JPWO2004049475A1 - Non-aqueous electrolyte battery electrode binder composition and use thereof - Google Patents

Non-aqueous electrolyte battery electrode binder composition and use thereof Download PDF

Info

Publication number
JPWO2004049475A1
JPWO2004049475A1 JP2004555003A JP2004555003A JPWO2004049475A1 JP WO2004049475 A1 JPWO2004049475 A1 JP WO2004049475A1 JP 2004555003 A JP2004555003 A JP 2004555003A JP 2004555003 A JP2004555003 A JP 2004555003A JP WO2004049475 A1 JPWO2004049475 A1 JP WO2004049475A1
Authority
JP
Japan
Prior art keywords
electrode
polymer
negative electrode
vinylidene fluoride
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004555003A
Other languages
Japanese (ja)
Other versions
JP4851092B2 (en
Inventor
充康 佐久間
充康 佐久間
信男 阿彦
信男 阿彦
智昭 川上
智昭 川上
巧 葛尾
巧 葛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2004555003A priority Critical patent/JP4851092B2/en
Publication of JPWO2004049475A1 publication Critical patent/JPWO2004049475A1/en
Application granted granted Critical
Publication of JP4851092B2 publication Critical patent/JP4851092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

電極(正極/または負極)活物質のバインダーとして、少なくとも官能基含有フッ化ビニリデン系重合体および分子内にヒドロキシル基および/またはカルボニル基を含有する有極性重合体からなる組成物を用いることにより、非水電解液電池の必要な高容量性を維持しつつその性能安定性ならびに内部短絡時の安全性を向上する。By using a composition comprising at least a functional group-containing vinylidene fluoride polymer and a polar polymer containing a hydroxyl group and / or a carbonyl group in the molecule as a binder for an electrode (positive electrode / or negative electrode) active material, While maintaining the necessary high capacity of the non-aqueous electrolyte battery, its performance stability and safety during internal short circuit are improved.

Description

本発明は、非水系電解液電池、特にリチウムイオン電池、の製造に用いられる電極用バインダー、それを用いた電極合剤、電極およびそれを用いた非水電解液電池に関する。  The present invention relates to a binder for an electrode used in the production of a non-aqueous electrolyte battery, particularly a lithium ion battery, an electrode mixture using the same, an electrode, and a non-aqueous electrolyte battery using the same.

近年電子技術の発展は目覚しく、各種の機器が小型軽量化されてきている。この電子機器の小型軽量化と相俟って、その電源となる電池の小型軽量化の要望も非常に大きくなってきている。少ない容積および重量で、より大きなエネルギーを得ることができる電池として、リチウムを用いた非水系二次電池が、主として携帯電話やパーソナルコンピュータ、ビデオカムコーダなどの家庭で用いられる小型電子機器の電源として用いられてきた。
リチウムイオン電池用電極構造体は、活物質、導電剤がバインダーにより集電体に保持された状態で使用され、正極活物質にはリチウム複合酸化物、負極活物質には炭素系材料が、またそれら活物質を結着するためのバインダーにはフッ化ビニリデン系重合体が、主として用いられる。
特開平11−329443号公報には官能基を持たないフッ化ビニリデン系重合体とセルロース系重合体の混合物が例示されるが、結着性が十分でなく、安全性についても全く考慮されていなかった。
しかしながら、機器の小型軽量化と電池持続時間の増長という市場の要求は、リチウムイオン電池に更なる高容量化を課し、従来に比較し、電池内部では電極を詰め込むなどして容量か増加した反面、電池内部短絡が起こった場合には過大な電流が局所的に流れてしまい、電池の急激な温度上昇を招いて、電池の破裂、発煙、発火等の危険な状態を引き起こす危険性が増大するという問題があった。
In recent years, the development of electronic technology has been remarkable, and various devices have been reduced in size and weight. Along with the reduction in size and weight of electronic devices, there is an increasing demand for reduction in size and weight of batteries that serve as power sources. Non-aqueous secondary batteries using lithium are used as power sources for small electronic devices mainly used in homes such as mobile phones, personal computers, video camcorders, etc., as batteries that can obtain greater energy with less volume and weight. Has been.
An electrode structure for a lithium ion battery is used in a state where an active material and a conductive agent are held on a current collector by a binder, a lithium composite oxide as a positive electrode active material, a carbon-based material as a negative electrode active material, A vinylidene fluoride polymer is mainly used as a binder for binding these active materials.
JP-A-11-329443 exemplifies a mixture of a vinylidene fluoride-based polymer having no functional group and a cellulose-based polymer, but the binding property is not sufficient and safety is not taken into consideration at all. It was.
However, market demands for smaller and lighter devices and longer battery duration impose further higher capacities on lithium-ion batteries, and the capacity has been increased by packing electrodes inside the batteries compared to conventional batteries. On the other hand, if a short circuit occurs inside the battery, an excessive current flows locally, leading to a rapid temperature rise of the battery, increasing the risk of causing dangerous conditions such as battery rupture, smoke, and fire. There was a problem to do.

したがって、本発明の主要な課題は、非水電解液電池の必要な高容量性を維持しつつ、その性能安定性ならびに内部短絡時の安全性を向上した非水電解液電池の電極用バインダー組成物、ならびにこれを用いる電極および非水電解液電池を提供することにある。
本発明は、上記の課題を解決するものであって、その第1の観点において、リチウムを吸蔵・放出可能な正極と負極とを備えた非水電解液電池の正極および/または負極の結着剤として用いられるバインダー組成物であって、少なくとも官能基含有フッ化ビニリデン系重合体および分子内にヒドロキシル基および/またはカルボニル基を含有する有極性重合体からなることを特徴とする非水電解液電池電極用バインダー組成物を提供するものである。
また、本発明は別の観点において、上記バインダー組成物と電極活物質を含む電極合剤、集電体上に上記電極合剤の層を有する電極ならびに該電極を正極および負極の少なくとも一方として含む非水電解液電池を提供するものである。
上記したバインダー組成物が、非水電解液電池の必要な高容量性を維持しつつ、その性能安定性ならびに内部短絡時の安全性を向上できる理由は必ずしも明らかでないが、官能基含有フッ化ビニリデン系重合体中のカルボキシル基やグリシジル基、および有極性重合体のヒドロキシル基やカルボニル基が、集電体表面や電極活物質表面の水酸基と水素結合を形成しバインターとして接着性を向上させるとともに、電極活物質表面に、非水電解液の透過を遮断する、リチウムイオンの選択的透過性皮膜を形成し、電極活物質表面で充放電時に電解液とリチウムイオンの反応で合成されるリチウム化合物の生成を抑えるので、充電された電池内部の温度が短絡等で上昇しても熱的に不安定なリチウム化合物が少なく分解発熱が抑えられるとともに活物質内のリチウムイオンと電解液の直接反応をも抑制する働きがあると考えられる。また、後述の内部短絡時の温度上昇を予見するために行った釘刺し試験における温度上昇と、バインダーの持つ接着強度とが逆の相関を示すことから見て、内部短絡時の安全性の向上(温度上昇の低下)にはバインダーの持つ接着性も重要な寄与をしているものと解される。すなわち、バインダーの持つ、(イ)リチウムイオンの選択透過性と、(ロ)接着強度の向上、が相乗的に内部短絡時の安全性向上に寄与しているものと解される。
好ましい実施の形態
本発明の官能基含有フッ化ビニリデン系重合体としては、フッ化ビニリデン単量体の単独、又はフッ化ビニリデン単量体と共重合可能な他の単量体、例えばエチレン、プロピレン等の炭化水素系単量体、またはフッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテル等のフッ化ビニリデン以外の含フッ素単量体(好ましくはフッ化ビニリデン単量体との合計量の20重量%以下)の混合物、の100重量部に対し、0.1〜3重量部の官能基を有する単量体を加えて得られた共重合体が好ましく用いられる。官能基を有する単量体にはカルボキシル基を有するものと、グリシジル基を有するものが含まれる。カルボキシル基を含有する単量体としては、例えば、アクリル酸、クロトン酸等の不飽和−塩基酸、マレイン酸、シトラコン酸等の不飽和二塩基酸、もしくはそれらのモノアルキルエステルであるマレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等がある。また、グリシジル基を含有する単量体としては、例えば、アリルグリシジルエーテル、メタアリルグリシジルエーテル、クロトン酸グリシジルエステル、アリル酢酸グリシジルエステル等がある。これらのうちから少なくとも1種以上を共重合して得られる官能基含有フッ化ビニリデン系重合体が好ましく用いられる。これら官能基含有フッ化ビニリデン系重合体は、懸濁重合、乳化重合、溶液重合等の公知の方法により得られる。また、官能基導入方法としては、フッ化ビニリデン系重合体を加熱塩基等で脱フッ酸した後に、有機酸あるいは酸化剤で処理し、官能基を含有する重合体を得ることもできる。
官能基含有フッ化ビニリデン系重合体の分子量は、特開平9−289023号公報に開示されているように、その目安としてインヘレント粘度(樹脂4gを1リットルのN、N−ジメチルホルムアミドに溶解させた溶液の30℃における対数粘度をいう)において、0.8〜20dl/g、好ましくは1.0〜20dl/g、より好ましくは1.0〜15dl/g、さらに好ましくは1.2〜15dl/gであるものが好適に用いられる。フッ化ビニリデン系重合体のインヘレント粘度が、上記範囲未満では、電極合剤の粘度が低くなり塗工が困難になり、上記範囲を超えると有機溶媒への溶解が困難になり適当ではない。
本発明において使用される有極性重合体には、ヒドロキシル基を有する重合体と、カルボニル基を有する重合体が含まれる。ヒドロキシル基を有する重合体の例としては、エチレンビニルアルコール共重合体、セルロース系重合体、ビニルフェノール系重合体が含まれる。また、カルボニル基を有する重合体としては、ポリアクリル酸系重合体、より具体的には、ポリアクリル酸、ポリアクリル酸架橋重合体、それらの金属塩類等が含まれる。有極性重合体としては、またポリビニルピロリドンも好適に用いられる。
必要に応じて、官能基含有フッ化ビニリデン系重合体、ヒドロキシル基またはカルボニル基を有する有極性重合体の他に、フッ化ビニリデンの単独重合体、フッ化ビニリデンとフッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン等のフッ化ビニリデンと共重合可能なモノマーとの共重合体等を加えることができる。
本発明において、官能基含有フッ化ビニリデン系共重合体と有極性重合体との混合比率としては、官能基含有フッ化ビニリデン系共重合体が10〜99重量%、好ましくは20〜95重量%で、有極性重合体が1〜90重量%、好ましくは5〜80重量%である。有極性重合体の混合比率が上記範囲より少ない場合には、活物質表面の被覆状態が不十分で活物質表面と電解液との接触面積が広くなり電池安全性が劣ってしまう。さらに、重合体の電極と集電体の接着性や電極活物質同士の結着性が低下し、繰り返し充放電での放電容量の低下が懸念される。
一方、有極性重合体の混合比率が上記範囲より多い場合には、電極表面に形成される被膜が厚くなりすぎ、活物質と電解液界面でのリチウムイオン透過性が劣り、内部抵抗が増大し充放電容量の低下が懸念される。
本発明のバインダー組成物は、通常、バインダー組成物を構成する官能基含有フッ化ビニリデン系重合体および有極性重合体を溶剤に溶解し、更に正極または負極活物質ならびに必要に応じて添加される導電補助剤等の助剤を分散させて、スラリー状の電極合剤を形成して、電極の製造に用いられる。溶剤としては、好ましくは極性を有する有機溶媒であり、例えばN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルスルホキシド、ヘキサメチルホスホアミド、トリエチルホスフェイト、アセトンなどが挙げられる。これらの有機溶媒は単独での使用のみならず二種以上を混合して用いることもできる。
本発明において、リチウムイオン二次電他用の活物質としては、正極の場合は、一般式LiMY(MはCo,Ni,Fe,Mn,Cr,V等の遷移金属の少なくとも一種:YはO、S等のカルコゲン元素)で表される複合金属カルコゲン化合物、負極の場合は、天然黒鉛、人造黒鉛、コークス、活性炭、フェノール樹脂やピッチ等を焼成炭化したもの等の粉末状炭素質材料、金属酸化物系のGeO,GeO,SO,SnO,PbO,PbO等あるいはこれらの複合金属酸化物,Si,SiSn等のケイ素およびケイ素化合物等が用いられる。
バインダー組成物は、電極(正極または負極)活物質および導電助剤(これらを包括的に「粉末電極材料」と称する)100重量部に対して、0.1〜30重量部、特に0.5〜20重量部の割合で使用することが好ましい。
また、予めバインダー組成物を有機溶剤に溶かして使用する場合には、溶剤は、単独又は2種以上混合して、溶剤100重量部にあたり、バインダー組成物が0.1〜30重量部、特に1〜20重量部となる割合で使用することが好ましい。
バインダー組成物、粉末電極材料、有機溶媒からなる合剤を混合するのに用いられる装置としては、ホモジナイザーや多軸遊星方式の分散・混合・混練機や乳化機が使用できるが、これらに限定されるものではない。
上記の方法にて調製された合剤スラリーは粉末電極材料、バインダー組成物が均一に分散・混合され、良好な塗布性で集電体に塗布される。塗布の方法は公知の方法でよく、なかでもドクターブレード法が好ましく用いられる。集電体上の合剤は、例えば50〜170℃で溶媒乾燥され、必要に応じてプレス工程を経て、非水系二次電他用の電極構造体が形成される。
本発明のバインダー組成物および電極合剤は、正極および負極の少なくとも一方の形成に用いられるが、いずれか一方ということであれば負極形成に用いることが好ましい。これは、負極を構成する粉末電極材料が、より接着性の高いバインダーを要求し、本発明のバインダー組成物が特に適するからである。
Therefore, the main problem of the present invention is to provide a binder composition for an electrode of a nonaqueous electrolyte battery that has improved performance stability and safety during internal short circuit while maintaining the necessary high capacity of the nonaqueous electrolyte battery. And an electrode and a nonaqueous electrolyte battery using the same.
The present invention solves the above-mentioned problems, and in its first aspect, binding of a positive electrode and / or a negative electrode of a nonaqueous electrolyte battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium A non-aqueous electrolytic solution comprising a binder composition used as an agent, comprising at least a functional group-containing vinylidene fluoride polymer and a polar polymer containing a hydroxyl group and / or a carbonyl group in the molecule A binder composition for battery electrodes is provided.
In another aspect, the present invention includes an electrode mixture including the binder composition and an electrode active material, an electrode having a layer of the electrode mixture on a current collector, and the electrode as at least one of a positive electrode and a negative electrode. A non-aqueous electrolyte battery is provided.
The reason why the above-mentioned binder composition can improve the performance stability and safety at the time of internal short circuit while maintaining the necessary high capacity of the non-aqueous electrolyte battery is not necessarily clear, but the functional group-containing vinylidene fluoride While the carboxyl group and glycidyl group in the polymer and the hydroxyl group and carbonyl group of the polar polymer form a hydrogen bond with the hydroxyl group on the surface of the current collector or electrode active material to improve adhesion as a binder, A lithium ion selective permeable film that blocks the permeation of the non-aqueous electrolyte solution is formed on the surface of the electrode active material, and the lithium compound synthesized by the reaction between the electrolyte solution and the lithium ion during charge and discharge on the electrode active material surface. Since the generation is suppressed, there are few thermally unstable lithium compounds even when the temperature inside the charged battery rises due to a short circuit etc. It is believed that inhibit also act directly reaction of lithium ions and the electrolyte solution in the material. In addition, since the temperature rise in the nail penetration test conducted to predict the temperature rise at the time of internal short circuit, which will be described later, and the adhesive strength of the binder show an inverse correlation, improvement of safety at the time of internal short circuit It is understood that the adhesive property of the binder also contributes to (decrease in temperature rise). That is, it is understood that (b) selective permeability of lithium ions and (b) improvement in adhesive strength possessed by the binder synergistically contribute to safety improvement during internal short circuit.
Preferred Embodiments As the functional group-containing vinylidene fluoride polymer of the present invention, the vinylidene fluoride monomer alone or other monomers copolymerizable with the vinylidene fluoride monomer, such as ethylene and propylene, are used. Or other fluorine-containing monomers other than vinylidene fluoride such as vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, fluoroalkyl vinyl ether, etc. It was obtained by adding 0.1 to 3 parts by weight of a monomer having a functional group to 100 parts by weight of a mixture (preferably 20% by weight or less of the total amount with vinylidene fluoride monomer). A copolymer is preferably used. Monomers having a functional group include those having a carboxyl group and those having a glycidyl group. Examples of the monomer containing a carboxyl group include unsaturated-basic acids such as acrylic acid and crotonic acid, unsaturated dibasic acids such as maleic acid and citraconic acid, or monomethyl maleate which is a monoalkyl ester thereof. Examples include esters, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester. Examples of the monomer containing a glycidyl group include allyl glycidyl ether, methallyl glycidyl ether, crotonic acid glycidyl ester, and allyl acetic acid glycidyl ester. Of these, a functional group-containing vinylidene fluoride polymer obtained by copolymerizing at least one of them is preferably used. These functional group-containing vinylidene fluoride polymers can be obtained by known methods such as suspension polymerization, emulsion polymerization, and solution polymerization. In addition, as a method for introducing a functional group, a vinylidene fluoride polymer can be dehydrofluorinated with a heated base or the like and then treated with an organic acid or an oxidizing agent to obtain a polymer containing a functional group.
As disclosed in JP-A-9-289023, the molecular weight of the functional group-containing vinylidene fluoride polymer has an inherent viscosity (4 g of resin dissolved in 1 liter of N, N-dimethylformamide). 0.8 to 20 dl / g, preferably 1.0 to 20 dl / g, more preferably 1.0 to 15 dl / g, and still more preferably 1.2 to 15 dl / g. What is g is used suitably. If the inherent viscosity of the vinylidene fluoride polymer is less than the above range, the viscosity of the electrode mixture becomes low and coating becomes difficult, and if it exceeds the above range, dissolution in an organic solvent becomes difficult.
The polar polymer used in the present invention includes a polymer having a hydroxyl group and a polymer having a carbonyl group. Examples of the polymer having a hydroxyl group include an ethylene vinyl alcohol copolymer, a cellulose polymer, and a vinyl phenol polymer. The polymer having a carbonyl group includes a polyacrylic acid polymer, more specifically, polyacrylic acid, a polyacrylic acid crosslinked polymer, and metal salts thereof. Polyvinyl pyrrolidone is also preferably used as the polar polymer.
As necessary, in addition to a functional group-containing vinylidene fluoride polymer, a polar polymer having a hydroxyl group or a carbonyl group, a homopolymer of vinylidene fluoride, vinylidene fluoride and vinyl fluoride, trifluoroethylene, A copolymer of a monomer copolymerizable with vinylidene fluoride such as chlorotrifluoroethylene, tetrafluoroethylene, and hexafluoropropylene can be added.
In the present invention, as a mixing ratio of the functional group-containing vinylidene fluoride copolymer and the polar polymer, the functional group-containing vinylidene fluoride copolymer is 10 to 99% by weight, preferably 20 to 95% by weight. The polar polymer is 1 to 90% by weight, preferably 5 to 80% by weight. When the mixing ratio of the polar polymer is less than the above range, the covering state of the active material surface is insufficient, the contact area between the active material surface and the electrolytic solution is widened, and the battery safety is inferior. Furthermore, the adhesiveness between the polymer electrode and the current collector and the binding property between the electrode active materials are lowered, and there is a concern that the discharge capacity may be lowered during repeated charge and discharge.
On the other hand, when the mixing ratio of the polar polymer is larger than the above range, the coating formed on the electrode surface becomes too thick, the lithium ion permeability at the interface between the active material and the electrolytic solution is inferior, and the internal resistance increases. There is concern about a decrease in charge / discharge capacity.
The binder composition of the present invention is usually prepared by dissolving the functional group-containing vinylidene fluoride polymer and polar polymer constituting the binder composition in a solvent, and further adding a positive electrode or negative electrode active material and as necessary. An auxiliary agent such as a conductive auxiliary agent is dispersed to form a slurry-like electrode mixture, which is used for manufacturing an electrode. The solvent is preferably a polar organic solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylsulfoxide, hexamethylphosphoamide, triethyl. Examples include phosphate and acetone. These organic solvents can be used alone or in combination of two or more.
In the present invention, as an active material for lithium ion secondary electricity and the like, in the case of a positive electrode, a general formula LiMY 2 (M is at least one kind of transition metal such as Co, Ni, Fe, Mn, Cr, V: Y is In the case of a composite metal chalcogen compound represented by (chalcogen element such as O, S), or a negative electrode, a powdery carbonaceous material such as natural graphite, artificial graphite, coke, activated carbon, phenol resin, or a material obtained by firing and carbonizing a phenol resin or pitch, Metal oxide-based GeO, GeO 2 , SO, SnO 2 , PbO, PbO 2 or the like, or composite metal oxides thereof, silicon and silicon compounds such as Si, SiSn, or the like are used.
The binder composition is 0.1 to 30 parts by weight, particularly 0.5 to 100 parts by weight of an electrode (positive electrode or negative electrode) active material and a conductive additive (these are collectively referred to as “powder electrode material”). It is preferable to use it at a ratio of ˜20 parts by weight.
In addition, when the binder composition is used by dissolving it in an organic solvent in advance, the solvent is used alone or in combination of two or more, and the binder composition is 0.1 to 30 parts by weight, especially 1 It is preferable to use it at a ratio of ˜20 parts by weight.
As an apparatus used for mixing a binder composition, a powder electrode material, and a mixture composed of an organic solvent, a homogenizer, a multi-axis planetary dispersion / mixing / kneading machine, or an emulsifier can be used, but is not limited thereto. It is not something.
In the mixture slurry prepared by the above method, the powder electrode material and the binder composition are uniformly dispersed and mixed, and are applied to the current collector with good coating properties. The application method may be a known method, among which the doctor blade method is preferably used. The mixture on the current collector is solvent-dried at, for example, 50 to 170 ° C., and an electrode structure for non-aqueous secondary electricity and the like is formed through a pressing process as necessary.
The binder composition and electrode mixture of the present invention are used for forming at least one of a positive electrode and a negative electrode, and if it is either one, it is preferably used for forming a negative electrode. This is because the powder electrode material constituting the negative electrode requires a binder having higher adhesion, and the binder composition of the present invention is particularly suitable.

以下、実施例および比較例により本発明を更に具体的に説明する。
(官能基含有フッ化ビニリデン系共重合体Aの製造)
内容積2リットルのオートクレーブに、イオン交換水1075g、メチルセルロース0.4g、フッ化ビニリデン単量体(VDF)398g、マレイン酸モノメチルエステル(MMM)2g、イソプロピルパーオキシジカーボネート2.5g、酢酸エチル5gの各量を仕込み、28℃で27時間懸濁重合を行った。
重合終了後、重合体スラリーを脱水、水洗・脱水後、80℃で20時間乾燥し、収率89%で、インヘレント粘度が1.1dl/gである本発明の官能基含有フッ化ビニリデン系重合体Aを得た。
(官能基含有フッ化ビニリデン系重合体Bの製造)
内容積2リットルのオートクレーブに、イオン交換水1075g、メチルセルロース0.4g、フッ化ビニリデン単量体(VDF)400g、2−メチルグリシジルメタクリレート(2M−GMA)3g、イソプロピルバーオキシジカーボネート2.5g、酢酸エチル5gの容量を仕込み、28℃で25時間懸濁重合を行った。
重合終了後、重合体スラリーを脱水、水洗・脱水後、80℃で20時間乾燥し、収率90%で、インヘレント粘度が2.4dl/gである官能基含有フッ化ビニリデン重合体Bを得た。
(フッ化ビニリデン重合体Cの製造)
内容積2リットルのオートクレーブに、イオン交換水1075g、メチルセルロース0.4g、フッ化ビニリデン単量体(VDF)400g、イソプロピルパーオキシジカーボネート2.5g、酢酸エチル5gの各量を仕込み、26℃で20時間懸濁重合を行った。
重合終了後、重合体スラリーを脱水、水洗・脱水後、80℃で20時間乾燥し、収率91%で、インヘレント粘度が1.1dl/gであるフッ化ビニリデン重合体C(ポリフッ化ビニニリデン)を得た。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
(Production of functional group-containing vinylidene fluoride copolymer A)
In an autoclave with an internal volume of 2 liters, ion-exchanged water 1075 g, methylcellulose 0.4 g, vinylidene fluoride monomer (VDF) 398 g, maleic acid monomethyl ester (MMM) 2 g, isopropyl peroxydicarbonate 2.5 g, ethyl acetate 5 g The suspension polymerization was carried out at 28 ° C. for 27 hours.
After completion of the polymerization, the polymer slurry is dehydrated, washed with water, dehydrated, dried at 80 ° C. for 20 hours, and the yield is 89% and the inherent viscosity of the present invention is 1.1 dl / g. Combined A was obtained.
(Production of functional group-containing vinylidene fluoride polymer B)
In an autoclave having an internal volume of 2 liters, 1075 g of ion exchange water, 0.4 g of methyl cellulose, 400 g of vinylidene fluoride monomer (VDF), 3 g of 2-methylglycidyl methacrylate (2M-GMA), 2.5 g of isopropyl baroxydicarbonate, A volume of 5 g of ethyl acetate was charged, and suspension polymerization was performed at 28 ° C. for 25 hours.
After completion of the polymerization, the polymer slurry is dehydrated, washed with water, dehydrated, and dried at 80 ° C. for 20 hours to obtain a functional group-containing vinylidene fluoride polymer B having a yield of 90% and an inherent viscosity of 2.4 dl / g. It was.
(Production of vinylidene fluoride polymer C)
In an autoclave with an internal volume of 2 liters, 1075 g of ion exchange water, 0.4 g of methyl cellulose, 400 g of vinylidene fluoride monomer (VDF), 2.5 g of isopropyl peroxydicarbonate, and 5 g of ethyl acetate were charged at 26 ° C. Suspension polymerization was performed for 20 hours.
After completion of the polymerization, the polymer slurry is dehydrated, washed with water, dehydrated, and dried at 80 ° C. for 20 hours. The vinylidene fluoride polymer C (polyvinylidene fluoride) having a yield of 91% and an inherent viscosity of 1.1 dl / g is obtained. Got.

(正極の作製)
コバルト酸リチウム(「セルシードC−5」、日本化学工業製)94重量部、フッ化ビニリデン重合体C3重量部、カーボンブラック3重量部にN−メチル−2−ピロリドン(NMP)を43重量部添加し、混合して正極用合剤を調製した。得られた合剤を厚さ10μmのアルミ箔上に、乾燥後の膜厚が約100μmになるように均一に塗布し、130℃で25分間乾燥して、正極構造体(活物質量:291g/m)を得た。
(負極の作製)
官能基含有フッ化ビニリデン系重合体A11重量部、エチレンビニルアルコール共重合体(EVOH、クラレ社製「エバールEP−G156B」、エチレンモル含量47%)1重量部に対し、平均粒子径30μmの球状天然黒鉛粉末(中国産)88重量部と、NMP67重量部を混合して本発明の負極合剤組成物Aを調製した。得られた合剤を厚さ8μmの銅箔上に、乾燥後の膜厚が約100μmになるように均一に塗布し、130℃で25分間乾燥して、負極構造体A(活物質量:163g/m)を得た。
(電極構造体における電極合剤層の剥離強度測定方法)
集電体に塗布、乾燥した負極構造体を試料とし、電極合剤層の集電体からの剥離強度をJIS K6854に準拠して180°剥離試験により測定した。
(剥離強度の測定)
上記負極構造体Aの剥離強度を測定したところ、3.8gf/mmであった。
(電池の作製)
48mm×48mmに切り出して充放電用のリード部を取り付けた正極構造体と、50mm×50mmに切り出して充放電用のリード部を取り付けた負極構造体Aを、電極面が対向するように、52mm×52mmで厚さ20μmのポリエチレン製セパレーターを介して重ね合わせ、80mm×80mmの寸法で外側がポリエチレン製のアルミラミネートバッグにリード部分が外側に出るように組み込み、エチレンカーボネート/メチルエチルカーボネート/ジメチルカーボネート(9/13/16体積比)、混合溶媒中にLiPFを1M濃度で含む電解液を1g添加した後に、アルミラミネート製バッグを封止し、本発明の電池Aを得た。
(充放電)
上記の電池Aを0.2mAの定電流で4.2Vまで充電後、0.2mAの定常流で3.0Vまで放電し、さらに1mAの定電流で4.37Vまで充電した。2回目の充電における電池の充電容量(充電電流値の積分値)は133mAhだった。
(釘刺し試験)
上記の充電された電池Aを、室温が23℃に保たれた部屋で、木製の板の上に負極が上となるように静置後、直径1mmの釘を刺して貫通させ、赤外線サーモグラフィ(アビオニクス社製「TVS−100」)で電池表面温度の上昇を測定した。
電池Aの釘刺し後の最大温度上昇は3℃であった。
(Preparation of positive electrode)
Addition of 43 parts by weight of N-methyl-2-pyrrolidone (NMP) to 94 parts by weight of lithium cobaltate ("Cellseed C-5", manufactured by Nippon Chemical Industry Co., Ltd.), 3 parts by weight of vinylidene fluoride polymer C, and 3 parts by weight of carbon black And mixed to prepare a positive electrode mixture. The obtained mixture was uniformly applied onto an aluminum foil having a thickness of 10 μm so that the film thickness after drying was about 100 μm, and dried at 130 ° C. for 25 minutes to obtain a positive electrode structure (active material amount: 291 g). / M 2 ).
(Preparation of negative electrode)
Spherical natural having an average particle diameter of 30 μm per 11 parts by weight of a functional group-containing vinylidene fluoride polymer A and 1 part by weight of an ethylene vinyl alcohol copolymer (EVOH, “Eval EP-G156B” manufactured by Kuraray Co., Ltd., ethylene molar content 47%) A negative electrode mixture composition A of the present invention was prepared by mixing 88 parts by weight of graphite powder (produced in China) and 67 parts by weight of NMP. The obtained mixture was uniformly applied onto a copper foil having a thickness of 8 μm so that the film thickness after drying was about 100 μm, dried at 130 ° C. for 25 minutes, and negative electrode structure A (active material amount: 163 g / m 2 ) was obtained.
(Method for measuring peel strength of electrode mixture layer in electrode structure)
Using the negative electrode structure coated and dried on the current collector as a sample, the peel strength of the electrode mixture layer from the current collector was measured by a 180 ° peel test in accordance with JIS K6854.
(Measurement of peel strength)
The peel strength of the negative electrode structure A was measured and found to be 3.8 gf / mm.
(Production of battery)
The positive electrode structure cut out to 48 mm × 48 mm and attached with the charge / discharge lead portion and the negative electrode structure A cut out into 50 mm × 50 mm and attached with the charge / discharge lead portion were attached to 52 mm so that the electrode surfaces face each other. X52mm and 20μm thick polyethylene separators, and 80mm x 80mm in size and assembled into an aluminum laminated bag with polyethylene outside so that the lead part is outside, ethylene carbonate / methyl ethyl carbonate / dimethyl carbonate (9/13/16 volume ratio) After adding 1 g of an electrolytic solution containing LiPF 6 at a concentration of 1 M in the mixed solvent, the aluminum laminate bag was sealed to obtain a battery A of the present invention.
(Charge / discharge)
The battery A was charged to 4.2 V with a constant current of 0.2 mA, discharged to 3.0 V with a steady flow of 0.2 mA, and further charged to 4.37 V with a constant current of 1 mA. The charging capacity (integrated value of the charging current value) of the battery in the second charging was 133 mAh.
(Nail penetration test)
The charged battery A is left in a room where the room temperature is kept at 23 ° C. so that the negative electrode is on top of a wooden board, and then a nail with a diameter of 1 mm is pierced and penetrated, and an infrared thermography ( The rise of the battery surface temperature was measured with "TVS-100" manufactured by Avionics.
The maximum temperature rise after nail penetration of battery A was 3 ° C.

負極の作製でEVOHの代りにポリアクリル酸(PAA)(「AQUPEC HV−501」、住友精化製)を用いたほかは、実施例1と同様に行い、負極構造体B、電池Bを得た。
負極構造体Bの剥離強度は1.0gf/mm、電池Bの充電容量は135mAhで、釘刺し試験の最大温度上昇は3.5℃だった。
A negative electrode structure B and a battery B were obtained in the same manner as in Example 1, except that polyacrylic acid (PAA) (“AQUPEC HV-501”, manufactured by Sumitomo Seika) was used instead of EVOH in the production of the negative electrode. It was.
The peel strength of the negative electrode structure B was 1.0 gf / mm, the charge capacity of the battery B was 135 mAh, and the maximum temperature increase in the nail penetration test was 3.5 ° C.

負極の作製で官能基含有フッ化ビニリデン系重合体Aの代りに官能基含有フッ化ビニリデン系重合体Bを用いたほかは、実施例1と同様に行い、負極構造体C、電池Cを得た。
負極構造体Cの剥離強度は4.3gf/mm、電池Cの充電容量は130mAhで、釘刺し試験の最大温度上昇は3℃だった。
A negative electrode structure C and a battery C were obtained in the same manner as in Example 1 except that the functional group-containing vinylidene fluoride polymer B was used instead of the functional group-containing vinylidene fluoride polymer A in the production of the negative electrode. It was.
The peel strength of the negative electrode structure C was 4.3 gf / mm, the charge capacity of the battery C was 130 mAh, and the maximum temperature increase in the nail penetration test was 3 ° C.

負極の作製でEVOHの代りにヒドロキシエチルセルロース(HEC)(「HECダイセルEP850」、ダイセル化学工業製)を用いたほかは、実施例1と同様に行い、負極構造体D、電池Dを得た。
負極構造体Dの剥離強度は0.9gf/mm、電池Dの充電容量は133mAhで、釘刺し試験の最大温度上昇は3℃だった。
A negative electrode structure D and a battery D were obtained in the same manner as in Example 1 except that hydroxyethyl cellulose (HEC) (“HEC Daicel EP850”, manufactured by Daicel Chemical Industries) was used instead of EVOH in the production of the negative electrode.
The peel strength of the negative electrode structure D was 0.9 gf / mm, the charge capacity of the battery D was 133 mAh, and the maximum temperature increase in the nail penetration test was 3 ° C.

負極の作製でEVOHの代りにポリパラビニルフェノール(PPVP)(「マルカリンカー S−2P」、丸善石油化学(株))を用いたほかは、実施例1と同様に行い、負極構造体H、電池Hを得た。
負極構造体Hの剥離強度は5.4gf/mm、電池Hの充電容量は134mAhで、釘刺し試験の最大温度上昇は4℃だった。
<比較例1>
負極の作製で官能基含有フッ化ビニリデン系重合体Aを、11gから12gに増量し、EV0Hを用いなかったほかは、実施例1と同様に行い、負極構造体E、電池Eを得た。
負極構造体Eの剥離強度は0.9gf/mm、電池Eの充電容量は133mAhで、釘刺し試験の最大温度上昇は12℃だった。
<比較例2>
負極の作製で官能基含有フッ化ビニリデン系重合体Bを、11gから12gに増量し、EVOHを用いなかったほかは、実施例3と同様に行い、負極構造体F、電池Fを得た。
負極構造体Fの剥離強度は3.1gf/mm、電池Fの充電容量は124mAhで、釘刺し試験の最大温度上昇は6.5℃だった。
<比較例3>
負極の作製で、官能基官有フッ化ビニリデン重合体Aの代りにフッ化ビニリデン重合体Cを用いたほかは、実施例1と同様に行い、負極構造体G、電池Gを得た。
負極構造体Gの剥離強度は0.7gf/mm、電池Gの充電容量は134mAhで、釘刺し試験の最大温度上昇は6℃だった。
<比較例4>
負極の作製で、官能基含有フッ化ビニリデン重合体Aの代りにフッ化ビニリデン重合体Cを用いたほかは、比較例1と回禄に行い、負極構造体G、電池Gを得た。
負極構造体Hの剥離強度は0.7gf/mm、電池Hの充電容量は132mAhで、釘刺し試験の最大温度上昇は9℃だった。
上記実施例および比較例に用いたバインダー組成物の概要および評価結果をまとめて、以下の表1に示す。

Figure 2004049475
Except for using polyparavinylphenol (PPVP) (“Marcalinker S-2P”, Maruzen Petrochemical Co., Ltd.) instead of EVOH in the production of the negative electrode, the same procedure as in Example 1 was carried out. Battery H was obtained.
The peel strength of the negative electrode structure H was 5.4 gf / mm, the charge capacity of the battery H was 134 mAh, and the maximum temperature increase in the nail penetration test was 4 ° C.
<Comparative Example 1>
A negative electrode structure E and a battery E were obtained in the same manner as in Example 1 except that the functional group-containing vinylidene fluoride polymer A was increased from 11 g to 12 g in the production of the negative electrode, and EV0H was not used.
The peel strength of the negative electrode structure E was 0.9 gf / mm, the charge capacity of the battery E was 133 mAh, and the maximum temperature increase in the nail penetration test was 12 ° C.
<Comparative example 2>
The negative electrode structure F and the battery F were obtained in the same manner as in Example 3 except that the functional group-containing vinylidene fluoride polymer B was increased from 11 g to 12 g in the production of the negative electrode, and EVOH was not used.
The peel strength of the negative electrode structure F was 3.1 gf / mm, the charge capacity of the battery F was 124 mAh, and the maximum temperature increase in the nail penetration test was 6.5 ° C.
<Comparative Example 3>
A negative electrode structure G and a battery G were obtained in the same manner as in Example 1 except that the vinylidene fluoride polymer C was used in place of the functional group-containing vinylidene fluoride polymer A in preparation of the negative electrode.
The peel strength of the negative electrode structure G was 0.7 gf / mm, the charge capacity of the battery G was 134 mAh, and the maximum temperature increase in the nail penetration test was 6 ° C.
<Comparative Example 4>
A negative electrode structure G and a battery G were obtained in the same manner as in Comparative Example 1 except that the vinylidene fluoride polymer C was used in place of the functional group-containing vinylidene fluoride polymer A in preparation of the negative electrode.
The peel strength of the negative electrode structure H was 0.7 gf / mm, the charge capacity of the battery H was 132 mAh, and the maximum temperature increase in the nail penetration test was 9 ° C.
The summary and evaluation results of the binder compositions used in the above Examples and Comparative Examples are summarized in Table 1 below.
Figure 2004049475

上記表1の結果からわかるように、リチウムを吸蔵・放出可能な正極と負極とを備えた非水電解液電池において、前記正極/または負極の結着剤が官能基含有フッ化ビニリデン系重合体と有極性重合体である非水電解液電池電極用バインダー組成物を使用することで、接着性が優れる電極と安全性に優れる電池が得られることがわかる。  As can be seen from the results in Table 1, in the nonaqueous electrolyte battery including a positive electrode and a negative electrode capable of inserting and extracting lithium, the positive electrode / or negative electrode binder is a functional group-containing vinylidene fluoride polymer. It can be seen that by using a binder composition for a nonaqueous electrolyte battery electrode that is a polar polymer, an electrode having excellent adhesion and a battery having excellent safety can be obtained.

本発明は、非水系電解液電池、特にリチウムイオン電池、の製造に用いられる電極用バインダー、それを用いた電極合剤、電極およびそれを用いた非水電解液電池に関する。   The present invention relates to a binder for an electrode used in the production of a non-aqueous electrolyte battery, particularly a lithium ion battery, an electrode mixture using the same, an electrode, and a non-aqueous electrolyte battery using the same.

近年電子技術の発展は目覚しく、各種の機器が小型軽量化されてきている。この電子機器の小型軽量化と相俟って、その電源となる電池の小型軽量化の要望も非常に大きくなってきている。少ない容積および重量で、より大きなエネルギーを得ることができる電池として、リチウムを用いた非水系二次電池が、主として携帯電話やパーソナルコンピュータ、ビデオカムコーダなどの家庭で用いられる小型電子機器の電源として用いられてきた。   In recent years, the development of electronic technology has been remarkable, and various devices have been reduced in size and weight. Along with the reduction in size and weight of electronic devices, there is an increasing demand for reduction in size and weight of batteries that serve as power sources. Non-aqueous secondary batteries using lithium are used as power sources for small electronic devices mainly used in homes such as mobile phones, personal computers, video camcorders, etc., as batteries that can obtain greater energy with less volume and weight. Has been.

リチウムイオン電池用電極構造体は、活物質、導電剤がバインダーにより集電体に保持された状態で使用され、正極活物質にはリチウム複合酸化物、負極活物質には炭素系材料が、またそれら活物質を結着するためのバインダーにはフッ化ビニリデン系重合体が、主として用いられる。   An electrode structure for a lithium ion battery is used in a state where an active material and a conductive agent are held on a current collector by a binder, a lithium composite oxide as a positive electrode active material, a carbon-based material as a negative electrode active material, A vinylidene fluoride polymer is mainly used as a binder for binding these active materials.

特開平11−329443号公報(特許文献1)には官能基を持たないフッ化ビニリデン系重合体とセルロース系重合体の混合物が例示されるが、結着性が十分でなく、安全性についても全く考慮されていなかった。 JP-A-11-329443 (Patent Document 1) exemplifies a mixture of a vinylidene fluoride polymer having no functional group and a cellulose polymer. However, the binding property is not sufficient, and the safety is also improved. It was not considered at all.

しかしながら、機器の小型軽量化と電池持続時間の増長という市場の要求は、リチウムイオン電池に更なる高容量化を課し、従来に比較し、電池内部では電極を詰め込むなどして容量増加した反面、電池内部短絡が起こった場合には過大な電流が局所的に流れてしまい、電池の急激な温度上昇を招いて、電池の破裂、発煙、発火等の危険な状態を引き起こす危険性が増大するという問題があった。
特開平11−329443号公報
However, market demands for smaller and lighter devices and longer battery duration have imposed higher capacities for lithium-ion batteries, and capacity has been increased by packing electrodes inside the batteries compared to conventional batteries. On the other hand, if a short circuit occurs inside the battery, an excessive current flows locally, leading to a rapid temperature rise of the battery, increasing the risk of causing dangerous conditions such as battery rupture, smoke, and fire. There was a problem to do.
JP-A-11-329443

したがって、本発明の主要な課題は、非水電解液電池の必要な高容量性を維持しつつ、その性能安定性ならびに内部短絡時の安全性を向上した非水電解液電池の電極用バインダー組成物、ならびにこれを用いる電極および非水電解液電池を提供することにある。   Therefore, the main problem of the present invention is to provide a binder composition for an electrode of a nonaqueous electrolyte battery that has improved performance stability and safety during internal short circuit while maintaining the necessary high capacity of the nonaqueous electrolyte battery. And an electrode and a nonaqueous electrolyte battery using the same.

本発明は、上記の課題を解決するものであって、その第1の観点において、リチウムを吸蔵・放出可能な正極と負極とを備えた非水電解液電池の正極および/または負極の結着剤として用いられるバインダー組成物であって、少なくとも官能基含有フッ化ビニリデン系重合体および分子内にヒドロキシル基および/またはカルボニル基を含有する有極性重合体からなることを特徴とする非水電解液電池電極用バインダー組成物を提供するものである。   The present invention solves the above-mentioned problems, and in its first aspect, binding of a positive electrode and / or a negative electrode of a nonaqueous electrolyte battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium A non-aqueous electrolytic solution comprising a binder composition used as an agent, comprising at least a functional group-containing vinylidene fluoride polymer and a polar polymer containing a hydroxyl group and / or a carbonyl group in the molecule A binder composition for battery electrodes is provided.

また、本発明は別の観点において、上記バインダー組成物と電極活物質を含む電極合剤、集電体上に上記電極合剤の層を有する電極ならびに該電極を正極および負極の少なくとも一方として含む非水電解液電池を提供するものである。   In another aspect, the present invention includes an electrode mixture including the binder composition and an electrode active material, an electrode having a layer of the electrode mixture on a current collector, and the electrode as at least one of a positive electrode and a negative electrode. A non-aqueous electrolyte battery is provided.

上記したバインダー組成物が、非水電解液電池の必要な高容量性を維持しつつ、その性能安定性ならびに内部短絡時の安全性を向上できる理由は必ずしも明らかでないが、官能基含有フッ化ビニリデン系重合体中のカルボキシル基やグリシジル基、および有極性重合体のヒドロキシル基やカルボニル基が、集電体表面や電極活物質表面の水酸基と水素結合を形成しバインダーとして接着性を向上させるとともに、電極活物質表面に、非水電解液の透過を遮断する、リチウムイオンの選択的透過性皮膜を形成し、電極活物質表面で充放電時に電解液とリチウムイオンの反応で合成されるリチウム化合物の生成を抑えるので、充電された電池内部の温度が短絡等で上昇しても熱的に不安定なリチウム化合物が少なく分解発熱が抑えられるとともに活物質内のリチウムイオンと電解液の直接反応をも抑制する働きがあると考えられる。また、後述の内部短絡時の温度上昇を予見するために行った釘刺し試験における温度上昇と、バインダーの持つ接着強度とが逆の相関を示すことから見て、内部短絡時の安全性の向上(温度上昇の低下)にはバインダーの持つ接着性も重要な寄与をしているものと解される。すなわち、バインダーの持つ、(イ)リチウムイオンの選択透過性と、(ロ)接着強度の向上、が相乗的に内部短絡時の安全性向上に寄与しているものと解される。   The reason why the above-mentioned binder composition can improve the performance stability and safety at the time of internal short circuit while maintaining the necessary high capacity of the non-aqueous electrolyte battery is not necessarily clear, but the functional group-containing vinylidene fluoride While the carboxyl group and glycidyl group in the polymer and the hydroxyl group and carbonyl group of the polar polymer form a hydrogen bond with the hydroxyl group on the current collector surface or the electrode active material surface to improve adhesiveness, A lithium ion selective permeable film that blocks the permeation of the non-aqueous electrolyte solution is formed on the surface of the electrode active material, and the lithium compound synthesized by the reaction between the electrolyte solution and the lithium ion during charge / discharge on the surface of the electrode active material. Since the generation is suppressed, there are few thermally unstable lithium compounds even when the temperature inside the charged battery rises due to a short circuit etc. It is believed that inhibit also act directly reaction of lithium ions and the electrolyte solution in the material. In addition, since the temperature rise in the nail penetration test conducted to predict the temperature rise at the time of internal short circuit, which will be described later, and the adhesive strength of the binder show an inverse correlation, improvement of safety at the time of internal short circuit It is understood that the adhesive property of the binder also contributes to (decrease in temperature rise). That is, it is understood that (b) selective permeability of lithium ions and (b) improvement in adhesive strength possessed by the binder synergistically contribute to safety improvement during internal short circuit.

本発明の官能基含有フッ化ビニリデン系重合体としては、フッ化ビニリデン単量体の単独、又はフッ化ビニリデン単量体と共重合可能な他の単量体、例えばエチレン、プロピレン等の炭化水素系単量体、またはフッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテル等のフッ化ビニリデン以外の含フッ素単量体(好ましくはフッ化ビニリデン単量体との合計量の20重量%以下)の混合物、の100重量部に対し、0.1〜3重量部の官能基を有する単量体を加えて得られた共重合体が好ましく用いられる。官能基を有する単量体にはカルボキシル基を有するものと、グリシジル基を有するものが含まれる。カルボキシル基を含有する単量体としては、例えば、アクリル酸、クロトン酸等の不飽和−塩基酸、マレイン酸、シトラコン酸等の不飽和二塩基酸、もしくはそれらのモノアルキルエステルであるマレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等がある。また、グリシジル基を含有する単量体としては、例えば、アリルグリシジルエーテル、メタアリルグリシジルエーテル、クロトン酸グリシジルエステル、アリル酢酸グリシジルエステル等がある。これらのうちから少なくとも1種以上を共重合して得られる官能基含有フッ化ビニリデン系重合体が好ましく用いられる。これら官能基含有フッ化ビニリデン系重合体は、懸濁重合、乳化重合、溶液重合等の公知の方法により得られる。また、官能基導入方法としては、フッ化ビニリデン系重合体を加熱塩基等で脱フッ酸した後に、有機酸あるいは酸化剤で処理し、官能基を含有する重合体を得ることもできる。   As the functional group-containing vinylidene fluoride polymer of the present invention, the vinylidene fluoride monomer alone or other monomers copolymerizable with the vinylidene fluoride monomer, for example, hydrocarbons such as ethylene and propylene Monomers or fluorine-containing monomers other than vinylidene fluoride such as vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether (preferably fluorine monomers) A copolymer obtained by adding a monomer having a functional group of 0.1 to 3 parts by weight to 100 parts by weight of a mixture of 20% by weight or less of the total amount with a vinylidene chloride monomer) Preferably used. Monomers having a functional group include those having a carboxyl group and those having a glycidyl group. Examples of the monomer containing a carboxyl group include unsaturated-basic acids such as acrylic acid and crotonic acid, unsaturated dibasic acids such as maleic acid and citraconic acid, or monomethyl maleate which is a monoalkyl ester thereof. Examples include esters, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester. Examples of the monomer containing a glycidyl group include allyl glycidyl ether, methallyl glycidyl ether, crotonic acid glycidyl ester, and allyl acetic acid glycidyl ester. Of these, a functional group-containing vinylidene fluoride polymer obtained by copolymerizing at least one of them is preferably used. These functional group-containing vinylidene fluoride polymers can be obtained by known methods such as suspension polymerization, emulsion polymerization, and solution polymerization. In addition, as a method for introducing a functional group, a vinylidene fluoride polymer can be dehydrofluorinated with a heated base or the like and then treated with an organic acid or an oxidizing agent to obtain a polymer containing a functional group.

官能基含有フッ化ビニリデン系重合体の分子量は、特開平9−289023号公報に開示されているように、その目安としてインヘレント粘度(樹脂4gを1リットルのN、N−ジメチルホルムアミドに溶解させた溶液の30℃における対数粘度をいう)において、0.8〜20dl/g、好ましくは1.0〜20dl/g、より好ましくは1.0〜15dl/g、さらに好ましくは1.2〜15dl/gであるものが好適に用いられる。フッ化ビニリデン系重合体のインヘレント粘度が、上記範囲未満では、電極合剤の粘度が低くなり塗工が困難になり、上記範囲を超えると有機溶媒への溶解が困難になり適当ではない。   As disclosed in JP-A-9-289023, the molecular weight of the functional group-containing vinylidene fluoride polymer has an inherent viscosity (4 g of resin dissolved in 1 liter of N, N-dimethylformamide). 0.8 to 20 dl / g, preferably 1.0 to 20 dl / g, more preferably 1.0 to 15 dl / g, and still more preferably 1.2 to 15 dl / g. What is g is used suitably. If the inherent viscosity of the vinylidene fluoride polymer is less than the above range, the viscosity of the electrode mixture becomes low and coating becomes difficult, and if it exceeds the above range, dissolution in an organic solvent becomes difficult.

本発明において使用される有極性重合体には、ヒドロキシル基を有する重合体と、カルボニル基を有する重合体が含まれる。ヒドロキシル基を有する重合体の例としては、エチレンビニルアルコール共重合体、セルロース系重合体、ビニルフェノール系重合体が含まれる。また、カルボニル基を有する重合体としては、ポリアクリル酸系重合体、より具体的には、ポリアクリル酸、ポリアクリル酸架橋重合体、それらの金属塩類等が含まれる。有極性重合体としては、またポリビニルピロリドンも好適に用いられる。   The polar polymer used in the present invention includes a polymer having a hydroxyl group and a polymer having a carbonyl group. Examples of the polymer having a hydroxyl group include an ethylene vinyl alcohol copolymer, a cellulose polymer, and a vinyl phenol polymer. The polymer having a carbonyl group includes a polyacrylic acid polymer, more specifically, polyacrylic acid, a polyacrylic acid crosslinked polymer, and metal salts thereof. Polyvinyl pyrrolidone is also preferably used as the polar polymer.

必要に応じて、官能基含有フッ化ビニリデン系重合体、ヒドロキシル基またはカルボニル基を有する有極性重合体の他に、フッ化ビニリデンの単独重合体、フッ化ビニリデンとフッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン等のフッ化ビニリデンと共重合可能なモノマーとの共重合体等を加えることができる。   As necessary, in addition to a functional group-containing vinylidene fluoride polymer, a polar polymer having a hydroxyl group or a carbonyl group, a homopolymer of vinylidene fluoride, vinylidene fluoride and vinyl fluoride, trifluoroethylene, A copolymer of a monomer copolymerizable with vinylidene fluoride such as chlorotrifluoroethylene, tetrafluoroethylene, and hexafluoropropylene can be added.

本発明において、官能基含有フッ化ビニリデン系共重合体と有極性重合体との混合比率としては、官能基含有フッ化ビニリデン系共重合体が10〜99重量%、好ましくは20〜95重量%で、有極性重合体が1〜90重量%、好ましくは5〜80重量%である。有極性重合体の混合比率が上記範囲より少ない場合には、活物質表面の被覆状態が不十分で活物質表面と電解液との接触面積が広くなり電池安全性が劣ってしまう。さらに、重合体の電極と集電体の接着性や電極活物質同士の結着性が低下し、繰り返し充放電での放電容量の低下が懸念される。   In the present invention, as a mixing ratio of the functional group-containing vinylidene fluoride copolymer and the polar polymer, the functional group-containing vinylidene fluoride copolymer is 10 to 99% by weight, preferably 20 to 95% by weight. The polar polymer is 1 to 90% by weight, preferably 5 to 80% by weight. When the mixing ratio of the polar polymer is less than the above range, the covering state of the active material surface is insufficient, the contact area between the active material surface and the electrolytic solution is widened, and the battery safety is inferior. Furthermore, the adhesiveness between the polymer electrode and the current collector and the binding property between the electrode active materials are lowered, and there is a concern that the discharge capacity may be lowered due to repeated charge and discharge.

一方、有極性重合体の混合比率が上記範囲より多い場合には、電極表面に形成される被膜が厚くなりすぎ、活物質と電解液界面でのリチウムイオン透過性が劣り、内部抵抗が増大し充放電容量の低下が懸念される。   On the other hand, when the mixing ratio of the polar polymer is larger than the above range, the film formed on the electrode surface becomes too thick, the lithium ion permeability at the interface between the active material and the electrolytic solution is inferior, and the internal resistance increases. There is concern about a decrease in charge / discharge capacity.

本発明のバインダー組成物は、通常、バインダー組成物を構成する官能基含有フッ化ビニリデン系重合体および有極性重合体を溶剤に溶解し、更に正極または負極活物質ならびに必要に応じて添加される導電補助剤等の助剤を分散させて、スラリー状の電極合剤を形成して、電極の製造に用いられる。溶剤としては、好ましくは極性を有する有機溶媒であり、例えばN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N一ジメチルスルホキシド、ヘキサメチルホスホアミド、トリエチルホスフェイト、アセトンなどが挙げられる。これらの有機溶媒は単独での使用のみならず二種以上を混合して用いることもできる。   The binder composition of the present invention is usually prepared by dissolving the functional group-containing vinylidene fluoride polymer and polar polymer constituting the binder composition in a solvent, and further adding a positive electrode or negative electrode active material and as necessary. An auxiliary agent such as a conductive auxiliary agent is dispersed to form a slurry-like electrode mixture, which is used for manufacturing an electrode. The solvent is preferably a polar organic solvent, such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N monodimethyl sulfoxide, hexamethylphosphoamide, triethyl. Examples include phosphate and acetone. These organic solvents can be used alone or in combination of two or more.

本発明において、リチウムイオン二次電他用の活物質としては、正極の場合は、一般式LiMY(MはCo,Ni,Fe,Mn,Cr,V等の遷移金属の少なくとも一種:YはO、S等のカルコゲン元素)で表される複合金属カルコゲン化合物、負極の場合は、天然黒鉛、人造黒鉛、コークス、活性炭、フェノール樹脂やピッチ等を焼成炭化したもの等の粉末状炭素質材料、金属酸化物系のGeO,GeO,SO,SnO,PbO,PbO等あるいはこれらの複合金属酸化物,Si,SiSn等のケイ素およびケイ素化合物等が用いられる。 In the present invention, as an active material for lithium ion secondary electricity and the like, in the case of a positive electrode, a general formula LiMY 2 (M is at least one kind of transition metal such as Co, Ni, Fe, Mn, Cr, V: Y is In the case of a composite metal chalcogen compound represented by (chalcogen elements such as O and S), and a negative electrode, powdery carbonaceous material such as natural graphite, artificial graphite, coke, activated carbon, phenolic resin or pitch carbonized material, Metal oxide-based GeO, GeO 2 , SO, SnO 2 , PbO, PbO 2 or the like, or composite metal oxides thereof, silicon and silicon compounds such as Si, SiSn, or the like are used.

バインダー組成物は、電極(正極または負極)活物質および導電助剤(これらを包括的に「粉末電極材料」と称する)100重量部に対して、0.1〜30重量部、特に0.5〜20重量部の割合で使用することが好ましい。   The binder composition is 0.1 to 30 parts by weight, particularly 0.5 to 100 parts by weight of an electrode (positive electrode or negative electrode) active material and a conductive additive (these are collectively referred to as “powder electrode material”). It is preferable to use it at a ratio of ˜20 parts by weight.

また、予めバインダー組成物を有機溶剤に溶かして使用する場合には、溶剤は、単独又は2種以上混合して、溶剤100重量部にあたり、バインダー組成物が0.1〜30重量部、特に1〜20重量部となる割合で使用することが好ましい。   In addition, when the binder composition is used by dissolving it in an organic solvent in advance, the solvent is used alone or in combination of two or more, and the binder composition is 0.1 to 30 parts by weight, especially 1 It is preferable to use it at a ratio of ˜20 parts by weight.

バインダー組成物、粉末電極材料、有機溶媒からなる合剤を混合するのに用いられる装置としては、ホモジナイザーや多軸遊星方式の分散・混合・混練機や乳化機が使用できるが、これらに限定されるものではない。   As an apparatus used for mixing a binder composition, a powder electrode material, and a mixture composed of an organic solvent, a homogenizer, a multi-axis planetary dispersion / mixing / kneading machine, or an emulsifier can be used, but is not limited thereto. It is not something.

上記の方法にて調製された合剤スラリーは粉末電極材料、バインダー組成物が均一に分散・混合され、良好な塗布性で集電体に塗布される。塗布の方法は公知の方法でよく、なかでもドクターブレード法が好ましく用いられる。集電体上の合剤は、例えば50〜170℃で溶媒乾燥され、必要に応じてプレス工程を経て、非水系二次電他用の電極構造体が形成される。   In the mixture slurry prepared by the above method, the powder electrode material and the binder composition are uniformly dispersed and mixed, and are applied to the current collector with good coating properties. The application method may be a known method, among which the doctor blade method is preferably used. The mixture on the current collector is solvent-dried at, for example, 50 to 170 ° C., and an electrode structure for non-aqueous secondary electricity and the like is formed through a pressing process as necessary.

本発明のバインダー組成物および電極合剤は、正極および負極の少なくとも一方の形成に用いられるが、いずれか一方ということであれば負極形成に用いることが好ましい。これは、負極を構成する粉末電極材料が、より接着性の高いバインダーを要求し、本発明のバインダー組成物が特に適するからである。   The binder composition and electrode mixture of the present invention are used for forming at least one of a positive electrode and a negative electrode, and if it is either one, it is preferably used for forming a negative electrode. This is because the powder electrode material constituting the negative electrode requires a binder having higher adhesion, and the binder composition of the present invention is particularly suitable.

以下、実施例および比較例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

(官能基含有フッ化ビニリデン系共重合体Aの製造)
内容積2リットルのオートクレーブに、イオン交換水1075g、メチルセルロース0.4g、フッ化ビニリデン単量体(VDF)398g、マレイン酸モノメチルエステル(MMM)2g、イソプロピルパーオキシジカーボネート2.5g、酢酸エチル5gの各量を仕込み、28℃で27時間懸濁重合を行った。
(Production of functional group-containing vinylidene fluoride copolymer A)
A 2-liter autoclave, ion-exchanged water 1075g, methylcellulose 0.4 g, vinylidene fluoride monomer (VDF) 398 g, maleic acid monomethyl ester (MMM) 2 g, di-isopropyl peroxydicarbonate 2.5g, ethyl acetate 5 g of each amount was charged, and suspension polymerization was performed at 28 ° C. for 27 hours.

重合終了後、重合体スラリーを脱水、水洗・脱水後、80℃で20時間乾燥し、収率89%で、インヘレント粘度が1.1dl/gである本発明の官能基含有フッ化ビニリデン系重合体Aを得た。   After completion of the polymerization, the polymer slurry is dehydrated, washed with water, dehydrated, dried at 80 ° C. for 20 hours, and the yield is 89% and the inherent viscosity of the present invention is 1.1 dl / g. Combined A was obtained.

(官能基含有フッ化ビニリデン系重合体Bの製造)
内容積2リットルのオートクレーブに、イオン交換水1075g、メチルセルロース0.4g、フッ化ビニリデン単量体(VDF)400g、2−メチルグリシジルメタクリレート(2M−GMA)3g、イソプロピルーオキシジカーボネート2.5g、酢酸エチル5gの容量を仕込み、28℃で25時間懸濁重合を行った。
(Production of functional group-containing vinylidene fluoride polymer B)
A 2-liter autoclave, ion-exchanged water 1075g, methylcellulose 0.4 g, vinylidene fluoride monomer (VDF) 400 g, 2-methyl glycidyl methacrylate (2M-GMA) 3g, di-isopropyl path over dicarbonate 2. A volume of 5 g and 5 g of ethyl acetate was charged, and suspension polymerization was performed at 28 ° C. for 25 hours.

重合終了後、重合体スラリーを脱水、水洗・脱水後、80℃で20時間乾燥し、収率90%で、インヘレント粘度が2.4dl/gである官能基含有フッ化ビニリデン重合体Bを得た。   After completion of the polymerization, the polymer slurry is dehydrated, washed with water, dehydrated, and dried at 80 ° C. for 20 hours to obtain a functional group-containing vinylidene fluoride polymer B having a yield of 90% and an inherent viscosity of 2.4 dl / g. It was.

(フッ化ビニリデン重合体Cの製造)
内容積2リットルのオートクレーブに、イオン交換水1075g、メチルセルロース0.4g、フッ化ビニリデン単量体(VDF)400g、イソプロピルパーオキシジカーボネート2.5g、酢酸エチル5gの各量を仕込み、26℃で20時間懸濁重合を行った。
(Production of vinylidene fluoride polymer C)
2-liter autoclave was charged deionized water 1075g, methylcellulose 0.4 g, vinylidene fluoride monomer (VDF) 400 g, di-isopropyl peroxydicarbonate 2.5g, the respective amounts of ethyl acetate 5 g, 26 ° C. The suspension polymerization was carried out for 20 hours.

重合終了後、重合体スラリーを脱水、水洗・脱水後、80℃で20時間乾燥し、収率91%で、インヘレント粘度が1.1dl/gであるフッ化ビニリデン重合体C(ポリフッ化ビニニリデン)を得た。   After completion of the polymerization, the polymer slurry was dehydrated, washed with water, dehydrated, dried at 80 ° C. for 20 hours, and the yield was 91%, and the inherent viscosity was 1.1 dl / g. Vinylidene fluoride polymer C (polyvinylidene fluoride) Got.

<実施例1>
(正極の作製)
コバルト酸リチウム(「セルシードC−5」、日本化学工業製)94重量部、フッ化ビニリデン重合体C3重量部、カーボンブラック3重量部にN−メチル−2−ピロリドン(NMP)を43重量部添加し、混合して正極用合剤を調製した。得られた合剤を厚さ10μmのアルミ箔上に、乾燥後の膜厚が約100μmになるように均一に塗布し、130℃で25分間乾燥して、正極構造体(活物質量:291g/m)を得た。
<Example 1>
(Preparation of positive electrode)
Addition of 43 parts by weight of N-methyl-2-pyrrolidone (NMP) to 94 parts by weight of lithium cobaltate ("Cellseed C-5", manufactured by Nippon Chemical Industry Co., Ltd.), 3 parts by weight of vinylidene fluoride polymer C, and 3 parts by weight of carbon black And mixed to prepare a positive electrode mixture. The obtained mixture was uniformly applied onto an aluminum foil having a thickness of 10 μm so that the film thickness after drying was about 100 μm, and dried at 130 ° C. for 25 minutes to obtain a positive electrode structure (active material amount: 291 g). / M 2 ).

(負極の作製)
官能基含有フッ化ビニリデン系重合体A11重量部、エチレンビニルアルコール共重合体(EVOH、クラレ社製「エバールEP−G156B」、エチレンモル含量47%)1重量部に対し、平均粒子径30μmの球状天然黒鉛粉末(中国産)88重量部と、NMP67重量部を混合して本発明の負極合剤組成物Aを調製した。得られた合剤を厚さ8μmの銅箔上に、乾燥後の膜厚が約100μmになるように均一に塗布し、130℃で25分間乾燥して、負極構造体A(活物質量:163g/m)を得た。
(Preparation of negative electrode)
Spherical natural having an average particle diameter of 30 μm per 11 parts by weight of a functional group-containing vinylidene fluoride polymer A and 1 part by weight of an ethylene vinyl alcohol copolymer (EVOH, “Eval EP-G156B” manufactured by Kuraray Co., Ltd., ethylene molar content 47%) A negative electrode mixture composition A of the present invention was prepared by mixing 88 parts by weight of graphite powder (produced in China) and 67 parts by weight of NMP. The obtained mixture was uniformly applied onto a copper foil having a thickness of 8 μm so that the film thickness after drying was about 100 μm, dried at 130 ° C. for 25 minutes, and negative electrode structure A (active material amount: 163 g / m 2 ) was obtained.

(電極構造体における電極合剤層の剥離強度測定方法)
集電体に塗布、乾燥した負極構造体を試料とし、電極合剤層の集電体からの剥離強度をJIS K6854に準拠して180°剥離試験により測定した。
(Method for measuring peel strength of electrode mixture layer in electrode structure)
Using the negative electrode structure coated and dried on the current collector as a sample, the peel strength of the electrode mixture layer from the current collector was measured by a 180 ° peel test in accordance with JIS K6854.

(剥離強度の測定)
上記負極構造体Aの剥離強度を測定したところ、3.8gf/mmであった。
(Measurement of peel strength)
The peel strength of the negative electrode structure A was measured and found to be 3.8 gf / mm.

(電池の作製)
48mm×48mmに切り出して充放電用のリード部を取り付けた正極構造体と、50mm×50mmに切り出して充放電用のリード部を取り付けた負極構造体Aを、電極面が対向するように、52mm×52mmで厚さ20μmのポリエチレン製セパレーターを介して重ね合わせ、80mm×80mmの寸法で外側がポリエチレン製のアルミラミネートバッグにリード部分が外側に出るように組み込み、エチレンカーボネート/メチルエチルカーボネート/ジメチルカーボネート(9/13/16体積比)、混合溶媒中にLiPFを1M濃度で含む電解液を1g添加した後に、アルミラミネート製バッグを封止し、本発明の電池Aを得た。
(Production of battery)
The positive electrode structure cut out to 48 mm × 48 mm and attached with the charge / discharge lead portion and the negative electrode structure A cut out into 50 mm × 50 mm and attached with the charge / discharge lead portion were attached to 52 mm so that the electrode surfaces face each other. X52mm and 20μm thick polyethylene separators, and 80mm x 80mm in size and assembled into an aluminum laminated bag with polyethylene outside so that the lead part is outside, ethylene carbonate / methyl ethyl carbonate / dimethyl carbonate (9/13/16 volume ratio) After adding 1 g of an electrolytic solution containing LiPF 6 at a concentration of 1 M in the mixed solvent, the aluminum laminate bag was sealed to obtain a battery A of the present invention.

(充放電)
上記の電池Aを0.2mAの定電流で4.2Vまで充電後、0.2mAの定常流で3.0Vまで放電し、さらに1mAの定電流で4.37Vまで充電した。2回目の充電における電池の充電容量(充電電流値の積分値)は133mAhだった。
(Charge / discharge)
The battery A was charged to 4.2 V with a constant current of 0.2 mA, discharged to 3.0 V with a steady flow of 0.2 mA, and further charged to 4.37 V with a constant current of 1 mA. The charging capacity (integrated value of the charging current value) of the battery in the second charging was 133 mAh.

(釘刺し試験)
上記の充電された電池Aを、室温が23℃に保たれた部屋で、木製の板の上に
負極が上となるように静置後、直径1mmの釘を刺して貫通させ、赤外線サーモグラフィ(アビオニクス社製「TVS−100」)で電池表面温度の上昇を測定した。
(Nail penetration test)
The charged battery A is left in a room where the room temperature is kept at 23 ° C. so that the negative electrode is on top of a wooden board, and then a nail with a diameter of 1 mm is pierced and penetrated, and an infrared thermography ( The rise of the battery surface temperature was measured with "TVS-100" manufactured by Avionics.

電池Aの釘刺し後の最大温度上昇は3℃であった。   The maximum temperature rise after nail penetration of battery A was 3 ° C.

<実施例2>
負極の作製でEVOHの代りにポリアクリル酸(PAA)(「AQUPEC HV−501」、住友精化製)を用いたほかは、実施例1と同様に行い、負極構造体B、電池Bを得た。
<Example 2>
A negative electrode structure B and a battery B were obtained in the same manner as in Example 1, except that polyacrylic acid (PAA) (“AQUPEC HV-501”, manufactured by Sumitomo Seika) was used instead of EVOH in the production of the negative electrode. It was.

負極構造体Bの剥離強度は1.0gf/mm、電池Bの充電容量は135mAhで、釘刺し試験の最大温度上昇は3.5℃だった。   The peel strength of the negative electrode structure B was 1.0 gf / mm, the charge capacity of the battery B was 135 mAh, and the maximum temperature increase in the nail penetration test was 3.5 ° C.

<実施例3>
負極の作製で官能基含有フッ化ビニリデン系重合体Aの代りに官能基含有フッ化ビニリデン系重合体Bを用いたほかは、実施例1と同様に行い、負極構造体C、電池Cを得た。
<Example 3>
A negative electrode structure C and a battery C were obtained in the same manner as in Example 1 except that the functional group-containing vinylidene fluoride polymer B was used instead of the functional group-containing vinylidene fluoride polymer A in the production of the negative electrode. It was.

負極構造体Cの剥離強度は4.3gf/mm、電池Cの充電容量は130mAhで、釘刺し試験の最大温度上昇は3℃だった。   The peel strength of the negative electrode structure C was 4.3 gf / mm, the charge capacity of the battery C was 130 mAh, and the maximum temperature increase in the nail penetration test was 3 ° C.

<実施例4>
負極の作製でEVOHの代りにヒドロキシエチルセルロース(HEC)(「HECダイセルEP850」、ダイセル化学工業製)を用いたほかは、実施例1と同様に行い、負極構造体D、電池Dを得た。
<Example 4>
A negative electrode structure D and a battery D were obtained in the same manner as in Example 1 except that hydroxyethyl cellulose (HEC) (“HEC Daicel EP850”, manufactured by Daicel Chemical Industries) was used instead of EVOH in the production of the negative electrode.

負極構造体Dの剥離強度は0.9gf/mm、電池Dの充電容量は133mAhで、釘刺し試験の最大温度上昇は3℃だった。   The peel strength of the negative electrode structure D was 0.9 gf / mm, the charge capacity of the battery D was 133 mAh, and the maximum temperature increase in the nail penetration test was 3 ° C.

<実施例5>
負極の作製でEVOHの代りにポリパラビニルフェノール(PPVP)(「マルカリンカー S−2P」、丸善石油化学(株))を用いたほかは、実施例1と同様に行い、負極構造体H、電池Hを得た。
<Example 5>
Except for using polyparavinylphenol (PPVP) (“Marcalinker S-2P”, Maruzen Petrochemical Co., Ltd.) instead of EVOH in the production of the negative electrode, the same procedure as in Example 1 was carried out. Battery H was obtained.

負極構造体Hの剥離強度は5.4gf/mm、電池Hの充電容量は134mAhで、釘刺し試験の最大温度上昇は4℃だった。   The peel strength of the negative electrode structure H was 5.4 gf / mm, the charge capacity of the battery H was 134 mAh, and the maximum temperature increase in the nail penetration test was 4 ° C.

<比較例1>
負極の作製で官能基含有フッ化ビニリデン系重合体Aを、11重量部から12重量部に増量し、EV0Hを用いなかったほかは、実施例1と同様に行い、負極構造体E、電池Eを得た。
<Comparative Example 1>
The negative electrode structure E and battery E were prepared in the same manner as in Example 1 except that the functional group-containing vinylidene fluoride polymer A was increased from 11 parts by weight to 12 parts by weight and EV0H was not used. Got.

負極構造体Eの剥離強度は0.9gf/mm、電池Eの充電容量は133mAhで、釘刺し試験の最大温度上昇は12℃だった。   The peel strength of the negative electrode structure E was 0.9 gf / mm, the charge capacity of the battery E was 133 mAh, and the maximum temperature increase in the nail penetration test was 12 ° C.

<比較例2>
負極の作製で官能基含有フッ化ビニリデン系重合体Bを、11重量部から12重量部に増量し、EVOHを用いなかったほかは、実施例3と同様に行い、負極構造体F、電池Fを得た。
<Comparative example 2>
The negative electrode structure F and the battery F were prepared in the same manner as in Example 3 except that the functional group-containing vinylidene fluoride polymer B was increased from 11 parts by weight to 12 parts by weight in the production of the negative electrode and EVOH was not used. Got.

負極構造体Fの剥離強度は3.1gf/mm、電池Fの充電容量は124mAhで、釘刺し試験の最大温度上昇は6.5℃だった。   The peel strength of the negative electrode structure F was 3.1 gf / mm, the charge capacity of the battery F was 124 mAh, and the maximum temperature increase in the nail penetration test was 6.5 ° C.

<比較例3>
負極の作製で、官能基官有フッ化ビニリデン重合体Aの代りにフッ化ビニリデン重合体Cを用いたほかは、実施例1と同様に行い、負極構造体G、電池Gを得た。
<Comparative Example 3>
A negative electrode structure G and a battery G were obtained in the same manner as in Example 1 except that the vinylidene fluoride polymer C was used in place of the functional group-containing vinylidene fluoride polymer A in preparation of the negative electrode.

負極構造体Gの剥離強度は0.7gf/mm、電池Gの充電容量は134mAhで、釘刺し試験の最大温度上昇は6℃だった。   The peel strength of the negative electrode structure G was 0.7 gf / mm, the charge capacity of the battery G was 134 mAh, and the maximum temperature increase in the nail penetration test was 6 ° C.

<比較例4>
負極の作製で、官能基含有フッ化ビニリデン重合体Aの代りにフッ化ビニリデン重合体Cを用いたほかは、比較例1と回禄に行い、負極構造体G、電池Gを得た。
<Comparative Example 4>
A negative electrode structure G and a battery G were obtained in the same manner as in Comparative Example 1 except that the vinylidene fluoride polymer C was used in place of the functional group-containing vinylidene fluoride polymer A in preparation of the negative electrode.

負極構造体Hの剥離強度は0.7gf/mm、電池Hの充電容量は132mAhで、釘刺し試験の最大温度上昇は9℃だった。   The peel strength of the negative electrode structure H was 0.7 gf / mm, the charge capacity of the battery H was 132 mAh, and the maximum temperature increase in the nail penetration test was 9 ° C.

上記実施例および比較例に用いたバインダー組成物の概要および評価結果をまとめて、以下の表1に示す。

Figure 2004049475
The summary and evaluation results of the binder compositions used in the above Examples and Comparative Examples are summarized in Table 1 below.
Figure 2004049475

上記表1の結果からわかるように、リチウムを吸蔵・放出可能な正極と負極とを備えた非水電解液電池において、前記正極/または負極の結着剤が官能基含有フッ化ビニリデン系重合体と有極性重合体である非水電解液電池電極用バインダー組成物を使用することで、接着性が優れる電極と安全性に優れる電池が得られることがわかる。   As can be seen from the results in Table 1, in the nonaqueous electrolyte battery including a positive electrode and a negative electrode capable of inserting and extracting lithium, the positive electrode / or negative electrode binder is a functional group-containing vinylidene fluoride polymer. It can be seen that by using a binder composition for a nonaqueous electrolyte battery electrode that is a polar polymer, an electrode having excellent adhesion and a battery having excellent safety can be obtained.

Claims (7)

リチウムを吸蔵・放出可能な正極と負極とを備えた非水電解液電池の正極および/または負極の結着剤として用いられるバインダー組成物であって、少なくとも官能基含有フッ化ビニリデン系重合体および分子内にヒドロキシル基および/またはカルボニル基を含有する有極性重合体からなることを特徴とする非水電解液電池電極用バインダー組成物。A binder composition used as a binder for a positive electrode and / or a negative electrode of a non-aqueous electrolyte battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, comprising at least a functional group-containing vinylidene fluoride polymer and A binder composition for a nonaqueous electrolyte battery electrode, comprising a polar polymer containing a hydroxyl group and / or a carbonyl group in the molecule. 前記負極が炭素材料からなる請求の範囲1に記載のバインダー組成物。The binder composition according to claim 1, wherein the negative electrode is made of a carbon material. 前記官能基含有フッ化ビニリデン系重合体の官能基がカルボキシル基およびグリシジル基の少なくとも一種である請求の範囲1に記載の非水電解液電池電極用バインダー組成物。The binder composition for a nonaqueous electrolyte battery electrode according to claim 1, wherein the functional group of the functional group-containing vinylidene fluoride polymer is at least one of a carboxyl group and a glycidyl group. 分子内にヒドロキシル基および/またはカルボニル基を含有する有極性重合体が、エチレンビニルアルコール共重合体、セルロース系重合体、ポリアクリル酸系重合体、ポリビニルピロリドンおよびビニルフェノール系重合体のうち少なくとも1種からなる請求の範囲1〜3のいずれかに記載のバインダー組成物。The polar polymer containing a hydroxyl group and / or a carbonyl group in the molecule is at least one of an ethylene vinyl alcohol copolymer, a cellulose polymer, a polyacrylic acid polymer, polyvinyl pyrrolidone, and a vinyl phenol polymer. The binder composition according to any one of claims 1 to 3, comprising a seed. 請求の範囲1〜4のいずれかに記載のバインダー組成物と電極活物質を含む非水電界液電池電極用電極合剤。The electrode mixture for non-aqueous field liquid battery electrodes containing the binder composition and electrode active material in any one of Claims 1-4. 集電体上に請求の範囲5に記載の電極合剤からなる電極合剤層を有する非水電解液電池用電極。A non-aqueous electrolyte battery electrode having an electrode mixture layer comprising the electrode mixture according to claim 5 on a current collector. 請求の範囲6に記載の電極を正極および負極の少なくとも一方として含むことを特徴とする非水電解液電池。A non-aqueous electrolyte battery comprising the electrode according to claim 6 as at least one of a positive electrode and a negative electrode.
JP2004555003A 2002-11-22 2003-11-21 Non-aqueous electrolyte battery electrode binder composition and use thereof Expired - Fee Related JP4851092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004555003A JP4851092B2 (en) 2002-11-22 2003-11-21 Non-aqueous electrolyte battery electrode binder composition and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002339105 2002-11-22
JP2002339105 2002-11-22
JP2004555003A JP4851092B2 (en) 2002-11-22 2003-11-21 Non-aqueous electrolyte battery electrode binder composition and use thereof
PCT/JP2003/014903 WO2004049475A1 (en) 2002-11-22 2003-11-21 Binder composition for electrode of nonaqueous electrolyte battery, and electrode mixture, electrode and battery using same

Publications (2)

Publication Number Publication Date
JPWO2004049475A1 true JPWO2004049475A1 (en) 2006-03-30
JP4851092B2 JP4851092B2 (en) 2012-01-11

Family

ID=32375763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004555003A Expired - Fee Related JP4851092B2 (en) 2002-11-22 2003-11-21 Non-aqueous electrolyte battery electrode binder composition and use thereof

Country Status (6)

Country Link
JP (1) JP4851092B2 (en)
KR (1) KR20050085095A (en)
CN (1) CN100365853C (en)
AU (1) AU2003284631A1 (en)
TW (1) TW200410439A (en)
WO (1) WO2004049475A1 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906250B1 (en) 2006-09-04 2009-07-07 주식회사 엘지화학 Electrode Material Containing Mixture of Polyvinyl Alcohol of High Degree of Polymerization and Polyvinyl Pyrrolidone as Binder and Lithium Secondary Battery Employed with the Same
JP4363436B2 (en) 2006-10-13 2009-11-11 ソニー株式会社 Secondary battery
KR101526017B1 (en) * 2007-01-16 2015-06-04 제온 코포레이션 Binder composition, slurry for electrode, electrode and nonaqueous electrolyte secondary battery
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
FR2912555B1 (en) * 2007-02-09 2011-02-25 Commissariat Energie Atomique ELECTROCHEMICAL SYSTEM ELECTRODE BINDER, ELECTRODE COMPRISING THE BINDER, AND ELECTROCHEMICAL SYSTEM COMPRISING THE ELECTRODE.
JP5548131B2 (en) 2008-09-26 2014-07-16 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
KR101221208B1 (en) * 2008-11-13 2013-01-10 가부시끼가이샤 구레하 Anode mixture for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
CN101740747B (en) * 2008-11-27 2012-09-05 比亚迪股份有限公司 Silicon cathode and lithium ion battery comprising same
WO2010074041A1 (en) * 2008-12-26 2010-07-01 株式会社クレハ Negative-electrode mix for nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JP2013502700A (en) * 2009-08-24 2013-01-24 シオン・パワー・コーポレーション Stripping system for electrochemical cells
CN102549812B (en) * 2009-10-02 2016-05-18 丰田自动车株式会社 Lithium secondary battery and this positive electrode for battery
CN102484239B (en) 2009-10-02 2015-04-08 丰田自动车株式会社 Lithium secondary battery and positive electrode for said battery
US9315680B2 (en) * 2010-08-31 2016-04-19 Kyoritsu Chemical & Co., Ltd. Conductive composition for coating a current collector for a battery or an electrical double layer capacitor, current collector for battery or electrical double layer capacitor, battery, and electrical double layer capacitor
CN103155247B (en) * 2010-10-14 2015-06-10 株式会社吴羽 Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2013161975A1 (en) * 2012-04-27 2013-10-31 日本合成化学工業株式会社 Resin composition and use therefor
WO2014002936A1 (en) 2012-06-28 2014-01-03 株式会社クレハ Resin composition, filler-containing resin film for non-aqueous electrolyte secondary battery, and method for producing filler-containing resin film for non-aqueous electrolyte secondary battery
KR102237020B1 (en) 2012-10-26 2021-04-08 후지필름 와코 준야꾸 가부시키가이샤 Binder for lithium cell, composition for producing electrode, and electrode
KR102026508B1 (en) 2013-03-15 2019-09-27 시온 파워 코퍼레이션 Protected electrode structures and methods
EP2973779A1 (en) 2013-03-15 2016-01-20 Basf Se Protected electrode structures
JP6264744B2 (en) * 2013-04-30 2018-01-24 日本ゼオン株式会社 Secondary battery positive electrode binder composition, secondary battery positive electrode slurry composition, secondary battery positive electrode manufacturing method, secondary battery positive electrode and secondary battery
CN105340110B (en) 2013-06-28 2018-08-24 住友精化株式会社 Anode for nonaqueous electrolyte secondary battery mixture, the anode for nonaqueous electrolyte secondary battery containing the mixture, the non-aqueous electrolyte secondary battery and electrical equipment for having the cathode
US9761854B2 (en) 2013-12-13 2017-09-12 Samsug SDI Co., Ltd. Spirally-wound electrode assembly for rechargeable lithium battery and rechargeable lithium battery including same
JP6581568B2 (en) 2014-04-21 2019-09-25 富士フイルム和光純薬株式会社 Binder for lithium batteries
KR101773698B1 (en) * 2015-01-13 2017-08-31 주식회사 엘지화학 Method for preparing positive electrode composition of lithium secondary battery, and positive electrode and lithium secondary battery prepared by using the same
KR101701332B1 (en) * 2015-06-17 2017-02-02 울산과학기술원 Binder for rechargable lithium battery, electrode including the same binder, and method for manufacturing the same electrode, and rechargable lithium battery including the same binder
JP2018529206A (en) * 2015-09-29 2018-10-04 エー123 システムズ エルエルシーA123 Systems LLC High capacity anode electrode with mixed binder for energy storage device
EP3442061A4 (en) 2016-03-30 2019-12-18 Sumitomo Seika Chemicals CO. LTD. Binder for nonaqueous electrolyte secondary battery electrodes, electrode mixture for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electrical device
WO2018008263A1 (en) 2016-07-06 2018-01-11 株式会社クレハ Binder composition, electrode mixture, electrode, and non-aqueous electrolyte secondary battery
KR102362769B1 (en) 2016-07-06 2022-02-15 가부시끼가이샤 구레하 Binder composition, electrode mixture, electrode, non-aqueous electrolyte secondary battery, and binder composition production method
CN109923701B (en) * 2016-11-15 2022-08-02 株式会社吴羽 Electrode mixture, method for producing electrode mixture, electrode structure, method for producing electrode structure, and secondary battery
US20190367657A1 (en) 2017-02-03 2019-12-05 Fujifilm Wako Pure Chemical Corporation Binder agent composition for lithium battery electrode, and electrode using same
CN109923711B (en) 2017-02-03 2023-06-27 富士胶片和光纯药株式会社 Binder composition for lithium battery
TWI754081B (en) 2017-07-07 2022-02-01 美商片片堅俄亥俄州工業公司 Electrode binder slurry composition for lithium ion electrical storage devices
WO2019010405A1 (en) 2017-07-07 2019-01-10 Ppg Industries Ohio, Inc. Electrode slurry composition for lithium ion electrical storage devices
WO2019010443A1 (en) 2017-07-07 2019-01-10 Ppg Industries Ohio, Inc. Electrode binder slurry composition for lithium ion electrical storage devices
US20200299495A1 (en) 2017-09-29 2020-09-24 Sumitomo Seika Chemicals Co., Ltd. Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electrical device
JP7014639B2 (en) * 2018-02-28 2022-02-01 株式会社クレハ Production method of vinylidene fluoride polymer, binder composition, electrode mixture, electrode and non-aqueous electrolyte secondary battery, and electrode mixture.
JP7017468B2 (en) * 2018-05-15 2022-02-08 株式会社クレハ Electrode mixture, method for manufacturing electrode mixture, electrode structure, method for manufacturing electrode structure and secondary battery
JP7019508B2 (en) * 2018-05-15 2022-02-15 株式会社クレハ Electrode mixture, method for manufacturing electrode mixture, electrode structure, method for manufacturing electrode structure and secondary battery
US20220416248A1 (en) 2019-11-19 2022-12-29 Sumitomo Seika Chemicals Co., Ltd. Binder for secondary batteries
JP6829754B1 (en) 2019-11-19 2021-02-10 住友精化株式会社 Batteries for secondary batteries
JP6888139B1 (en) 2020-02-26 2021-06-16 住友精化株式会社 Batteries for secondary batteries
JP6765022B1 (en) 2020-02-26 2020-10-07 住友精化株式会社 Method for manufacturing polymer compound used for binder for secondary batteries
JP6923689B1 (en) 2020-02-26 2021-08-25 住友精化株式会社 Batteries for secondary batteries
CN116041604A (en) * 2023-01-06 2023-05-02 浙江巨化技术中心有限公司 Branched polyvinylidene fluoride resin and preparation method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912639A (en) * 1995-06-29 1997-01-14 Kureha Chem Ind Co Ltd Epoxidized vinylidene fluoride copolymer, resin composition containing the same, electrode structure, and secondary cell
JPH09161804A (en) * 1995-12-08 1997-06-20 Daikin Ind Ltd Electrode binder for secondary battery using nonaqueous electrolyte
JPH09289023A (en) * 1996-02-22 1997-11-04 Kureha Chem Ind Co Ltd Electrode binder solution, electrode mixture, electrode structure, and battery
JPH09320607A (en) * 1996-05-27 1997-12-12 Kureha Chem Ind Co Ltd Binder for electrode formation, electrode mix and electrode structure for non-aqueous battery and the battery
JPH10302799A (en) * 1997-04-25 1998-11-13 Jsr Corp Binder for nonaqueous battery electrode
JPH11228902A (en) * 1998-02-17 1999-08-24 Elf Atochem Japan Kk Method to adhere vinylidene fluoride resin to metalic base material, electrode structure and its preparation
JPH11250915A (en) * 1997-11-10 1999-09-17 Nippon Zeon Co Ltd Binder containing vinyl alcohol polymer, slurry, nonaqueous electrolyte secondary battery, and its electrode
JPH11329443A (en) * 1998-05-15 1999-11-30 Hitachi Maxell Ltd Lithium secondary battery
JP2001019896A (en) * 1992-12-02 2001-01-23 Kureha Chem Ind Co Ltd Coating material composition containing polar vinylidene fluoride copolymer
JP2002246029A (en) * 2001-02-20 2002-08-30 Atofina Japan Kk Binder composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019896A (en) * 1992-12-02 2001-01-23 Kureha Chem Ind Co Ltd Coating material composition containing polar vinylidene fluoride copolymer
JPH0912639A (en) * 1995-06-29 1997-01-14 Kureha Chem Ind Co Ltd Epoxidized vinylidene fluoride copolymer, resin composition containing the same, electrode structure, and secondary cell
JPH09161804A (en) * 1995-12-08 1997-06-20 Daikin Ind Ltd Electrode binder for secondary battery using nonaqueous electrolyte
JPH09289023A (en) * 1996-02-22 1997-11-04 Kureha Chem Ind Co Ltd Electrode binder solution, electrode mixture, electrode structure, and battery
JPH09320607A (en) * 1996-05-27 1997-12-12 Kureha Chem Ind Co Ltd Binder for electrode formation, electrode mix and electrode structure for non-aqueous battery and the battery
JPH10302799A (en) * 1997-04-25 1998-11-13 Jsr Corp Binder for nonaqueous battery electrode
JPH11250915A (en) * 1997-11-10 1999-09-17 Nippon Zeon Co Ltd Binder containing vinyl alcohol polymer, slurry, nonaqueous electrolyte secondary battery, and its electrode
JPH11228902A (en) * 1998-02-17 1999-08-24 Elf Atochem Japan Kk Method to adhere vinylidene fluoride resin to metalic base material, electrode structure and its preparation
JPH11329443A (en) * 1998-05-15 1999-11-30 Hitachi Maxell Ltd Lithium secondary battery
JP2002246029A (en) * 2001-02-20 2002-08-30 Atofina Japan Kk Binder composition

Also Published As

Publication number Publication date
WO2004049475A1 (en) 2004-06-10
CN1714465A (en) 2005-12-28
JP4851092B2 (en) 2012-01-11
TWI330902B (en) 2010-09-21
AU2003284631A1 (en) 2004-06-18
CN100365853C (en) 2008-01-30
KR20050085095A (en) 2005-08-29
TW200410439A (en) 2004-06-16

Similar Documents

Publication Publication Date Title
JP4851092B2 (en) Non-aqueous electrolyte battery electrode binder composition and use thereof
JP4361241B2 (en) Non-aqueous secondary battery electrode binder composition, electrode mixture composition, electrode and secondary battery
JP5053073B2 (en) Vinylidene fluoride core / shell polymer and its use in non-aqueous electrochemical devices
JP5366823B2 (en) Cathode structure for non-aqueous battery
JP5625917B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
KR102160398B1 (en) Binder composition, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5128481B2 (en) Vinyl fluoride based copolymer binder for battery electrodes
CN107408668B (en) Electrode for Li-ion battery with improved conductivity
JP7160696B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JP2005310747A (en) Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
JP3518712B2 (en) Non-aqueous battery electrode forming binder, electrode mixture, electrode structure and battery
JP7060405B2 (en) Binder composition, electrode mixture and non-aqueous electrolyte secondary battery
JP4931420B2 (en) Non-aqueous electrolyte battery electrode binder composition and use thereof
JP7062476B2 (en) Binder composition, electrode mixture raw material, electrode mixture, electrode, non-aqueous electrolyte secondary battery and method for manufacturing electrode mixture
JP4942249B2 (en) Method for producing lithium ion secondary battery
JPH10302800A (en) Battery binder solution, electrode mix containing the same and electrode body structure and battery using mix
JP7447022B2 (en) Electrode forming composition
JP2003155313A (en) Epoxy group-containing vinylidene fluoride-based copolymer, resin composition containing the same, electrode structure and non-aqueous electrochemical device
JP2002216849A (en) Manufacturing method of lithium ion secondary cell
WO2010055858A1 (en) Anode mixture for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
JP7209420B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
WO2022025082A1 (en) Method for manufacturing battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees