JPWO2005066069A1 - Fine particle production method and production apparatus - Google Patents

Fine particle production method and production apparatus Download PDF

Info

Publication number
JPWO2005066069A1
JPWO2005066069A1 JP2005516840A JP2005516840A JPWO2005066069A1 JP WO2005066069 A1 JPWO2005066069 A1 JP WO2005066069A1 JP 2005516840 A JP2005516840 A JP 2005516840A JP 2005516840 A JP2005516840 A JP 2005516840A JP WO2005066069 A1 JPWO2005066069 A1 JP WO2005066069A1
Authority
JP
Japan
Prior art keywords
fine particles
liquid
fluid
gas
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005516840A
Other languages
Japanese (ja)
Other versions
JP4864459B2 (en
Inventor
高橋 誠一郎
誠一郎 高橋
渡辺 弘
渡辺  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005516840A priority Critical patent/JP4864459B2/en
Publication of JPWO2005066069A1 publication Critical patent/JPWO2005066069A1/en
Application granted granted Critical
Publication of JP4864459B2 publication Critical patent/JP4864459B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/322Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/326Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the liquid state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00108Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00112Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00114Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Abstract

酸化物微粒子等の微粒子をより簡便な装置で且つ低コストで製造でき、ITO粉末の製造に好適な微粒子の製造方法及び製造装置を提供する。 微粒子を製造する方法において、原料を液流、液滴又は粉末として、熱源中に供給し、生成物を霧状の液状流体により微粒子として捕獲し、気液分離により前記微粒子をスラリーとして回収する。Provided are a fine particle production method and a production apparatus that can produce fine particles such as oxide fine particles with a simpler apparatus and at a lower cost, and are suitable for production of ITO powder. In the method for producing fine particles, the raw material is supplied as a liquid stream, droplets or powder into a heat source, the product is captured as fine particles with a mist-like liquid fluid, and the fine particles are recovered as a slurry by gas-liquid separation.

Description

本発明は、酸化インジウム−酸化錫粉末などの微粒子の製造方法及び製造装置に関する。  The present invention relates to a method and apparatus for producing fine particles such as indium oxide-tin oxide powder.

一般的に、薄膜を成膜する方法の1つとしてスパッタリング法が知られている。スパッタリング法とは、スパッタリングターゲットをスパッタリングすることにより薄膜を得る方法であり、大面積化が容易であり、高性能の膜が効率よく成膜できるため、工業的に利用されている。また、近年、スパッタリングの方式として、反応性ガスの中でスパッタリングを行う反応性スパッタリング法や、ターゲットの裏面に磁石を設置して薄膜形成の高速化を図るマグネトロンスパッタリング法なども知られている。  In general, a sputtering method is known as one of methods for forming a thin film. The sputtering method is a method of obtaining a thin film by sputtering a sputtering target, is easy to increase in area, and can be efficiently formed into a high-performance film, and is used industrially. In recent years, as sputtering methods, there are known a reactive sputtering method in which sputtering is performed in a reactive gas, and a magnetron sputtering method in which a magnet is placed on the back surface of a target to increase the speed of thin film formation.

このようなスパッタリング法で用いられる薄膜のうち、特に、酸化インジウム−酸化錫(In−SnOの複合酸化物、以下、「ITO」という)膜は、可視光透過性が高く、かつ導電性が高いので透明導電膜として液晶表示装置やガラスの結露防止用発熱膜、赤外線反射膜等に幅広く用いられている。Among the thin films used in such a sputtering method, in particular, an indium oxide-tin oxide (In 2 O 3 —SnO 2 composite oxide, hereinafter referred to as “ITO”) film has high visible light transmittance, and Because of its high conductivity, it is widely used as a transparent conductive film for liquid crystal display devices, heat generation films for preventing condensation of glass, infrared reflective films, and the like.

このため、より効率よく低コストで成膜するために、現在においてもスパッタ条件やスパッタ装置などの改良が日々行われており、装置を如何に効率的に稼働させるかが重要となる。また、このようなITOスパッタリングにおいては、新しいスパッタリングターゲットをセットしてから初期アーク(異常放電)がなくなって製品を製造できるまでの時間が短いことと、一度セットしてからどれくらいの期間使用できるか(積算スパッタリング時間:ターゲットライフ)が問題となる。  For this reason, in order to form a film more efficiently and at a lower cost, improvement of sputtering conditions and a sputtering apparatus are carried out every day, and it is important how to operate the apparatus efficiently. In addition, in such ITO sputtering, the time from when a new sputtering target is set until the initial arc (abnormal discharge) disappears and the product can be manufactured is short, and how long can it be used once set? (Integrated sputtering time: target life) becomes a problem.

このようなITOスパッタリングターゲットは、酸化インジウム粉末及び酸化錫粉末を所定の割合で混合して乾式又は湿式で成形し、焼結したものであり(特許文献1)、高密度のITO焼結体を得るための高分散性の酸化インジウム粉末が提案されている(特許文献2,3,4等参照)。  Such an ITO sputtering target is obtained by mixing indium oxide powder and tin oxide powder at a predetermined ratio, molding them in a dry or wet manner, and sintering them (Patent Document 1). A highly dispersible indium oxide powder to be obtained has been proposed (see Patent Documents 2, 3, 4, etc.).

また、共沈法により湿式合成されたITO粉末をITO焼結体とすることも知られており(特許文献5等参照)、同様に高密度な焼結体を得るためのITO粉末の湿式合成方法が多数提案されている(特許文献6〜9等参照)。  It is also known that ITO powder wet-synthesized by the coprecipitation method is used as an ITO sintered body (see Patent Document 5 etc.), and wet synthesis of ITO powder to obtain a high-density sintered body similarly. Many methods have been proposed (see Patent Documents 6 to 9).

さらに、プラズマアーク中でインジウム−錫合金と酸素とを反応させて、マッハ1以上のガス流で所定の冷却速度以上で冷却することによりITO粉末を製造する方法が提案されている(特許文献10参照)。しかしながら、マッハ1以上の高速ガス流を用いるなど、設備が大がかりになり、安価に効率よくITO粉末を製造することができないという問題がある。  Furthermore, a method for producing ITO powder by reacting an indium-tin alloy with oxygen in a plasma arc and cooling at a predetermined cooling rate or higher with a gas flow of Mach 1 or higher is proposed (Patent Document 10). reference). However, there is a problem that the equipment becomes large, such as using a high-speed gas flow of Mach 1 or more, and ITO powder cannot be manufactured efficiently at low cost.

一方、ITO粉末の製造方法ではないが、金属酸化物微粒子の製造方法としては、以下の方法が提案されている。例えば、金属粉末をバーナ火炎中に供給し、酸化物超微粒子を製造し、固気相分離する各種方法が提案されている(特許文献11〜16等参照)。また、溶融金属に気体を噴射して粉体化し、気体で搬送される粉体を液体中に導入して化学反応および濃縮等の反応を起こさせて微粉体を製造する方法が提案されている(特許文献17参照)。さらに、金属バルク又は金属酸化物棒などの原料体にプラズマアークをあてて原料体を溶融蒸発させ、この蒸発ガスに反応・冷却ガスを吹き付けて超微粒子を形成する方法が提案されている(特許文献18〜20参照)。  On the other hand, although it is not a manufacturing method of ITO powder, the following method is proposed as a manufacturing method of metal oxide fine particles. For example, various methods have been proposed in which metal powder is supplied into a burner flame, ultrafine oxide particles are produced, and solid-phase separation is performed (see Patent Documents 11 to 16 and the like). In addition, a method has been proposed in which a gas is injected into molten metal to form powder, and a powder conveyed by gas is introduced into the liquid to cause a reaction such as a chemical reaction and concentration to produce a fine powder. (See Patent Document 17). Furthermore, a method has been proposed in which a plasma arc is applied to a raw material body such as a metal bulk or a metal oxide rod to melt and evaporate the raw material body, and a reaction / cooling gas is sprayed on the evaporated gas to form ultrafine particles (patent) Reference 18-20).

しかしながら、このような乾式合成は、ITO粉末に適さないためか、現在、ITO粉末の乾式合成は工業的に行われていない。
特開昭62−21751号公報 特開平5−193939号公報 特開平6−191846号公報 特開2001−261336号公報 特開昭62−21751号公報 特開平9−221322号公報 特開2000−281337号公報 特開2001−172018号公報 特開2002−68744号公報 特開平11−11946号公報 特公平1−55201号公報 特公平5−77601号公報 特許第3253338号公報 特許第3253339号公報 特許第3229353号公報 特許第3225073号公報 特開昭60−71037号公報 特開2002−253953号公報 特開2002−253954号公報 特開2002−263474号公報
However, because such dry synthesis is not suitable for ITO powder, dry synthesis of ITO powder is not industrially performed at present.
JP-A-62-221751 JP-A-5-193939 Japanese Patent Laid-Open No. 6-191846 JP 2001-261336 A JP-A-62-221751 JP-A-9-221322 JP 2000-281337 A JP 2001-172018 A JP 2002-68744 A Japanese Patent Laid-Open No. 11-11946 Japanese Patent Publication No. 1-55201 Japanese Patent Publication No. 5-77601 Japanese Patent No. 3253338 Japanese Patent No. 3253339 Japanese Patent No. 3229353 Japanese Patent No. 3225073 JP 60-71037 A JP 2002-253953 A Japanese Patent Application Laid-Open No. 2002-253954 JP 2002-263474 A

本発明はこのような事情に鑑み、酸化物微粒子等の微粒子をより簡便な装置で且つ低コストで製造でき、ITO粉末の製造に好適な微粒子の製造方法及び製造装置を提供することを課題とする。  In view of such circumstances, the present invention has an object to provide a production method and production apparatus for fine particles suitable for production of ITO powder, which can produce fine particles such as oxide fine particles with a simpler apparatus and at lower cost. To do.

前記課題を解決する本発明の第1の態様は、微粒子を製造する方法において、原料を液流、液滴又は粉末として、熱源中に供給し、生成物を霧状の液状流体により微粒子として捕獲し、気液分離により前記微粒子をスラリーとして回収することを特徴とする微粒子の製造方法にある。  According to a first aspect of the present invention for solving the above-described problem, in the method for producing fine particles, the raw material is supplied as a liquid stream, droplets or powder into a heat source, and the product is captured as fine particles by a mist-like liquid fluid. In addition, the present invention provides a method for producing fine particles, wherein the fine particles are recovered as a slurry by gas-liquid separation.

かかる第1の態様では、原料が熱源中に供給されて得られた生成物は、霧状の液状流体により微粒子として捕獲されて気液分離により効率的に回収される。  In the first aspect, the product obtained by supplying the raw material into the heat source is captured as fine particles by the atomized liquid fluid and efficiently recovered by gas-liquid separation.

本発明の第2の態様は、第1の態様において、原料の溶湯から液流又は液滴を形成して前記熱源中に供給することを特徴とする微粒子の製造方法にある。  According to a second aspect of the present invention, there is provided a method for producing fine particles according to the first aspect, wherein a liquid flow or droplets are formed from a molten raw material and supplied into the heat source.

かかる第2の態様では、原料としての金属若しくは合金などの溶湯からの液流又は液滴は熱源中で場合によっては酸化物となり、霧状の液状流体により微粒子として捕獲される。  In the second aspect, a liquid flow or droplets from a molten metal such as a metal or an alloy as a raw material becomes an oxide in some cases in a heat source, and is captured as fine particles by a mist-like liquid fluid.

本発明の第3の態様は、第1の態様において、原料のアトマイズ粉末を形成して前記熱源中に供給することを特徴とする微粒子の製造方法にある。  According to a third aspect of the present invention, there is provided a method for producing fine particles according to the first aspect, wherein a raw material atomized powder is formed and supplied into the heat source.

かかる第3の態様では、原料の金属若しくは合金などはアトマイズ粉末として熱源中に供給され、微粒子とされる。  In the third aspect, the raw material metal or alloy is supplied as atomized powder into the heat source to form fine particles.

本発明の第4の態様は、第1〜3の何れかの態様において、前記気液分離をサイクロンを用いて行うことを特徴とする微粒子の製造方法にある。  According to a fourth aspect of the present invention, in any one of the first to third aspects, the gas-liquid separation is performed using a cyclone.

かかる第4の態様では、サイクロンにより気液分離されて微粒子が液状流体のスラリーとして回収される。  In the fourth aspect, gas-liquid separation is performed by the cyclone, and the fine particles are recovered as a liquid fluid slurry.

本発明の第5の態様は、第1〜4の何れかの態様において、前記熱源が、アセチレン炎又はDCプラズマ炎であることを特徴とする微粒子の製造方法にある。  According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the heat source is an acetylene flame or a DC plasma flame.

かかる第5の態様では、原料は、アセチレン炎又はDCプラズマ炎により微粒子とされる。  In the fifth aspect, the raw material is made into fine particles by an acetylene flame or a DC plasma flame.

本発明の第6の態様は、第1〜5の何れかの態様において、前記液状流体が、水であることを特徴とする微粒子の製造方法にある。  According to a sixth aspect of the present invention, there is provided the method for producing fine particles according to any one of the first to fifth aspects, wherein the liquid fluid is water.

かかる第6の態様では、生成物は水により捕獲され、スラリーとして回収される。  In such a sixth aspect, the product is captured by water and recovered as a slurry.

本発明の第7の態様は、第1〜6の何れかの態様において、前記原料が、金属、合金、酸化物、窒化物及び酸窒化物から選択される少なくとも一種であることを特徴とする微粒子の製造方法にある。  According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the raw material is at least one selected from metals, alloys, oxides, nitrides, and oxynitrides. It exists in the manufacturing method of microparticles.

かかる第7の態様では、金属、合金、酸化物、窒化物及び酸窒化物などの原料は、微粒子とされる。  In the seventh aspect, raw materials such as metals, alloys, oxides, nitrides, and oxynitrides are fine particles.

本発明の第8の態様は、第1〜7の何れかの態様において、前記熱源が、酸化雰囲気又は窒化雰囲気の何れかであり、酸化物、窒化物及び酸窒化物の何れかの微粒子を得ることを特徴とする微粒子の製造方法にある。  According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the heat source is either an oxidizing atmosphere or a nitriding atmosphere, and fine particles of any of oxide, nitride, and oxynitride are used. It is in the manufacturing method of microparticles | fine-particles characterized by obtaining.

かかる第8の態様では、原料は、酸化雰囲気又は窒化雰囲気下の熱源中で、酸化物、窒化物又は酸窒化物の微粒子とされる。  In the eighth aspect, the raw material is fine particles of oxide, nitride or oxynitride in a heat source in an oxidizing atmosphere or a nitriding atmosphere.

本発明の第9の態様は、第1〜7の何れかの態様において、前記原料が、In−Sn合金又はITO粉末であり、酸化インジウム−酸化錫粉末を製造することを特徴とする微粒子の製造方法にある。  A ninth aspect of the present invention is the fine particle according to any one of the first to seventh aspects, wherein the raw material is an In—Sn alloy or ITO powder, and an indium oxide-tin oxide powder is produced. In the manufacturing method.

かかる第9の態様では、In−Sn合金又はITO粉末からIO粉末がスラリーとして製造される。  In the ninth aspect, IO powder is produced as a slurry from In—Sn alloy or ITO powder.

本発明の第10の態様は、第9の態様において、錫含有量がSnO換算で2.3〜45質量%である酸化インジウム−酸化錫粉末を製造することを特徴とする微粒子の製造方法にある。A tenth aspect of the present invention is the method for producing fine particles according to the ninth aspect, wherein an indium oxide-tin oxide powder having a tin content of 2.3 to 45% by mass in terms of SnO 2 is produced. It is in.

かかる第10の態様では、所定量の酸化錫によりITOの導電性が保持される。  In the tenth aspect, the conductivity of ITO is maintained by a predetermined amount of tin oxide.

本発明の第11の態様は、第1〜10の何れかの態様において、前記生成物の前記液状流体により捕獲する際の最大速度が、150m/sec以下であることを特徴とする微粒子の製造方法にある。  The eleventh aspect of the present invention is the production of fine particles according to any one of the first to tenth aspects, wherein a maximum speed when the product is captured by the liquid fluid is 150 m / sec or less. Is in the way.

かかる第11の態様では、比較的低速の流速で微粒子を製造することができる。  In the eleventh aspect, fine particles can be produced at a relatively low flow rate.

本発明の第12の態様は、熱源中に原料を液流、液滴又は粉末として供給することにより得られる生成物を気体流体と共に導入する導入口と、導入された生成物に対して霧状の液状流体を噴射する流体噴射手段と、液状流体で捕獲された微粒子を気液分離して前記微粒子のスラリーを得る気液分離手段と、液状流体で捕獲できなかった微粒子を含む雰囲気流体の一部を流体滴噴射位置まで戻して循環させる循環手段とを具備することを特徴とする微粒子の製造装置にある。  According to a twelfth aspect of the present invention, there is provided an inlet for introducing a product obtained by supplying a raw material as a liquid stream, droplets or powder into a heat source together with a gas fluid, A fluid ejecting means for ejecting the liquid fluid; a gas-liquid separating means for obtaining a slurry of the fine particles by gas-liquid separation of the fine particles captured by the liquid fluid; and an atmosphere fluid containing the fine particles that could not be captured by the liquid fluid. And a circulating means for circulating the part back to the fluid droplet ejection position.

かかる第12の態様では、原料が熱源中に供給されて得られた生成物は、霧状の液状流体により微粒子として捕獲されて気液分離され、雰囲気流体の少なくとも一部は循環手段により循環されて再度気液分離されることにより効率的に回収される。  In the twelfth aspect, the product obtained by supplying the raw material into the heat source is captured as fine particles by the atomized liquid fluid and separated into gas and liquid, and at least a part of the atmospheric fluid is circulated by the circulation means. Then, it is efficiently recovered by gas-liquid separation again.

本発明の第13の態様は、第12の態様において、前記気液分離手段の下流側にさらに、液状流体で捕獲できなかった微粒子を含む雰囲気流体の一部を導入すると共に霧状の液状流体を噴射し気液分離して前記微粒子のスラリーを得る第2の気液分離手段を具備することを特徴とする微粒子の製造装置にある。  In a thirteenth aspect of the present invention, in the twelfth aspect, a part of the atmospheric fluid containing fine particles that could not be captured by the liquid fluid is further introduced to the downstream side of the gas-liquid separation means, and the atomized liquid fluid And a second gas-liquid separation means for obtaining a slurry of the fine particles by gas-liquid separation.

かかる第13の態様では、第2の気液分離手段により、回収できなかった微粒子が効率的に回収される。  In the thirteenth aspect, the second gas-liquid separation means efficiently recovers the fine particles that could not be recovered.

本発明の第14の態様は、第13の態様において、前記気液分離手段の下流側にさらに、液状流体で捕獲できなかった微粒子を含む雰囲気流体の一部を前記第2の気液分離手段の導入部まで戻す第2の循環手段を具備することを特徴とする微粒子の製造装置にある。  According to a fourteenth aspect of the present invention, in the thirteenth aspect, a part of the atmospheric fluid containing fine particles that could not be captured by the liquid fluid is further disposed downstream of the gas-liquid separation means. In the fine particle production apparatus, the second circulation means for returning to the introduction portion is provided.

かかる第14の態様では、第2の気液分離手段でスラリーとして回収できなかった雰囲気ガスが再度気液分離され、微粒子が効率的に回収される。  In the fourteenth aspect, the atmospheric gas that could not be recovered as a slurry by the second gas-liquid separation means is again gas-liquid separated, and the fine particles are efficiently recovered.

本発明の第15の態様は、第12〜14の何れかの態様において、前記気液分離手段がサイクロンであることを特徴とする微粒子の製造装置にある。  According to a fifteenth aspect of the present invention, in any one of the twelfth to fourteenth aspects, the gas-liquid separation unit is a cyclone.

かかる第15の態様では、サイクロンにより気液分離を連続的且つ効率的に行うことができる。  In the fifteenth aspect, gas-liquid separation can be performed continuously and efficiently by the cyclone.

本発明の第16の態様は、第12〜15の何れかの態様において、前記流体噴射手段が噴射した液状流体に微粒子が捕獲される際の最大速度が150m/sec以下であることを特徴とする微粒子の製造装置にある。  A sixteenth aspect of the present invention is characterized in that, in any one of the twelfth to fifteenth aspects, a maximum speed when the fine particles are captured in the liquid fluid ejected by the fluid ejecting means is 150 m / sec or less. It is in the production apparatus of fine particles.

かかる第16の態様では、比較的低速の流速で微粒子を製造することができる。  In the sixteenth aspect, fine particles can be produced at a relatively low flow rate.

以上説明したように、本発明によれば、熱源中に原料金属若しくは合金を液流、液滴又は粉末として導入することにより得られた生成物を霧状の液状流体で捕獲することにより、微粒子を効率よく簡便に製造することができるという効果を奏する。  As described above, according to the present invention, fine particles can be obtained by capturing a product obtained by introducing a raw metal or alloy into a heat source as a liquid stream, droplet or powder with a mist-like liquid fluid. Can be produced efficiently and simply.

[図1]本発明の一実施形態に係る微粒子の製造装置の概略構成図である。本発明の実施例1のITO粉末のX線回折の結果を示す図である。 本発明の実施例2のITO粉末のX線回折の結果を示す図である。 本発明の比較例1のITO粉末のX線回折の結果を示す図である。 本発明の比較例2のITO粉末のX線回折の結果を示す図である。 本発明の比較例3のITO粉末のX線回折の結果を示す図である。 本発明の実施例3のITO粉末のX線回折の結果を示す図である。 本発明の比較例4のITO粉末のX線回折の結果を示す図である。 FIG. 1 is a schematic configuration diagram of an apparatus for producing fine particles according to an embodiment of the present invention. It is a figure which shows the result of the X-ray diffraction of the ITO powder of Example 1 of this invention. It is a figure which shows the result of the X-ray diffraction of the ITO powder of Example 2 of this invention. It is a figure which shows the result of the X-ray diffraction of the ITO powder of the comparative example 1 of this invention. It is a figure which shows the result of the X-ray diffraction of the ITO powder of the comparative example 2 of this invention. It is a figure which shows the result of the X-ray diffraction of the ITO powder of the comparative example 3 of this invention. It is a figure which shows the result of the X-ray diffraction of the ITO powder of Example 3 of this invention. It is a figure which shows the result of the X-ray diffraction of the ITO powder of the comparative example 4 of this invention.

本発明の微粒子を製造する方法では、原料を、液流、液滴又は粉末として、熱源中に供給する。  In the method for producing fine particles of the present invention, the raw material is supplied into the heat source as a liquid stream, droplets or powder.

ここで、原料は、例えば、金属若しくは合金であり、金属若しくは合金としては、例えば、Mg、Al、Zr、Fe、Si、In、Snなどの金属、又はこれらの合金である。また、原料として、上述した金属若しくは合金などの酸化物、窒化物及び酸窒化物を用いることができる。なお、ここで、酸化物は、複合酸化物を含むものであり、窒化物は複合窒化物を含むものである。  Here, the raw material is, for example, a metal or an alloy, and the metal or alloy is, for example, a metal such as Mg, Al, Zr, Fe, Si, In, or Sn, or an alloy thereof. In addition, the above-described oxides, nitrides, and oxynitrides such as metals or alloys can be used as raw materials. Here, the oxide includes a composite oxide, and the nitride includes a composite nitride.

かかる原料は、溶融した状態の液流又は液滴として供給してもよいし、粉末状態として供給してもよい。すなわち、溶湯溜などから連続的に液流として若しくは液滴として滴下してもよく、又はアトマイズ粉末を形成してこれを供給するようにしてもよい。  Such a raw material may be supplied as a molten liquid stream or droplet, or may be supplied as a powder. That is, it may be dripped continuously as a liquid flow or as a droplet from a molten metal reservoir or the like, or atomized powder may be formed and supplied.

例えば、In−Sn合金を原料とすると、ITO粉末を得ることができる。また、ITO粉末を原料としても、性状の異なるITO粉末を得ることができる。  For example, when an In—Sn alloy is used as a raw material, ITO powder can be obtained. Moreover, even if ITO powder is used as a raw material, ITO powder having different properties can be obtained.

また、熱源としては、酸化雰囲気又は窒化雰囲気可能な熱源を挙げることができ、例えば、アセチレン炎、DCプラズマ炎などを挙げることができる。熱源の温度は、金属若しくは合金又は酸化物や窒化物あるいは酸窒化物を溶融し、十分に酸化若しくは窒化できる程度であればよく、特に制限されない。なお、アセチレン炎の場合には、数千℃以上、DCプラズマ炎の場合には、数万℃以上であるといわれている。  Examples of the heat source include a heat source capable of oxidizing atmosphere or nitriding atmosphere, and examples thereof include acetylene flame and DC plasma flame. The temperature of the heat source is not particularly limited as long as it can be sufficiently oxidized or nitrided by melting a metal, an alloy, an oxide, a nitride, or an oxynitride. In the case of acetylene flame, it is said that the temperature is several thousand ° C. or higher, and in the case of DC plasma flame, it is said to be several tens of thousands ° C. or higher.

このようなアセチレン炎又はDCプラズマ炎に原料を液流、液滴又は粉末として供給すると、生成物は、そのまま又は酸化物や窒化物あるいは酸窒化物として気体流と共に得られる。原料をそのまま金属若しくは合金の生成物として得るか、又は金属若しくは合金の酸化物や窒化物あるいは酸窒化物とするかは熱源の火炎の状態によって決定され、酸化雰囲気にすると、金属若しくは合金の酸化物あるいは酸窒化物の生成物が得られ、窒化雰囲気とすると、金属若しくは合金の窒化物や酸窒化物が得られる。また、原料として、酸化物や窒化物あるいは酸窒化物を用いても、性状の異なる酸化物や窒化物あるいは酸窒化物を得ることができる。  When the raw material is supplied to such an acetylene flame or DC plasma flame as a liquid stream, droplets or powder, the product is obtained as it is or as an oxide, nitride or oxynitride together with the gas stream. Whether the raw material is directly obtained as a metal or alloy product, or whether it is an oxide or nitride or oxynitride of a metal or alloy is determined by the state of the flame of the heat source. When a nitriding atmosphere is obtained, a metal or alloy nitride or oxynitride is obtained. Further, even when oxides, nitrides, or oxynitrides are used as raw materials, oxides, nitrides, or oxynitrides having different properties can be obtained.

本発明では、得られた生成物を霧状の液状流体により捕獲する。すなわち、アセチレン炎やDCプラズマ炎の噴流と共に流れる生成物に霧状の液状流体、好ましくは霧状の水を噴霧する。これにより、生成物は急冷されて微粒子となり、噴霧された液状流体のスラリーとなる。  In the present invention, the obtained product is captured by a mist liquid fluid. That is, a mist-like liquid fluid, preferably mist-like water, is sprayed on the product flowing along with the jet of acetylene flame or DC plasma flame. As a result, the product is rapidly cooled to form fine particles, and becomes a sprayed liquid fluid slurry.

ここで、霧状の液状流体の供給は、得られる生成物を捕獲して冷却できるように行えばよく、特に限定されない。例えば、水を用いる場合には、常温の水、好ましくは、常温の純水を用いればよいが、冷却水を用いてもよい。  Here, the supply of the mist-like liquid fluid may be performed so that the obtained product can be captured and cooled, and is not particularly limited. For example, when water is used, room temperature water, preferably pure water at room temperature, may be used, but cooling water may be used.

生成物を微粒子として捕獲する場合、捕獲する際の最大速度は、例えば、150m/sec以下、好ましくは100m/sec以下程度である。  When capturing the product as fine particles, the maximum speed for capturing is, for example, 150 m / sec or less, and preferably about 100 m / sec or less.

本発明では、噴霧された液状流体に捕獲された微粒子を含む液状流体を気液分離し、微粒子をスラリーとして回収する。ここで、スラリーの回収方法は特に限定されないが、好ましくは、サイクロンを用いて行うことができる。  In the present invention, a liquid fluid containing fine particles trapped in the sprayed liquid fluid is gas-liquid separated, and the fine particles are recovered as a slurry. Here, the method for recovering the slurry is not particularly limited, but it can be preferably performed using a cyclone.

本発明方法を用いると、原料としてIn−Sn合金若しくはITO粉末を用いることにより、酸化インジウム−酸化錫(ITO)粉末を製造することができる。このように製造されたITO粉末は、このようにIn中のSnO固溶量が高水準なので、焼結性が高く、比較的容易に高密度の焼結体が得られ、この結果、ライフの長いターゲットを得ることができる。なお、各種製造方法により製造されたITO粉末、又は焼結されたITO焼結体を粉砕したITO粉末を原料とした場合、原料とは異なる性状で、In中のSnO固溶量が高水準なITO粉末を得ることができる。When the method of the present invention is used, an indium oxide-tin oxide (ITO) powder can be produced by using an In—Sn alloy or ITO powder as a raw material. Since the ITO powder thus produced has a high level of SnO 2 solid solution in In 2 O 3 as described above, the sinterability is high, and a high-density sintered body can be obtained relatively easily. As a result, a target with a long life can be obtained. In addition, when ITO powder manufactured by various manufacturing methods or ITO powder obtained by pulverizing a sintered ITO sintered body is used as a raw material, the amount of SnO 2 solid solution in In 2 O 3 is different from that of the raw material. Can obtain a high level of ITO powder.

なお、かかるITO粉末は、ITOスパッタリングターゲットの材料として用いることができる。かかるITOスパッタリングターゲットの材料としては、錫含有量がSnO換算で2.3〜45質量%であるのが好ましい。Such ITO powder can be used as a material for an ITO sputtering target. As a material for the ITO sputtering target, it is preferable that the tin content is 2.3 to 45% by mass in terms of SnO 2 .

以下、本発明方法を実施する微粒子の製造装置の一例を図1を参照しながら説明する。  Hereinafter, an example of a fine particle production apparatus for carrying out the method of the present invention will be described with reference to FIG.

この装置は、酸化雰囲気又は窒化雰囲気可能な熱源であるアセチレン炎又はDCプラズマ炎からなる火炎1中に供給された金属若しくは合金などの原料2を液流、液滴又は粉末として供給することにより得られる生成物3を気体流体と共に導入する導入口10と、導入された微粒子に対して霧状の液状流体を噴射する流体噴射手段20と、液状流体で捕獲された微粒子を気液分離して前記微粒子のスラリーを得る気液分離手段であるサイクロン30と、液状流体で捕獲できなかった微粒子を含む雰囲気流体の一部を流体滴噴射位置まで戻して循環させる循環手段40とを具備する。  This apparatus is obtained by supplying a raw material 2 such as a metal or an alloy supplied as a liquid flow, a droplet or a powder into a flame 1 composed of an acetylene flame or a DC plasma flame which is a heat source capable of oxidizing atmosphere or nitriding atmosphere. The product inlet 3 for introducing the product 3 together with the gas fluid, the fluid ejecting means 20 for ejecting a mist-like liquid fluid to the introduced fine particles, and the fine particles captured by the liquid fluid are separated into gas and liquid. A cyclone 30 as gas-liquid separation means for obtaining a slurry of fine particles, and a circulation means 40 for returning a part of the atmospheric fluid containing fine particles that could not be captured by the liquid fluid to a fluid droplet ejecting position and circulating them.

ここで、導入口10は、生成物を含む気体流を導入できるものであれば特に限定されないが、気体流を吸引するようにしてもよい。  Here, the introduction port 10 is not particularly limited as long as it can introduce a gas flow containing a product, but it may suck the gas flow.

流体噴射手段20は、導入口10が設けられた導入管11の下流側に設けられて流体、例えば、水を噴射する複数の噴射ノズル21と、噴射ノズル21へ流体を導入するためにポンプ22及び流体を湛える流体タンク23とを有する。噴射ノズル21からの流体の噴射の方向は特に限定されないが、導入口10から導入される気体流の流れ方向に向かって合流する方向に噴射するのがよい。導入口10から導入された気体流に含有される生成物3は、噴霧された流体、例えば、水により冷却され、微粒子として捕獲される。なお、導入管11の噴射ノズル21の下流側には、流路を絞ったベンチュリー部12を設けて気液混合物の流速の低下を防止しているが、ベンチュリー部12は必ずしも設ける必要はない。また、噴射ノズル21及びポンプ22は、必ずしも設ける必要はなく、気体流の流れによる吸引力により液体を吸引して噴射するようにしてもよい。  The fluid ejecting means 20 is provided on the downstream side of the introduction pipe 11 provided with the introduction port 10, a plurality of ejection nozzles 21 for ejecting fluid, for example, water, and a pump 22 for introducing fluid into the ejection nozzle 21. And a fluid tank 23 for holding fluid. The direction in which the fluid is ejected from the ejection nozzle 21 is not particularly limited. The product 3 contained in the gas flow introduced from the introduction port 10 is cooled by a sprayed fluid, for example, water, and captured as fine particles. In addition, although the venturi part 12 which restrict | squeezed the flow path is provided in the downstream of the injection nozzle 21 of the inlet pipe 11, the fall of the flow velocity of a gas-liquid mixture is prevented, The venturi part 12 does not necessarily need to be provided. Further, the injection nozzle 21 and the pump 22 are not necessarily provided, and the liquid may be sucked and jetted by the suction force generated by the gas flow.

導入口10が設けられた導入管11は、気液分離手段であるサイクロン30の導入口31に連通している。サイクロン30の導入口31から導入された気液混合物は、サイクロン本体32の内壁に沿って周回する渦流33となって気液分離され、液体成分、すなわち、微粒子を含むスラリーが下部に落下し、気体成分は排気口34から排出されるようになっている。  The introduction pipe 11 provided with the introduction port 10 communicates with the introduction port 31 of the cyclone 30 which is a gas-liquid separation means. The gas-liquid mixture introduced from the introduction port 31 of the cyclone 30 is separated into a gas-liquid mixture that circulates along the inner wall of the cyclone main body 32, and the liquid component, that is, the slurry containing fine particles falls to the lower part. The gas component is discharged from the exhaust port 34.

本実施形態では、排気口34に循環手段40が設けられている。すなわち、排気口34には、導入管11の導入口10近傍に連通する循環パイプ41が設けられ、循環パイプ41の途中にブロア42が介装されており、これらが循環手段40を構成している。この循環手段40により、捕獲しきれなかった粉末を噴射ノズル21の上流側に戻し、捕獲効率を向上させている。  In the present embodiment, the circulation means 40 is provided at the exhaust port 34. That is, the exhaust port 34 is provided with a circulation pipe 41 communicating with the vicinity of the introduction port 10 of the introduction pipe 11, and a blower 42 is interposed in the middle of the circulation pipe 41, and these constitute the circulation means 40. Yes. By this circulation means 40, the powder that could not be captured is returned to the upstream side of the injection nozzle 21 to improve the capture efficiency.

また、サイクロン30で気液分離された液体成分は水排出口36から排出され、流体タンク23に湛えられる。なお、この流体タンク23に湛えられたスラリーの上澄みの水が循環手段40により循環されているので、徐々に微粒子成分の濃度の濃いスラリーが得られる。  Further, the liquid component separated by gas and liquid in the cyclone 30 is discharged from the water discharge port 36 and is stored in the fluid tank 23. Since the water in the supernatant of the slurry stored in the fluid tank 23 is circulated by the circulation means 40, a slurry having a concentration of fine particle components is gradually obtained.

サイクロン30からの排気の大部分は排気口34から循環パイプ41に循環されるが、排気の一部、例えば、十分の一程度は第2の排気口35から排気されるようになっている。  Most of the exhaust from the cyclone 30 is circulated from the exhaust port 34 to the circulation pipe 41, but a part of the exhaust, for example, about one tenth, is exhausted from the second exhaust port 35.

本実施形態では、第2の排気口35には、第2の気液分離手段である第2のサイクロン50が排気パイプ43を介して接続されている。第2のサイクロン50は、基本的にはサイクロン30と同一の構造を有して気液分離作用を有する。すなわち、排気パイプ43が接続される導入口51から導入された気液混合物は、サイクロン本体52の内壁に沿って周回する渦流53となって気液分離され、液体成分、すなわち、微粒子を含むスラリーは、下部に落下し、水排出口54から排出され、流体タンク61に溜まるようになっている。さらに詳言すると、排気パイプ43の途中には流路を絞ったベンチュリー部44が設けられており、このベンチュリー部44と、流体タンク61とを連通する水循環パイプ62が設けられている。これにより、ベンチュリー部44の高速の気体の流れにより、流体タンク61中の水が吸引されてベンチュリー部44内に噴射され、気体中に残存する微粒子を液体中に捕獲するようにしている。一方、排気口55には排気パイプ71が連結され、排気パイプ71には第2のブロア72が設けられ、当該第2のブロア72を介して排気口55からの気体が排気されるようになっている。なお、水タンク61の水を排気パイプ43内に噴霧するには、上述したサイクロン30のように、ポンプと噴霧ノズルを用いて行ってもよい。また、流体タンク61には、上述したように、フィルターを設けてもよいし、中和して微粒子を分離する沈降分離槽を設けてもよい。さらに、排気口55からの排気の一部を排気パイプ43のベンチュリー部44の上流側に循環させるようにして、さらに捕獲効率を高めてもよい。  In the present embodiment, the second exhaust port 35 is connected to the second cyclone 50 as the second gas-liquid separation means via the exhaust pipe 43. The second cyclone 50 basically has the same structure as the cyclone 30 and has a gas-liquid separation action. That is, the gas-liquid mixture introduced from the inlet 51 to which the exhaust pipe 43 is connected is separated into a gas-liquid mixture that circulates along the inner wall of the cyclone main body 52 and is separated into a liquid component, that is, a slurry containing fine particles. Falls to the lower part, is discharged from the water discharge port 54, and accumulates in the fluid tank 61. More specifically, a venturi section 44 with a narrowed flow path is provided in the middle of the exhaust pipe 43, and a water circulation pipe 62 that connects the venturi section 44 and the fluid tank 61 is provided. Thereby, the water in the fluid tank 61 is sucked by the high-speed gas flow of the venturi section 44 and is injected into the venturi section 44, so that the fine particles remaining in the gas are captured in the liquid. On the other hand, an exhaust pipe 71 is connected to the exhaust port 55, and a second blower 72 is provided in the exhaust pipe 71, and the gas from the exhaust port 55 is exhausted through the second blower 72. ing. In addition, in order to spray the water of the water tank 61 in the exhaust pipe 43, you may carry out using a pump and a spray nozzle like the cyclone 30 mentioned above. Further, as described above, the fluid tank 61 may be provided with a filter, or may be provided with a sedimentation separation tank that neutralizes and separates the fine particles. Furthermore, capture efficiency may be further increased by circulating a part of the exhaust from the exhaust port 55 to the upstream side of the venturi portion 44 of the exhaust pipe 43.

なお、サイクロン30のみで微粒子の捕獲効率が十分な場合には、第2のサイクロン50は、必ずしも設ける必要はなく、又は、さらに捕獲効率を高めたい場合には、さらに複数のサイクロンを連結してもよい。  Note that the second cyclone 50 is not necessarily provided when the cyclone 30 alone has sufficient capture efficiency of the fine particles, or a plurality of cyclones are further connected to further increase the capture efficiency. Also good.

以上説明した実施形態の装置を用いて微粒子を製造した例を以下に示す。  An example of producing fine particles using the apparatus of the embodiment described above will be shown below.

[実施例1]
In−Sn合金(Sn9.6wt%)のアトマイズ粉末(平均粒径45μm)を、アセチレン炎に導入してITO(In:SnO=90:10wt%)粉末を乾式合成し、これをバグフィルターにより乾式回収し、実施例1のITO粉末とした。
[Example 1]
Atomized powder (average particle size 45 μm) of In—Sn alloy (Sn 9.6 wt%) was introduced into acetylene flame to dry-synthesize ITO (In 2 O 3 : SnO 2 = 90: 10 wt%) powder. The powder was collected by dry using a bag filter and used as the ITO powder of Example 1.

[実施例2]
実施例1と同様にしてアセチレン炎より乾式合成したITO粉末を、スプレー水により式回収し、これを実施例2のITO粉末とした。
[Example 2]
The ITO powder dry-synthesized from the acetylene flame in the same manner as in Example 1 was recovered by spray water and used as the ITO powder of Example 2.

(比較例1)
湿式合成された酸化インジウム粉末を1000℃で仮焼した酸化インジウム粉末90質量%と、同様に湿式合成された酸化錫を1000℃で仮焼した酸化錫粉末10質量%とを乳鉢で混合したものを比較例1とし、標準品1とした。
(Comparative Example 1)
90% by mass of indium oxide powder obtained by calcining wet-synthesized indium oxide powder at 1000 ° C. and 10% by mass of tin oxide powder obtained by calcining wet-synthesized tin oxide at 1000 ° C. in a mortar Was Comparative Example 1 and was designated as Standard Product 1.

(比較例2)
共沈法により湿式合成されたITO粉末を比較例2のITO粉末とした。
(Comparative Example 2)
The ITO powder wet-synthesized by the coprecipitation method was used as the ITO powder of Comparative Example 2.

共沈法による湿式合成の手順は以下の通りである。すなわち、まず、In(4N)20gを硝酸(試薬特級:濃度60〜61%)133ccに常温にて溶解し(pH=−1.5)、一方、Sn(4N)2.12gを塩酸(試薬特級:濃度35〜36%)100ccに常温にて溶解し(pH=−1.9)、両者を混合して混酸溶液とした。このとき、析出物はなく、pHは−1.5であった。次いで、この混酸に25%アンモニア水(試薬特級)を混合して中和してpH6.5としたところ、白い沈殿物を析出した。数時間後、上水を捨てて純水2リットル(L)にて3回洗浄した後、80℃にて乾燥させた後、600℃で3時間培焼、脱水反応させ、湿式合成ITO粉末を得た。  The procedure of wet synthesis by the coprecipitation method is as follows. That is, first, 20 g of In (4N) was dissolved in 133 cc of nitric acid (special grade reagent: concentration 60 to 61%) at room temperature (pH = -1.5), while 2.12 g of Sn (4N) was dissolved in hydrochloric acid (reagent). (Special grade: concentration 35 to 36%) dissolved in 100 cc at room temperature (pH = -1.9), and both were mixed to obtain a mixed acid solution. At this time, there was no deposit and pH was -1.5. Subsequently, 25% aqueous ammonia (special grade reagent) was mixed with this mixed acid and neutralized to pH 6.5, whereby a white precipitate was deposited. Several hours later, the water is discarded, washed 3 times with 2 liters (L) of pure water, dried at 80 ° C., cultivated at 600 ° C. for 3 hours, and dehydrated to obtain a wet synthetic ITO powder. Obtained.

(比較例3)
湿式合成された酸化インジウム粉末と酸化錫粉末との混合物(酸化錫10wt%)の粉末を用いて1550℃以上で焼結した焼結体を粉砕したものを比較例3のITO粉末とした。
(Comparative Example 3)
An ITO powder of Comparative Example 3 was obtained by pulverizing a sintered body sintered at 1550 ° C. or higher using a wet-synthesized powder of a mixture of indium oxide powder and tin oxide powder (tin oxide 10 wt%).

(試験例1)
各実施例1,2及び各比較例1〜3のITO粉末について、SnO固溶量を求めた。手順は以下の通りである。なお、試験の実施に先駆けて、実施例1,2及び比較例2,3のITO粉末については、1000℃×3時間、大気中で仮焼して、微小粒子として析出しているSnOを成長させてSnOとして検出され易いようにした。
1.まず、誘導結合高周波プラズマ分光分析(ICP分光分析)した。この結果より、In、Sn以外は全て酸素Oであるとし、そのOの量は欠損している可能性があると仮定して、InとSnとの比を求め、このIn及びSnの全てがIn、SnOになったとしたときの重量比を算出した。
2.各実施例1,2及び各比較例1〜3のITO粉末について、粉末X線回折(XRD:(株)マックサイエンス社製、MXP18II)による分析を行い、SnO析出量を求めた。すなわち、回折結果から、間化合物(InSn12)の有無を確認し、間化合物が検出されない場合には、比較例1の標準品1として各試料のIn(222)積分回折強度及びSnO(110)積分回折強度の比からSnOの析出量(質量%)を求めた。すなわち、SnOの析出量(質量%)は、X線回折の積分回折強度比から求められるSnOの含有量であり、Inに固溶していないSnOが1000℃程度の仮焼により成長してX線回折のSnO(110)のピークとなると仮定している。X線回折の結果を図2〜図6に示す。
3.1及び2の結果から、ICP分析で検出されたが、X線回折ではSnO(110)とは検出されないSnOを、In中のSnO固溶量とした。
(Test Example 1)
For the ITO powders of Examples 1 and 2 and Comparative Examples 1 to 3, the SnO 2 solid solution amount was determined. The procedure is as follows. Prior to the test, the ITO powders of Examples 1 and 2 and Comparative Examples 2 and 3 were calcined in the atmosphere at 1000 ° C. for 3 hours to precipitate SnO 2 precipitated as fine particles. and as easily detected as SnO 2 grown.
1. First, inductively coupled high-frequency plasma spectroscopic analysis (ICP spectroscopic analysis) was performed. From this result, it is assumed that everything except In and Sn is oxygen O, and assuming that there is a possibility that the amount of O is missing, the ratio of In and Sn is obtained. The weight ratio of In 2 O 3 and SnO 2 was calculated.
2. The ITO powders of Examples 1 and 2 and Comparative Examples 1 to 3 were analyzed by powder X-ray diffraction (XRD: manufactured by Mac Science, Inc., MXP18II), and the SnO 2 precipitation amount was determined. That is, from the diffraction results, the presence or absence of an intercalation compound (In 4 Sn 3 O 12 ) is confirmed. If no intercalation compound is detected, the In 2 O 3 (222) integral of each sample is used as the standard product 1 of Comparative Example 1. The precipitation amount (mass%) of SnO 2 was determined from the ratio of the diffraction intensity and the SnO 2 (110) integrated diffraction intensity. That is, the amount of precipitated SnO 2 (mass%) is the content of SnO 2 obtained from integrated diffraction intensity ratio of X-ray diffraction, temporary SnO 2 not dissolved in the In 2 O 3 is about 1000 ° C. It is assumed that it grows by firing and becomes a SnO 2 (110) peak of X-ray diffraction. The results of X-ray diffraction are shown in FIGS.
From 3.1 and 2 results, but was detected by ICP analysis, the X-ray diffraction of SnO 2 not detected and SnO 2 (110), and a SnO 2 solid solution amount in an In 2 O 3.

これらの結果を表1に示す。  These results are shown in Table 1.

この結果、実施例1,2のITO粉末では、SnO固溶量が2.35wt%、2.42wt%と、湿式合成したITO粉末である比較例2の2.26wt%より多いことがわかった。なお、一度焼結体としたものを粉砕した比較例3のITO粉末では間化合物が検出され、SnO固溶量は測定不能であった。As a result, in the ITO powders of Examples 1 and 2 , the SnO 2 solid solution amount is 2.35 wt%, 2.42 wt%, which is larger than 2.26 wt% of Comparative Example 2 which is a wet-synthesized ITO powder. It was. In addition, an intercalation compound was detected in the ITO powder of Comparative Example 3 that was pulverized from a sintered body, and the SnO 2 solid solution amount was not measurable.

Figure 2005066069
Figure 2005066069

[実施例3]
In−Sn合金(Sn9.6wt%)のアトマイズ粉末(平均粒径45μm)を、DCプラズマ炎に導入してITO(In:SnO=90:10wt%)粉末を乾式合成し、これをスプレー水により湿式回収し、実施例3のITO粉末とした。
[Example 3]
An In-Sn alloy (Sn 9.6 wt%) atomized powder (average particle size 45 μm) is introduced into a DC plasma flame to dry-synthesize ITO (In 2 O 3 : SnO 2 = 90: 10 wt%) powder. Was collected by spray water and used as the ITO powder of Example 3.

(比較例4)
比較例1と同様に、湿式合成された酸化インジウム粉末を1000℃で仮焼した酸化インジウム粉末90質量%と、同様に湿式合成された酸化錫を1000℃で仮焼した酸化錫粉末10質量%とを乳鉢で混合したものを比較例4とし、標準品2とした。
(Comparative Example 4)
Similarly to Comparative Example 1, 90% by mass of indium oxide powder obtained by calcining wet-synthesized indium oxide powder at 1000 ° C., and 10% by mass of tin oxide powder obtained by calcining wet-synthesized tin oxide at 1000 ° C. Was mixed in a mortar as Comparative Example 4 as Standard 2.

(試験例2)
実施例3及び各比較例4のITO粉末について、試験例1と同様にSnO固溶量を求めた。なお、粉末X線回折(XRD)はスペクトリス((株))社製のX’PertPRO MPDを用いて分析した。これらの結果を表2に示す。また、X線回折の結果を図7及び図8に示す。
(Test Example 2)
The ITO powder of Example 3 and Comparative Example 4 were determined SnO 2 solid solution amount in the same manner as in Test Example 1. The powder X-ray diffraction (XRD) was analyzed using X'Pert PRO MPD manufactured by Spectris Co., Ltd. These results are shown in Table 2. The results of X-ray diffraction are shown in FIGS.

この結果、実施例3のITO粉末では、SnO固溶量が3.00wt%と、DCプラズマ炎の代わりにアセチレン炎を用いた以外は同等の実施例2のSnO固溶量より著しく大きいことがわかった。As a result, in the ITO powder of Example 3, the SnO 2 solid solution amount is 3.00 wt%, which is significantly larger than the equivalent SnO 2 solid solution amount of Example 2 except that an acetylene flame is used instead of the DC plasma flame. I understood it.

Figure 2005066069
Figure 2005066069

Claims (16)

微粒子を製造する方法において、原料を液流、液滴又は粉末として、熱源中に供給し、生成物を霧状の液状流体により微粒子として捕獲し、気液分離により前記微粒子をスラリーとして回収することを特徴とする微粒子の製造方法。In the method for producing fine particles, the raw material is supplied as a liquid stream, droplets or powder into a heat source, the product is captured as fine particles by a mist-like liquid fluid, and the fine particles are recovered as a slurry by gas-liquid separation. A method for producing fine particles characterized by the above. 請求の範囲1において、原料の溶湯から液流又は液滴を形成して前記熱源中に供給することを特徴とする微粒子の製造方法。2. The method for producing fine particles according to claim 1, wherein a liquid flow or droplets are formed from a molten raw material and supplied into the heat source. 請求の範囲1において、原料のアトマイズ粉末を形成して前記熱源中に供給することを特徴とする微粒子の製造方法。2. The method for producing fine particles according to claim 1, wherein an atomized powder of a raw material is formed and supplied into the heat source. 請求の範囲1〜3の何れかにおいて、前記気液分離をサイクロンを用いて行うことを特徴とする微粒子の製造方法。The method for producing fine particles according to any one of claims 1 to 3, wherein the gas-liquid separation is performed using a cyclone. 請求の範囲1〜4の何れかにおいて、前記熱源が、アセチレン炎又はDCプラズマ炎であることを特徴とする微粒子の製造方法。The method for producing fine particles according to any one of claims 1 to 4, wherein the heat source is an acetylene flame or a DC plasma flame. 請求の範囲1〜5の何れかにおいて、前記液状流体が、水であることを特徴とする微粒子の製造方法。The method for producing fine particles according to any one of claims 1 to 5, wherein the liquid fluid is water. 請求の範囲1〜6の何れかにおいて、前記原料が、金属、合金、酸化物、窒化物及び酸窒化物から選択される少なくとも一種であることを特徴とする微粒子の製造方法。The method for producing fine particles according to any one of claims 1 to 6, wherein the raw material is at least one selected from metals, alloys, oxides, nitrides, and oxynitrides. 請求の範囲1〜7の何れかにおいて、前記熱源が、酸化雰囲気又は窒化雰囲気の何れかであり、酸化物、窒化物及び酸窒化物の何れかの微粒子を得ることを特徴とする微粒子の製造方法。The production of fine particles according to any one of claims 1 to 7, wherein the heat source is either an oxidizing atmosphere or a nitriding atmosphere to obtain fine particles of oxide, nitride, or oxynitride. Method. 請求の範囲1〜7の何れかにおいて、前記原料が、In−Sn合金又ITO粉末であり、酸化インジウム−酸化錫粉末を製造することを特徴とする微粒子の製造方法。The method for producing fine particles according to any one of claims 1 to 7, wherein the raw material is an In-Sn alloy or ITO powder, and an indium oxide-tin oxide powder is produced. 請求の範囲9において、錫含有量がSnO換算で2.3〜45質量%である酸化インジウム−酸化錫粉末を製造することを特徴とする微粒子の製造方法。The method for producing fine particles according to claim 9, wherein an indium oxide-tin oxide powder having a tin content of 2.3 to 45% by mass in terms of SnO 2 is produced. 請求の範囲1〜10の何れかにおいて、前記生成物の前記液状流体により捕獲する際の最大速度が、150m/sec以下であることを特徴とする微粒子の製造方法。The method for producing fine particles according to any one of claims 1 to 10, wherein a maximum speed when the product is captured by the liquid fluid is 150 m / sec or less. 熱源中に原料を液流、液滴又は粉末として供給することにより得られる生成物を気体流体と共に導入する導入口と、導入された生成物に対して霧状の液状流体を噴射する流体噴射手段と、液状流体で捕獲された微粒子を気液分離して前記微粒子のスラリーを得る気液分離手段と、液状流体で捕獲できなかった微粒子を含む雰囲気流体の一部を流体滴噴射位置まで戻して循環させる循環手段とを具備することを特徴とする微粒子の製造装置。An inlet for introducing a product obtained by supplying a raw material into a heat source as a liquid flow, droplets or powder together with a gaseous fluid, and a fluid ejecting means for ejecting a mist-like liquid fluid to the introduced product Gas-liquid separation means for separating the fine particles captured by the liquid fluid into a gas-liquid separation to obtain a slurry of the fine particles, and returning a part of the atmospheric fluid containing the fine particles that could not be captured by the liquid fluid to the fluid droplet ejection position An apparatus for producing fine particles, comprising a circulation means for circulation. 請求の範囲12において、前記気液分離手段の下流側にさらに、液状流体で捕獲できなかった微粒子を含む雰囲気流体の一部を導入すると共に霧状の液状流体を噴射し気液分離して前記微粒子のスラリーを得る第2の気液分離手段を具備することを特徴とする微粒子の製造装置。In claim 12, a part of the atmospheric fluid containing fine particles that could not be captured by the liquid fluid is further introduced to the downstream side of the gas-liquid separation means, and a mist-like liquid fluid is injected to perform gas-liquid separation, thereby An apparatus for producing fine particles, comprising second gas-liquid separation means for obtaining a fine particle slurry. 請求の範囲13において、前記気液分離手段の下流側にさらに、液状流体で捕獲できなかった微粒子を含む雰囲気流体の一部を前記第2の気液分離手段の導入部まで戻す第2の循環手段を具備することを特徴とする微粒子の製造装置。The second circulation according to claim 13, wherein a part of the atmospheric fluid containing fine particles that could not be captured by the liquid fluid is further returned to the downstream side of the gas-liquid separation means to the introduction portion of the second gas-liquid separation means. An apparatus for producing fine particles, characterized by comprising means. 請求の範囲12〜14の何れかにおいて、前記気液分離手段がサイクロンであることを特徴とする微粒子の製造装置。The apparatus for producing fine particles according to any one of claims 12 to 14, wherein the gas-liquid separation means is a cyclone. 請求の範囲12〜15の何れかにおいて、前記流体噴射手段が噴射した液状流体に微粒子が捕獲される際の最大速度が150m/sec以下であることを特徴とする微粒子の製造装置。16. The apparatus for producing fine particles according to any one of claims 12 to 15, wherein a maximum speed when the fine particles are captured by the liquid fluid ejected by the fluid ejecting means is 150 m / sec or less.
JP2005516840A 2003-12-25 2004-12-24 Method for producing fine particles Expired - Fee Related JP4864459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516840A JP4864459B2 (en) 2003-12-25 2004-12-24 Method for producing fine particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003431586 2003-12-25
JP2003431586 2003-12-25
PCT/JP2004/019354 WO2005066069A1 (en) 2003-12-25 2004-12-24 Process for producing microparticle and apparatus therefor
JP2005516840A JP4864459B2 (en) 2003-12-25 2004-12-24 Method for producing fine particles

Publications (2)

Publication Number Publication Date
JPWO2005066069A1 true JPWO2005066069A1 (en) 2007-07-26
JP4864459B2 JP4864459B2 (en) 2012-02-01

Family

ID=34746853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005516840A Expired - Fee Related JP4864459B2 (en) 2003-12-25 2004-12-24 Method for producing fine particles

Country Status (6)

Country Link
US (1) US20070163385A1 (en)
JP (1) JP4864459B2 (en)
KR (1) KR100907735B1 (en)
CN (1) CN100522800C (en)
TW (1) TW200536776A (en)
WO (1) WO2005066069A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195966A1 (en) * 2004-03-03 2005-09-08 Sigma Dynamics, Inc. Method and apparatus for optimizing the results produced by a prediction model
US20080277092A1 (en) 2005-04-19 2008-11-13 Layman Frederick P Water cooling system and heat transfer system
JP2009095685A (en) * 2007-10-12 2009-05-07 Tokyo Electron Ltd Powder production apparatus and method
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8803025B2 (en) * 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9119309B1 (en) 2009-12-15 2015-08-25 SDCmaterials, Inc. In situ oxide removal, dispersal and drying
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
RU2014110365A (en) 2011-08-19 2015-09-27 ЭсДиСиМАТИРИАЛЗ, ИНК. COATED SUBSTRATES FOR USE IN CATALYSIS, CATALYTIC CONVERTERS AND METHODS OF COATING SUBSTRATES WITH OXIDE COATING COMPOSITIONS
GB201203430D0 (en) * 2012-02-28 2012-04-11 Univ Leicester Chemical reaction
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
JP6248318B2 (en) * 2013-02-14 2017-12-20 セイコーエプソン株式会社 Printing device
EP3024571B1 (en) 2013-07-25 2020-05-27 Umicore AG & Co. KG Washcoats and coated substrates for catalytic converters
CN106061600A (en) 2013-10-22 2016-10-26 Sdc材料公司 Catalyst design for heavy-duty diesel combustion engines
KR20160074574A (en) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 COMPOSITIONS OF LEAN NOx TRAP
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems
KR20200083643A (en) * 2016-08-10 2020-07-08 고꾸리쯔다이가꾸호오진 구마모또 다이가꾸 Nanoparticle assemblies and method for producing nanoparticle assemblies
KR101902123B1 (en) * 2017-07-21 2018-09-27 김태석 Apparatus for a oxide powder and manufacturing for a oxide powder using the same
NO345196B1 (en) * 2018-10-25 2020-11-02 N2 Applied As Low pressure plasma reactor loop process and system
CN109502553B (en) * 2019-01-19 2023-08-22 广西晶联光电材料有限责任公司 Device and method for preparing metal oxide powder
CN112774611B (en) * 2021-01-18 2024-01-30 广西大学 Super-gravity micro-interface mass transfer strengthening reaction-crystallization drying coupling integrated machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787935A (en) * 1987-04-24 1988-11-29 United States Of America As Represented By The Secretary Of The Air Force Method for making centrifugally cooled powders
JPH01205004A (en) * 1988-02-10 1989-08-17 Norsk Hydro As Method and apparatus for producing metal powder
JPH03247709A (en) * 1990-02-23 1991-11-05 Kawasaki Steel Corp Apparatus for manufacturing metal powder
US5935461A (en) * 1996-07-25 1999-08-10 Utron Inc. Pulsed high energy synthesis of fine metal powders
JP2002346377A (en) * 2001-05-23 2002-12-03 High Frequency Heattreat Co Ltd Method for preparing ceramics or metallic spherical powder by hot plasma and apparatus therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131751A (en) 1974-09-12 1976-03-18 Mitsubishi Monsanto Chem SHINKUSEIKEIYONANSHITSUHORIENKABINIRUENBOSUSHIITO NO SEIZOHO
JPS5131754A (en) * 1974-09-13 1976-03-18 Kansai Paint Co Ltd KYUJOGOSEIJUSHI FUNMATSU NO SEIZOHO
JP3305357B2 (en) * 1992-05-21 2002-07-22 東芝機械株式会社 Alloy with excellent corrosion resistance and wear resistance, method for producing the same, and material for producing the alloy
GB2268094A (en) * 1992-06-12 1994-01-05 Stork Protecon Bv Filter for a gas stream, especially from a fluidised bed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787935A (en) * 1987-04-24 1988-11-29 United States Of America As Represented By The Secretary Of The Air Force Method for making centrifugally cooled powders
JPH01205004A (en) * 1988-02-10 1989-08-17 Norsk Hydro As Method and apparatus for producing metal powder
JPH03247709A (en) * 1990-02-23 1991-11-05 Kawasaki Steel Corp Apparatus for manufacturing metal powder
US5935461A (en) * 1996-07-25 1999-08-10 Utron Inc. Pulsed high energy synthesis of fine metal powders
JP2002346377A (en) * 2001-05-23 2002-12-03 High Frequency Heattreat Co Ltd Method for preparing ceramics or metallic spherical powder by hot plasma and apparatus therefor

Also Published As

Publication number Publication date
CN100522800C (en) 2009-08-05
US20070163385A1 (en) 2007-07-19
CN1906125A (en) 2007-01-31
TW200536776A (en) 2005-11-16
KR100907735B1 (en) 2009-07-14
JP4864459B2 (en) 2012-02-01
WO2005066069A1 (en) 2005-07-21
KR20060109505A (en) 2006-10-20

Similar Documents

Publication Publication Date Title
JP4864459B2 (en) Method for producing fine particles
CA2579539C (en) Process and apparatus for producing fine particles
US6444009B1 (en) Method for producing environmentally stable reactive alloy powders
US7547431B2 (en) High purity nanoscale metal oxide powders and methods to produce such powders
JP4640961B2 (en) Fine particle manufacturing method and apparatus
CN104903486B (en) The thermal spraying of ceramic material
KR100844446B1 (en) Indium oxide-tin oxide powder and sputtering target using the same and method for producing the indium oxide-tin oxide powder
JPWO2003045842A1 (en) Method for producing spherical crystal fine particles and production apparatus used therefor
JP4721901B2 (en) Indium oxide-tin oxide powder and sputtering target using the same
JP2005170760A (en) Fine particle and method of manufacturing the same
US7097691B2 (en) Method for producing pigment nano-particles
JP5344172B2 (en) Zinc oxide manufacturing method and manufacturing apparatus thereof
JP3803757B2 (en) Ultrafine particle production equipment
JP2007291515A (en) Particulate, and method and apparatus for producing the same
KR100529054B1 (en) Apparatus and method for removing moisture from fine powder carried by hot and humid carrier gas
RU2470855C1 (en) Method for production of pure nanodispersed powder of titanium dioxide
CN114890451A (en) Preparation method of light nano yttrium oxide
Nutsch et al. Production of ultrafine powder and nanostructured laminates using inductively coupled plasma
JPH0255222A (en) Production of fine-particle bismuth oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4864459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees