JPWO2009028641A1 - Zinc sulfide molding and method for producing the same - Google Patents

Zinc sulfide molding and method for producing the same Download PDF

Info

Publication number
JPWO2009028641A1
JPWO2009028641A1 JP2009530191A JP2009530191A JPWO2009028641A1 JP WO2009028641 A1 JPWO2009028641 A1 JP WO2009028641A1 JP 2009530191 A JP2009530191 A JP 2009530191A JP 2009530191 A JP2009530191 A JP 2009530191A JP WO2009028641 A1 JPWO2009028641 A1 JP WO2009028641A1
Authority
JP
Japan
Prior art keywords
sulfide
zinc
zinc sulfide
ppm
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009530191A
Other languages
Japanese (ja)
Other versions
JP5451393B2 (en
Inventor
伸彦 木村
伸彦 木村
真人 岡本
真人 岡本
一真 井上
一真 井上
雅 白波瀬
雅 白波瀬
一彦 前川
一彦 前川
岩崎 秀治
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2009530191A priority Critical patent/JP5451393B2/en
Publication of JPWO2009028641A1 publication Critical patent/JPWO2009028641A1/en
Application granted granted Critical
Publication of JP5451393B2 publication Critical patent/JP5451393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/726Sulfur content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Abstract

本発明の課題は、工業的に容易な方法で、1に近い硫黄/亜鉛比を有する硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物を含む複合硫化物の成型体およびその製造方法を提供することにあり、かかる課題は、硫黄/亜鉛の比が0.9以上である硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物からなる成型体とその製造方法によって解決することができる。An object of the present invention is to provide a composite sulfide containing zinc sulfide or zinc sulfide having a sulfur / zinc ratio close to 1 and a sulfide containing at least one element of silver, copper, manganese and rare earth in an industrially easy manner. It is an object of the present invention to provide a molded article and a method for producing the same, and the problem is that zinc sulfide or zinc sulfide having a sulfur / zinc ratio of 0.9 or more and at least one element of silver, copper, manganese, and rare earth This can be solved by a molded article made of a composite sulfide containing sulfide containing sulfur and a manufacturing method thereof.

Description

本発明は、無機EL素子形成用ターゲット材としての硫化亜鉛成型体およびその製造方法に関する。更に詳しくは、硫黄/亜鉛の比が0.9以上である硫化亜鉛を主成分とする成型体およびその製造方法に関する。  The present invention relates to a zinc sulfide molded body as a target material for forming an inorganic EL element and a method for producing the same. More specifically, the present invention relates to a molded body mainly composed of zinc sulfide having a sulfur / zinc ratio of 0.9 or more and a method for producing the same.

これまでEL素子の発光層の形成には、スパッタリング法や電子ビーム蒸着法といった製膜技術が一般的に使用されてきた。そしてこれらの製膜技術によって発光層を形成する際のターゲット材となる硫化亜鉛成型体の製造方法として、硫化亜鉛粉末に発光性元素を混合した硫化亜鉛粉末をホットプレス法にて成型する方法、または冷間プレス法にて成型した後、焼成炉によって焼結させる方法などが開発されてきた。  Until now, film formation techniques such as sputtering and electron beam evaporation have generally been used to form a light emitting layer of an EL element. And as a method for producing a zinc sulfide molded body that becomes a target material when forming a light emitting layer by these film forming techniques, a method of molding zinc sulfide powder in which a luminescent element is mixed with zinc sulfide powder by a hot press method, Alternatively, a method of forming by a cold press method and then sintering in a firing furnace has been developed.

しかしながら、硫化亜鉛粉末は、結晶性が悪く、成型体の相対密度(嵩密度と理論密度との比)を高めることが難しい。例えば単純にホットプレス法で成型するだけの場合や、冷間プレスで予備成型し、単純に焼結するだけの成型方法では、得られる成型体の相対密度が60〜70%程度にしかならない。そのような相対密度の低い成型体を使用して電子ビーム蒸着などの方法で製膜する場合、硫化亜鉛成型体からガスが放出し、真空度の低下のみならず、発光層を構築できないなどの問題があった。  However, zinc sulfide powder has poor crystallinity and it is difficult to increase the relative density (ratio of bulk density to theoretical density) of the molded body. For example, in the case of simply molding by the hot press method or the molding method of simply performing the preliminary molding by the cold press and simply sintering, the relative density of the obtained molded body is only about 60 to 70%. When forming a film by a method such as electron beam vapor deposition using such a molded article having a low relative density, gas is released from the zinc sulfide molded article, and not only the degree of vacuum is lowered, but also a light emitting layer cannot be constructed. There was a problem.

そこで、硫化亜鉛と酸化ケイ素を混合し、ホットプレスすることで嵩密度を向上させる方法(特許文献1参照)や、バリウム成分を添加した硫化亜鉛粉末を用いて冷間プレスにより成型し、硫化水素ガス中で焼成成型する方法(特許文献2参照)が改良法として提案されている。更に、冷間プレスした成型体をホットプレスする方法(特許文献3参照)が知られている。  Therefore, a method of improving the bulk density by mixing zinc sulfide and silicon oxide and hot pressing (see Patent Document 1), or forming by cold pressing using zinc sulfide powder to which a barium component is added, and hydrogen sulfide. A method of firing and molding in gas (see Patent Document 2) has been proposed as an improved method. Furthermore, a method of hot pressing a cold pressed molded body (see Patent Document 3) is known.

しかしながら、特許文献1記載の方法では、多量の酸化ケイ素を入れて成型するため、相対密度は向上するが、ケイ素が製膜時に混入する。また、特許文献2においては、バリウムが混入するという問題が生じる。更に、特許文献2では、硫化水素中で焼成成型するために特殊な装置が必要になるという問題も生じる。また、特許文献3では特殊な材質の装置等は必要ないが、2つの装置を使用せねばならず、工数も多く煩雑であるという問題は解決できていない。
特開平10−324968号公報 特開平2−59463号公報 特開平5−310467号公報
However, in the method described in Patent Document 1, since a large amount of silicon oxide is added and molded, the relative density is improved, but silicon is mixed during film formation. Moreover, in patent document 2, the problem that barium mixes arises. Further, in Patent Document 2, there arises a problem that a special apparatus is required for firing and molding in hydrogen sulfide. Patent Document 3 does not require a special material device or the like, but two devices must be used, and the problem that the number of man-hours is complicated is not solved.
Japanese Patent Laid-Open No. 10-324968 JP-A-2-59463 JP-A-5-310467

したがって、本発明の目的は、工業的に有利な方法で、硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物を含む複合硫化物の成型体およびその製造方法を提供することにある。  Accordingly, an object of the present invention is to provide a composite sulfide molded article containing zinc sulfide or zinc sulfide and a sulfide containing at least one element of silver, copper, manganese and rare earth, and production thereof in an industrially advantageous manner. It is to provide a method.

本発明者らは、鋭意検討を重ね、1に近い硫黄/亜鉛比を有する硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物を含む複合硫化物の成型体とその製造方法によって上記目的を達成することを見出し、本発明に至った。すなわち、本発明は、以下のものを提供する。  The inventors of the present invention have made extensive studies and formed a composite sulfide containing zinc sulfide or zinc sulfide having a sulfur / zinc ratio close to 1 and a sulfide containing at least one element of silver, copper, manganese, and rare earth. It has been found that the above object can be achieved by the body and its production method, and the present invention has been achieved. That is, the present invention provides the following.

[1] 硫黄/亜鉛の比が0.9以上である硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物からなる成型体。  [1] A molded article made of a composite sulfide containing zinc sulfide or zinc sulfide having a sulfur / zinc ratio of 0.9 or more and a sulfide containing at least one element of silver, copper, manganese and rare earth.

[2] 該成型体の相対密度が0.9以上である[1]記載の成型体。  [2] The molded article according to [1], wherein the molded article has a relative density of 0.9 or more.

[3] 該成型体に含有される水分が50ppm以下である[1]または[2]記載の成型体。  [3] The molded product according to [1] or [2], wherein the molded product has a water content of 50 ppm or less.

[4] 該成型体に含有される硫酸イオンが500ppm以下である[1]〜[3]いずれかに記載の成型体。  [4] The molded body according to any one of [1] to [3], wherein sulfate ions contained in the molded body are 500 ppm or less.

[5] 粒径が100μm以下であり、比表面積測定において、0.2m/g〜50m/gである硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物を700℃以上1100℃以下の温度下に加圧成型することを特徴とする硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物からなる成型体の製造方法。[5] the particle size is at 100μm or less, including the specific surface area measurement, 0.2m 2 / g~50m 2 / g and a zinc sulfide or zinc sulfide and silver, copper, at least one element of manganese, and rare earth A sulfide containing zinc sulfide or zinc sulfide and at least one element of silver, copper, manganese and rare earth, characterized in that a composite sulfide containing sulfide is pressure-molded at a temperature of 700 ° C. to 1100 ° C. The manufacturing method of the molded object which consists of composite sulfide containing a thing.

[6] 該硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物の、X線結晶解析における、2θ=33°の回折ピークの半値幅が0.2°〜1.5°である[5]記載の成型体の製造方法。  [6] Half of the diffraction peak at 2θ = 33 ° in the X-ray crystal analysis of the composite sulfide containing zinc sulfide or zinc sulfide and a sulfide containing at least one element of silver, copper, manganese and rare earth The method for producing a molded article according to [5], wherein the value range is 0.2 ° to 1.5 °.

[7] 硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物が水溶液下で調製される[5]または[6]記載の成型体の製造方法。  [7] The molded article according to [5] or [6], wherein zinc sulfide or a composite sulfide containing zinc sulfide and a sulfide containing silver, copper, manganese, and a rare earth element is prepared in an aqueous solution. Manufacturing method.

本発明の成型体は、1に近い硫黄/亜鉛比を有する硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物の成型体であり、発光層を形成する際のターゲット材となる高い成型性を有する硫化亜鉛を提供することができる。以下、記載を簡潔にするために「硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物」を単に「複合硫化物」、「硫化物複合体」などと示すことがある。  The molded body of the present invention is a composite sulfide molded body containing zinc sulfide or zinc sulfide having a sulfur / zinc ratio close to 1 and a sulfide containing at least one element of silver, copper, manganese and rare earth. It is possible to provide zinc sulfide having a high moldability as a target material when forming a light emitting layer. Hereinafter, in order to simplify the description, “composite sulfide containing zinc sulfide or zinc sulfide and sulfide containing at least one element of silver, copper, manganese and rare earth” is simply referred to as “composite sulfide”, “sulfurization”. It may be indicated as “composite complex”.

本発明において、硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物としては、好ましくは、水溶液下で調製された硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物、または、水溶液下に調製された硫化亜鉛に銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物を混合して得られる複合硫化物を使用する。  In the present invention, the composite sulfide containing zinc sulfide or zinc sulfide and a sulfide containing at least one element of silver, copper, manganese and rare earth is preferably zinc sulfide or zinc sulfide prepared in an aqueous solution. And a composite sulfide containing at least one element of silver, copper, manganese and rare earth, or at least one element of silver, copper, manganese and rare earth in zinc sulfide prepared in an aqueous solution The composite sulfide obtained by mixing the sulfide containing is used.

水溶液下での調製方法としては、特に制限されるものではなく、亜鉛を含有する塩と硫化剤を反応させる方法であれば、塩基性、酸性何れの条件で作製されたものでも構わない。例えば、硝酸亜鉛の水溶液と硫化ナトリウム水溶液を室温下で混合することによって調製することもできるし、硝酸亜鉛の水溶液にチオアセトアミドを添加して、100℃程度の温度下に反応させて調製することもできる。  The preparation method under an aqueous solution is not particularly limited, and any preparation method may be used as long as it is a method in which a zinc-containing salt and a sulfurizing agent are reacted. For example, it can be prepared by mixing an aqueous solution of zinc nitrate and an aqueous solution of sodium sulfide at room temperature, or by adding thioacetamide to an aqueous solution of zinc nitrate and reacting at a temperature of about 100 ° C. You can also.

液相下調製に使用する亜鉛を含有する塩としては、塩化亜鉛、臭化亜鉛などのハロゲン化物、硫酸亜鉛、亜硫酸亜鉛、りん酸亜鉛、硝酸亜鉛、炭酸亜鉛などの鉱酸塩、または、ギ酸亜鉛、酢酸亜鉛、シュウ酸亜鉛などの有機酸塩を使用することができる。これらは、無水塩であっても含水塩であっても構わない。これらは、単一で使用しても混合して使用しても差し支えない。使用する塩の純度としては、特に制限されるものではなく高いほど好ましいが、特に鉄、ニッケル、コバルト、クロム、タングステンなどの金属不純物を含まないものを使用することが、得られる成型体を蛍光体の製造に使用する場合に好ましい。  Salts containing zinc used in the preparation in the liquid phase include halides such as zinc chloride and zinc bromide, mineral salts such as zinc sulfate, zinc sulfite, zinc phosphate, zinc nitrate and zinc carbonate, or formic acid. Organic acid salts such as zinc, zinc acetate, and zinc oxalate can be used. These may be anhydrous salts or hydrated salts. These may be used alone or in combination. The purity of the salt to be used is not particularly limited and is preferably as high as possible. However, it is particularly preferable to use a salt that does not contain metal impurities such as iron, nickel, cobalt, chromium, and tungsten. Preferred for use in the production of body.

液相下に複合硫化物を調製する場合、銀、銅、マンガンおよび希土類の塩を少なくとも1種、亜鉛を含有する塩に添加して、複合硫化物を調製する。必要に応じて、アクセプターとしての銀、銅、マンガンおよび希土類元素に対して、ドナーとして作用する、アルミニウム、ガリウム、インジウム、塩素、臭素などの元素を液相中に存在させて、このようなドナー元素が複合硫化物中に取り込まれるようにする。  When preparing a composite sulfide under a liquid phase, a composite sulfide is prepared by adding at least one silver, copper, manganese and rare earth salt to a salt containing zinc. If necessary, elements such as aluminum, gallium, indium, chlorine and bromine that act as donors for silver, copper, manganese and rare earth elements as acceptors are present in the liquid phase, and such donors The element is incorporated into the complex sulfide.

銀、銅、マンガンおよび希土類の塩ならびにドナー元素の塩としては、上述のハロゲン塩、鉱酸塩、有機酸塩を使用することができ、これらは、無水塩であっても含水塩であっても構わない。これらは、単一で使用しても混合して使用しても差し支えない。使用する塩の純度としては、特に制限されるものではなく高いほど好ましいが、特に鉄、ニッケル、コバルト、クロム、タングステンなどの金属不純物を含まないものを使用することが、得られる成型体を蛍光体の製造に使用する場合に好ましい。  As the salt of silver, copper, manganese and rare earth, and the salt of the donor element, the above-mentioned halogen salts, mineral acid salts, and organic acid salts can be used, and these are anhydrous salts or hydrated salts. It doesn't matter. These may be used alone or in combination. The purity of the salt to be used is not particularly limited and is preferably as high as possible. However, it is particularly preferable to use a salt that does not contain metal impurities such as iron, nickel, cobalt, chromium, and tungsten. Preferred for use in the production of body.

複合硫化物中に含まれる銀、銅、マンガンおよび希土類元素並びにアクセプターとしての銀、銅、マンガンおよび希土類元素に対してドナーとして作用する元素の量としては、特に制限されるものではないが、多すぎる量は、励起子同士の相互作用により蛍光収率を低下させるため好ましくなく、少なすぎる量は、取り出せる蛍光量が低下するため好ましくない。従って、50〜50,000ppm、好ましくは、100〜40,000ppm、より好ましくは、300〜30,000ppmの範囲で含有することが好ましい。  The amount of silver, copper, manganese, and rare earth elements contained in the composite sulfide and the element that acts as a donor for silver, copper, manganese, and rare earth elements as acceptors is not particularly limited. An excessive amount is not preferable because it reduces the fluorescence yield due to the interaction between excitons, and an excessive amount is not preferable because the amount of fluorescence that can be extracted decreases. Therefore, it is preferably contained in the range of 50 to 50,000 ppm, preferably 100 to 40,000 ppm, more preferably 300 to 30,000 ppm.

本発明において使用される硫化剤としては、硫化水素、硫化リチウム、硫化ナトリウム、硫化カリウムなどのアルカリ金属硫化物、チオホルムアミド、チオアセトアミドなどのチオアミド類、チオ尿素などを使用することができる。これらの硫化剤の使用量としては、その適用方法によって異なることは言うまでもないが、通常、使用する亜鉛塩に対して、0.1〜5当量の範囲、硫化物の生成効率、経済性を考慮して、0.5〜3当量、より好ましくは、0.8〜2当量を使用することが好ましい。  As the sulfurizing agent used in the present invention, hydrogen sulfide, lithium sulfide, sodium sulfide, alkali metal sulfides such as potassium sulfide, thioamides such as thioformamide and thioacetamide, thiourea and the like can be used. Needless to say, the amount of these sulfiding agents to be used varies depending on the application method, but usually the range of 0.1 to 5 equivalents, the formation efficiency of sulfide, and the economy are taken into account with respect to the zinc salt used. Thus, it is preferable to use 0.5 to 3 equivalents, more preferably 0.8 to 2 equivalents.

本発明において、液相調製は、水中で実施するのが好ましい。得られた硫化物を蛍光体として使用するためには、必要とする金属以外を含まないことが好ましい。従って、使用する水は、イオン交換水を使用することが好ましく、鉄、ニッケル、コバルトなどの重金属は各々50ppm以下、好ましくは10ppm以下、ナトリウム、カリウム、カルシウム、マグネシウムなどの典型金属は各々500ppm以下、好ましくは100ppm以下のものを使用する。  In the present invention, the liquid phase preparation is preferably carried out in water. In order to use the obtained sulfide as a phosphor, it is preferable not to contain other than the required metal. Therefore, it is preferable to use ion-exchanged water as the water to be used. Heavy metals such as iron, nickel and cobalt are each 50 ppm or less, preferably 10 ppm or less, and typical metals such as sodium, potassium, calcium and magnesium are each 500 ppm or less. Preferably, the one with 100 ppm or less is used.

液相調製の際に、液相中に硫酸マグネシウムなどの粒径調整剤(電解質による凝集効果を利用)として使用する金属塩を存在させることができる。このような金属は、洗浄などによって最終的には、硫化物中には取り込まれないようにする。  During the preparation of the liquid phase, a metal salt used as a particle size adjusting agent (utilizing the coagulation effect by the electrolyte) such as magnesium sulfate can be present in the liquid phase. Such a metal is finally prevented from being taken into the sulfide by washing or the like.

液相調製における反応温度は使用する硫化剤によって異なるが、低すぎる温度では、反応の進行が著しく遅くなるので好ましくなく、高すぎる温度では、発生する硫化水素の液中濃度が低下し、硫化剤効率が低下するため好ましくない。通常、5℃〜120℃、より好ましくは、10℃〜100℃の範囲で実施される。反応の方式も特に限定されるものではなく、バッチ式、連続式何れの方法を採用しても構わない。  The reaction temperature in the liquid phase preparation varies depending on the sulfiding agent used. However, if the temperature is too low, the progress of the reaction is remarkably slow, which is not preferable. If the temperature is too high, the concentration of hydrogen sulfide generated in the liquid decreases, and the sulfiding agent. Since efficiency falls, it is not preferable. Usually, it is carried out in the range of 5 ° C to 120 ° C, more preferably 10 ° C to 100 ° C. The reaction method is not particularly limited, and either a batch method or a continuous method may be adopted.

液相調製において得られた硫化物は、デカンテーションや遠心分離などの方法で水と分離しながら、イオン交換水による洗浄を繰り返し、水洗層のpHが6〜8になるまで洗浄する。  The sulfide obtained in the liquid phase preparation is repeatedly washed with ion-exchanged water while being separated from water by a method such as decantation or centrifugation, and washed until the pH of the washing layer becomes 6-8.

洗浄された硫化物は、真空乾燥または150℃以下の熱風乾燥などの方法で水を除去、乾燥することができる。乾燥時間としては、含んでいる水の量に依存することは言うまでもないが、通常、1時間〜50時間、乾燥の効率を考慮して、1.5時間〜20時間の範囲で実施される。  The washed sulfide can be dried by removing water by a method such as vacuum drying or hot air drying at 150 ° C. or lower. Needless to say, the drying time depends on the amount of water contained, but is usually in the range of 1 hour to 50 hours and 1.5 hours to 20 hours in consideration of the efficiency of drying.

本発明で得られる成型体に含有される水分量は50ppm以下であることが好ましい。水分量が多いと、スパッタリング法などに用いた場合、金属硫化物が酸化されるため好ましくない。よって、好ましくは1〜30ppm、より好ましくは、1〜20ppmである。そのため、乾燥終了時(加圧成型前)の硫化物複合体中の水分は、1ppm〜2000ppmの範囲、より好ましくは、10〜1000ppmである。  The amount of water contained in the molded product obtained in the present invention is preferably 50 ppm or less. If the amount of moisture is large, the metal sulfide is oxidized when used in a sputtering method or the like, which is not preferable. Therefore, it is preferably 1 to 30 ppm, more preferably 1 to 20 ppm. Therefore, the moisture in the sulfide composite at the end of drying (before pressure molding) is in the range of 1 ppm to 2000 ppm, more preferably 10 to 1000 ppm.

本発明で得られる成型体に含有される硫酸イオン濃度としては、500ppm以下であることが好ましい。硫酸イオンが多いと、スパッタリング法などに用いた場合、金属硫化物が酸化されたり、薄膜中に混入し、腐食や分解の原因になるため好ましくない。よって、成型体中の硫酸イオン濃度としては1〜200ppmの範囲、より好ましくは、1〜100ppmの範囲である。そのため、洗浄、乾燥終了時(加圧成型前)の硫化物複合物中の硫酸イオン濃度としては、1ppm〜2000ppmの範囲が好ましく、安定して硫酸イオン濃度を目的の範囲とするためには、1〜600ppmの範囲にあることがより好ましい。  The concentration of sulfate ions contained in the molded product obtained in the present invention is preferably 500 ppm or less. A large amount of sulfate ions is not preferable when used in a sputtering method or the like because the metal sulfide is oxidized or mixed into the thin film, causing corrosion or decomposition. Therefore, the sulfate ion concentration in the molded body is in the range of 1 to 200 ppm, more preferably in the range of 1 to 100 ppm. Therefore, the sulfate ion concentration in the sulfide composite at the end of washing and drying (before pressure molding) is preferably in the range of 1 ppm to 2000 ppm, and in order to stably set the sulfate ion concentration to the target range, More preferably, it is in the range of 1 to 600 ppm.

硫化亜鉛中に、銀、銅、マンガンおよび希土類塩を少なくとも1種の金属を添加して、混合硫化物を調製する場合には、各々の金属硫化物を使用することができる。これらは、単一で使用しても混合して使用しても差し支えない。使用する硫化物の純度としては、特に制限されるものではなく高ければ高いほど好ましいが、特に鉄、ニッケル、コバルト、クロム、タングステンなどの金属不純物を含まないものを使用することが、得られる成型体を蛍光体の製造に使用する場合に好ましい。  When preparing a mixed sulfide by adding at least one kind of metal such as silver, copper, manganese and rare earth salt to zinc sulfide, each metal sulfide can be used. These may be used alone or in combination. The purity of the sulfide to be used is not particularly limited and is preferably as high as possible. In particular, it is possible to obtain a molded product that does not contain metal impurities such as iron, nickel, cobalt, chromium, and tungsten. It is preferable when the body is used for the production of a phosphor.

得られた硫化物の比表面積は0.2m/g〜50m/gであるのが好ましい。比表面積が小さ過ぎると、成型時に融着するに十分な硫黄蒸気圧を発生することができず、結着しないため高い温度または長時間の成形を必要とするため、結果として硫黄成分の欠落が起こり、欠損してしまうため好ましくない。また、広すぎる比表面積を有すると、成型時の温度上昇と共に、著しく硫黄蒸気圧が上がる一方で、結着できる温度に到達していないため、所定温度到達以前に、硫黄の欠損が起こり、結果として、硫黄の欠落が起こるため好ましくない。The specific surface area of the resulting sulfide is preferably 0.2m 2 / g~50m 2 / g. If the specific surface area is too small, a sulfur vapor pressure sufficient for fusing at the time of molding cannot be generated, and a high temperature or long-time molding is required because it does not bind, resulting in a lack of sulfur component. It is not preferable because it occurs and is lost. Also, if the specific surface area is too large, the sulfur vapor pressure will rise significantly with the temperature rise at the time of molding, but since it has not reached the temperature at which it can be bound, sulfur deficiency occurs before the predetermined temperature is reached. Since sulfur loss occurs, it is not preferable.

また、得られた硫化物は、X線結晶解析で分析し、2θ=33°に観測されるシグナルの半値幅が0.2°〜1.5°の範囲内にあるものを使用するとさらに好ましい。0.2°以下では、結晶性が高すぎ、加熱・加圧成型での成形性が悪化することがあるため好ましくない。また、1.5°を越えると、結晶性が低すぎ、焼結時に分解などを併発することがあり、結晶性を向上させる処理が必要になることがある。  Further, it is more preferable to use the obtained sulfide which is analyzed by X-ray crystal analysis and has a half-value width of a signal observed at 2θ = 33 ° within a range of 0.2 ° to 1.5 °. . If it is 0.2 ° or less, the crystallinity is too high, and the moldability in heating / pressing molding may deteriorate, which is not preferable. If it exceeds 1.5 °, the crystallinity is too low, and decomposition may occur at the time of sintering, which may require treatment for improving the crystallinity.

本発明において、得られた硫化物は、必要に応じて、加熱焼成される。この焼成によって、複合硫化物中に含まれる水分の除去や、硫酸イオンの分解を促進することができる。一方で、硫化物結晶化度が向上するが、必要以上に向上させると、比表面積が著しく低下し、結晶化を促すため加圧成形できなくなるため留意が必要である。また、余りに低いと、加熱の効果を得ることができず、工程が複雑化するだけである。加熱の温度は、液相調製時の方法にもよるため特定されないことは言うまでもないが、通常200℃〜800℃の範囲、好ましくは、300℃〜600℃の範囲で実施する。  In the present invention, the obtained sulfide is heated and fired as necessary. By this firing, removal of moisture contained in the composite sulfide and decomposition of sulfate ions can be promoted. On the other hand, although the degree of sulfide crystallinity is improved, if it is improved more than necessary, the specific surface area is significantly reduced, and crystallization is promoted, so that pressure molding cannot be performed. On the other hand, if it is too low, the effect of heating cannot be obtained, and the process is only complicated. It goes without saying that the heating temperature is not specified because it depends on the method for preparing the liquid phase, but it is usually in the range of 200 ° C to 800 ° C, preferably in the range of 300 ° C to 600 ° C.

焼成の時間も特に制限されるものではなく、目的に応じて変化するが、通常0.5〜10時間の範囲、装置の加熱、冷却能力を考慮して、1〜8時間の範囲で実施される。通常、焼成は、不活性雰囲気下または還元雰囲気下で実施されることは言うまでもない。方法としても、バッチ式、連続式何れの方法を採用しても構わない。  The firing time is not particularly limited and varies depending on the purpose, but it is usually carried out in the range of 0.5 to 10 hours and in the range of 1 to 8 hours in consideration of the heating and cooling capabilities of the apparatus. The Needless to say, firing is usually performed in an inert atmosphere or a reducing atmosphere. As a method, either a batch method or a continuous method may be adopted.

本発明では、焼成の雰囲気としては、特に限定されるものではないが、酸素の存在は、複合硫化物の表面酸化を起こすために好ましくなく、不活性ガス雰囲気下、または還元雰囲気下で実施する。還元雰囲気下としては、硫化水素存在下、複合硫化物中に硫黄を添加して焼成することができる。焼成炉の構造にもよるが、安全性を考慮して、硫黄を複合硫化物中に添加して焼成することが好ましい。これにより、複合硫化物中に含まれる水分や、硫酸イオンの除去効率を更に向上させることができる。  In the present invention, the firing atmosphere is not particularly limited, but the presence of oxygen is not preferable because it causes surface oxidation of the composite sulfide, and is performed in an inert gas atmosphere or a reducing atmosphere. . As the reducing atmosphere, sulfur can be added to the composite sulfide and fired in the presence of hydrogen sulfide. Although depending on the structure of the firing furnace, in consideration of safety, it is preferable to add sulfur to the composite sulfide for firing. Thereby, the removal efficiency of the water | moisture content contained in composite sulfide and a sulfate ion can be improved further.

焼成時の硫黄添加量としては特に限定されるものではないが、通常、複合硫化物100重量部に対して、0.1〜20重量部、操作性、機器安定性を考慮して、0.2〜15重量部、より好ましくは、0.3〜10重量部を添加することができる。添加の方法としては、固体同士を混合してもかまわないし、硫黄を二硫化炭素などの溶媒に溶解して、複合硫化物と混合し、乾燥させたものでも構わない。  Although it does not specifically limit as sulfur addition amount at the time of baking, Usually, 0.1-20 weight part with respect to 100 weight part of composite sulfides, operativity, and apparatus stability are considered, and it is set to 0. 2 to 15 parts by weight, more preferably 0.3 to 10 parts by weight can be added. As a method of addition, solids may be mixed, or sulfur may be dissolved in a solvent such as carbon disulfide, mixed with a composite sulfide, and dried.

更に、本発明では、焼成を真空下に実施しても構わない。真空下に付する温度としては、特に限定されないが、高すぎる温度では、添加した硫黄の気散や、複合硫化物の表面硫黄の欠損を助長するため好ましくなく、通常100〜400℃の範囲、より好ましくは、100℃〜300℃の範囲で実施することができる。これにより、複合硫化物に付着した酸素、水分を効率よく除去することが可能となり、焼成中の酸化による硫酸イオン増加を抑止することができる。減圧度としては、特に限定されるものではないが、通常、1〜60KPaの範囲で実施する。  Furthermore, in the present invention, firing may be performed under vacuum. The temperature to be applied under vacuum is not particularly limited, but a temperature that is too high is not preferable because it promotes the diffusion of added sulfur and the loss of surface sulfur of the composite sulfide, and is usually in the range of 100 to 400 ° C. More preferably, it can implement in the range of 100 to 300 degreeC. Thereby, it becomes possible to efficiently remove oxygen and moisture adhering to the composite sulfide, and an increase in sulfate ions due to oxidation during firing can be suppressed. Although it does not specifically limit as a pressure reduction degree, Usually, it implements in the range of 1-60 KPa.

得られた焼成物は、必要に応じて、破砕分級し、成型に使用するが、必要に応じて、酸、イオン交換水などで洗浄し、表面に生成した酸化物を除去することができる。このような洗浄を行った場合には、あらためて、真空、熱風などの方法で乾燥される。  The obtained fired product is crushed and classified as necessary, and used for molding. If necessary, it can be washed with an acid, ion-exchanged water or the like to remove oxides generated on the surface. When such cleaning is performed, it is dried again by a method such as vacuum or hot air.

本発明において、成型する前に、硫化物は予め成型時の流動性、圧縮性を向上するために粉体にされる。粉体の粒度としては、成型時の流動性を維持できる範囲であれば良く、通常100μm以下、より好ましくは70μm以下、成型機への負荷を考慮すると50μm以下、特に40μm以下であることが好ましい。粉砕の方法としては特に限定されるものではなく、乳鉢による粉砕、ボールミル、ターボミル、サイクロンミルなどの方法を用いても構わない。  In the present invention, before molding, the sulfide is powdered in advance to improve fluidity and compressibility during molding. The particle size of the powder may be in a range that can maintain the fluidity at the time of molding, and is usually 100 μm or less, more preferably 70 μm or less, and considering the load on the molding machine, it is preferably 50 μm or less, particularly preferably 40 μm or less. . The pulverization method is not particularly limited, and a mortar pulverization method, a ball mill, a turbo mill, a cyclone mill, or the like may be used.

本発明において、得られた硫化物は、ホットプレス成形型(モールド)に入れ、圧力と温度をかけて成型する。本発明において、加熱、加圧成型の方法としては、ホットプレス法、放電焼結法などいずれの方法を用いても構わない。ホットプレスの成形型の材質としては、カーボン、アルミナ、サイアロンなどを使用することができる。特に、硫化物との反応が顕著な場合には、サイアロン、カーボンなどの表面をガラスなどの非反応物でコーティングしたものを用いても構わない。  In the present invention, the obtained sulfide is put into a hot press mold (mold) and molded by applying pressure and temperature. In the present invention, any method such as a hot press method or a discharge sintering method may be used as the heating and pressure molding method. Carbon, alumina, sialon, etc. can be used as the material for the hot press mold. In particular, when the reaction with sulfide is remarkable, the surface of sialon, carbon or the like coated with a non-reacted material such as glass may be used.

本発明において、ホットプレス成型の際に加圧する圧力としては、特に限定されないが、相対密度向上のため、100Kg/cm〜500Kg/cmで加圧して成型体を構築する。低すぎる圧力は、相対密度が向上しないため、好ましくなく、高すぎる圧力は、粒子強度を損なうため好ましくない。In the present invention, the pressure applied during the hot press molding is not particularly limited, because of the relative density increase, to construct the molded body under pressure at 100Kg / cm 2 ~500Kg / cm 2 . A pressure that is too low is not preferable because the relative density does not improve, and a pressure that is too high is not preferable because the particle strength is impaired.

本発明において、ホットプレス成型の際に加熱する温度をしては、600℃〜1100℃の範囲で実施される。低すぎる温度では、粒子の結着が起こらないため好ましくなく、高すぎる温度では、粒子の結晶化が大きく、成形体内のボイドの発生が多くなるため好ましくない。よって、700℃〜1050℃の範囲、より好ましくは、800℃〜1000℃の範囲で実施することが好ましい。  In the present invention, the heating is performed in the range of 600 ° C. to 1100 ° C. in the hot press molding. If the temperature is too low, particle binding will not occur, which is not preferable. If the temperature is too high, crystallization of the particles will be large and voids in the molded body will increase, which is not preferable. Therefore, it is preferable to carry out in the range of 700 ° C to 1050 ° C, more preferably in the range of 800 ° C to 1000 ° C.

本発明において、成形の手順としては、特に制限されるものではない。例えば、モールドに硫化物、必要に応じて硫黄を添加して入れ、成形冶具を装着し、一旦、140Pa程度に減圧する。減圧をアルゴンで開放し、この操作を繰り返し、硫化物複合体内に含まれる酸素、および硫化物複合体表面に付着した水分を除去する。  In the present invention, the molding procedure is not particularly limited. For example, sulfide and sulfur as required are added to the mold, a forming jig is attached, and the pressure is once reduced to about 140 Pa. The decompression is released with argon, and this operation is repeated to remove oxygen contained in the sulfide complex and water adhering to the surface of the sulfide complex.

次に、硫化物を減圧中に置いた状態で機械的に加圧を開始し、硫化物に所定の機械的な圧力(プレス圧)がかかったところで、1分〜1時間程度保持する。そこで、硫化物に対する減圧をアルゴンで開放し、硫化物にプレス圧がかかった状態で昇温を開始する。  Next, pressurization is started mechanically in a state where the sulfide is placed under reduced pressure, and when a predetermined mechanical pressure (pressing pressure) is applied to the sulfide, the sulfide is held for about 1 minute to 1 hour. Therefore, the pressure reduction for the sulfide is released with argon, and the temperature rise is started in a state where the press pressure is applied to the sulfide.

所定の温度で、1分〜1時間保持した後、降温を開始し、室温に戻った段階で、プレス圧を解除して、目的の成型体を得ることもできるし、昇温後に減圧を開放する方法、降温時にプレス圧を解除して冷却する方法を採用しても構わない。得られた成型体は、モールドから取り外した後、必要に応じて、研磨などの処置を施すことで、容易にスパッタ用ターゲットとして使用することができる。以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。  After holding at a predetermined temperature for 1 minute to 1 hour, the temperature lowering is started, and when the temperature returns to room temperature, the press pressure can be released to obtain the desired molded body. A method of cooling by releasing the press pressure when the temperature is lowered may be adopted. The obtained molded body can be easily used as a sputtering target by removing it from the mold and then performing a treatment such as polishing as necessary. EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to a following example.

実施例1
2Lセパラブルフラスコに、硝酸亜鉛六水和物232.2g、硫酸マグネシウム4.5g、硝酸銅三水和物1.39g、硝酸ガリウム八水和物3.35gを取り、イオン交換水750gを加えて溶解した。そこに硝酸1.5gを添加して、系中のpHを2程度に調整し、そのフラスコに、攪拌器、温度計、還流管を装着し、pHを調整した液を攪拌しながら、90℃まで昇温した。所定の温度に到達したところで、チオ尿素84.5gを固体で添加した。添加終了後、2時間攪拌した後、反応停止のため、系内を30℃まで冷却した。冷却中、窒素を流気し、系内の硫化水素を排気した。
Example 1
In a 2 L separable flask, take 232.2 g of zinc nitrate hexahydrate, 4.5 g of magnesium sulfate, 1.39 g of copper nitrate trihydrate and 3.35 g of gallium nitrate octahydrate, and add 750 g of ion-exchanged water. And dissolved. Nitric acid (1.5 g) was added thereto, the pH in the system was adjusted to about 2, and the flask was equipped with a stirrer, thermometer and reflux tube, and the pH adjusted liquid was stirred while stirring at 90 ° C. The temperature was raised to. When the predetermined temperature was reached, 84.5 g of thiourea was added as a solid. After completion of the addition, the mixture was stirred for 2 hours, and then the system was cooled to 30 ° C. to stop the reaction. During cooling, nitrogen was passed and the hydrogen sulfide in the system was exhausted.

得られた反応液からデカンテーションで反応液を除き、更にイオン交換水にて残りの固体の洗浄を行い、洗液のpHが6程度になるまで洗浄を行なった。洗浄が終了した固体を、150℃にて12時間熱風乾燥し、更に、120℃で真空乾燥し、銅がドーピングされた硫化亜鉛複合体58.5gを得た。  The reaction solution was removed from the obtained reaction solution by decantation, and the remaining solid was washed with ion-exchanged water, and washing was performed until the pH of the washing solution reached about 6. The solid after the washing was dried with hot air at 150 ° C. for 12 hours and further dried under vacuum at 120 ° C. to obtain 58.5 g of a zinc sulfide composite doped with copper.

得られた硫化亜鉛複合体は粒径D50(中心粒径)が12μmの粉末であった。ここで粒度分布は株式会社堀場製作所製LA−950を用い、水溶媒に分散させて測定した。得られた粉末を、日本ベル株式会社製BELSORP18を使用し、窒素吸着により比表面積測定したところ、40.2m/gであった。また、得られた粉末をXRD測定したところ、2θ=33°の半値幅は1.273°であった。The obtained zinc sulfide composite was a powder having a particle size D50 (center particle size) of 12 μm. Here, the particle size distribution was measured by using LA-950 manufactured by HORIBA, Ltd. and dispersing it in an aqueous solvent. When the specific surface area of the obtained powder was measured by nitrogen adsorption using BELSORP18 manufactured by Nippon Bell Co., Ltd., it was 40.2 m 2 / g. Moreover, when the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 1.273 °.

水分量は、電量滴定法カールフィッシャー水分計(三菱化成株式会社製:型式VA−06)を用いて測定した結果、得られた水分量は、892ppmであった。  The moisture content was measured using a coulometric titration Karl Fischer moisture meter (manufactured by Mitsubishi Kasei Co., Ltd .: Model VA-06). As a result, the obtained moisture content was 892 ppm.

硫酸イオン分析は、イオンクロマト法(島津製作所製:型式HIC−SP)により実施した。20mgのサンプルを5.0gの塩酸に溶解し、完全に溶解させた後、窒素ガスを通じて、塩酸を揮発させ、イオン交換水を加えて、10.0gとした。検出された硫酸イオン量は562ppmであった。  The sulfate ion analysis was carried out by ion chromatography (manufactured by Shimadzu Corporation: model HIC-SP). A 20 mg sample was dissolved in 5.0 g of hydrochloric acid and completely dissolved, and then the hydrochloric acid was volatilized through nitrogen gas, and ion exchanged water was added to make 10.0 g. The amount of sulfate ion detected was 562 ppm.

30mmφのモールドに、得られた硫化亜鉛複合体12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、減圧をアルゴンにて常圧に開放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで常圧に開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧力を解除し、2時間で室温まで冷却した。モールドから成型体をはずし、30mmφ、厚さ5.49mmの円筒形ターゲット材を得た。12 g of the obtained zinc sulfide composite was put into a 30 mmφ mold and filled in a hot press machine. The pressure inside the mold was reduced to 130 Pa, held for 10 minutes, and the reduced pressure was released to normal pressure with argon. This operation was carried out three times, the pressure inside the mold was released to normal pressure with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released, and the mixture was cooled to room temperature in 2 hours. The molded body was removed from the mold to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 5.49 mm.

得られたターゲット材の一部を取り、1N塩酸で溶解、エチレンジアミン四酢酸(EDTA)溶液で滴定し、金属含量を定量した。定量した結果、硫黄/亜鉛=0.97であった。得られたターゲットの嵩密度は3.88g/cmであり、相対密度(嵩密度と理論密度との比。理論密度として硫化亜鉛本来の密度4.0g/cmを使用した。)は0.97であった。水分量は、41ppmであった。硫酸イオン量は、22ppmであった。A portion of the obtained target material was taken, dissolved in 1N hydrochloric acid, and titrated with an ethylenediaminetetraacetic acid (EDTA) solution to quantify the metal content. As a result of quantification, it was sulfur / zinc = 0.97. The obtained target had a bulk density of 3.88 g / cm 3 and a relative density (ratio of bulk density to theoretical density. The original density of zinc sulfide of 4.0 g / cm 3 was used as the theoretical density). 97. The water content was 41 ppm. The amount of sulfate ion was 22 ppm.

実施例2
実施例1で得た液相調製した銅がドーピングされた硫化亜鉛30gに硫黄6gを添加して、窒素下にて、500℃で3時間加熱焼成し、室温まで冷却した。得られた硫化亜鉛複合体は粒径D50が18μmの粉末であった。得られた粉末を比表面積測定したところ、0.65m/gであった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は0.415°であった。また、水分量は128ppm、硫酸イオン量は、255ppmであった。
Example 2
6 g of sulfur was added to 30 g of zinc sulfide doped with copper prepared in the liquid phase obtained in Example 1, heated and calcined at 500 ° C. for 3 hours under nitrogen, and cooled to room temperature. The obtained zinc sulfide composite was a powder having a particle size D50 of 18 μm. When the specific surface area of the obtained powder was measured, it was 0.65 m 2 / g. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 0.415 °. The water content was 128 ppm, and the sulfate ion content was 255 ppm.

30mmφのモールドに、得られた硫化亜鉛複合体12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、アルゴンにて常圧に開放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで常圧に開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧を解除し、2時間で室温まで冷却した。12 g of the obtained zinc sulfide composite was put into a 30 mmφ mold and filled in a hot press machine. The inside of the mold was depressurized to 130 Pa, held for 10 minutes, and released to normal pressure with argon. This operation was carried out three times, the pressure inside the mold was released to normal pressure with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released and the temperature was cooled to room temperature in 2 hours.

モールドから成型体をはずし、30mmφ、厚さ5.37mmの円筒形ターゲット材を得た。得られたターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.95であった。得られたターゲットの嵩密度は3.75g/cmであり、相対密度(嵩密度と理論密度との比)は0.95であった。また、水分量は49ppm、硫酸イオン量は41ppmであった。The molded body was removed from the mold to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 5.37 mm. A portion of the obtained target material was taken, dissolved in 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.95. The obtained target had a bulk density of 3.75 g / cm 3 and a relative density (ratio of bulk density to theoretical density) of 0.95. The water content was 49 ppm and the sulfate ion content was 41 ppm.

実施例3
実施例2において、800℃で焼成した以外は、実施例2と同様に行った。得られた硫化亜鉛複合体は粒径D50が28μmの粉末であった。得られた粉末を比表面積測定したところ、0.22m/gであった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は0.375°であった。また、水分量は118ppm、硫酸イオン量は221ppmであった。
Example 3
In Example 2, it carried out like Example 2 except having baked at 800 degreeC. The obtained zinc sulfide composite was a powder having a particle size D50 of 28 μm. When the specific surface area of the obtained powder was measured, it was 0.22 m 2 / g. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 0.375 °. The water content was 118 ppm and the sulfate ion content was 221 ppm.

30mmφのモールドに、得られた硫化亜鉛複合体12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、アルゴンにて常圧に開放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧を解除し、2時間で室温まで冷却した。12 g of the obtained zinc sulfide composite was put into a 30 mmφ mold and filled in a hot press machine. The inside of the mold was depressurized to 130 Pa, held for 10 minutes, and released to normal pressure with argon. This operation was carried out three times, the reduced pressure in the mold was released with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released, and the mixture was cooled to room temperature in 2 hours.

モールドから成型体をはずし、30mmφ、厚さ5.20mmの円筒形ターゲット材を得た。得られたターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.92であった。得られたターゲットの嵩密度は3.73g/cmであり、相対密度(嵩密度と理論密度との比)は0.94であった。また、水分量は33ppm、硫酸イオン量は51ppmであった。The molded body was removed from the mold to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 5.20 mm. A part of the obtained target material was taken, dissolved in 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.92. The obtained target had a bulk density of 3.73 g / cm 3 and a relative density (ratio of bulk density to theoretical density) of 0.94. The water content was 33 ppm and the sulfate ion content was 51 ppm.

実施例4
実施例1において、金属塩として硝酸亜鉛六水和物232.2gのみを使用した以外は、実施例1と同様に実施し、硫化亜鉛57.1gを得た。得られた硫化亜鉛は粒径D50が16μmの粉末であった。得られた粉末を比表面積測定したところ、40.3m/gであった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は1.371°であった。また、水分量は994ppm、硫酸イオンは557ppmであった。
Example 4
In Example 1, it implemented similarly to Example 1 except having used only 232.2 g of zinc nitrate hexahydrate as a metal salt, and obtained 57.1 g of zinc sulfide. The obtained zinc sulfide was a powder having a particle size D50 of 16 μm. When the specific surface area of the obtained powder was measured, it was 40.3 m 2 / g. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 1.371 °. Further, the water content was 994 ppm and the sulfate ion was 557 ppm.

上記で得られた硫化亜鉛粉末20gに、硫化マンガン0.05gを混合し、株式会社シンキー製混合機ARE−250にて、2000回転30秒間混合した。30mmφのモールドに、得られた硫化亜鉛混合物12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、アルゴンにて常圧に解放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで常圧に開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧を解除し、2時間で室温まで冷却した。To 20 g of the zinc sulfide powder obtained above, 0.05 g of manganese sulfide was mixed and mixed for 2000 seconds for 30 seconds with a mixer ARE-250 manufactured by Sinky Corporation. 12 g of the obtained zinc sulfide mixture was put in a 30 mmφ mold and filled in a hot press machine. The inside of the mold was depressurized to 130 Pa, held for 10 minutes, and released to normal pressure with argon. This operation was carried out three times, the pressure inside the mold was released to normal pressure with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released, and the mixture was cooled to room temperature in 2 hours.

モールドから成型体をはずし、30mmφ、厚さ5.26mmの円筒形ターゲット材を得た。得られたターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.94であった。得られたターゲットの嵩密度は3.72g/cmであり、相対密度(嵩密度と理論密度との比)は0.93であった。また、水分量は27ppm、硫酸イオン量は32ppmであった。The molded body was removed from the mold to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 5.26 mm. A part of the obtained target material was taken, dissolved in 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.94. The obtained target had a bulk density of 3.72 g / cm 3 and a relative density (ratio of bulk density to theoretical density) of 0.93. The water content was 27 ppm and the sulfate ion content was 32 ppm.

実施例5
実施例4で得た硫化亜鉛混合物30gに硫黄6gを添加して、窒素下にて、600℃で3時間加熱焼成し、室温まで冷却した。得られた硫化亜鉛は粒径D50が32μmの粉末であった。得られた粉末を比表面積測定したところ、0.22m/gであった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は0.265°であった。また、水分量は113ppm、硫酸イオン量は245ppmであった。
Example 5
6 g of sulfur was added to 30 g of the zinc sulfide mixture obtained in Example 4, heated and calcined at 600 ° C. for 3 hours under nitrogen, and cooled to room temperature. The obtained zinc sulfide was a powder having a particle size D50 of 32 μm. When the specific surface area of the obtained powder was measured, it was 0.22 m 2 / g. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 0.265 °. The water content was 113 ppm, and the sulfate ion content was 245 ppm.

30mmφのモールドに、得られた硫化亜鉛12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、アルゴンにて常圧に解放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで常圧に開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧を解除し、2時間で室温まで冷却した。12 g of the obtained zinc sulfide was put into a 30 mmφ mold and filled in a hot press machine. The inside of the mold was depressurized to 130 Pa, held for 10 minutes, and released to normal pressure with argon. This operation was carried out three times, the pressure inside the mold was released to normal pressure with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released, and the mixture was cooled to room temperature in 2 hours.

モールドから成型体をはずし、30mmφ、厚さ5.15mmの円筒形ターゲット材を得た。得られたターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.93であった。得られたターゲットの嵩密度は3.66g/cmであり、相対密度(嵩密度と理論密度との比)は0.91であった。また、水分量は44ppm、硫酸イオン量は57ppmであった。The molded body was removed from the mold to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 5.15 mm. A portion of the obtained target material was taken, dissolved in 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.93. The obtained target had a bulk density of 3.66 g / cm 3 and a relative density (ratio of bulk density to theoretical density) of 0.91. The water content was 44 ppm and the sulfate ion content was 57 ppm.

実施例6
実施例2において、硫化亜鉛複合体を400℃で焼成し、加熱成型を850℃で実施した以外は、実施例2と同様に行った。得られた硫化亜鉛複合体粉末を比表面積測定したところ、0.89m/gであった。得られた硫化亜鉛複合体は粒径D50が16μmの粉末であった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は0.665°であった。また、水分量は128ppm、硫酸イオン量は255ppmであった。
Example 6
In Example 2, the same procedure was performed as in Example 2 except that the zinc sulfide composite was fired at 400 ° C. and the heat molding was performed at 850 ° C. It was 0.89 m < 2 > / g when the specific surface area of the obtained zinc sulfide composite powder was measured. The obtained zinc sulfide composite was a powder having a particle size D50 of 16 μm. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 0.665 °. The water content was 128 ppm, and the sulfate ion content was 255 ppm.

得られた円筒形ターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=1.05であった。得られたターゲットの嵩密度は3.87g/cmであり、相対密度(嵩密度と理論密度との比)は0.96であった。また、水分量は35ppm、硫酸イオン量は55ppmであった。A part of the obtained cylindrical target material was taken, dissolved with 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 1.05. The obtained target had a bulk density of 3.87 g / cm 3 and a relative density (ratio of bulk density to theoretical density) of 0.96. The water content was 35 ppm, and the sulfate ion content was 55 ppm.

実施例7
実施例2において、硫化亜鉛複合体を700℃で焼成し、加熱成型を750℃で実施した以外は、実施例2と同様に行った。得られた硫化亜鉛複合体粉末を比表面積測定したところ、0.18m/gであった。得られた硫化亜鉛複合体は粒径D50が19μmの粉末であった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は0.224°であった。また、水分量は96ppm、硫酸イオン量は138ppmであった。
Example 7
In Example 2, the same procedure was performed as in Example 2 except that the zinc sulfide composite was fired at 700 ° C. and the heat molding was performed at 750 ° C. When the specific surface area of the obtained zinc sulfide composite powder was measured, it was 0.18 m 2 / g. The obtained zinc sulfide composite was a powder having a particle size D50 of 19 μm. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 0.224 °. The water content was 96 ppm, and the sulfate ion content was 138 ppm.

得られた円筒形ターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.91であった。得られたターゲットの嵩密度は3.56g/cmであり、相対密度(嵩密度と理論密度との比)は0.89であった。また、水分量は21ppm、硫酸イオン量は44ppmであった。 A part of the obtained cylindrical target material was taken, dissolved in 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was determined. As a result, sulfur / zinc = 0.91 was obtained. The obtained target had a bulk density of 3.56 g / cm 3 and a relative density (ratio of bulk density to theoretical density) of 0.89. The water content was 21 ppm, and the sulfate ion content was 44 ppm.

比較例1
実施例3において、実施例1で得た液相調製した銅がドーピングされた硫化亜鉛複合体30gに硫黄6gおよび塩化ナトリウム1.5gを添加した以外は、実施例3と同様に行なった。得られた硫化亜鉛複合体は粒径D50が28μmの粉末であった。得られた粉末を比表面積測定したところ、0.12m/gであった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は0.183°であった。また、水分量は88ppm、硫酸イオン量は89ppmであった。
Comparative Example 1
In Example 3, the same procedure as in Example 3 was performed, except that 6 g of sulfur and 1.5 g of sodium chloride were added to 30 g of the zinc sulfide composite doped with copper prepared in the liquid phase obtained in Example 1. The obtained zinc sulfide composite was a powder having a particle size D50 of 28 μm. When the specific surface area of the obtained powder was measured, it was 0.12 m 2 / g. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 0.183 °. The water content was 88 ppm, and the sulfate ion content was 89 ppm.

30mmφのモールドに、得られた硫化亜鉛複合体12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、アルゴンにて常圧に解放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで常圧に開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧を解除し、2時間で室温まで冷却した。12 g of the obtained zinc sulfide composite was put into a 30 mmφ mold and filled in a hot press machine. The inside of the mold was depressurized to 130 Pa, held for 10 minutes, and released to normal pressure with argon. This operation was carried out three times, the pressure inside the mold was released to normal pressure with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released, and the mixture was cooled to room temperature in 2 hours.

モールドから成型体をはずし、30mmφ、厚さ4.92mmの円筒形ターゲット材を得た。得られたターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.87であった。得られたターゲット材の嵩密度は3.41g/cmであり、相対密度(嵩密度と理論密度との比)は0.85であった。また、水分量は22ppm、硫酸イオン量は41ppmであった。The molded body was removed from the mold to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 4.92 mm. A part of the obtained target material was taken, dissolved with 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.87. The obtained target material had a bulk density of 3.41 g / cm 3 and a relative density (ratio of bulk density to theoretical density) of 0.85. The water content was 22 ppm and the sulfate ion content was 41 ppm.

比較例2
5L三つ口フラスコに、攪拌器、還流管、温度計を装着し、硝酸亜鉛6水和物149.1g、硝酸銅3水和物0.0926g、硝酸ガリウム5水和物0・1246gを取り、1Lのイオン交換水を添加し溶解させ、窒素気流下とした。そこに、硫化ナトリウム9水和物145.5gをイオン交換水1Lに溶解した水溶液を20分間で添加した。反応温度は27℃であり、更に2時間攪拌した。
Comparative Example 2
A 5 L three-necked flask is equipped with a stirrer, reflux tube, and thermometer, and 149.1 g of zinc nitrate hexahydrate, 0.0926 g of copper nitrate trihydrate, and 0.1246 g of gallium nitrate pentahydrate are taken. 1 L of ion exchange water was added and dissolved, and the mixture was placed under a nitrogen stream. Thereto was added an aqueous solution in which 145.5 g of sodium sulfide nonahydrate was dissolved in 1 L of ion-exchanged water over 20 minutes. The reaction temperature was 27 ° C., and the mixture was further stirred for 2 hours.

得られた反応液からデカンテーションで反応液を除き、更にイオン交換水にて洗浄を行い、洗液のpHが6程度になるまで洗浄を行なった。洗浄が終了した固体を、150℃にて12時間熱風乾燥し、銅がドーピングされた硫化亜鉛41.1gを得た。得られた硫化亜鉛複合体は粒径D50が30μmの粉末であった。得られた粉末を比表面積測定したところ、105.2m/gであった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は2.22°であった。また、水分量は2450ppm、硫酸イオンは1266ppmであった。The reaction solution was removed from the obtained reaction solution by decantation, and further washed with ion-exchanged water until the pH of the washing solution reached about 6. The washed solid was dried with hot air at 150 ° C. for 12 hours to obtain 41.1 g of zinc sulfide doped with copper. The obtained zinc sulfide composite was a powder having a particle size D50 of 30 μm. When the specific surface area of the obtained powder was measured, it was 105.2 m 2 / g. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 2.22 °. Moreover, the moisture content was 2450 ppm and the sulfate ion was 1266 ppm.

30mmφのモールドに、得られた硫化亜鉛複合体12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、アルゴンにて常圧に解放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで常圧に開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧を解除し、2時間で室温まで冷却した。モールドから成型体をはずしたが、モールドに固着し、目的物を得ることはできなかった。水分量は899ppm、硫酸イオン量は447ppmであった。12 g of the obtained zinc sulfide composite was put into a 30 mmφ mold and filled in a hot press machine. The inside of the mold was decompressed to 130 Pa, held for 10 minutes, and released to normal pressure with argon. This operation was carried out three times, the pressure inside the mold was released to normal pressure with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released, and the mixture was cooled to room temperature in 2 hours. Although the molded body was removed from the mold, it was fixed to the mold and the target product could not be obtained. The amount of water was 899 ppm, and the amount of sulfate ions was 447 ppm.

比較例3
実施例1で得た液相調製した銅がドーピングされた硫化亜鉛複合体30gに硫黄6gを添加して窒素下にて、250℃で3時間加熱焼成し、室温まで冷却した。得られた硫化亜鉛複合体は粒径D50が62μmの粉末であった。得られた粉末を比表面積測定したところ、50.33m/gであった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は1.81°であった。また、水分量は1227ppm、硫酸イオン量は723ppmであった。
Comparative Example 3
6 g of sulfur was added to 30 g of the zinc sulfide composite doped with copper prepared in the liquid phase obtained in Example 1, and heated and fired at 250 ° C. for 3 hours under nitrogen, and then cooled to room temperature. The obtained zinc sulfide composite was a powder having a particle size D50 of 62 μm. It was 50.33 m < 2 > / g when the specific surface area of the obtained powder was measured. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 1.81 °. Further, the water content was 1227 ppm and the sulfate ion content was 723 ppm.

30mmφのモールドに、得られた硫化亜鉛複合体12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、アルゴンにて常圧に解放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで常圧に開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧を解除し、2時間で室温まで冷却した。モールドから成型体をはずしたが、成型体の一部がモールド壁面に固着し、ターゲットを取り出す際に、固着部分から剥離が起こり、目的のターゲットの形状を維持することは出来なかった。水分量は1011ppm、硫酸イオン量は512ppmであった。12 g of the obtained zinc sulfide composite was put into a 30 mmφ mold and filled in a hot press machine. The inside of the mold was depressurized to 130 Pa, held for 10 minutes, and released to normal pressure with argon. This operation was carried out three times, the pressure inside the mold was released to normal pressure with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released, and the mixture was cooled to room temperature in 2 hours. Although the molded body was removed from the mold, a part of the molded body was fixed to the mold wall surface, and when the target was taken out, peeling occurred from the fixed portion, and the target target shape could not be maintained. The amount of water was 1011 ppm and the amount of sulfate ions was 512 ppm.

比較例4
実施例4で得た硫化亜鉛混合物30gに硫黄6g、塩化ナトリウム1.5gを添加、混合して、窒素下にて、1000℃で3時間加熱焼成し、室温まで冷却した。得られた硫化亜鉛複合体は粒径D50が35μmの粉末であった。得られた粉末を比表面積測定したところ、0.09m/gであった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は0.183°であった。また、水分量は64ppm、硫酸イオン量は66ppmであった。
Comparative Example 4
6 g of sulfur and 1.5 g of sodium chloride were added to 30 g of the zinc sulfide mixture obtained in Example 4 and mixed, heated and fired at 1000 ° C. for 3 hours under nitrogen, and cooled to room temperature. The obtained zinc sulfide composite was a powder having a particle size D50 of 35 μm. When the specific surface area of the obtained powder was measured, it was 0.09 m 2 / g. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 0.183 °. The water content was 64 ppm and the sulfate ion content was 66 ppm.

30mmφのモールドに、得られた硫化亜鉛複合体12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、アルゴンにて常圧に解放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで常圧に開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧を解除し、2時間で室温まで冷却した。12 g of the obtained zinc sulfide composite was put into a 30 mmφ mold and filled in a hot press machine. The inside of the mold was depressurized to 130 Pa, held for 10 minutes, and released to normal pressure with argon. This operation was carried out three times, the pressure inside the mold was released to normal pressure with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released, and the mixture was cooled to room temperature in 2 hours.

モールドから成型体をはずし、30mmφ、厚さ3mmの円筒形ターゲット材を得た。得られたターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.86であった。得られたターゲット材の嵩密度は3.41g/cmであり、相対密度(嵩密度と理論密度との比)は0.85であった。また、水分量は35ppm、硫酸イオン量は31ppmであった。 The molded body was removed from the mold to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 3 mm. A part of the obtained target material was taken, dissolved in 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.86. The obtained target material had a bulk density of 3.41 g / cm 3 and a relative density (ratio of bulk density to theoretical density) of 0.85. The water content was 35 ppm, and the sulfate ion content was 31 ppm.

比較例5
実施例2において、複合硫化物を700℃で焼成し、加熱成型を1000℃で実施した以外は、実施例2と同様に行った。得られた硫化亜鉛複合体は粒径D50が22μmの粉末であった。得られた粉末を比表面積測定したところ、0.18m/gであった。得られた粉末をXRD測定したところ、2θ=33°の半値幅は0.223°であった。また、水分は96ppm、硫酸イオンは138ppmであった。
Comparative Example 5
In Example 2, it carried out like Example 2 except having baked the composite sulfide at 700 degreeC and heat-molding at 1000 degreeC. The obtained zinc sulfide composite was a powder having a particle size D50 of 22 μm. When the specific surface area of the obtained powder was measured, it was 0.18 m 2 / g. When the obtained powder was measured by XRD, the half width at 2θ = 33 ° was 0.223 °. The water content was 96 ppm, and the sulfate ion was 138 ppm.

成型した後、円筒形ターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.88であった。得られたターゲットの嵩密度は3.76g/cmであり、相対密度(実測密度と理論密度との比)は0.94であった。また、得られた成型体の水分量は19ppm、硫酸イオン量は37ppmであった。After molding, a part of the cylindrical target material was taken, dissolved with 1N hydrochloric acid, titrated with EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.88. The obtained target had a bulk density of 3.76 g / cm 3 and a relative density (ratio of measured density to theoretical density) of 0.94. Further, the obtained molded body had a water content of 19 ppm and a sulfate ion content of 37 ppm.

比較例6
比較例4において、硫化亜鉛複合体を1100℃で加熱焼成した以外は、比較例4と同様に実施した。得られた硫化亜鉛複合体は粒径D50が38μmの粉末であった。得られた硫化亜鉛複合体粉末を比表面積測定したところ、0.08m/gであった。2θ=33°の半値幅は0.144°であった。また、水分量は12ppm、硫酸イオン量は38ppmであった。
Comparative Example 6
Comparative Example 4 was carried out in the same manner as Comparative Example 4 except that the zinc sulfide composite was heated and fired at 1100 ° C. The obtained zinc sulfide composite was a powder having a particle size D50 of 38 μm. It was 0.08 m < 2 > / g when the specific surface area of the obtained zinc sulfide composite powder was measured. The half width at 2θ = 33 ° was 0.144 °. The water content was 12 ppm, and the sulfate ion content was 38 ppm.

30mmφのモールドに、得られた硫化亜鉛複合体12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、アルゴンにて常圧に解放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで常圧に開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧を解除し、2時間で室温まで冷却した。12 g of the obtained zinc sulfide composite was put into a 30 mmφ mold and filled in a hot press machine. The inside of the mold was depressurized to 130 Pa, held for 10 minutes, and released to normal pressure with argon. This operation was carried out three times, the pressure inside the mold was released to normal pressure with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released, and the mixture was cooled to room temperature in 2 hours.

モールドから成型体をはずし、30mmφ、厚さ4.35mmの円筒形ターゲット材を得た。得られたターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.82であった。得られたターゲット材の嵩密度は3.07g/cmであり、相対密度(嵩密度と理論密度との比)は0.77であった。また、水分量は15ppm、硫酸イオン量は33ppmであった。 The molded body was removed from the mold to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 4.35 mm. A part of the obtained target material was taken, dissolved in 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.82. The obtained target material had a bulk density of 3.07 g / cm 3 and a relative density (ratio of bulk density to theoretical density) of 0.77. The water content was 15 ppm and the sulfate ion content was 33 ppm.

実施例8
2Lセパラブルフラスコに、硝酸亜鉛六水和物360.0g、硫酸マグネシウム7.2g、0.1M硝酸銀水溶液57.0mL、硝酸ガリウム八水和物3.66gを取り、イオン交換水1200gを加えて溶解した。そこに硝酸1.5gを添加して、系中のpHを2程度に調整する。そのフラスコに、攪拌器、温度計、還流管を装着し、pHを調整した液を攪拌しながら、90℃まで昇温する。所定の温度に到達したところで、チオアセトアミド133.6gを固体で添加した。添加終了後、2時間攪拌した後、反応停止のため、系内を30℃まで冷却した。冷却中、窒素を流気し、系内の硫化水素を排出した。得られた反応液からデカンテーションで反応液を除き、更にイオン交換水にて残りの固体の洗浄を行い、洗液のpHが5以上になるまで洗浄を行なった。洗浄が終了した固体を、150℃にて12時間熱風乾燥し、銀がドーピングされた硫化亜鉛複合体93.5gを得た。得られた硫化亜鉛複合体は粒径D50が16μmの粉末であった。得られた粉末をX線回折(XRD)測定したところ、2θ=33°の回折ピークの半値幅は1.363°であった。また、水分は612ppm、硫酸イオンは447ppmであった。
Example 8
To a 2 L separable flask, take 360.0 g of zinc nitrate hexahydrate, 7.2 g of magnesium sulfate, 57.0 mL of 0.1 M silver nitrate aqueous solution, and 3.66 g of gallium nitrate octahydrate, and add 1200 g of ion-exchanged water. Dissolved. To this, 1.5 g of nitric acid is added to adjust the pH in the system to about 2. The flask is equipped with a stirrer, a thermometer, and a reflux tube, and the temperature is raised to 90 ° C. while stirring the liquid whose pH has been adjusted. When the predetermined temperature was reached, 133.6 g of thioacetamide was added as a solid. After completion of the addition, the mixture was stirred for 2 hours, and then the system was cooled to 30 ° C. to stop the reaction. During cooling, nitrogen was passed to discharge hydrogen sulfide in the system. The reaction solution was removed from the obtained reaction solution by decantation, and the remaining solid was washed with ion-exchanged water until the pH of the washing solution became 5 or higher. The solid after the washing was dried with hot air at 150 ° C. for 12 hours to obtain 93.5 g of a zinc sulfide composite doped with silver. The obtained zinc sulfide composite was a powder having a particle size D50 of 16 μm. When the obtained powder was measured by X-ray diffraction (XRD), the half width of the diffraction peak at 2θ = 33 ° was 1.363 °. The water content was 612 ppm and the sulfate ion was 447 ppm.

30mmφのモールドに、上記で得られた硫化亜鉛複合体粉末12gを入れ、ホットプレス機に充填した。モールド内を130Paまで減圧し、10分間保持、減圧をアルゴンにて常圧に開放した。この操作を3回実施し、モールド内の減圧をアルゴンガスで常圧に開放し、プレス圧(200Kg/cm)を硫化亜鉛複合体にかけながら900℃まで1時間で昇温した。昇温後プレス圧を解除し、2時間で室温まで冷却した。モールドから成型体をはずし、30mmφ、厚さ5.49mmの円筒形ターゲット材を得た。得られたターゲット材の嵩密度は3.89g/cmであり、相対密度は0.97であった。得られた円筒形ターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.92であった。また、水分量は24ppm、硫酸イオン量は46ppmであった。12 g of the zinc sulfide composite powder obtained above was placed in a 30 mmφ mold and filled in a hot press machine. The inside of the mold was reduced to 130 Pa, held for 10 minutes, and the reduced pressure was released to normal pressure with argon. This operation was carried out three times, the pressure inside the mold was released to normal pressure with argon gas, and the temperature was raised to 900 ° C. over 1 hour while applying a press pressure (200 Kg / cm 2 ) to the zinc sulfide composite. After raising the temperature, the press pressure was released, and the mixture was cooled to room temperature in 2 hours. The molded body was removed from the mold to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 5.49 mm. The obtained target material had a bulk density of 3.89 g / cm 3 and a relative density of 0.97. A part of the obtained cylindrical target material was taken, dissolved in 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.92. The water content was 24 ppm, and the sulfate ion content was 46 ppm.

実施例9
実施例8において、硫酸マグネシウムの使用量を2.5g、硝酸の使用量を0.5gとし、洗浄が終了した固体の乾燥温度を200℃にした以外は、実施例8と同様に実施し、銀がドーピングされた硫化亜鉛複合体91.5gを得た。得られた硫化亜鉛複合体は粒径D50が67μmの粉末であった。その硫化亜鉛複合体粉末の2θ=33°の回折ピークの半値幅は1.333°であった。また、水分は506ppm、硫酸イオン量は417ppmであった。この粉末を実施例8と同様にしてプレスして30mmφ、厚さ5.09mmの円筒形ターゲット材を得た。得られたターゲット材の嵩密度は3.61g/cmであり、相対密度は0.90であった。得られた円筒形ターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.93であった。また、水分量は26ppm、硫酸イオン量は48ppmであった。
Example 9
In Example 8, the amount of magnesium sulfate used was 2.5 g, the amount of nitric acid used was 0.5 g, and the drying temperature of the solid after the washing was changed to 200 ° C. 91.5 g of zinc sulfide composite doped with silver was obtained. The obtained zinc sulfide composite was a powder having a particle size D50 of 67 μm. The half width of the diffraction peak at 2θ = 33 ° of the zinc sulfide composite powder was 1.333 °. The water content was 506 ppm and the sulfate ion content was 417 ppm. This powder was pressed in the same manner as in Example 8 to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 5.09 mm. The obtained target material had a bulk density of 3.61 g / cm 3 and a relative density of 0.90. A part of the obtained cylindrical target material was taken, dissolved in 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.93. The water content was 26 ppm, and the sulfate ion content was 48 ppm.

比較例7
実施例2において、硫化亜鉛複合体粉末12gに塩化ナトリウム1.5g及び塩化マグネシウム3gを添加し、1100℃で加熱焼成した以外は、実施例2と同様に実施し、焼成後の硫化亜鉛複合体を得た。得られた硫化亜鉛複合体は粒径D50が104μmの粉末であった。その硫化亜鉛複合体粉末の2θ=33°の回折ピークの半値幅は0.198°、水分は77ppm、硫酸イオン量は67ppmであった。この粉末を実施例2と同様にしてプレスして30mmφ、厚さ4.52mmの円筒形ターゲット材を得た。得られたターゲット材の嵩密度は3.20g/cmであり、相対密度は0.80であった。得られた円筒形ターゲット材の一部を取り、1N塩酸で溶解、EDTA溶液で滴定し、金属含量を定量した結果、硫黄/亜鉛=0.88であった。また、水分量は21ppm、硫酸イオン量は33ppmであった。
Comparative Example 7
In Example 2, the same procedure as in Example 2 was carried out except that 1.5 g of sodium chloride and 3 g of magnesium chloride were added to 12 g of the zinc sulfide composite powder and heated and fired at 1100 ° C. Got. The obtained zinc sulfide composite was a powder having a particle size D50 of 104 μm. The full width at half maximum of the diffraction peak at 2θ = 33 ° of the zinc sulfide composite powder was 0.198 °, the water content was 77 ppm, and the sulfate ion content was 67 ppm. This powder was pressed in the same manner as in Example 2 to obtain a cylindrical target material having a diameter of 30 mm and a thickness of 4.52 mm. The obtained target material had a bulk density of 3.20 g / cm 3 and a relative density of 0.80. A part of the obtained cylindrical target material was taken, dissolved with 1N hydrochloric acid, titrated with an EDTA solution, and the metal content was quantified. As a result, sulfur / zinc = 0.88. The water content was 21 ppm, and the sulfate ion content was 33 ppm.

Figure 2009028641
Figure 2009028641

Figure 2009028641
Figure 2009028641

本発明によれば、1に近い硫黄/亜鉛比を有する硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む高い成型性を有する複合硫化物の成型体を提供することができる。かかる成型体は発光層を形成する際のターゲット材として有用である。また、本発明の成型体の製造方法によれば、このような成型体を高い生産性で生産することができ、産業上有用である。  According to the present invention, a composite sulfide having high moldability comprising zinc sulfide or zinc sulfide having a sulfur / zinc ratio close to 1 and a sulfide containing at least one element of silver, copper, manganese and rare earths is obtained. A molded body can be provided. Such a molded body is useful as a target material for forming a light emitting layer. Moreover, according to the manufacturing method of the molded object of this invention, such a molded object can be produced with high productivity, and it is industrially useful.

Claims (7)

硫黄/亜鉛の比が0.9以上である硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物からなる成型体。A molded article comprising zinc sulfide or zinc sulfide having a sulfur / zinc ratio of 0.9 or more and a composite sulfide containing sulfide containing at least one element of silver, copper, manganese and rare earth. 該成型体の相対密度が0.9以上である請求項1記載の成型体。The molded body according to claim 1, wherein the molded body has a relative density of 0.9 or more. 該成型体に含有される水分が50ppm以下である請求項1または2記載の成型体。The molded article according to claim 1 or 2, wherein the moisture contained in the molded article is 50 ppm or less. 該成型体に含有される硫酸イオンが500ppm以下である請求項1〜3いずれかに記載の成型体。The molded article according to any one of claims 1 to 3, wherein the molded article contains 500 ppm or less of sulfate ions. 粒径が100μm以下であり、比表面積測定において、0.2m/g〜50m/gである硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物を700℃以上1100℃以下の温度下に加圧成型することを特徴とする硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物からなる成型体の製造方法。Particle size is at 100μm or less, in the specific surface area measurement, a sulfide containing 0.2m 2 / g~50m 2 / g and a zinc sulfide or zinc sulfide and silver, copper, at least one element of manganese, and rare earth Zinc sulfide or zinc sulfide, and a sulfide containing at least one element of silver, copper, manganese, and rare earth, characterized in that a composite sulfide containing is pressure-molded at a temperature of 700 ° C. to 1100 ° C. The manufacturing method of the molded object which consists of a composite sulfide containing. 該硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物の、X線結晶解析における、2θ=33°の回折ピークの半値幅が0.2°〜1.5°である請求項5記載の成型体の製造方法。The half width of the diffraction peak at 2θ = 33 ° in the X-ray crystal analysis of the composite sulfide containing zinc sulfide or zinc sulfide and a sulfide containing at least one element of silver, copper, manganese and rare earth is 0. The method for producing a molded body according to claim 5, wherein the angle is 2 ° to 1.5 °. 硫化亜鉛または硫化亜鉛と銀、銅、マンガンおよび希土類の少なくとも1種の元素を含む硫化物とを含む複合硫化物が水溶液下で調製される請求項5または6記載の成型体の製造方法。
The method for producing a molded article according to claim 5 or 6, wherein a composite sulfide containing zinc sulfide or zinc sulfide and a sulfide containing at least one element of silver, copper, manganese and rare earth is prepared in an aqueous solution.
JP2009530191A 2007-08-31 2008-08-29 Zinc sulfide molding and method for producing the same Expired - Fee Related JP5451393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009530191A JP5451393B2 (en) 2007-08-31 2008-08-29 Zinc sulfide molding and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007225329 2007-08-31
JP2007225346 2007-08-31
JP2007225329 2007-08-31
JP2007225346 2007-08-31
JP2009530191A JP5451393B2 (en) 2007-08-31 2008-08-29 Zinc sulfide molding and method for producing the same
PCT/JP2008/065492 WO2009028641A1 (en) 2007-08-31 2008-08-29 Zinc sulfide molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2009028641A1 true JPWO2009028641A1 (en) 2010-12-02
JP5451393B2 JP5451393B2 (en) 2014-03-26

Family

ID=40387353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009530191A Expired - Fee Related JP5451393B2 (en) 2007-08-31 2008-08-29 Zinc sulfide molding and method for producing the same

Country Status (3)

Country Link
JP (1) JP5451393B2 (en)
TW (1) TW200918461A (en)
WO (1) WO2009028641A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295421B1 (en) * 2012-12-28 2013-09-18 株式会社超高温材料研究センター Inorganic materials for optical elements
CN117623370A (en) * 2023-09-20 2024-03-01 艾肯希红外科技(广东)有限公司 Metal sulfide, use thereof, and resin composition containing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210358B2 (en) * 1971-10-19 1977-03-23
JPS6021372A (en) * 1983-07-14 1985-02-02 Matsushita Electric Ind Co Ltd Zinc sulfide sputtering target and its manufacture
JPS62138355A (en) * 1985-12-11 1987-06-22 株式会社村田製作所 Manufacture of sulfide ceramic target
JPH03232722A (en) * 1990-02-07 1991-10-16 Osaka Titanium Co Ltd Production of powdery zinc chloride
JP3779856B2 (en) * 2000-04-10 2006-05-31 株式会社日鉱マテリアルズ Sputtering target for optical disk protective film formation
JP2005306713A (en) * 2003-10-22 2005-11-04 Fuji Photo Film Co Ltd Method of producing inorganic semiconductor- or phosphor-primary particle and inorganic semiconductor- or phosphor-primary particle
JP2008138228A (en) * 2006-11-30 2008-06-19 Kuraray Luminas Co Ltd Method for producing sputtering target

Also Published As

Publication number Publication date
WO2009028641A1 (en) 2009-03-05
JP5451393B2 (en) 2014-03-26
TW200918461A (en) 2009-05-01

Similar Documents

Publication Publication Date Title
KR101337140B1 (en) Method for producing iron lithium phosphate
JP5565311B2 (en) Method for producing oxide
US10629900B2 (en) Porous silicon compositions and devices and methods thereof
JP2004508461A5 (en)
JP2006056754A (en) Method for manufacturing ammonium iron phosphate and positive electrode material for lithium ion secondary battery and lithium ion secondary battery
CN107074560A (en) The method for being used to produce silicon by magnesiothermic reduction
JP5365488B2 (en) Method for producing nickel cobalt aluminum composite oxide
JP5451393B2 (en) Zinc sulfide molding and method for producing the same
JP5765346B2 (en) Chemical heat storage body and method for producing the same
WO2010016419A1 (en) Method for manufacturing zinc sulfide based phosphor
CN108452816B (en) Small-particle-size metal phosphide nanoparticle/reduced graphene composite material and preparation method thereof
JP2009512622A (en) Preparation method of electrolyte
TW201238929A (en) Process for producing sintered magnesium oxide material
JP2010174316A (en) Target material and production method therefor
JP2013014499A (en) Method for synthesizing polyanion-based compound
JP7383446B2 (en) Manufacturing method of vanadium compound
JP4786143B2 (en) Method for producing double oxide ceramics
JP4888777B2 (en) Method for producing hydrogen storage material
JP5720128B2 (en) Method for producing lanthanum hexaboride fine particles and lanthanum hexaboride fine particles
JP6366956B2 (en) Process for producing conductive aid composite alkali metal titanium oxide
KR102526569B1 (en) silver oxalic acid
JP2009161680A (en) Method for preparing highly crystalline fluorescent material
JP5053943B2 (en) Cathode active material for alkaline battery and method for producing the same
JPS6213506A (en) Production of rare earth metal powder
JP6187976B2 (en) Synthesis method of polyanionic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees