、ガ−ドバンドの周波数幅Wがあるため、高周波側に存在する。したがって、ガ−ドバンドWをOFDM信号帯域幅B以上に取ると(式(7)参照)、これらの信号は、本来受信したい信号とスペクトル上で分離が可能であり、受信に問題ない。この光フィルタ400の出力光を時間軸上で模式的に表わしたのが図18となる。すでに述べたように、各OFDMシンボルは、ベースバンドOFDM信号と2つのキャリアから構成されている。第一および第二の実施の形態の光送信器100の出力(図6参照)と異なる点は、各OFDMシンボルに常に2つのキャリアが存在する点である。
本実施の形態に特有の特長としては、RF信号の加算を送信信号処理部110−2でディジタル的に実行しているため、光送信器100内に物理的なRF発振器や加算器や高速で動作する電気スイッチを準備する必要がなく、したがって低コストで実現できる、さらに、第1や第2の実施の形態のように電気スイッチを複数用いて同期をとった切り替えが不要であり、従って制御が簡単になる、などがある。
4.第4の実施の形態
第4の実施の形態を図20等を用いて以下に示す。第1、第2、あるいは第3の実施の形態の光送信器100の出力光は、伝送路である光ファイバ300を伝搬し、光受信器200に入射する。
図20に、本実施の形態の光受信器200の構成を示す。この光受信器200は、光フィルタ240と2つの遅延干渉計230−1と230−2と、それらの出力を電気信号に変換する、バランス型光−電気変換部210−2と210−3と、それらの出力からデ−タを抽出する受信信号処理部220−2を有する。
この光受信器200の動作を次に説明する。光受信器200に入射する光のスペクトルは、例えば図19に示されている通りである。以下では、第3の実施の形態の光OFDM信号を用いて説明する。この光が、まず光フィルタ240に入射する。光フィルタ240の透過特性と入力光のスペクトルを図21に示す。図20の入力ポ−ト(COM)から出力ポ−ト(A)への透過特性は実線で、入力ポ−ト(COM)から出力ポ−ト(B)への透過特性は一点鎖線で図21に示している。つまり、出力ポ−ト(A)にはキャリア1は遮断され、出力ポ−ト(B)では、キャリア2は遮断される。例えば、出力ポート(A)側では、fLD2+B/2より低い周波数を遮断し、出力ポート(B)側では、fLD1−fより高い周波数を遮断する。
従って、出力ポ−ト(A)の光は、シンボルNo.1、No.3、...の時刻では、キャリア2とOFDM信号S1、S3、...で構成され、シンボルNo.2、No.4、...の時刻では、キャリア2で構成される。同様に、出力ポ−ト(B)の光は、シンボルNo.1、No.3、...の時刻では、キャリア1のみ、シンボルNo.2、No.4、...の時刻では、OFDM信号S2、S4、...とキャリア1で構成される。
ポ−ト(A)とポ−ト(B)の光は、ぞれぞれ遅延干渉計230−1と230−2に入射する。その出力光は、ぞれぞれバランス型光−電気変換部210−2と210−3で電気信号に変換されて、受信信号処理部220−2に導かれる。
なお、バランス型光−電気変換部210−2の出力信号のスペクトルを図22(a)に示す。OFDMシンボルNo.1、No.2、No.3、No.4、...の時刻において得られる信号は、OFDM信号S1、S1、S3、S3、...と連続する2つのシンボルで同じ信号が繰り返される。バランス型光−電気変換部210−3の出力信号も同様に、OFDMシンボルNo.1、No.2、No.3、No.4、...の時刻において得られる信号は、OFDM信号S2、S2、S4、S4、...と連続する2つのシンボルで同じ信号が繰り返される。
図23に受信信号処理部220−2の機能ブロック図を示す。バランス型光−電気変換部210−2と210−3の出力信号はそれぞれ、アナログ−ディジタル変換(A/D)部221−1と221−2でディジタル信号に変換される。この出力は、2x1電気スイッチ229で、2つの入力信号をOFDMシンボルのタイミングに合わせて選択し出力する。したがって、その出力は、シンボルNo.1、No.2、No.3、No.4、...の時刻でOFDM信号S1、S2、S3、S4...と所望の信号が得られる。
この2x1電気スイッチ229の出力は、その後、従来例と同様の受信信号処理を受けて、受信デ−タとして、光受信器200から出力される。
以上が、本実施の形態の説明である。
なお、以上の本実施の形態の説明は第3の実施の形態の送信器100からの光OFDM信号を用いて行ったが、光受信器200は、第1および第2の実施の形態に用いた光送信器100の光(そのスペクトルは図7に示す通り)にも適用可能である。
本実施の形態に特有の特長は、ガ−ドバンドの幅Wを光フィルタ240の透過特性のスロ−プ(図21参照)で決めることができる。すなわち遷移領域(透過領域から遮断領域への遷移領域)の幅が急峻な光フィルタ240を用いた場合、その幅に合わせてガ−ドバンドの周波数幅Wを狭く設定できる。つまり式(7)のWに対する条件より狭くWを設定できる。従って、占有する光スペクトルが狭い光通信システム、すなわち周波数利用効率の高い光通信システムを実現できるという特長がある。
5.その他
なお、第1、第2、第3、第4の実施の形態のそれぞれの上記説明では、光送信器100と光受信器200が別の場所に個別に存在する場合を記述しているが、同一の光通信装置の中に前記の光送信器100と光受信器200の機能を実現し、これらの光通信装置間で通信を行う場合も別の実施の形態としてありうるのは言うまでも無い。さらにこの場合、光送信器100と光受信器200が同一の筺体あるいはボ−ドに搭載されたいわゆるトランスポンダを用いて構成する実施の形態があるのは、言うまでも無い。
上述の各実施の形態によると、光OFDM通信システムにおいて、サブキャリア間のビ−ト信号に起因した受信感度劣化を低減できる光OFDM通信システム及び光送受信器を提供することができる。また、送信器ならびに受信器に用いるアナログ部品(ドライバ、D/A変換回路、プリアンプ、A/D変換回路など)の帯域を信号帯域の2倍程度に抑えた部品を用いて光OFDM通信システム及び光送受信器を実現することができ、従って従来と比較して低コストな通信システム及び光送受信機を提供できる。さらに上述の各実施の形態では、直接検波受信方式を用いているため、コヒ−レント受信方式と比較して構成が簡単で、したがって低コストな通信システム及び光送受信器を提供することができる。
6.構成例
光通信システムは、例えば、
光送信器が、シンボル時間にわたって互いに直交する複数のサブキャリアに情報であるディジタルデ−タをマッピングして変調し、光ファイバを介して光信号で送信し、
光受信器が、該光ファイバを伝播した光信号をフォトダイオ−ドで光電変換し、各サブキャリア信号を復調して元のディジタルデ−タを再生する光通信システムであって、
シンボル時間にわたって互いに直交する複数のサブキャリアに情報であるディジタルデ−タをマッピングして変調し、変調された該サブキャリア信号を逆高速フ−リエ変換(逆FFT)してベースバンドOFDM信号を生成する送信信号処理部と、該ベースバンドOFDM信号をレ−ザ光に変調し光OFDM信号を生成する電気−光変換部とを備え、シンボル時間ごとに交互に異なる2波長の光OFDM信号を送信する光送信器と、
光ファイバを介して前記光送信器から送信された光OFDM信号を、少なくとも1組以上の遅延干渉部と光信号を電気信号に変換するバランス型光−電気変換部の組と、前記光−電気変換部の出力をアナログ−ディジタル(A/D)変換し、このA/D変換された信号を高速フ−リエ変換(FFT)してサブキャリア信号を得、このサブキャリア信号からデ−タを復調し、復調したデ−タをシリアルデ−タに変換し元のディジタルデ−タを再生する受信信号処理部、から構成される光受信器を備える。
上述の光通信システムにおいて、前記光送信器は、複数のサブキャリアとキャリアとから構成された光OFDM信号の波長を、シンボル時間ごとに交互に変えて送信することを特徴のひとつとする。
上述の光通信システムにおいて、前記キャリアの周波数と個別のサブキャリアの周波数の差は、少なくとも複数のサブキャリア全体の帯域幅の半分以上とすることを特徴のひとつとする。
上述の光通信システムにおいて、前記受信信号処理部において、FFTによって得たサブキャリア毎に、1シンボル前のサブキャリアのデ−タを引き算することを特徴のひとつとする。
上述の光通信システムにおいて、
前記光受信器は、前記送信器から送られてきた光OFDM信号の2つの波長の光を2つの出力ポ−トにそれぞれ分波する光フィルタと、前記光フィルタの2つの出力ポ−トの光を2つの遅延干渉部にそれぞれ入射させ、これら2つの遅延干渉部のそれぞれの出力を2つのバランス型光−電気変換部でそれぞれ電気信号に変換し、その電気信号をそれぞれアナログ−ディジタル(A/D)変換し、このA/D変換された2信号をOFDMシンボル時間毎に交互に選択し、選択した信号を高速フ−リエ変換(FFT)してサブキャリア信号を得、このサブキャリア信号からデ−タを復調し、復調したデ−タをシリアルデ−タに変換し元のディジタルデ−タを再生する受信信号処理部、から構成される。
上述の光通信システムにおいて、前記遅延干渉部の遅延時間が、シンボル時間に略等しいことを特徴のひとつとする。
本発明は、例えば、光通信システムに利用可能である。
100:光送信器
110、110−1、110−2:送信信号処理部
111、223:シリアル−パラレル変換(S/P)部
112:サブキャリア変調部
113:逆高速フ−リエ変換(FFT)部
114、226:パラレル−シリアル変換(P/S)部
115:サイクリックプリフィックス挿入(CPI)部
116、116−1:ディジタル−アナログ変換(D/A)部
117−1、117−2:1x2電気スイッチ
120、120−2:電気−光変換部
121、121−1:レ−ザ
122、122−1、122−2:光I−Q変調器
123、123−1、123−2、123−3、123−4、126:RF発振器
124、124−1、124−2:移相器
125、125−1、125−2、125−3:加算器
127、127−1、127−2、229:2x1電気スイッチ
128:Mach−Zehnder光変調器
129、130、240、400:光フィルタ
200:光受信器
210、210−2、210−3:バランス型光−電気変換部
211−1、:フォトダイオ−ド
212−1、212−2、212−3:プリアンプ
213:減算器
220、220−2:受信信号処理部
221、221−1、221−2:アナログ−ディジタル変換(A/D)部
222、222−1:サイクリックプリフィックス除去(CPR)部
223:シリアル−パラレル変換(S/P)部
224:高速フ−リエ変換(FFT)部
225:サブキャリア復調部
227、227−1:差動増幅器
228、228−1:遅延回路
230、230−1、230−2:遅延干渉計
231、232:光カプラ
233:遅延時間部
300:光ファイバ

Claims (12)

  1. 光送信器が、シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、光ファイバを介して光信号で送信し、
    光受信器が、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光通信システムであって、
    前記光送信器は、
    シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、変調されたサブキャリア信号からベースバンドOFDM信号を生成する送信信号処理部と、
    該ベースバンドOFDM信号をレーザ光に変調し光OFDM信号を生成する電気―光変換部と
    を備え、前記送信信号処理部と前記電気−光変換部によりシンボル時間ごとに交互に波長の異なる光OFDM信号を送信し、
    前記光受信器は、
    光ファイバを介して前記光送信器から受信した光OFDM信号の一部をシンボル時間遅延させて光OFDM信号と合成させる遅延干渉部と、合成された光信号を電気信号に変換するバランス型光−電気変換部との少なくともひとつの組と、
    前記光−電気変換部の出力からサブキャリア信号を得、このサブキャリア信号からデータを復調して元のディジタルデータを再生する受信信号処理部と
    を有する前記光通信システム。
  2. 前記光送信器は、複数のサブキャリアとキャリアとから構成された光OFDM信号の波長を、シンボル時間ごとに交互に変えて送信することを特徴とする、請求項1に記載の光通信システム。
  3. 前記キャリアの周波数と個別のサブキャリアの周波数の差は、少なくとも複数のサブキャリア全体の帯域幅の半分以上とすることを特徴とする、請求項2に記載の光通信システム。
  4. 前記光送信器は、
    第1のキャリアと、該第1のキャリアより大きい周波数の第2のキャリアに対し、
    複数のサブキャリアと該サブキャリアの下側帯波にある第1のキャリアとを含む第1の光OFDM信号を生成し、
    複数のサブキャリアと該サブキャリアの上側帯波にある第2のキャリアとを含む第2の光OFDM信号を生成し、
    該第1及び第2の光OFDM信号を、シンボル時間ごとに交互に送信する請求項1乃至3のいずれかに記載の光通信システム。
  5. 前記受信信号処理部において、前記光−電気変換部の出力をアナログーディジタル(A/D)変換し、変換された信号を高速フーリエ変換して得たサブキャリア毎に、1シンボル時間前のサブキャリアのデータを引き算してシンボル時間毎のサブキャリアを得ることを特徴とする請求項1乃至4のいずれかに記載の光通信システム。
  6. 前記光受信器は、
    前記光送信器からの光OFDM信号を波長に応じて2つの出力ポートにそれぞれ分波する光フィルタ
    をさらに備え、
    前記光フィルタの2つの出力ポートからの光を2つの前記遅延干渉部にそれぞれ入射させ、これら2つの前記遅延干渉部のそれぞれの出力を2つの前記バランス型光−電気変換部でそれぞれ電気信号に変換し、
    前記受信信号処理部は、
    変換された電気信号をシンボル時間毎に交互に選択し、選択した信号からサブキャリア信号を得て元のディジタルデータを再生する請求項1乃至4のいずれかに記載の光通信システム。
  7. 前記電気−光変換部は、
    2波長の光をシンボル時間毎に交互に出力する光源部と、
    2つの周波数の正弦波信号と余弦波信号をそれぞれ発生する発振部と、
    ベースバンドOFDM信号の実部に、2つの周波数の余弦波信号をシンボル時間毎に交互に加算する第1加算器と、
    ベースバンドOFDM信号の虚部に、2つの周波数の正弦波信号をシンボル時間毎に交互に加算する第2加算器と、
    前記光源部からの光を前記第1及び第2加算器からの信号で変調して光OFDM信号を出力する光I−Q変調器と
    を有する請求項1乃至6のいずれかに記載の光通信システム。
  8. 前記2つの周波数の正弦波信号は逆相であることを特徴とする請求項7に記載の光通信システム。
  9. 前記電気−光変換部は、
    2波長の光をシンボル時間毎に交互に出力する光源部と、
    異なる2つの周波数の余弦波信号をそれぞれ発生する発振部と、
    ベースバンドOFDM信号の実部に、2つの周波数の余弦波信号をシンボル時間毎に交互に加算する加算器と、
    前記光源部からの光を前記加算器からの信号及びベースバンドOFDM信号の虚部で変調して出力する光I−Q変調器と
    を有し、
    前記光送信部は、OFDM信号の両側に現れる2つキャリアの一方を遮断する帯域通過フィルタ
    をさらに有する請求項1乃至6のいずれかに記載の光通信システム。
  10. 前記送信信号処理部は、
    正弦波信号と余弦波信号を発生する発振部と、
    ベースバンドOFDM信号の実部に、前記発振部からの余弦波信号を加算する第1加算器と、
    ベースバンドOFDM信号の虚部に、前記発振部からの正弦波信号を加算する第2加算器と、
    を有し、
    前記電気−光変換部は、
    2波長の光をそれぞれ出力する光源部と、
    前記光源部からの光の一方を、前記第1加算器からの信号で変調する第1光I−Q変調器と、
    前記光源部からの光の他方を、前記第2加算器からの信号で変調する第2光I−Q変調器と、
    を有し、
    前記電気−光変換部は、前記第1加算器からの信号と前記第2加算器からの信号が、シンボル時間毎に交互に前記第1光I−Q変調器と前記第2光I−Q変調器に入力され、前記第1光I−Q変調器と前記第2光I−Q変調器の出力を合波して出力する請求項1乃至6のいずれかに記載の光通信システム。
  11. 光送信器が、シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、光ファイバを介して光信号で送信し、光受信器が、該光ファイバを伝播した光信号の一部をシンボル時間遅延させて該光信号と合成させ、合成された光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光通信システムにおける前記光送信器であって、
    シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、変調されたサブキャリア信号からベースバンドOFDM信号を生成する送信信号処理部と、
    該ベースバンドOFDM信号をレーザ光に変調し光OFDM信号を生成する電気―光変換部と
    を備え、前記送信信号処理部と前記電気−光変換部によりシンボル時間ごとに交互に異なる2波長の光OFDM信号を送信する前記光送信器。
  12. 光送信器が、シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、光ファイバを介して光信号で送信し、
    光受信器が、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光通信システムにおけるトランスポンダであって、
    前記光送信器及び前記光受信器を備え、
    前記光送信器は、
    シンボル時間にわたって互いに直交する複数のサブキャリアにディジタルデータをマッピングして変調し、変調されたサブキャリア信号からベースバンドOFDM信号を生成する送信信号処理部と、
    該ベースバンドOFDM信号をレーザ光に変調し光OFDM信号を生成する電気―光変換部と
    を備え、前記送信信号処理部と前記電気−光変換部によりシンボル時間ごとに交互に異なる2波長の光OFDM信号を送信し、
    前記光受信器は、
    光ファイバを介して前記光送信器から受信した光OFDM信号の一部をシンボル時間遅延させて光OFDM信号と合成させる遅延干渉部と、合成された光信号を電気信号に変換するバランス型光−電気変換部との少なくともひとつの組と、
    前記光−電気変換部の出力からサブキャリア信号を得、このサブキャリア信号からデータを復調して元のディジタルデータを再生する受信信号処理部と
    を有する前記トランスポンダ。
JP2012546591A 2010-11-29 2010-11-29 光通信システム、光送信器及びトランスポンダ Expired - Fee Related JP5583788B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/071270 WO2012073308A1 (ja) 2010-11-29 2010-11-29 光通信システム、光送信器及びトランスポンダ

Publications (2)

Publication Number Publication Date
JPWO2012073308A1 true JPWO2012073308A1 (ja) 2014-05-19
JP5583788B2 JP5583788B2 (ja) 2014-09-03

Family

ID=46171296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012546591A Expired - Fee Related JP5583788B2 (ja) 2010-11-29 2010-11-29 光通信システム、光送信器及びトランスポンダ

Country Status (5)

Country Link
US (1) US9048953B2 (ja)
EP (1) EP2648349A1 (ja)
JP (1) JP5583788B2 (ja)
CN (1) CN103229439A (ja)
WO (1) WO2012073308A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9729236B2 (en) * 2013-03-14 2017-08-08 Elwha Llc Multi-wavelength visible light communications systems and methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419719B2 (en) * 2014-03-19 2016-08-16 Huawei Technologies Co., Ltd. Transmitter apparatus and method
US9374171B2 (en) * 2014-10-29 2016-06-21 Alcatel Lucent Reduction of effects of signal-signal beat interference in optical transport systems
JP6543939B2 (ja) * 2015-01-23 2019-07-17 富士通株式会社 光受信器、光送信器、マルチキャリア光伝送システム、及び、分散補償制御方法
US10103799B2 (en) * 2015-03-16 2018-10-16 Lockheed Martin Corporation Apparatus and method for increased data rates in underwater communications using orbital angular momentum
WO2018174083A1 (ja) * 2017-03-22 2018-09-27 日本電信電話株式会社 Iq光変調器
US11716150B2 (en) * 2020-03-06 2023-08-01 Nokia Solutions And Networks Oy Field reconstruction for an optical receiver
CN113300780B (zh) * 2021-05-24 2022-07-19 中国人民解放军国防科技大学 双光频梳离散时间拉伸dft处理器装置及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414800B2 (ja) * 2004-03-25 2010-02-10 株式会社日立コミュニケーションテクノロジー 光伝送装置およびその制御方法
JP4839266B2 (ja) * 2007-06-07 2011-12-21 株式会社日立製作所 光通信システム
JP4906103B2 (ja) * 2007-07-06 2012-03-28 日本電信電話株式会社 光変調回路および光伝送システム
JP2009027525A (ja) * 2007-07-20 2009-02-05 Nec Corp 光伝送システムおよび光伝送方法
KR100961819B1 (ko) * 2008-01-04 2010-06-08 한국과학기술원 광 ofdm 통신을 위한 전광 이산/역 이산 퓨리에 변환장치 및 그 방법과 이를 포함한 송수신장치
JP4872003B2 (ja) * 2008-02-22 2012-02-08 日本電信電話株式会社 光ofdm受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法
JP5088271B2 (ja) * 2008-08-19 2012-12-05 富士通株式会社 歪補償器、光受信装置およびそれらの制御方法並びに光伝送システム
JP5359179B2 (ja) * 2008-10-17 2013-12-04 富士通株式会社 光受信機及び光受信方法
JP5058343B2 (ja) * 2008-12-22 2012-10-24 株式会社日立製作所 光送信器及び光ofdm通信システム
JP2010199657A (ja) * 2009-02-23 2010-09-09 Oki Electric Ind Co Ltd 時分割多重符号化送信信号生成方法及び時分割多重符号化送信信号生成装置
JP5053317B2 (ja) * 2009-03-12 2012-10-17 日本電信電話株式会社 無線通信システムおよび無線通信方法
TWI385958B (zh) * 2009-03-20 2013-02-11 Ind Tech Res Inst 支援無線通訊之被動光網路系統
CN102484549B (zh) * 2009-07-17 2015-02-18 日本电信电话株式会社 频域复用信号接收方法及频域复用信号接收装置
CN101714971B (zh) * 2009-12-22 2012-06-06 北京邮电大学 无源光网络通信方法及***、光网络单元和光线路终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9729236B2 (en) * 2013-03-14 2017-08-08 Elwha Llc Multi-wavelength visible light communications systems and methods

Also Published As

Publication number Publication date
JP5583788B2 (ja) 2014-09-03
CN103229439A (zh) 2013-07-31
WO2012073308A1 (ja) 2012-06-07
US20130315267A1 (en) 2013-11-28
EP2648349A1 (en) 2013-10-09
US9048953B2 (en) 2015-06-02

Similar Documents

Publication Publication Date Title
JP5583788B2 (ja) 光通信システム、光送信器及びトランスポンダ
US8437638B2 (en) Optical modulation circuit and optical transmission system
JP5404925B2 (ja) 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ
WO2015176527A1 (zh) 正交多载波光源及pdm-qpsk信号发射装置
EP2559173B1 (en) Method and device for transmission and reception of a polarization multiplexed optical signal
WO2011086696A1 (ja) 光通信システム、光送信器、光受信器及び光トランスポンダ
KR20120062805A (ko) 멀티?캐리어 광 신호의 디지털 코히어런트 검출
US8437644B2 (en) Vestigial phase shift keying modulation and systems and methods incorporating same
Takahashi et al. 400-Gbit/s optical OFDM transmission over 80 km in 50-GHz frequency grid
Freund et al. Single-and multi-carrier techniques to build up Tb/s per channel transmission systems
US8805204B2 (en) Generating higher-level quadrature amplitude modulation (QAM) using a delay line interferometer and systems and methods incorporating same
US20110222865A1 (en) Method and apparatus for transmission of two modulated signals via an optical channel
JP2020109887A (ja) 光伝送方法および光伝送装置
JP4730560B2 (ja) 光伝送システム、光伝送方法及び光送信装置
WO2018028784A1 (en) Encoding for optical transmission
US20080199189A1 (en) Colorless optical demodulator for differential quadrature phase shift keying dwdm systems
WO2012003856A1 (en) Method and device for data processing in an optical communication network
KR20130093705A (ko) 멀티캐리어 기반의 광송신 장치 및 광수신 장치
Olsson et al. Electro-optical subcarrier modulation transmitter for 100 GbE DWDM transport
Rocha et al. Challenges toward a cost-effective implementation of optical OFDM
JP6363933B2 (ja) 光送受信装置、光受信器及び光送受信方法
WO2014114329A1 (en) Optical comb generator
JP5182154B2 (ja) 光通信システム
Lowery et al. Nanosecond-latency IM/DD/DSB short-haul to coherent/SSB long-haul converter
Elschner et al. Distributed coherent optical OFDM multiplexing using fiber frequency conversion and free-running lasers

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140716

R150 Certificate of patent or registration of utility model

Ref document number: 5583788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees