WO2005066069A1 - Process for producing microparticle and apparatus therefor - Google Patents

Process for producing microparticle and apparatus therefor Download PDF

Info

Publication number
WO2005066069A1
WO2005066069A1 PCT/JP2004/019354 JP2004019354W WO2005066069A1 WO 2005066069 A1 WO2005066069 A1 WO 2005066069A1 JP 2004019354 W JP2004019354 W JP 2004019354W WO 2005066069 A1 WO2005066069 A1 WO 2005066069A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
liquid
gas
fluid
powder
Prior art date
Application number
PCT/JP2004/019354
Other languages
French (fr)
Japanese (ja)
Inventor
Seiichiro Takahashi
Hiroshi Watanabe
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to KR1020067013332A priority Critical patent/KR100907735B1/en
Priority to US10/584,069 priority patent/US20070163385A1/en
Priority to JP2005516840A priority patent/JP4864459B2/en
Publication of WO2005066069A1 publication Critical patent/WO2005066069A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/322Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/326Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the liquid state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00108Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00112Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00114Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Definitions

  • the present invention relates to a method and an apparatus for producing fine particles such as indium tin oxide powder.
  • a sputtering method is known as one of the methods for forming a thin film.
  • the sputtering method is a method of obtaining a thin film by sputtering a sputtering target, and is used industrially because a large area can be easily formed and a high-performance film can be efficiently formed.
  • a reactive sputtering method in which sputtering is performed in a reactive gas
  • a magnetron sputtering method in which a magnet is provided on a back surface of a target to perform high-speed thin film formation are known. I have.
  • an indium oxide-oxide oxide (InO-SnO composite oxide, hereinafter referred to as "ITO”) film has high visible light transmittance.
  • ITO indium oxide-oxide oxide
  • Such a sputtering target is obtained by mixing an indium oxide powder and a tin oxide powder at a predetermined ratio, molding the mixture by a dry or wet method, and sintering it (Patent Document 1).
  • Highly dispersible indium oxide powder for obtaining a compact has been proposed (see Patent Documents 2, 3, and 4).
  • the following method has been proposed as a method for producing metal oxide fine particles, not a method for producing ITO powder.
  • various methods have been proposed in which a metal powder is supplied into a pana flame to produce oxidized ultrafine particles, and solid-phase separation is performed (see Patent Documents 11 to 16).
  • a method has been proposed in which a gas is injected into a molten metal to form a powder, and the powder conveyed by the gas is introduced into a liquid to cause a reaction such as a chemical reaction and concentration to produce a fine powder. (See Patent Document 17).
  • Patent Document 1 JP-A-62-21751
  • Patent Document 2 JP-A-5-193939
  • Patent Document 3 JP-A-6-191846
  • Patent Document 4 JP 2001-261336 A
  • Patent Document 5 JP-A-62-21751
  • Patent Document 6 Japanese Patent Application Laid-Open No. 9-221322
  • Patent Document 7 JP-A-2000-281337
  • Patent Document 8 JP 2001-172018 A
  • Patent Document 9 JP-A-2002-68744
  • Patent Document 10 JP-A-11-11946
  • Patent Document 11 Japanese Patent Publication No. 55201
  • Patent Document 12 Japanese Patent Publication No. 5-77601
  • Patent Document 13 Patent No. 3253338
  • Patent Document 14 Patent No. 3253339
  • Patent Document 15 Patent No. 3229353
  • Patent Document 16 Patent No. 3225073
  • Patent Document 17 JP-A-60-71037
  • Patent Document 18 JP-A-2002-253953
  • Patent Document 19 Japanese Patent Application Laid-Open No. 2002-253954
  • Patent Document 20 JP-A-2002-263474
  • the present invention provides a method and apparatus for producing fine particles, such as fine particles of acid oxide, which can be produced with a simpler apparatus at a low cost and which is suitable for producing ITO powder.
  • the task is to provide.
  • a raw material is supplied as a liquid stream, droplets or powder into a heat source, and a product is atomized liquid fluid.
  • the fine particles are captured as fine particles, and the fine particles are collected as a slurry by gas-liquid separation.
  • the product obtained by supplying the raw material into the heat source is captured as fine particles by the mist-like liquid fluid, and is efficiently recovered by gas-liquid separation.
  • a second aspect of the present invention resides in the method for producing fine particles according to the first aspect, wherein the molten metal power of the raw material is also formed into a liquid flow or droplets and supplied to the heat source.
  • a liquid stream or droplet of a molten metal such as a metal or an alloy as a raw material becomes an oxidizing substance in a heat source in some cases, and is captured as fine particles by a mist-like liquid fluid.
  • a third aspect of the present invention is the first aspect, wherein the atomized powder of the raw material is formed and A method for producing fine particles, characterized in that the fine particles are supplied into a heat source.
  • the metal or alloy as a raw material is supplied as an atomized powder into a heat source and is converted into fine particles.
  • a fourth aspect of the present invention is the method for producing fine particles according to any one of the thirteenth to thirteenth aspects, wherein the gas-liquid separation is performed using a cyclone.
  • gas-liquid separation is performed by the cyclone, and fine particles are collected as a slurry of the liquid fluid.
  • a fifth aspect of the present invention is the method for producing fine particles according to any one of the first to fourteenth aspects, wherein the heat source is acetylene flame or DC plasma flame.
  • the raw material is made into fine particles by acetylene flame or DC plasma flame.
  • a sixth aspect of the present invention is the method for producing fine particles according to any one of the fifteenth to fifteenth aspects, wherein the liquid fluid is water.
  • the product is captured by water and recovered as a slurry.
  • the raw material is at least one selected from the group consisting of metals, alloys, oxides, nitrides, and oxynitrides.
  • the feature lies in the method for producing fine particles.
  • the raw materials such as metals, alloys, oxides, nitrides, and oxynitrides are fine particles.
  • the heat source is any of an oxidizing atmosphere or a nitriding atmosphere, and the heat source is an oxide, a nitride, or an oxynitride.
  • the raw material is converted into fine particles of an oxide, a nitride, or an oxynitride in a heat source under an oxidizing atmosphere or a nitriding atmosphere.
  • a ninth aspect of the present invention is the method according to any one of the first to seventeenth aspects, wherein the raw material is an In-Sn alloy or an ITO powder, and the indium tin oxide powder is produced.
  • the method is characterized by a method for producing fine particles.
  • the In-Sn alloy or the ITO powder is prepared as a slurry of the ITO powder. Built.
  • a tenth aspect of the present invention is the ninth aspect, wherein the tin content is 2.3-4 in terms of SnO.
  • a method for producing fine particles characterized by producing indium oxide-tin oxide powder of 5% by mass.
  • the conductivity of ITO is maintained by a predetermined amount of oxidized tin.
  • An eleventh aspect of the present invention is the method for producing fine particles according to any one of the eleventh to eleventh aspects, wherein a maximum velocity force of capturing the product with the liquid fluid is 150 mZsec or less. In the way.
  • fine particles can be produced at a relatively low flow rate.
  • a twelfth aspect of the present invention provides an inlet for introducing a product obtained by supplying a raw material into a heat source as a liquid stream, droplets or powder together with a gaseous fluid, A liquid ejecting means for ejecting a mist-like liquid fluid, a gas-liquid separating means for gas-liquid separating fine particles captured by the liquid fluid to obtain a slurry of the fine particles, and an atmosphere containing fine particles which cannot be captured by the liquid fluid. And a circulating means for circulating a part of the fluid back to the fluid droplet ejecting position.
  • the product obtained by supplying the raw material into the heat source is captured as fine particles by the mist-like liquid fluid and separated into gas and liquid, and at least a part of the atmosphere fluid is circulated. It is efficiently recovered by being circulated by means and separated into gas and liquid again.
  • a part of the atmospheric fluid containing vibrated fine particles that cannot be captured by the liquid fluid is further introduced downstream of the gas-liquid separation means.
  • An apparatus for producing fine particles further comprising a second gas-liquid separating means for injecting a mist-like liquid fluid and performing gas-liquid separation to obtain a slurry of the fine particles.
  • the second gas-liquid separation means efficiently collects unrecoverable energetic fine particles.
  • a part of the atmospheric fluid containing vibrated fine particles that cannot be captured by the liquid fluid is further provided downstream of the gas-liquid separation means. 2.
  • a vibrating atmosphere gas that cannot be recovered as a slurry by the second gas-liquid separation means is subjected to gas-liquid separation again, and fine particles are efficiently recovered.
  • a fifteenth aspect of the present invention is the apparatus for producing fine particles according to any one of the twelfth to fourteenth aspects, wherein the gas-liquid separation means is a cyclone.
  • gas-liquid separation can be performed continuously and efficiently by the cyclone.
  • the maximum velocity at which fine particles are captured by the liquid fluid ejected by the fluid ejecting means is 150 mZsec or less.
  • the present invention resides in an apparatus for producing fine particles.
  • fine particles can be produced at a relatively low flow rate.
  • a product obtained by introducing a raw material metal or alloy into a heat source as a liquid stream, droplets, or powder is captured by a mist-like liquid fluid.
  • FIG. 1 is a schematic configuration diagram of an apparatus for producing fine particles according to one embodiment of the present invention.
  • FIG. 2 is a view showing a result of X-ray diffraction of the ITO powder of Example 1 of the present invention.
  • FIG. 3 is a view showing the result of X-ray diffraction of the ITO powder of Example 2 of the present invention.
  • FIG. 4 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 1 of the present invention.
  • FIG. 5 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 2 of the present invention.
  • FIG. 6 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 3 of the present invention.
  • FIG. 7 is a view showing the result of X-ray diffraction of the ITO powder of Example 3 of the present invention.
  • FIG. 8 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 4 of the present invention.
  • a raw material is supplied as a liquid stream, droplets or powder into a heat source.
  • the raw material is, for example, a metal or an alloy
  • the metal or the alloy is, for example, a metal such as Mg, Al, Zr, Fe, Si, In, or Sn, or an alloy thereof.
  • raw materials For example, oxides, nitrides, and oxynitrides of the above metals or alloys can be used.
  • the oxide includes a composite oxide
  • the nitride includes a composite nitride.
  • Such a raw material may be supplied as a liquid stream or droplets in a molten state, or may be supplied in a powder state.
  • the molten metal may be dropped continuously as a liquid stream or as droplets, or an atomized powder may be formed and supplied.
  • an ITO powder when used as a raw material, an ITO powder can be obtained. In addition, even if ITO powder is used as a raw material, ITO powders having different properties can be obtained.
  • Examples of the heat source include a heat source capable of performing an oxidizing atmosphere or a nitriding atmosphere, such as an acetylene flame and a DC plasma flame.
  • the temperature of the heat source is not particularly limited as long as the metal, alloy, oxide, nitride, or oxynitride can be melted and sufficiently oxidized or nitrided.
  • acetylene flame it is said that the temperature is several thousands ° C or more, and in the case of DC plasma flame, it is tens of thousands ° C or more.
  • a product is obtained as it is or as an oxide, nitride or oxynitride together with a gas stream.
  • the raw material is obtained as it is as a product of a metal or an alloy, or an oxide, a nitride or an oxynitride of a metal or an alloy is determined by the state of the flame of the heat source, and is set in an oxidizing atmosphere.
  • a product of an oxide or an oxynitride of the metal or alloy is obtained, and when the atmosphere is a nitriding atmosphere, a nitride or an oxynitride of the metal or alloy is obtained. Further, even if an oxidized product, a nitride or an oxynitride is used as a raw material, an oxidized product, a nitride or an oxynitride having a different property can be obtained.
  • the obtained product is captured by a mist-like liquid fluid. That is, a mist-like liquid fluid, preferably mist-like water, is sprayed on the product flowing with the jet of the acetylene flame or the DC plasma flame. As a result, the product is rapidly cooled to fine particles, and becomes a slurry of the sprayed liquid fluid.
  • a mist-like liquid fluid preferably mist-like water
  • the supply of the atomized liquid fluid is not particularly limited as long as the obtained product can be captured and cooled.
  • room temperature water preferably room temperature pure water may be used !, but cooling water may be used!
  • the maximum speed at which the product is captured is, for example, 150 m
  • the liquid fluid containing the fine particles captured by the sprayed liquid fluid is separated into gas and liquid, and the fine particles are collected as a slurry.
  • the method for recovering the slurry is not particularly limited, but preferably can be performed using a cyclone.
  • an In—Sn alloy or an ITO powder can be used as a raw material.
  • ITO Indium oxide oxide tin
  • a high-density sintered body can be easily obtained, and as a result, a long-lived target can be obtained.
  • ITO powder manufactured by various manufacturing methods or ITO powder obtained by pulverizing sintered ITO sintered body is used as the raw material, the properties differ from those of the raw material, and the SnO solid solution in In O
  • ITO powder with a high level of 232.
  • strong ITO powder can be used as a material for an ITO sputtering target.
  • the tin content is 2 in SnO conversion.
  • it is 3 to 45% by mass.
  • a raw material 2 such as a metal or an alloy supplied to a flame 1 composed of acetylene flame or a DC plasma flame, which is a heat source capable of oxidizing atmosphere or nitriding atmosphere, is subjected to a liquid flow, a liquid drop or An inlet 10 for introducing the product 3 obtained by supplying as a powder together with a gaseous fluid, a fluid ejection means 20 for ejecting a mist-like liquid fluid to the introduced fine particles, and fine particles captured by the liquid fluid. And a circulating means for returning a part of the atmospheric fluid containing entrained fine particles that cannot be captured by the liquid fluid to the fluid droplet ejecting position and circulating them. 40.
  • the inlet 10 is not particularly limited as long as the gas flow containing the product can be introduced, but the gas flow may be sucked.
  • the fluid ejecting means 20 is provided downstream of the introduction pipe 11 provided with the introduction port It has a plurality of injection nozzles 21 for injecting water, for example, water, a pump 22 for introducing a fluid to the injection nozzles 21, and a fluid tank 23 filled with fluid.
  • the direction of the jet of the fluid from the jet nozzle 21 is not particularly limited, but it is preferable to jet the fluid in the direction in which it flows in the direction of the flow of the gas flow introduced from the inlet 10.
  • the product 3 contained in the gas stream introduced from the inlet 10 is cooled by the sprayed fluid, for example, water, and is captured as fine particles.
  • a part of the venturi 12 with a narrowed flow path is provided downstream of the injection nozzle 21 of the introduction pipe 11 to prevent a decrease in the flow rate of the gas-liquid mixture, but a part 12 of the bench lily is necessarily provided. No need.
  • the injection nozzle 21 and the pump 22 may be configured to suck and eject the liquid by the suction force of the gas flow which is not necessarily provided.
  • the introduction pipe 11 provided with the introduction port 10 communicates with the introduction port 31 of the cyclone 30, which is a gas-liquid separation unit.
  • the gas-liquid mixture introduced from the inlet 31 of the cyclone 30 is separated into gas and liquid by a vortex 33 circulating along the inner wall of the cyclone main body 32, and the liquid component, that is, the slurry containing the fine particles is separated into the lower part. , And the gaseous component is discharged from the exhaust port 34.
  • a circulation means 40 is provided at the exhaust port 34. That is, a circulation pipe 41 communicating with the introduction pipe 10 near the introduction port 10 is provided at the exhaust port 34, and a blower 42 is interposed in the middle of the circulation pipe 41, and these constitute the circulation means 40. are doing.
  • the circulating means 40 returns the energized powder that could not be captured to the upstream side of the injection nozzle 21 to improve the capturing efficiency.
  • the liquid component gas-liquid separated by the cyclone 30 is discharged from the water outlet 36 and filled in the fluid tank 23. Since the supernatant water of the slurry filled in the fluid tank 23 is circulated by the circulating means 40, a slurry having a fine particle component concentration is gradually obtained.
  • the second exhaust port 35 is provided with a second cyclo 5050 is connected via an exhaust pipe 43.
  • the second cyclone 50 has basically the same structure as the cyclone 30 and has a gas-liquid separation action. That is, the gas-liquid mixture introduced from the inlet 51 to which the exhaust pipe 43 is connected is separated into gas and liquid as a vortex 53 circulating along the inner wall of the cyclone body 52, and contains a liquid component, that is, fine particles. The slurry falls to the lower part, is discharged from the water discharge port 54, and accumulates in the fluid tank 61.
  • a bench lily part 44 having a narrow flow path is provided in the middle of the exhaust pipe 43, and a water circulation pipe 62 communicating the part of the bench lily 44 and the fluid tank 61 is provided.
  • a water circulation pipe 62 communicating the part of the bench lily 44 and the fluid tank 61 is provided.
  • an exhaust pipe 71 is connected to the exhaust port 55, and a second blower 72 is provided in the exhaust pipe 71, so that gas is exhausted from the exhaust port 55 through the second blower 72.
  • the water in the water tank 61 may be sprayed into the exhaust pipe 43 by using a pump and a spray nozzle as in the cyclone 30 described above. Further, the fluid tank 61 may be provided with a filter as described above, or may be provided with a sedimentation separation tank for neutralizing and separating fine particles. Furthermore, the trapping efficiency may be further increased by circulating a part of the exhaust gas from the exhaust port 55 to the exhaust pipe 43 upstream of the bench lily part 44.
  • the second cyclone 50 is not necessarily provided, or when it is desired to further increase the capture efficiency, a plurality of cyclones are further provided. You may connect.
  • the powder was collected by a dry method using a filter to obtain the ITO powder of Example 1.
  • Example 1 ITO powder dry-synthesized from acetylene flame in the same manner as in Example 1 was wet-recovered with spray water and used as the ITO powder of Example 2. (Comparative Example 1)
  • the ITO powder wet-synthesized by the coprecipitation method was used as the ITO powder of Comparative Example 2.
  • aqueous ammonia (special reagent grade) was mixed with the mixed acid to neutralize the mixture to pH 6.5, whereby a white precipitate was deposited.
  • 25% aqueous ammonia special reagent grade
  • ICP spectroscopy inductively coupled high frequency plasma spectroscopy
  • the volume ratio was calculated.
  • the amount of SnO deposited (% by mass) is calculated from the integrated diffraction intensity ratio of X-ray diffraction.
  • the amount of SnO that was not output was defined as the amount of SnO dissolved in InO.
  • the solid solution amount of SnO was 2.35 wt% and 2.42 wt%.

Abstract

A process for producing microparticles that is capable of producing microparticles, such as those of oxides, by means of simple apparatus at low cost and that is suitable to production of ITO powder; and an apparatus therefor. There is provided a process for producing microparticles, comprising feeding a raw material in the form of a liquid stream, liquid droplets or powder into a heat source; trapping any product in the form of microparticles by means of a foggy liquid fluid; and recovering the microparticles in the form of slurry through gas-liquid separation.

Description

明 細 書  Specification
微粒子の製造方法及び製造装置  Method and apparatus for producing fine particles
技術分野  Technical field
[0001] 本発明は、酸化インジウム一酸化錫粉末などの微粒子の製造方法及び製造装置に 関する。  The present invention relates to a method and an apparatus for producing fine particles such as indium tin oxide powder.
背景技術  Background art
[0002] 一般的に、薄膜を成膜する方法の 1つとしてスパッタリング法が知られている。スパ ッタリング法とは、スパッタリングターゲットをスパッタリングすることにより薄膜を得る方 法であり、大面積ィ匕が容易であり、高性能の膜が効率よく成膜できるため、工業的に 利用されている。また、近年、スパッタリングの方式として、反応性ガスの中でスパッタ リングを行う反応性スパッタリング法や、ターゲットの裏面に磁石を設置して薄膜形成 の高速ィ匕を図るマグネトロンスパッタリング法なども知られている。  [0002] In general, a sputtering method is known as one of the methods for forming a thin film. The sputtering method is a method of obtaining a thin film by sputtering a sputtering target, and is used industrially because a large area can be easily formed and a high-performance film can be efficiently formed. In recent years, as a sputtering method, a reactive sputtering method in which sputtering is performed in a reactive gas, and a magnetron sputtering method in which a magnet is provided on a back surface of a target to perform high-speed thin film formation are known. I have.
[0003] このようなスパッタリング法で用いられる薄膜のうち、特に、酸化インジウム-酸ィ匕錫( In O -SnOの複合酸化物、以下、「ITO」という)膜は、可視光透過性が高ぐかつ [0003] Among the thin films used in such a sputtering method, in particular, an indium oxide-oxide oxide (InO-SnO composite oxide, hereinafter referred to as "ITO") film has high visible light transmittance. Duck
2 3 2 2 3 2
導電性が高いので透明導電膜として液晶表示装置やガラスの結露防止用発熱膜、 赤外線反射膜等に幅広く用いられて 、る。  Because of its high conductivity, it is widely used as a transparent conductive film in liquid crystal display devices, heat generating films for preventing dew condensation on glass, infrared reflecting films, and the like.
[0004] このため、より効率よく低コストで成膜するために、現在においてもスパッタ条件ゃス パッタ装置などの改良が日々行われており、装置を如何に効率的に稼働させるかが 重要となる。また、このような ΙΤΟスパッタリングにおいては、新しいスパッタリングター ゲットをセットして力も初期アーク (異常放電)がなくなって製品を製造できるまでの時 間が短いことと、一度セットして力もどれくらいの期間使用できる力 (積算スパッタリン グ時間:ターゲットライフ)が問題となる。  [0004] For this reason, in order to more efficiently form a film at low cost, improvements such as a sputtering condition ゃ a sputter device are being made every day, and it is important to operate the device efficiently. Become. Also, in such ΙΤΟ sputtering, the time required to set a new sputtering target and produce a product without the initial arc (abnormal discharge) is short, and once set, use the force for a long period of time. The available force (cumulative sputtering time: target life) is a problem.
[0005] このような ΙΤΟスパッタリングターゲットは、酸化インジウム粉末及び酸化錫粉末を 所定の割合で混合して乾式又は湿式で成形し、焼結したものであり(特許文献 1)、 高密度の ΙΤΟ焼結体を得るための高分散性の酸化インジウム粉末が提案されている (特許文献 2, 3, 4等参照)。  [0005] Such a sputtering target is obtained by mixing an indium oxide powder and a tin oxide powder at a predetermined ratio, molding the mixture by a dry or wet method, and sintering it (Patent Document 1). Highly dispersible indium oxide powder for obtaining a compact has been proposed (see Patent Documents 2, 3, and 4).
[0006] また、共沈法により湿式合成された ΙΤΟ粉末を ΙΤΟ焼結体とすることも知られており (特許文献 5等参照)、同様に高密度な焼結体を得るための ITO粉末の湿式合成方 法が多数提案されて ヽる (特許文献 6— 9等参照)。 [0006] It has also been known that ΙΤΟ powder wet-synthesized by a coprecipitation method is converted into ΙΤΟ sintered body. Similarly, a number of wet synthesis methods of ITO powder for obtaining a high-density sintered body have been proposed (see Patent Documents 6-9).
[0007] さらに、プラズマアーク中でインジウム 錫合金と酸素とを反応させて、マッハ 1以上 のガス流で所定の冷却速度以上で冷却することにより ITO粉末を製造する方法が提 案されている(特許文献 10参照)。し力しながら、マッハ 1以上の高速ガス流を用いる など、設備が大がかりになり、安価に効率よく ITO粉末を製造することができないとい う問題がある。 [0007] Furthermore, there has been proposed a method for producing an ITO powder by reacting an indium tin alloy with oxygen in a plasma arc and cooling the mixture with a gas flow of Mach 1 or more at a predetermined cooling rate or more ( Patent Document 10). However, the use of high-speed gas flow of Mach 1 or more requires large-scale equipment, which makes it difficult to efficiently and inexpensively produce ITO powder.
[0008] 一方、 ITO粉末の製造方法ではな 、が、金属酸ィ匕物微粒子の製造方法としては、 以下の方法が提案されている。例えば、金属粉末をパーナ火炎中に供給し、酸ィ匕物 超微粒子を製造し、固気相分離する各種方法が提案されている(特許文献 11一 16 等参照)。また、溶融金属に気体を噴射して粉体化し、気体で搬送される粉体を液体 中に導入して化学反応および濃縮等の反応を起こさせて微粉体を製造する方法が 提案されている(特許文献 17参照)。さらに、金属バルタ又は金属酸ィ匕物棒などの原 料体にプラズマアークをあてて原料体を溶融蒸発させ、この蒸発ガスに反応'冷却ガ スを吹き付けて超微粒子を形成する方法が提案されて!ヽる(特許文献 18— 20参照)  [0008] On the other hand, the following method has been proposed as a method for producing metal oxide fine particles, not a method for producing ITO powder. For example, various methods have been proposed in which a metal powder is supplied into a pana flame to produce oxidized ultrafine particles, and solid-phase separation is performed (see Patent Documents 11 to 16). In addition, a method has been proposed in which a gas is injected into a molten metal to form a powder, and the powder conveyed by the gas is introduced into a liquid to cause a reaction such as a chemical reaction and concentration to produce a fine powder. (See Patent Document 17). Furthermore, a method has been proposed in which a raw material such as a metal barta or a metal rod is irradiated with a plasma arc to melt and evaporate the raw material, and a reaction gas (cooling gas) is sprayed on the evaporated gas to form ultrafine particles. Te! Puru (see Patent Documents 18-20)
[0009] し力しながら、このような乾式合成は、 ITO粉末に適さな 、ためか、現在、 ITO粉末 の乾式合成は工業的に行われて 、な 、。 [0009] However, while such dry synthesis is suitable for ITO powder, the dry synthesis of ITO powder is currently performed industrially.
特許文献 1 :特開昭 62-21751号公報  Patent Document 1: JP-A-62-21751
特許文献 2 :特開平 5—193939号公報  Patent Document 2: JP-A-5-193939
特許文献 3:特開平 6—191846号公報  Patent Document 3: JP-A-6-191846
特許文献 4:特開 2001— 261336号公報  Patent Document 4: JP 2001-261336 A
特許文献 5 :特開昭 62— 21751号公報  Patent Document 5: JP-A-62-21751
特許文献 6:特開平 9 221322号公報  Patent Document 6: Japanese Patent Application Laid-Open No. 9-221322
特許文献 7:特開 2000-281337号公報  Patent Document 7: JP-A-2000-281337
特許文献 8:特開 2001—172018号公報  Patent Document 8: JP 2001-172018 A
特許文献 9:特開 2002— 68744号公報  Patent Document 9: JP-A-2002-68744
特許文献 10:特開平 11-11946号公報 特許文献 11:特公平 1 55201号公報 Patent Document 10: JP-A-11-11946 Patent Document 11: Japanese Patent Publication No. 55201
特許文献 12:特公平 5— 77601号公報  Patent Document 12: Japanese Patent Publication No. 5-77601
特許文献 13:特許第 3253338号公報  Patent Document 13: Patent No. 3253338
特許文献 14:特許第 3253339号公報  Patent Document 14: Patent No. 3253339
特許文献 15:特許第 3229353号公報  Patent Document 15: Patent No. 3229353
特許文献 16:特許第 3225073号公報  Patent Document 16: Patent No. 3225073
特許文献 17 :特開昭 60— 71037号公報  Patent Document 17: JP-A-60-71037
特許文献 18:特開 2002— 253953号公報  Patent Document 18: JP-A-2002-253953
特許文献 19:特開 2002 - 253954号公報  Patent Document 19: Japanese Patent Application Laid-Open No. 2002-253954
特許文献 20:特開 2002-263474号公報  Patent Document 20: JP-A-2002-263474
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明はこのような事情に鑑み、酸ィ匕物微粒子等の微粒子をより簡便な装置で且 つ低コストで製造でき、 ITO粉末の製造に好適な微粒子の製造方法及び製造装置 を提供することを課題とする。 [0010] In view of such circumstances, the present invention provides a method and apparatus for producing fine particles, such as fine particles of acid oxide, which can be produced with a simpler apparatus at a low cost and which is suitable for producing ITO powder. The task is to provide.
課題を解決するための手段  Means for solving the problem
[0011] 前記課題を解決する本発明の第 1の態様は、微粒子を製造する方法において、原 料を液流、液滴又は粉末として、熱源中に供給し、生成物を霧状の液状流体により 微粒子として捕獲し、気液分離により前記微粒子をスラリーとして回収することを特徴 とする微粒子の製造方法にある。  [0011] In a first aspect of the present invention for solving the above-mentioned problems, in a method for producing fine particles, a raw material is supplied as a liquid stream, droplets or powder into a heat source, and a product is atomized liquid fluid. Wherein the fine particles are captured as fine particles, and the fine particles are collected as a slurry by gas-liquid separation.
[0012] かかる第 1の態様では、原料が熱源中に供給されて得られた生成物は、霧状の液 状流体により微粒子として捕獲されて気液分離により効率的に回収される。  In the first aspect, the product obtained by supplying the raw material into the heat source is captured as fine particles by the mist-like liquid fluid, and is efficiently recovered by gas-liquid separation.
[0013] 本発明の第 2の態様は、第 1の態様において、原料の溶湯力も液流又は液滴を形 成して前記熱源中に供給することを特徴とする微粒子の製造方法にある。  [0013] A second aspect of the present invention resides in the method for producing fine particles according to the first aspect, wherein the molten metal power of the raw material is also formed into a liquid flow or droplets and supplied to the heat source.
[0014] かかる第 2の態様では、原料としての金属若しくは合金などの溶湯力もの液流又は 液滴は熱源中で場合によっては酸ィ匕物となり、霧状の液状流体により微粒子として 捕獲される。  [0014] In the second aspect, a liquid stream or droplet of a molten metal such as a metal or an alloy as a raw material becomes an oxidizing substance in a heat source in some cases, and is captured as fine particles by a mist-like liquid fluid. .
[0015] 本発明の第 3の態様は、第 1の態様において、原料のアトマイズ粉末を形成して前 記熱源中に供給することを特徴とする微粒子の製造方法にある。 [0015] A third aspect of the present invention is the first aspect, wherein the atomized powder of the raw material is formed and A method for producing fine particles, characterized in that the fine particles are supplied into a heat source.
[0016] かかる第 3の態様では、原料の金属若しくは合金などはアトマイズ粉末として熱源 中に供給され、微粒子とされる。  [0016] In the third embodiment, the metal or alloy as a raw material is supplied as an atomized powder into a heat source and is converted into fine particles.
[0017] 本発明の第 4の態様は、第 1一 3の何れかの態様において、前記気液分離をサイク ロンを用いて行うことを特徴とする微粒子の製造方法にある。 [0017] A fourth aspect of the present invention is the method for producing fine particles according to any one of the thirteenth to thirteenth aspects, wherein the gas-liquid separation is performed using a cyclone.
[0018] かかる第 4の態様では、サイクロンにより気液分離されて微粒子が液状流体のスラリ 一として回収される。 [0018] In the fourth aspect, gas-liquid separation is performed by the cyclone, and fine particles are collected as a slurry of the liquid fluid.
[0019] 本発明の第 5の態様は、第 1一 4の何れかの態様において、前記熱源が、ァセチレ ン炎又は DCプラズマ炎であることを特徴とする微粒子の製造方法にある。  [0019] A fifth aspect of the present invention is the method for producing fine particles according to any one of the first to fourteenth aspects, wherein the heat source is acetylene flame or DC plasma flame.
[0020] かかる第 5の態様では、原料は、アセチレン炎又は DCプラズマ炎により微粒子とさ れる。  [0020] In the fifth aspect, the raw material is made into fine particles by acetylene flame or DC plasma flame.
[0021] 本発明の第 6の態様は、第 1一 5の何れかの態様において、前記液状流体が、水で あることを特徴とする微粒子の製造方法にある。  [0021] A sixth aspect of the present invention is the method for producing fine particles according to any one of the fifteenth to fifteenth aspects, wherein the liquid fluid is water.
[0022] かかる第 6の態様では、生成物は水により捕獲され、スラリーとして回収される。 [0022] In the sixth embodiment, the product is captured by water and recovered as a slurry.
[0023] 本発明の第 7の態様は、第 1一 6の何れかの態様において、前記原料が、金属、合 金、酸化物、窒化物及び酸窒化物力 選択される少なくとも一種であることを特徴と する微粒子の製造方法にある。 According to a seventh aspect of the present invention, in any one of the first to sixteenth aspects, the raw material is at least one selected from the group consisting of metals, alloys, oxides, nitrides, and oxynitrides. The feature lies in the method for producing fine particles.
[0024] かかる第 7の態様では、金属、合金、酸化物、窒化物及び酸窒化物などの原料は、 微粒子とされる。 [0024] In the seventh aspect, the raw materials such as metals, alloys, oxides, nitrides, and oxynitrides are fine particles.
[0025] 本発明の第 8の態様は、第 1一 7の何れかの態様において、前記熱源が、酸ィ匕雰 囲気又は窒化雰囲気の何れかであり、酸化物、窒化物及び酸窒化物の何れかの微 粒子を得ることを特徴とする微粒子の製造方法にある。  [0025] In an eighth aspect of the present invention, in the first aspect, the heat source is any of an oxidizing atmosphere or a nitriding atmosphere, and the heat source is an oxide, a nitride, or an oxynitride. A method for producing fine particles, characterized by obtaining any of the fine particles.
[0026] かかる第 8の態様では、原料は、酸化雰囲気又は窒化雰囲気下の熱源中で、酸ィ匕 物、窒化物又は酸窒化物の微粒子とされる。 [0026] In the eighth aspect, the raw material is converted into fine particles of an oxide, a nitride, or an oxynitride in a heat source under an oxidizing atmosphere or a nitriding atmosphere.
[0027] 本発明の第 9の態様は、第 1一 7の何れかの態様において、前記原料が、 In-Sn合 金又は ITO粉末であり、酸化インジウム 酸ィヒ錫粉末を製造することを特徴とする微 粒子の製造方法にある。 [0027] A ninth aspect of the present invention is the method according to any one of the first to seventeenth aspects, wherein the raw material is an In-Sn alloy or an ITO powder, and the indium tin oxide powder is produced. The method is characterized by a method for producing fine particles.
[0028] かかる第 9の態様では、 In— Sn合金又は ITO粉末カゝら ITO粉末がスラリーとして製 造される。 [0028] In the ninth aspect, the In-Sn alloy or the ITO powder is prepared as a slurry of the ITO powder. Built.
[0029] 本発明の第 10の態様は、第 9の態様において、錫含有量が SnO換算で 2. 3— 4  [0029] A tenth aspect of the present invention is the ninth aspect, wherein the tin content is 2.3-4 in terms of SnO.
2  2
5質量%である酸化インジウム -酸化錫粉末を製造することを特徴とする微粒子の製 造方法にある。  A method for producing fine particles, characterized by producing indium oxide-tin oxide powder of 5% by mass.
[0030] かかる第 10の態様では、所定量の酸ィ匕錫により ITOの導電性が保持される。  [0030] In the tenth aspect, the conductivity of ITO is maintained by a predetermined amount of oxidized tin.
[0031] 本発明の第 11の態様は、第 1一 10の何れかの態様において、前記生成物の前記 液状流体により捕獲する際の最大速度力 150mZsec以下であることを特徴とする 微粒子の製造方法にある。  [0031] An eleventh aspect of the present invention is the method for producing fine particles according to any one of the eleventh to eleventh aspects, wherein a maximum velocity force of capturing the product with the liquid fluid is 150 mZsec or less. In the way.
[0032] かかる第 11の態様では、比較的低速の流速で微粒子を製造することができる。  [0032] In the eleventh aspect, fine particles can be produced at a relatively low flow rate.
[0033] 本発明の第 12の態様は、熱源中に原料を液流、液滴又は粉末として供給すること により得られる生成物を気体流体と共に導入する導入口と、導入された生成物に対し て霧状の液状流体を噴射する流体噴射手段と、液状流体で捕獲された微粒子を気 液分離して前記微粒子のスラリーを得る気液分離手段と、液状流体で捕獲できなか つた微粒子を含む雰囲気流体の一部を流体滴噴射位置まで戻して循環させる循環 手段とを具備することを特徴とする微粒子の製造装置にある。  [0033] A twelfth aspect of the present invention provides an inlet for introducing a product obtained by supplying a raw material into a heat source as a liquid stream, droplets or powder together with a gaseous fluid, A liquid ejecting means for ejecting a mist-like liquid fluid, a gas-liquid separating means for gas-liquid separating fine particles captured by the liquid fluid to obtain a slurry of the fine particles, and an atmosphere containing fine particles which cannot be captured by the liquid fluid. And a circulating means for circulating a part of the fluid back to the fluid droplet ejecting position.
[0034] かかる第 12の態様では、原料が熱源中に供給されて得られた生成物は、霧状の液 状流体により微粒子として捕獲されて気液分離され、雰囲気流体の少なくとも一部は 循環手段により循環されて再度気液分離されることにより効率的に回収される。  [0034] In the twelfth aspect, the product obtained by supplying the raw material into the heat source is captured as fine particles by the mist-like liquid fluid and separated into gas and liquid, and at least a part of the atmosphere fluid is circulated. It is efficiently recovered by being circulated by means and separated into gas and liquid again.
[0035] 本発明の第 13の態様は、第 12の態様において、前記気液分離手段の下流側にさ らに、液状流体で捕獲できな力つた微粒子を含む雰囲気流体の一部を導入すると共 に霧状の液状流体を噴射し気液分離して前記微粒子のスラリーを得る第 2の気液分 離手段を具備することを特徴とする微粒子の製造装置にある。  [0035] In a thirteenth aspect of the present invention, in the twelfth aspect, a part of the atmospheric fluid containing vibrated fine particles that cannot be captured by the liquid fluid is further introduced downstream of the gas-liquid separation means. An apparatus for producing fine particles, further comprising a second gas-liquid separating means for injecting a mist-like liquid fluid and performing gas-liquid separation to obtain a slurry of the fine particles.
[0036] かかる第 13の態様では、第 2の気液分離手段により、回収できな力つた微粒子が 効率的に回収される。  [0036] In the thirteenth aspect, the second gas-liquid separation means efficiently collects unrecoverable energetic fine particles.
[0037] 本発明の第 14の態様は、第 13の態様において、前記気液分離手段の下流側にさ らに、液状流体で捕獲できな力つた微粒子を含む雰囲気流体の一部を前記第 2の気 液分離手段の導入部まで戻す第 2の循環手段を具備することを特徴とする微粒子の 製造装置にある。 [0038] かかる第 14の態様では、第 2の気液分離手段でスラリーとして回収できな力つた雰 囲気ガスが再度気液分離され、微粒子が効率的に回収される。 [0037] In a fourteenth aspect of the present invention, in the thirteenth aspect, a part of the atmospheric fluid containing vibrated fine particles that cannot be captured by the liquid fluid is further provided downstream of the gas-liquid separation means. 2. The apparatus for producing fine particles according to claim 2, further comprising a second circulation means for returning the gas to the inlet of the gas-liquid separation means. [0038] In the fourteenth aspect, a vibrating atmosphere gas that cannot be recovered as a slurry by the second gas-liquid separation means is subjected to gas-liquid separation again, and fine particles are efficiently recovered.
[0039] 本発明の第 15の態様は、第 12— 14の何れかの態様において、前記気液分離手 段がサイクロンであることを特徴とする微粒子の製造装置にある。  [0039] A fifteenth aspect of the present invention is the apparatus for producing fine particles according to any one of the twelfth to fourteenth aspects, wherein the gas-liquid separation means is a cyclone.
[0040] かかる第 15の態様では、サイクロンにより気液分離を連続的且つ効率的に行うこと ができる。  [0040] In the fifteenth aspect, gas-liquid separation can be performed continuously and efficiently by the cyclone.
[0041] 本発明の第 16の態様は、第 12— 15の何れかの態様において、前記流体噴射手 段が噴射した液状流体に微粒子が捕獲される際の最大速度が 150mZsec以下で あることを特徴とする微粒子の製造装置にある。  According to a sixteenth aspect of the present invention, in any one of the twelfth to fifteenth aspects, the maximum velocity at which fine particles are captured by the liquid fluid ejected by the fluid ejecting means is 150 mZsec or less. The present invention resides in an apparatus for producing fine particles.
[0042] かかる第 16の態様では、比較的低速の流速で微粒子を製造することができる。  [0042] In the sixteenth aspect, fine particles can be produced at a relatively low flow rate.
発明の効果  The invention's effect
[0043] 以上説明したように、本発明によれば、熱源中に原料金属若しくは合金を液流、液 滴又は粉末として導入することにより得られた生成物を霧状の液状流体で捕獲するこ とにより、微粒子を効率よく簡便に製造することができるという効果を奏する。  As described above, according to the present invention, a product obtained by introducing a raw material metal or alloy into a heat source as a liquid stream, droplets, or powder is captured by a mist-like liquid fluid. Thereby, there is an effect that fine particles can be efficiently and simply produced.
図面の簡単な説明  Brief Description of Drawings
[0044] [図 1]本発明の一実施形態に係る微粒子の製造装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of an apparatus for producing fine particles according to one embodiment of the present invention.
[図 2]本発明の実施例 1の ITO粉末の X線回折の結果を示す図である。  FIG. 2 is a view showing a result of X-ray diffraction of the ITO powder of Example 1 of the present invention.
[図 3]本発明の実施例 2の ITO粉末の X線回折の結果を示す図である。  FIG. 3 is a view showing the result of X-ray diffraction of the ITO powder of Example 2 of the present invention.
[図 4]本発明の比較例 1の ITO粉末の X線回折の結果を示す図である。  FIG. 4 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 1 of the present invention.
[図 5]本発明の比較例 2の ITO粉末の X線回折の結果を示す図である。  FIG. 5 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 2 of the present invention.
[図 6]本発明の比較例 3の ITO粉末の X線回折の結果を示す図である。  FIG. 6 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 3 of the present invention.
[図 7]本発明の実施例 3の ITO粉末の X線回折の結果を示す図である。  FIG. 7 is a view showing the result of X-ray diffraction of the ITO powder of Example 3 of the present invention.
[図 8]本発明の比較例 4の ITO粉末の X線回折の結果を示す図である。  FIG. 8 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 4 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0045] 本発明の微粒子を製造する方法では、原料を、液流、液滴又は粉末として、熱源 中に供給する。 [0045] In the method of the present invention for producing fine particles, a raw material is supplied as a liquid stream, droplets or powder into a heat source.
[0046] ここで、原料は、例えば、金属若しくは合金であり、金属若しくは合金としては、例え ば、 Mg、 Al、 Zr、 Fe、 Si、 In、 Snなどの金属、又はこれらの合金である。また、原料 として、上述した金属若しくは合金などの酸化物、窒化物及び酸窒化物を用いること ができる。なお、ここで、酸化物は、複合酸ィ匕物を含むものであり、窒化物は複合窒 化物を含むものである。 Here, the raw material is, for example, a metal or an alloy, and the metal or the alloy is, for example, a metal such as Mg, Al, Zr, Fe, Si, In, or Sn, or an alloy thereof. Also, raw materials For example, oxides, nitrides, and oxynitrides of the above metals or alloys can be used. Here, the oxide includes a composite oxide, and the nitride includes a composite nitride.
[0047] かかる原料は、溶融した状態の液流又は液滴として供給してもよ 、し、粉末状態と して供給してもよい。すなわち、溶湯溜など力 連続的に液流として若しくは液滴とし て滴下してもよぐ又はアトマイズ粉末を形成してこれを供給するようにしてもょ ヽ。  [0047] Such a raw material may be supplied as a liquid stream or droplets in a molten state, or may be supplied in a powder state. In other words, the molten metal may be dropped continuously as a liquid stream or as droplets, or an atomized powder may be formed and supplied.
[0048] 例えば、 In— Sn合金を原料とすると、 ITO粉末を得ることができる。また、 ITO粉末 を原料としても、性状の異なる ITO粉末を得ることができる。  [0048] For example, when an In-Sn alloy is used as a raw material, an ITO powder can be obtained. In addition, even if ITO powder is used as a raw material, ITO powders having different properties can be obtained.
[0049] また、熱源としては、酸ィ匕雰囲気又は窒化雰囲気可能な熱源を挙げることができ、 例えば、アセチレン炎、 DCプラズマ炎などを挙げることができる。熱源の温度は、金 属若しくは合金又は酸化物や窒化物あるいは酸窒化物を溶融し、十分に酸化若しく は窒化できる程度であればよぐ特に制限されない。なお、アセチレン炎の場合には 、数千 °C以上、 DCプラズマ炎の場合には、数万 °C以上であるといわれている。  [0049] Examples of the heat source include a heat source capable of performing an oxidizing atmosphere or a nitriding atmosphere, such as an acetylene flame and a DC plasma flame. The temperature of the heat source is not particularly limited as long as the metal, alloy, oxide, nitride, or oxynitride can be melted and sufficiently oxidized or nitrided. In the case of acetylene flame, it is said that the temperature is several thousands ° C or more, and in the case of DC plasma flame, it is tens of thousands ° C or more.
[0050] このようなアセチレン炎又は DCプラズマ炎に原料を液流、液滴又は粉末として供 給すると、生成物は、そのまま又は酸化物や窒化物あるいは酸窒化物として気体流と 共に得られる。原料をそのまま金属若しくは合金の生成物として得るか、又は金属若 しくは合金の酸ィヒ物や窒化物あるいは酸窒化物とするかは熱源の火炎の状態によつ て決定され、酸化雰囲気にすると、金属若しくは合金の酸化物あるいは酸窒化物の 生成物が得られ、窒化雰囲気とすると、金属若しくは合金の窒化物や酸窒化物が得 られる。また、原料として、酸ィ匕物や窒化物あるいは酸窒化物を用いても、性状の異 なる酸ィ匕物や窒化物あるいは酸窒化物を得ることができる。  When the raw material is supplied to such an acetylene flame or DC plasma flame as a liquid stream, droplets or powder, a product is obtained as it is or as an oxide, nitride or oxynitride together with a gas stream. Whether the raw material is obtained as it is as a product of a metal or an alloy, or an oxide, a nitride or an oxynitride of a metal or an alloy is determined by the state of the flame of the heat source, and is set in an oxidizing atmosphere. Then, a product of an oxide or an oxynitride of the metal or alloy is obtained, and when the atmosphere is a nitriding atmosphere, a nitride or an oxynitride of the metal or alloy is obtained. Further, even if an oxidized product, a nitride or an oxynitride is used as a raw material, an oxidized product, a nitride or an oxynitride having a different property can be obtained.
[0051] 本発明では、得られた生成物を霧状の液状流体により捕獲する。すなわち、ァセチ レン炎や DCプラズマ炎の噴流と共に流れる生成物に霧状の液状流体、好ましくは 霧状の水を噴霧する。これにより、生成物は急冷されて微粒子となり、噴霧された液 状流体のスラリーとなる。  [0051] In the present invention, the obtained product is captured by a mist-like liquid fluid. That is, a mist-like liquid fluid, preferably mist-like water, is sprayed on the product flowing with the jet of the acetylene flame or the DC plasma flame. As a result, the product is rapidly cooled to fine particles, and becomes a slurry of the sprayed liquid fluid.
[0052] ここで、霧状の液状流体の供給は、得られる生成物を捕獲して冷却できるように行 えばよぐ特に限定されない。例えば、水を用いる場合には、常温の水、好ましくは、 常温の純水を用いればよ!、が、冷却水を用いてもよ!、。 [0053] 生成物を微粒子として捕獲する場合、捕獲する際の最大速度は、例えば、 150m[0052] Here, the supply of the atomized liquid fluid is not particularly limited as long as the obtained product can be captured and cooled. For example, when water is used, room temperature water, preferably room temperature pure water may be used !, but cooling water may be used! When capturing the product as fine particles, the maximum speed at which the product is captured is, for example, 150 m
Zsec以下、好ましくは lOOmZsec以下程度である。 Zsec or less, preferably about 100 mZsec or less.
[0054] 本発明では、噴霧された液状流体に捕獲された微粒子を含む液状流体を気液分 離し、微粒子をスラリーとして回収する。ここで、スラリーの回収方法は特に限定され ないが、好ましくは、サイクロンを用いて行うことができる。 In the present invention, the liquid fluid containing the fine particles captured by the sprayed liquid fluid is separated into gas and liquid, and the fine particles are collected as a slurry. Here, the method for recovering the slurry is not particularly limited, but preferably can be performed using a cyclone.
[0055] 本発明方法を用いると、原料として In— Sn合金若しくは ITO粉末を用いることによりWhen the method of the present invention is used, an In—Sn alloy or an ITO powder can be used as a raw material.
、酸化インジウム 酸ィ匕錫 (ITO)粉末を製造することができる。このように製造された IIndium oxide oxide tin (ITO) powder can be produced. I manufactured in this way
TO粉末は、このように In O中の SnO固溶量が高水準なので、焼結性が高ぐ比較 Since TO powder has a high level of SnO solid solution in In O, the sinterability is high.
2 3 2  2 3 2
的容易に高密度の焼結体が得られ、この結果、ライフの長いターゲットを得ることがで きる。なお、各種製造方法により製造された ITO粉末、又は焼結された ITO焼結体を 粉砕した ITO粉末を原料とした場合、原料とは異なる性状で、 In O中の SnO固溶  A high-density sintered body can be easily obtained, and as a result, a long-lived target can be obtained. When ITO powder manufactured by various manufacturing methods or ITO powder obtained by pulverizing sintered ITO sintered body is used as the raw material, the properties differ from those of the raw material, and the SnO solid solution in In O
2 3 2 量が高水準な ITO粉末を得ることができる。  It is possible to obtain ITO powder with a high level of 232.
[0056] なお、力かる ITO粉末は、 ITOスパッタリングターゲットの材料として用いることがで きる。力かる ITOスパッタリングターゲットの材料としては、錫含有量が SnO換算で 2 It should be noted that strong ITO powder can be used as a material for an ITO sputtering target. As a powerful ITO sputtering target material, the tin content is 2 in SnO conversion.
2  2
. 3— 45質量%であるのが好ましい。  Preferably, it is 3 to 45% by mass.
実施例  Example
[0057] 以下、本発明方法を実施する微粒子の製造装置の一例を図 1を参照しながら説明 する。  Hereinafter, an example of an apparatus for producing fine particles for performing the method of the present invention will be described with reference to FIG.
[0058] この装置は、酸ィ匕雰囲気又は窒化雰囲気可能な熱源であるアセチレン炎又は DC プラズマ炎カゝらなる火炎 1中に供給された金属若しくは合金などの原料 2を液流、液 滴又は粉末として供給することにより得られる生成物 3を気体流体と共に導入する導 入口 10と、導入された微粒子に対して霧状の液状流体を噴射する流体噴射手段 20 と、液状流体で捕獲された微粒子を気液分離して前記微粒子のスラリーを得る気液 分離手段であるサイクロン 30と、液状流体で捕獲できな力つた微粒子を含む雰囲気 流体の一部を流体滴噴射位置まで戻して循環させる循環手段 40とを具備する。  [0058] In this apparatus, a raw material 2 such as a metal or an alloy supplied to a flame 1 composed of acetylene flame or a DC plasma flame, which is a heat source capable of oxidizing atmosphere or nitriding atmosphere, is subjected to a liquid flow, a liquid drop or An inlet 10 for introducing the product 3 obtained by supplying as a powder together with a gaseous fluid, a fluid ejection means 20 for ejecting a mist-like liquid fluid to the introduced fine particles, and fine particles captured by the liquid fluid. And a circulating means for returning a part of the atmospheric fluid containing entrained fine particles that cannot be captured by the liquid fluid to the fluid droplet ejecting position and circulating them. 40.
[0059] ここで、導入口 10は、生成物を含む気体流を導入できるものであれば特に限定さ れないが、気体流を吸引するようにしてもよい。  [0059] Here, the inlet 10 is not particularly limited as long as the gas flow containing the product can be introduced, but the gas flow may be sucked.
[0060] 流体噴射手段 20は、導入口 10が設けられた導入管 11の下流側に設けられて流 体、例えば、水を噴射する複数の噴射ノズル 21と、噴射ノズル 21へ流体を導入する ためにポンプ 22及び流体を湛える流体タンク 23とを有する。噴射ノズル 21からの流 体の噴射の方向は特に限定されないが、導入口 10から導入される気体流の流れ方 向に向カゝつて合流する方向に噴射するのがよい。導入口 10から導入された気体流 に含有される生成物 3は、噴霧された流体、例えば、水により冷却され、微粒子として 捕獲される。なお、導入管 11の噴射ノズル 21の下流側には、流路を絞ったベンチュ リ一部 12を設けて気液混合物の流速の低下を防止して 、るが、ベンチユリ一部 12は 必ずしも設ける必要はない。また、噴射ノズル 21及びポンプ 22は、必ずしも設ける必 要はなぐ気体流の流れによる吸引力により液体を吸引して噴射するようにしてもよい The fluid ejecting means 20 is provided downstream of the introduction pipe 11 provided with the introduction port It has a plurality of injection nozzles 21 for injecting water, for example, water, a pump 22 for introducing a fluid to the injection nozzles 21, and a fluid tank 23 filled with fluid. The direction of the jet of the fluid from the jet nozzle 21 is not particularly limited, but it is preferable to jet the fluid in the direction in which it flows in the direction of the flow of the gas flow introduced from the inlet 10. The product 3 contained in the gas stream introduced from the inlet 10 is cooled by the sprayed fluid, for example, water, and is captured as fine particles. A part of the venturi 12 with a narrowed flow path is provided downstream of the injection nozzle 21 of the introduction pipe 11 to prevent a decrease in the flow rate of the gas-liquid mixture, but a part 12 of the bench lily is necessarily provided. No need. In addition, the injection nozzle 21 and the pump 22 may be configured to suck and eject the liquid by the suction force of the gas flow which is not necessarily provided.
[0061] 導入口 10が設けられた導入管 11は、気液分離手段であるサイクロン 30の導入口 3 1に連通している。サイクロン 30の導入口 31から導入された気液混合物は、サイクロ ン本体 32の内壁に沿って周回する渦流 33となって気液分離され、液体成分、すな わち、微粒子を含むスラリーが下部に落下し、気体成分は排気口 34から排出される ようになっている。 [0061] The introduction pipe 11 provided with the introduction port 10 communicates with the introduction port 31 of the cyclone 30, which is a gas-liquid separation unit. The gas-liquid mixture introduced from the inlet 31 of the cyclone 30 is separated into gas and liquid by a vortex 33 circulating along the inner wall of the cyclone main body 32, and the liquid component, that is, the slurry containing the fine particles is separated into the lower part. , And the gaseous component is discharged from the exhaust port 34.
[0062] 本実施形態では、排気口 34に循環手段 40が設けられて 、る。すなわち、排気口 3 4には、導入管 11の導入口 10近傍に連通する循環パイプ 41が設けられ、循環パイ プ 41の途中にブロア 42が介装されており、これらが循環手段 40を構成している。こ の循環手段 40により、捕獲しきれな力つた粉末を噴射ノズル 21の上流側に戻し、捕 獲効率を向上させている。  In the present embodiment, a circulation means 40 is provided at the exhaust port 34. That is, a circulation pipe 41 communicating with the introduction pipe 10 near the introduction port 10 is provided at the exhaust port 34, and a blower 42 is interposed in the middle of the circulation pipe 41, and these constitute the circulation means 40. are doing. The circulating means 40 returns the energized powder that could not be captured to the upstream side of the injection nozzle 21 to improve the capturing efficiency.
[0063] また、サイクロン 30で気液分離された液体成分は水排出口 36から排出され、流体 タンク 23に湛えられる。なお、この流体タンク 23に湛えられたスラリーの上澄みの水 が循環手段 40により循環されているので、徐々に微粒子成分の濃度の濃いスラリー が得られる。  The liquid component gas-liquid separated by the cyclone 30 is discharged from the water outlet 36 and filled in the fluid tank 23. Since the supernatant water of the slurry filled in the fluid tank 23 is circulated by the circulating means 40, a slurry having a fine particle component concentration is gradually obtained.
[0064] サイクロン 30からの排気の大部分は排気口 34から循環ノィプ 41に循環されるが、 排気の一部、例えば、十分の一程度は第 2の排気口 35から排気されるようになって いる。  Most of the exhaust gas from the cyclone 30 is circulated from the exhaust port 34 to the circulation nozzle 41, but a part of the exhaust gas, for example, about one-tenth, is exhausted from the second exhaust port 35. ing.
[0065] 本実施形態では、第 2の排気口 35には、第 2の気液分離手段である第 2のサイクロ ン 50が排気パイプ 43を介して接続されている。第 2のサイクロン 50は、基本的には サイクロン 30と同一の構造を有して気液分離作用を有する。すなわち、排気パイプ 4 3が接続される導入口 51から導入された気液混合物は、サイクロン本体 52の内壁に 沿って周回する渦流 53となって気液分離され、液体成分、すなわち、微粒子を含む スラリーは、下部に落下し、水排出口 54から排出され、流体タンク 61に溜まるように なっている。さらに詳言すると、排気パイプ 43の途中には流路を絞ったベンチユリ一 部 44が設けられており、このベンチユリ一部 44と、流体タンク 61とを連通する水循環 パイプ 62が設けられている。これにより、ベンチユリ一部 44の高速の気体の流れによ り、流体タンク 61中の水が吸引されてベンチユリ一部 44内に噴射され、気体中に残 存する微粒子を液体中に捕獲するようにしている。一方、排気口 55には排気パイプ 71が連結され、排気パイプ 71には第 2のブロア 72が設けられ、当該第 2のブロア 72 を介して排気口 55からの気体力排気されるようになっている。なお、水タンク 61の水 を排気パイプ 43内に噴霧するには、上述したサイクロン 30のように、ポンプと噴霧ノ ズルを用いて行ってもよい。また、流体タンク 61には、上述したように、フィルターを設 けてもよいし、中和して微粒子を分離する沈降分離槽を設けてもよい。さら〖こ、排気 口 55からの排気の一部を排気パイプ 43のベンチユリ一部 44の上流側に循環させる ようにして、さらに捕獲効率を高めてもよい。 In the present embodiment, the second exhaust port 35 is provided with a second cyclo 5050 is connected via an exhaust pipe 43. The second cyclone 50 has basically the same structure as the cyclone 30 and has a gas-liquid separation action. That is, the gas-liquid mixture introduced from the inlet 51 to which the exhaust pipe 43 is connected is separated into gas and liquid as a vortex 53 circulating along the inner wall of the cyclone body 52, and contains a liquid component, that is, fine particles. The slurry falls to the lower part, is discharged from the water discharge port 54, and accumulates in the fluid tank 61. More specifically, a bench lily part 44 having a narrow flow path is provided in the middle of the exhaust pipe 43, and a water circulation pipe 62 communicating the part of the bench lily 44 and the fluid tank 61 is provided. As a result, due to the high-speed gas flow of the bench lily part 44, the water in the fluid tank 61 is sucked and injected into the bench lily part 44 so that the fine particles remaining in the gas are captured in the liquid. ing. On the other hand, an exhaust pipe 71 is connected to the exhaust port 55, and a second blower 72 is provided in the exhaust pipe 71, so that gas is exhausted from the exhaust port 55 through the second blower 72. ing. Note that the water in the water tank 61 may be sprayed into the exhaust pipe 43 by using a pump and a spray nozzle as in the cyclone 30 described above. Further, the fluid tank 61 may be provided with a filter as described above, or may be provided with a sedimentation separation tank for neutralizing and separating fine particles. Furthermore, the trapping efficiency may be further increased by circulating a part of the exhaust gas from the exhaust port 55 to the exhaust pipe 43 upstream of the bench lily part 44.
[0066] なお、サイクロン 30のみで微粒子の捕獲効率が十分な場合には、第 2のサイクロン 50は、必ずしも設ける必要はなぐ又は、さらに捕獲効率を高めたい場合には、さら に複数のサイクロンを連結してもよ 、。  [0066] When the cyclone 30 alone has sufficient capture efficiency for fine particles, the second cyclone 50 is not necessarily provided, or when it is desired to further increase the capture efficiency, a plurality of cyclones are further provided. You may connect.
[0067] 以上説明した実施形態の装置を用いて微粒子を製造した例を以下に示す。  An example in which fine particles are produced using the apparatus of the embodiment described above will be described below.
[0068] (実施例 1)  (Example 1)
In— Sn合金(Sn9. 6wt%)のアトマイズ粉末(平均粒径 45 μ m)を、アセチレン炎 に導入して ITO (In O: SnO = 90 : 10wt%)粉末を乾式合成し、これをバグフィル  Atomized powder (average particle size: 45 μm) of an In—Sn alloy (Sn 9.6 wt%) was introduced into an acetylene flame to dry synthesize ITO (InO: SnO = 90: 10 wt%) powder, which was then bag-filled.
2 3 2  2 3 2
ターにより乾式回収し、実施例 1の ITO粉末とした。  The powder was collected by a dry method using a filter to obtain the ITO powder of Example 1.
[0069] (実施例 2) (Example 2)
実施例 1と同様にしてアセチレン炎より乾式合成した ITO粉末を、スプレー水により 湿式回収し、これを実施例 2の ITO粉末とした。 [0070] (比較例 1) ITO powder dry-synthesized from acetylene flame in the same manner as in Example 1 was wet-recovered with spray water and used as the ITO powder of Example 2. (Comparative Example 1)
湿式合成された酸化インジウム粉末を 1000°Cで仮焼した酸化インジウム粉末 90質 量%と、同様に湿式合成された酸化錫を 1000°Cで仮焼した酸化錫粉末 10質量%と を乳鉢で混合したものを比較例 1とし、標準品 1とした。  In a mortar, 90 mass% of indium oxide powder, which was calcined at 1000 ° C., and 10 mass% of tin oxide powder, which was calcined at 1000 ° C., similarly. The mixture was designated as Comparative Example 1 and as Standard Product 1.
[0071] (比較例 2)  (Comparative Example 2)
共沈法により湿式合成された ITO粉末を比較例 2の ITO粉末とした。  The ITO powder wet-synthesized by the coprecipitation method was used as the ITO powder of Comparative Example 2.
[0072] 共沈法による湿式合成の手順は以下の通りである。すなわち、まず、 In (4N) 20g を硝酸 (試薬特級:濃度 60— 61%) 133ccに常温にて溶解し (pH=— 1. 5)、一方、 Sn(4N) 2. 12gを塩酸 (試薬特級:濃度 35— 36%) lOOccに常温にて溶解し (pH =-1. 9)、両者を混合して混酸溶液とした。このとき、析出物はなぐ pHは— 1. 5で あった。次いで、この混酸に 25%アンモニア水(試薬特級)を混合して中和して pH6 . 5としたところ、白い沈殿物を析出した。数時間後、上水を捨てて純水 2リットル (L) にて 3回洗浄した後、 80°Cにて乾燥させた後、 600°Cで 3時間培焼、脱水反応させ、 湿式合成 ITO粉末を得た。  The procedure of the wet synthesis by the coprecipitation method is as follows. First, 20 g of In (4N) is dissolved in 133 cc of nitric acid (reagent grade: concentration of 60-61%) at room temperature (pH = -1.5), while 2.12 g of Sn (4N) is dissolved in hydrochloric acid (reagent (Special grade: concentration 35-36%) Dissolved in lOOcc at room temperature (pH = -1.9), and mixed to obtain a mixed acid solution. At this time, the pH of the precipitate was −1.5. Subsequently, 25% aqueous ammonia (special reagent grade) was mixed with the mixed acid to neutralize the mixture to pH 6.5, whereby a white precipitate was deposited. After a few hours, discard the tap water and wash three times with 2 liters (L) of pure water, then dry at 80 ° C, and then cultivate at 600 ° C for 3 hours and react by dehydration. A powder was obtained.
[0073] (比較例 3)  (Comparative Example 3)
湿式合成された酸化インジウム粉末と酸化錫粉末との混合物 (酸化錫 10wt%)の 粉末を用いて 1550°C以上で焼結した焼結体を粉砕したものを比較例 3の ITO粉末 とした。  A powder of a mixture of indium oxide powder and tin oxide powder (tin oxide 10 wt%) synthesized by a wet method and sintered at 1550 ° C. or higher was pulverized to obtain an ITO powder of Comparative Example 3.
[0074] (試験例 1)  (Test Example 1)
各実施例 1, 2及び各比較例 1一 3の ITO粉末について、 SnO固溶量を求めた。  For the ITO powders of Examples 1 and 2 and Comparative Examples 13 to 13, the amount of SnO dissolved in the powder was determined.
2  2
手順は以下の通りである。なお、試験の実施に先駆けて、実施例 1, 2及び比較例 2 , 3の ITO粉末については、 1000°C X 3時間、大気中で仮焼して、微小粒子として 析出している SnOを成長させて SnOとして検出され易いようにした。  The procedure is as follows. Prior to the test, the ITO powders of Examples 1 and 2 and Comparative Examples 2 and 3 were calcined in air at 1000 ° C for 3 hours to grow SnO precipitated as fine particles. This makes it easier to detect as SnO.
2 2  twenty two
1.まず、誘導結合高周波プラズマ分光分析 (ICP分光分析)した。この結果より、 In、 Sn以外は全て酸素 Oであるとし、その Oの量は欠損して 、る可能性があると仮定して 、 Inと Snとの比を求め、この In及び Snの全てが In O  1. First, inductively coupled high frequency plasma spectroscopy (ICP spectroscopy) was performed. From this result, it is assumed that everything except In and Sn is oxygen O, and it is assumed that there is a possibility that the amount of O is deficient, and the ratio between In and Sn is obtained. Is In O
2 3、 SnOになったとしたときの重  2 3, the weight when it becomes SnO
2  2
量比を算出した。  The volume ratio was calculated.
2.各実施例 1, 2及び各比較例 1一 3の ITO粉末について、粉末 X線回折 (XRD : ( 株)マックサイエンス社製、 MXP18II)による分析を行い、 SnO析出量を求めた。す 2.For each of the ITO powders of Examples 1 and 2 and Comparative Examples 1 to 3, powder X-ray diffraction (XRD: ( Analysis was performed using MXP18II, manufactured by Mac Science Co., Ltd., and the amount of SnO deposited was determined. You
2  2
なわち、回折結果から、間化合物 (In Sn O )の有無を確認し、間化合物が検出さ  In other words, the presence or absence of the intermetallic compound (In Sn 2 O) was confirmed from the diffraction results, and the
4 3 12  4 3 12
れない場合には、比較例 1の標準品 1として各試料の In O (222)積分回折強度及  If not, the In O (222) integrated diffraction intensity and
2 3  twenty three
び SnO (110)積分回折強度の比力 SnOの析出量 (質量%)を求めた。すなわち And specific force of SnO (110) integrated diffraction intensity The amount of SnO deposited (% by mass) was determined. Ie
2 2 twenty two
SnOの析出量 (質量%)は、 X線回折の積分回折強度比から求められる SnOの The amount of SnO deposited (% by mass) is calculated from the integrated diffraction intensity ratio of X-ray diffraction.
2 2 含有量であり、 In Oに固溶していない SnO力 l000°C程度の仮焼により成長して X 22 content, not dissolved in In O SnO force X grown by calcination at about 1000 ° C
2 3 2  2 3 2
線回折の SnO (110)のピークとなると仮定している。 X線回折の結果を図 2 図 6に  It is assumed that this will be the peak of SnO (110) in the line diffraction. Fig. 2 and Fig. 6 show the results of X-ray diffraction.
2  2
示す。  Show.
3. 1及び 2の結果から、 ICP分析で検出された力 X線回折では SnO (110)とは検  3.From the results of 1 and 2, the force X-ray diffraction detected by ICP analysis
2  2
出されない SnOを、 In O中の SnO固溶量とした。  The amount of SnO that was not output was defined as the amount of SnO dissolved in InO.
2 2 3 2  2 2 3 2
[0075] これらの結果を表 1に示す。  [0075] Table 1 shows the results.
[0076] この結果、実施例 1, 2の ITO粉末では、 SnO固溶量が 2. 35wt% 2. 42wt%と  As a result, in the ITO powders of Examples 1 and 2, the solid solution amount of SnO was 2.35 wt% and 2.42 wt%.
2  2
、湿式合成した ITO粉末である比較例 2の 2. 26wt%より多いことがわかった。なお、 一度焼結体としたものを粉砕した比較例 3の ITO粉末では間化合物が検出され、 Sn O固溶量は測定不能であった。  It was found to be more than 2.26 wt% of the wet synthesized ITO powder of Comparative Example 2. It should be noted that the intercalation compound was detected in the ITO powder of Comparative Example 3 in which the sintered body was once pulverized, and the amount of solid solution of Sn 2 O could not be measured.
2  2
[0077] [表 1]  [0077] [Table 1]
Figure imgf000014_0001
Figure imgf000014_0001
(実施例 3) (Example 3)
In— Sn合金(Sn9. 6wt%)のアトマイズ粉末(平均粒径 45 μ m)を、 DCプラズマ炎 に導入して ITO (In O: SnO = 90: 10wt%)粉末を乾式合成し、これをスプレー水 により湿式回収し、実施例 3の ITO粉末とした。 Atomized powder of In—Sn alloy (Sn 9.6 wt%) (average particle size: 45 μm) was introduced into a DC plasma flame to dry synthesize ITO (InO: SnO = 90:10 wt%) powder, Spray water To obtain the ITO powder of Example 3.
[0079] (比較例 4) (Comparative Example 4)
比較例 1と同様に、湿式合成された酸化インジウム粉末を 1000°Cで仮焼した酸ィ匕 インジウム粉末 90質量%と、同様に湿式合成された酸化錫を 1000°Cで仮焼した酸 化錫粉末 10質量%とを乳鉢で混合したものを比較例 4とし、標準品 2とした。  Similarly to Comparative Example 1, wet-synthesized indium oxide powder was calcined at 1000 ° C., and indium powder was 90% by mass, and similarly wet-synthesized tin oxide was calcined at 1000 ° C. A mixture obtained by mixing 10% by mass of tin powder with a mortar was used as Comparative Example 4, and was used as a standard product 2.
[0080] (試験例 2) (Test Example 2)
実施例 3及び各比較例 4の ITO粉末について、試験例 1と同様に SnO固溶量を求  The amount of SnO dissolved in the ITO powder of Example 3 and Comparative Example 4 was determined in the same manner as in Test Example 1.
2 めた。なお、粉末 X線回折 (XRD)はスぺタトリス((株) )社製の X, PertPRO MPD を用いて分析した。これらの結果を表 2に示す。また、 X線回折の結果を図 7及び図 8 に示す。  2 In addition, powder X-ray diffraction (XRD) was analyzed using X, PertPRO MPD manufactured by Staturis (Ltd.). Table 2 shows the results. 7 and 8 show the results of X-ray diffraction.
[0081] この結果、実施例 3の ITO粉末では、 SnO固溶量が 3. 00wt%と、 DCプラズマ炎  [0081] As a result, in the ITO powder of Example 3, the amount of SnO solid solution was 3.00 wt%,
2  2
の代わりにアセチレン炎を用いた以外は同等の実施例 2の SnO固溶量より著しく大  Except that acetylene flame was used in place of
2  2
きいことがわかった。  I knew it was good.
[0082] [表 2]  [Table 2]
I C Pの結果 X R Dの結果  I CP result X R D result
Sn(¾ Sn (¾
5式料 Sn02 5 Shikiryo Sn0 2
I n S n ln203 Sn02 間化 In03 Sn02 固溶量 番号 析出 I n S n ln 2 0 3 Sn0 2 Intermediate amount In0 3 Sn0 2 Solid solution number Precipitation
(wt%) (wt%) (wt%) (wt%) 合物 (222) (110) (wt%)  (wt%) (wt%) (wt%) (wt%) Compound (222) (110) (wt%)
(wt%)  (wt%)
実施 73. 8 7. 46 90. 40 9. 60 、 691582 31090 6. 60 3. 00 例 3  Implementation 73.8 7.46 90.40 9.60, 691582 31090 6.60 3.00 Example 3
比較 75. 1 7. 86 90. 10 9. 90 魅 m 892303 62325 9. 90 0. 00 例 4  Comparison 75.1 7.86 90.10 9.90 M m 892 303 62 325 9.90 0.00 Example 4

Claims

請求の範囲 The scope of the claims
[I] 微粒子を製造する方法において、原料を液流、液滴又は粉末として、熱源中に供給 し、生成物を霧状の液状流体により微粒子として捕獲し、気液分離により前記微粒子 をスラリーとして回収することを特徴とする微粒子の製造方法。  [I] In the method for producing fine particles, a raw material is supplied as a liquid stream, droplets or powder into a heat source, the product is captured as fine particles by a mist-like liquid fluid, and the fine particles are converted into a slurry by gas-liquid separation. A method for producing fine particles, which comprises collecting the particles.
[2] 請求の範囲 1において、原料の溶湯力 液流又は液滴を形成して前記熱源中に供 給することを特徴とする微粒子の製造方法。  [2] The method for producing fine particles according to claim 1, wherein a molten metal power stream or droplets of the raw material is formed and supplied to the heat source.
[3] 請求の範囲 1において、原料のアトマイズ粉末を形成して前記熱源中に供給すること を特徴とする微粒子の製造方法。 [3] The method for producing fine particles according to claim 1, wherein an atomized powder as a raw material is formed and supplied into the heat source.
[4] 請求の範囲 1一 3の何れかにおいて、前記気液分離をサイクロンを用いて行うことを 特徴とする微粒子の製造方法。 [4] The method for producing fine particles according to any one of claims 1-3, wherein the gas-liquid separation is performed using a cyclone.
[5] 請求の範囲 1一 4の何れかにおいて、前記熱源が、アセチレン炎又は DCプラズマ炎 であることを特徴とする微粒子の製造方法。 [5] The method for producing fine particles according to any one of claims 1-4, wherein the heat source is acetylene flame or DC plasma flame.
[6] 請求の範囲 1一 5の何れかにおいて、前記液状流体が、水であることを特徴とする微 粒子の製造方法。 [6] The method for producing fine particles according to any one of claims 115, wherein the liquid fluid is water.
[7] 請求の範囲 1一 6の何れかにおいて、前記原料が、金属、合金、酸化物、窒化物及 び酸窒化物から選択される少なくとも一種であることを特徴とする微粒子の製造方法  [7] The method for producing fine particles according to any one of claims 116, wherein the raw material is at least one selected from metals, alloys, oxides, nitrides, and oxynitrides.
[8] 請求の範囲 1一 7の何れかにおいて、前記熱源が、酸化雰囲気又は窒化雰囲気の 何れかであり、酸化物、窒化物及び酸窒化物の何れかの微粒子を得ることを特徴と する微粒子の製造方法。 [8] The method according to any one of claims 1 to 7, wherein the heat source is either an oxidizing atmosphere or a nitriding atmosphere, and obtains fine particles of any of oxide, nitride, and oxynitride. A method for producing fine particles.
[9] 請求の範囲 1一 7の何れかにお 、て、前記原料が、 In— Sn合金又は ITO粉末であり 、酸化インジウム -酸化錫粉末を製造することを特徴とする微粒子の製造方法。  [9] The method for producing fine particles according to any one of claims 17 to 17, wherein the raw material is an In-Sn alloy or an ITO powder, and an indium oxide-tin oxide powder is produced.
[10] 請求の範囲 9において、錫含有量が SnO換算で 2. 3— 45質量%である酸化インジ  [10] In claim 9, the indium oxide having a tin content of 2.3 to 45% by mass in terms of SnO.
2  2
ゥム -酸化錫粉末を製造することを特徴とする微粒子の製造方法。  A method for producing fine particles, comprising producing a tin oxide powder.
[II] 請求の範囲 1一 10の何れかにおいて、前記生成物の前記液状流体により捕獲する 際の最大速度が、 150mZsec以下であることを特徴とする微粒子の製造方法。  [II] The method for producing fine particles according to any one of claims 110, wherein a maximum speed at which the product is captured by the liquid fluid is 150 mZsec or less.
[12] 熱源中に原料を液流、液滴又は粉末として供給することにより得られる生成物を気体 流体と共に導入する導入口と、導入された生成物に対して霧状の液状流体を噴射す る流体噴射手段と、液状流体で捕獲された微粒子を気液分離して前記微粒子のスラ リーを得る気液分離手段と、液状流体で捕獲できなかった微粒子を含む雰囲気流体 の一部を流体滴噴射位置まで戻して循環させる循環手段とを具備することを特徴と する微粒子の製造装置。 [12] An inlet for introducing a product obtained by supplying a raw material into a heat source as a liquid stream, droplets or powder, together with a gaseous fluid, and a mist-like liquid fluid is injected to the introduced product. A liquid ejecting means, a gas-liquid separating means for separating the fine particles captured by the liquid fluid into gas and liquid to obtain a slurry of the fine particles, A circulating means for circulating the particles back to the injection position.
[13] 請求の範囲 12において、前記気液分離手段の下流側にさらに、液状流体で捕獲で きなかった微粒子を含む雰囲気流体の一部を導入すると共に霧状の液状流体を噴 射し気液分離して前記微粒子のスラリーを得る第 2の気液分離手段を具備することを 特徴とする微粒子の製造装置。  [13] In claim 12, a part of the atmospheric fluid containing fine particles that could not be captured by the liquid fluid is further introduced downstream of the gas-liquid separation means, and the atomized liquid fluid is ejected. An apparatus for producing fine particles, comprising: second gas-liquid separation means for performing a liquid separation to obtain a slurry of the fine particles.
[14] 請求の範囲 13において、前記気液分離手段の下流側にさらに、液状流体で捕獲で きな力つた微粒子を含む雰囲気流体の一部を前記第 2の気液分離手段の導入部ま で戻す第 2の循環手段を具備することを特徴とする微粒子の製造装置。  [14] In claim 13, downstream of the gas-liquid separation means, a part of the atmosphere fluid containing crushed fine particles which can be captured by the liquid fluid is further introduced into the introduction section of the second gas-liquid separation means. An apparatus for producing fine particles, comprising: a second circulating means for returning by means of:
[15] 請求の範囲 12— 14の何れかにおいて、前記気液分離手段がサイクロンであることを 特徴とする微粒子の製造装置。  [15] The apparatus for producing fine particles according to any one of claims 12 to 14, wherein the gas-liquid separation means is a cyclone.
[16] 請求の範囲 12— 15の何れかにおいて、前記流体噴射手段が噴射した液状流体に 微粒子が捕獲される際の最大速度が 150mZsec以下であることを特徴とする微粒 子の製造装置。  [16] The apparatus for producing fine particles according to any one of claims 12 to 15, wherein the maximum speed at which the fine particles are captured by the liquid fluid ejected by the fluid ejecting means is 150 mZsec or less.
PCT/JP2004/019354 2003-12-25 2004-12-24 Process for producing microparticle and apparatus therefor WO2005066069A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020067013332A KR100907735B1 (en) 2003-12-25 2004-12-24 Manufacturing method and apparatus for producing fine particles
US10/584,069 US20070163385A1 (en) 2003-12-25 2004-12-24 Process for producing microparticles and apparatus therefor
JP2005516840A JP4864459B2 (en) 2003-12-25 2004-12-24 Method for producing fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003431586 2003-12-25
JP2003-431586 2003-12-25

Publications (1)

Publication Number Publication Date
WO2005066069A1 true WO2005066069A1 (en) 2005-07-21

Family

ID=34746853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019354 WO2005066069A1 (en) 2003-12-25 2004-12-24 Process for producing microparticle and apparatus therefor

Country Status (6)

Country Link
US (1) US20070163385A1 (en)
JP (1) JP4864459B2 (en)
KR (1) KR100907735B1 (en)
CN (1) CN100522800C (en)
TW (1) TW200536776A (en)
WO (1) WO2005066069A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095685A (en) * 2007-10-12 2009-05-07 Tokyo Electron Ltd Powder production apparatus and method
JP2015515361A (en) * 2012-02-28 2015-05-28 ユニバーシティ オブ レスターUniversity Of Leicester Chemical reaction by combination of gas phase method and wet chemical method
JPWO2018030106A1 (en) * 2016-08-10 2019-01-24 国立大学法人 熊本大学 Nanoparticle assembly and method for producing nanoparticle assembly

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195966A1 (en) * 2004-03-03 2005-09-08 Sigma Dynamics, Inc. Method and apparatus for optimizing the results produced by a prediction model
WO2008140784A1 (en) 2007-05-11 2008-11-20 Sdc Materials, Inc. Nano-skeletal catalyst
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8803025B2 (en) * 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US9090475B1 (en) 2009-12-15 2015-07-28 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for silicon SiO2
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
MX2014001718A (en) 2011-08-19 2014-03-26 Sdcmaterials Inc Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions.
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
JP6248318B2 (en) * 2013-02-14 2017-12-20 セイコーエプソン株式会社 Printing device
EP3024571B1 (en) 2013-07-25 2020-05-27 Umicore AG & Co. KG Washcoats and coated substrates for catalytic converters
CA2926135A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Compositions of lean nox trap
KR20160074566A (en) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
KR101902123B1 (en) * 2017-07-21 2018-09-27 김태석 Apparatus for a oxide powder and manufacturing for a oxide powder using the same
NO345196B1 (en) * 2018-10-25 2020-11-02 N2 Applied As Low pressure plasma reactor loop process and system
CN109502553B (en) * 2019-01-19 2023-08-22 广西晶联光电材料有限责任公司 Device and method for preparing metal oxide powder
CN112774611B (en) * 2021-01-18 2024-01-30 广西大学 Super-gravity micro-interface mass transfer strengthening reaction-crystallization drying coupling integrated machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131754A (en) * 1974-09-13 1976-03-18 Kansai Paint Co Ltd KYUJOGOSEIJUSHI FUNMATSU NO SEIZOHO
JPH0699057A (en) * 1992-06-12 1994-04-12 Stork Protecon Bv Device for making contact between powdery substance and liquid

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131751A (en) 1974-09-12 1976-03-18 Mitsubishi Monsanto Chem SHINKUSEIKEIYONANSHITSUHORIENKABINIRUENBOSUSHIITO NO SEIZOHO
US4787935A (en) * 1987-04-24 1988-11-29 United States Of America As Represented By The Secretary Of The Air Force Method for making centrifugally cooled powders
JP2788919B2 (en) * 1988-02-10 1998-08-20 ノルスク・ヒドロ・アーエスアー Method and apparatus for producing metal powder
JPH03247709A (en) * 1990-02-23 1991-11-05 Kawasaki Steel Corp Apparatus for manufacturing metal powder
JP3305357B2 (en) * 1992-05-21 2002-07-22 東芝機械株式会社 Alloy with excellent corrosion resistance and wear resistance, method for producing the same, and material for producing the alloy
US5935461A (en) * 1996-07-25 1999-08-10 Utron Inc. Pulsed high energy synthesis of fine metal powders
JP4488651B2 (en) * 2001-05-23 2010-06-23 高周波熱錬株式会社 Method and apparatus for producing ceramic or metal spherical powder by thermal plasma

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131754A (en) * 1974-09-13 1976-03-18 Kansai Paint Co Ltd KYUJOGOSEIJUSHI FUNMATSU NO SEIZOHO
JPH0699057A (en) * 1992-06-12 1994-04-12 Stork Protecon Bv Device for making contact between powdery substance and liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095685A (en) * 2007-10-12 2009-05-07 Tokyo Electron Ltd Powder production apparatus and method
JP2015515361A (en) * 2012-02-28 2015-05-28 ユニバーシティ オブ レスターUniversity Of Leicester Chemical reaction by combination of gas phase method and wet chemical method
US9931607B2 (en) 2012-02-28 2018-04-03 Gediminas Gallinis Chemical reaction by combination of gas-phase and wet-chemical methods
JPWO2018030106A1 (en) * 2016-08-10 2019-01-24 国立大学法人 熊本大学 Nanoparticle assembly and method for producing nanoparticle assembly

Also Published As

Publication number Publication date
KR100907735B1 (en) 2009-07-14
KR20060109505A (en) 2006-10-20
JPWO2005066069A1 (en) 2007-07-26
CN100522800C (en) 2009-08-05
US20070163385A1 (en) 2007-07-19
CN1906125A (en) 2007-01-31
TW200536776A (en) 2005-11-16
JP4864459B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2005066069A1 (en) Process for producing microparticle and apparatus therefor
CA2579539C (en) Process and apparatus for producing fine particles
CN103785860B (en) Metal dust of 3D printer and preparation method thereof
US20070063364A1 (en) Nanopowders synthesis apparatus and method
TWI327134B (en)
JP4296269B2 (en) Manufacturing method of high brightness luminescent material and manufacturing apparatus used therefor
JP2009513476A (en) Method for producing titanium dioxide
CN111819018B (en) Method for producing microparticles, and microparticles
US20030102207A1 (en) Method for producing nano powder
US5278384A (en) Apparatus and process for the treatment of powder particles for modifying the surface properties of the individual particles
TW202128315A (en) Apparatus of producing fine particles and method of producing fine particles
JP4721901B2 (en) Indium oxide-tin oxide powder and sputtering target using the same
US7097691B2 (en) Method for producing pigment nano-particles
CN1170774C (en) Method and equipment for preparing basic carbonate nano particle by means of spray pyrolysis of ammonia complex liquor
RU2434716C2 (en) Method of producing titanium nitride nanopowders
KR100529054B1 (en) Apparatus and method for removing moisture from fine powder carried by hot and humid carrier gas
CN107998995B (en) A kind of device and method of gas-liquid mixed high-pressure atomization prepare compound dusty material
US7611650B2 (en) Nanopowders synthesis apparatus
WO2001040402A1 (en) Method for producing phosphor
CN1673088A (en) Electric arc spraying reaction synthesis system and process of preparing nano alumina powder
CN109502580A (en) A kind of purification devices of graphene oxide
Jarligo et al. Synthesis of single phase La2Zr2O7 by wet mechanochemical treatment
CN1465461A (en) Method for preparing finely surface protected nano metal powder
RU2470855C1 (en) Method for production of pure nanodispersed powder of titanium dioxide
CN1810646A (en) Continuous preparation process of high purity nanometer alumina

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005516840

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007163385

Country of ref document: US

Ref document number: 10584069

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067013332

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200480041059.X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067013332

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10584069

Country of ref document: US