JP4361241B2 - Non-aqueous secondary battery electrode binder composition, electrode mixture composition, electrode and secondary battery - Google Patents

Non-aqueous secondary battery electrode binder composition, electrode mixture composition, electrode and secondary battery Download PDF

Info

Publication number
JP4361241B2
JP4361241B2 JP2002125539A JP2002125539A JP4361241B2 JP 4361241 B2 JP4361241 B2 JP 4361241B2 JP 2002125539 A JP2002125539 A JP 2002125539A JP 2002125539 A JP2002125539 A JP 2002125539A JP 4361241 B2 JP4361241 B2 JP 4361241B2
Authority
JP
Japan
Prior art keywords
electrode
weight
secondary battery
vinylidene fluoride
acrylic copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002125539A
Other languages
Japanese (ja)
Other versions
JP2003317722A (en
Inventor
智昭 川上
俊男 細川
英雄 宗形
巧 葛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2002125539A priority Critical patent/JP4361241B2/en
Publication of JP2003317722A publication Critical patent/JP2003317722A/en
Application granted granted Critical
Publication of JP4361241B2 publication Critical patent/JP4361241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電池、特にリチウムイオン電池、において、電極の製造に用いるバインダー組成物、該バインダーを用いた電極合剤組成物、該電極合剤組成物から製造される電極、および該電極からなる非水系二次電池に関する。
【0002】
【従来の技術】
近年電子技術の発展はめざましく、各種の機器が小型軽量化されてきている。この電子機器の小型軽量化と相まって、その電源となる電池の小型軽量化の要望も非常に大きくなってきている。小さい容積および重量でより大きなエネルギーを得ることが出来る電池として、リチウムを用いた非水系二次電池が、主として携帯電話やパーソナルコンピュータ、ビデオカムコーダなどの家庭で用いられる小型電子機器の電源として用いられてきた。これらリチウム非水系二次電池の電極の製造においては、粉体状の活物質をバインダー、液状物質、および必要に応じ導電助剤などの添加物を混練して電極合剤組成物(以下、「スラリー」と呼ぶことがある)を形成し、それをアルミニウム、銅、ニッケル、チタン、ステンレスなどの金属製の集電体に塗布し、その後液状物質を乾燥除去して、電極が形成される。これらの工程の中で、バインダーは活物質を集電体に効果的に接着させるだけでなく、塗布に適したスラリーを提供する役割を担っている。塗布に適したスラリーとは、スラリー中の活物質の分散状態が均一で、かつ少なくとも数日間は沈降分離などを起こさず安定した粘度を維持し、集電体へ均一かつ平滑に塗布でき、結果として均一な活物質層を有する電極を得ることができるスラリーである。
【0003】
上記要求を満たすバインダーとしては、フッ化ビニリデン系重合体がよく用いられているが、最近の電池の小型化、薄型化、軽量化、高性能化および低コスト化などに伴い、より少ない使用量で接着力を有し、より緻密な巻回に耐えられるだけの柔軟性を電極に付与できるような、バインダーの改善が求められている。特開平8−287915号公報や特開2001−332265号公報では、主として(メタ)アクリル酸エステルと(メタ)アクリロニトリルから形成されるアクリル系共重合体バインダーが、フッ化ビニリデン系重合体に代わるものとして開示されている。ところが、これらアクリル系共重合体系のバインダーは電池中での電気化学的安定性(特に耐酸化性)に優れ、使用量が減少できるものの、それ単独では塗布に適したスラリーを形成し得ないという問題があった。また特開2001−283855号公報には、スラリー安定性を改善するため乳化剤を工夫した非フッ素樹脂系の乳化重合体が開示されているが、電池設計上、種々変わりうる活物質や導電助剤などの分散系に対し、満足できるものではなかった。
【0004】
【発明が解決しようとする課題】
本発明は上記の問題点に鑑みてなされたものであり、その目的は、少量の使用量で高接着性と柔軟性を有し、かつ塗布に適したスラリーを形成できる、非水系電池用バインダー組成物を提供することにある。本発明の更なる目的は、上記バインダー組成物を用いて形成した電極合剤組成物、電極および非水系二次電池を提供することにある。
【0005】
【課題を解決するための手段】
本発明によれば、少なくとも(メタ)アクリル酸エステルおよび/または(メタ)アクリロニトリルの重合単位を主成分として有するアクリル系共重合体100重量部と、重量平均分子量が25万以上のフッ化ビニリデン系重合体5〜00重量部とを含み、粘度が12万mPa・s以下の電極合剤スラリーを形成するのに適した非水系二次電池電極用バインダー組成物が提供される。
【0006】
本発明者らが上述の目的で研究して本発明に到達した経緯について、若干付言する。
【0007】
前述したように、特開平8−27891号公報や特開2001−332265号公報に開示されるアクリル系共重合体バインダーは、電気化学的安定性に優れ、柔軟性および結着性にも優れており、非水系二次電池電極用バインダーとして潜在的に優れた特性を有するものであるが、正極または負極活物質、および必要に応じて添加される導電助剤、等の粉末電極材料を添加したときには、良好な塗布適性を有するスラリー組成物を得ることが困難であった。特に、上記したようなアクリル系共重合体バインダーは、一般に水性エマルジョン重合を経て、水性エマルジョン状態で得られるが、これに粉末電極材料を分散させて得られた水性スラリーを集電体上に塗布し、乾燥して電極を形成したときには、非水系電池特性を阻害する水分を完全に除去することは困難である。このため、一旦形成した水性エマルジョンに沸点が100℃以上である有機溶媒を添加して、加熱下に水を優先的に蒸発させて有機溶媒と入れ代えて、有機溶媒中スラリー形態の電極合剤組成物(電極合剤スラリー)とすることが行われている。しかしながら、この有機溶媒スラリー中においては、上記アクリル系共重合体は、顕著なゲル化ないし固化性を示して、塗布に適したスラリーを得ることが困難である(後記比較例1参照)。これに対し、本発明者らは、従来の代表的なバインダー材料であり、また特開平2001−332265号公報において、粘度調整剤あるいは流動化剤として数多く挙げられる重合体の一種としても挙げられているフッ化ビニリデン系重合体が、上記したアクリル系共重合体の有機溶媒中スラリーに添加されたときに、他の粘度調整剤には見られない、アクリル系共重合体のゲル化ないし固化の防止効果を発揮することを見出した。この効果の発現理由は必ずしも明らかでないが、フッ化ビニリデン系重合体が、アクリル系共重合体のゲル化の起点として作用する粉末電極材料の活性点を占拠して、アクリル系共重合体のゲル化ないし固化を阻害するためと解される。特に重量平均分子量が25万以上のフッ化ビニリデン系重合体は、その増粘効果を通じて、特に塗布適性に適したスラリー状電極合剤組成物を与える。本発明のバインダー組成物は、このような知見に基づいて得られたものである。
【0008】
すなわち、本発明は、上記バインダー組成物、およびこれに粉末電極材料を分散させた電極合剤組成物を提供するものであり、更には、これを集電体上に塗布して得た非水系二次電池電極、ならびに該電極を含む非水系二次電池を提供するものである。
【0009】
【発明の実施の形態】
本発明の非水系二次電池電極用バインダー組成物の第1の成分であるアクリル系共重合体は、少なくとも(メタ)アクリル酸エステルおよび/または(メタ)アクリロニトリルの重合単位を主成分として含むものであり、一般にアクリルゴムと総称されるものが含まれる。より具体的には、(メタ)アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−アミル、アクリル酸イソアミル、アクリル酸n−ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸ヒドロキシプロピル、アクリル酸ラウリルなどのアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−アミル、メタクリル酸イソアミル、メタクリル酸n−ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸ヒドロキシプロピル、メタクリル酸ラウリルなどのメタクリル酸アルキルエステル;が用いられ、アルキル基の炭素数としては、1〜12、特に2〜8のものが好ましく用いられる。
【0010】
また(メタ)アクリロニトリルには、アクリロニトリルとメタクリロニトリルが含まれる。
【0011】
アクリル系共重合体は、少なくとも上記(メタ)アクリル酸エステルおよび/または(メタ)アクリロニトリルの重合単位を主成分として、好ましくは50重量%以上、より好ましくは60重量%以上、含むものであり、その好ましい一例は、(メタ)アクリル酸エステルと(メタ)アクリロニトリルとの共重合体であるが、(メタ)アクリル酸エステルと(メタ)アクリロニトリルの少なくとも一方と他のビニルモノマーとの共重合体も用いられる。いずれにしても、ゴム状特性を有するためには、第1のモノマー成分が95重量%以下の共重合体の形態を有することが好ましい。
【0012】
上記(メタ)アクリル酸エステルおよび/または(メタ)アクリロニトリルと共重合される他のビニルモノマーの例としては以下のものが挙げられる。
【0013】
単官能性エチレン性不飽和カルボン酸エステルモノマーとして、クロトン酸メチル、クロトン酸エチル、クロトン酸プロピル、クロトン酸ブチル、クロトン酸イソブチル、クロトン酸n−アミル、クロトン酸イソアミル、クロトン酸n−ヘキシル、クロトン酸2−エチルヘキシル、クロトン酸ヒドロキシプロピルなどのクロトン酸アルキルエステル;メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルなどのアミノ基含有メタクリル酸エステル;メトキシポリエチレングリコールメタクリレート、エトキシポリエチレングリコールメタクリレート、メトキシポリエチレングリコールアクリレート、エトキシポリエチレングリコールアクリレート、メトキシジエチレングリコールメタクリレート、エトキシジエチレングリコールアクリレート、メトキシジプロピレングリコールメタクリレート、メトキシジプロピレングリコールアクリレート、メトキシエチルメタクリレート、メトキシエチルアクリレート、2−エトキシエチルメタクリレート、2−エトキシエチルアクリレート、ブトキシエチルメタクリレート、ブトキシエチルアクリレート、フェノキシエチルメタクリレート、およびフェノキシエチルアクリレートなどのアルコキシ基含有モノカルボン酸エステル;アクリル酸アルキルエステルやメタクリル酸アルキルエステルのアルキル基にリン酸残基、スルホン酸残基、ホウ酸残基などを有する(メタ)アクリル酸エステル;などが挙げられる。
【0014】
また多官能エチレン性不飽和カルボン酸エステルモノマーとして、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレートなどのジメタクリル酸エステル;トリメチロールプロパントリメタクリレートなどのトリメタクリル酸エステル;ポリエチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレートなどのジアクリル酸エステル;トリメチロールプロパントリアクリレートなどのトリアクリル酸エステル;トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ペンタエチレングリコールジメタクリレート、ヘキサエチレングリコールジメタクリレート、ヘプタエチレングリコールジメタクリレート、オクタエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、テトラプロピレングリコールジメタクリレート、ペンタプロピレングリコールジメタクリレート、ヘキサプロピレングリコールジメタクリレート、ヘプタプロピレングリコールジメタクリレート、オクタプロピレングリコールジメタクリレートなどのポリアルキレングリコールジメタクリレートや、これらのメタクリレートの一部をアクリレートに変えた化合物;トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ペンタエチレングリコールジアクリレート、ヘキサエチレングリコールジアクリレート、ヘプタエチレングリコールジアクリレート、オクタエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、テトラプロピレングリコールジアクリレート、ペンタプロピレングリコールジアクリレート、ヘキサプロピレングリコールジアクリレート、ヘプタプロピレングリコールジアクリレート、オクタプロピレングリコールジアクリレートなどのポリアルキレングリコールアクリレート;などが挙げられる。
【0015】
必要に応じて上記(単官能性または多官能性)エチレン性不飽和カルボン酸エステル((メタ)アクリル酸エステルを含む)に対応するエチレン性不飽和カルボン酸モノマーを一部配合して、酸性のアクリル系共重合体を形成することもできる。また架橋構造を含めることもアクリル系共重合体の好ましい一態様である。
【0016】
本発明のバインダー組成物を構成する第2の成分であるフッ化ビニリデン系重合体は、フッ化ビニリデンの単独重合体に加えて、フッ化ビニリデン80重量%以上と、フッ化ビニリデンと共重合可能な一種または複数種の単量体20重量%以下(好ましくは0.3重量%以上)との共重合体を包含するものである。共重合体の使用は得られる電極合剤層の集電基体の接着性を高める上でも好ましい。フッ化ビニリデンと共重合可能な単量体として例えば、エチレン、プロピレン等の炭化水素系単量体;フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテル等の含フッ素単量体;またはアリルグリシジルエーテル、クロトン酸グリシジルエステル、等のエポキシ基含有ビニル単量体を共重合体成分として含んでいてもよい。また、金属等の集電体との接着性をより向上させるために、不飽和二塩基酸のモノエステル、ビニレンカーボネート等を共重合させて、カルボニル基、カルボキシル基、等の極性基を導入した共重合体も好ましく用いられる。更には、フッ化ビニリデン系重合体を溶解または膨潤する溶媒中で、アミノ基またはメルカプト基等のフッ化ビニリデン系重合体と反応性基と加水分解性基を併有するシラン系カップリング剤あるいはチタネート系カップリング剤中で処理してなる変性フッ化ビニリデン系重合体も用いられる。
【0017】
フッ化ビニリデン系重合体は、重量平均分子量(ゲルパーミエーションクロマトグラフィー法によるポリスチレン換算重量平均分子量)が25万以上であることが必要である。重量平均分子量が25万未満では、アクリル系共重合体の柔軟性と、フッ化ビニリデン系重合体のゲル化防止効果を調和させた組成比としたときに、電極合剤スラリーの粘度が不足して、バインダー溶液と粉末電極材料の分離により塗布適性が損われる。重合平均分子量が28万以上であると、集電体との接着性の良好な電極層を与える上で特に好ましい。重量平均分子量の上限は特に定めないが、電極合剤スラリーの塗布に適した粘度は、12万mPa・s以下であり、それを超えると、集電体上への電極層の均一な塗布形成は困難となる。従って、電極合剤スラリーの粘度が12万mPa・s以下となるように、重量平均分子量と電極合剤スラリー中のフッ化ビニリデン系重合体濃度は、適宜調整することが好ましい。
【0018】
アクリル系共重合体の柔軟性とフッ化ビニリデン系重合体のゲル化防止効果を調和させるために、アクリル系共重合体100重量部に対して、フッ化ビニリデン系重合体を5〜100重量部配合して、本発明のバインダー組成物を形成することが好ましい。
【0019】
またバインダーの使用量は、粉末電極材料を集電体から剥離させない最少の量があればよく、より具体的には粉末電極材料100重量部に対して、0.1〜5重量部、特に0.5〜2重量部の割合で用いることが好ましい。
【0020】
集電体への塗布前の状態において、本発明の液状電極合剤組成物(電極合剤スラリー)は、アクリル系共重合体とフッ化ビニリデン系重合体の双方に対して、良好な溶解能ないし分散能を示す沸点が100℃以上の極性有機溶媒100重量部に対して、上記アクリル系共重合体とフッ化ビニリデン系重合体の合計量が0.5〜20重量部、特に1〜15重量部となる割合で溶解ないし分散した液状バインダー組成物に、上記割合の粉末電極材料を分散混合した形態を採る。前述したように、この状態で電極合剤スラリーの粘度が12万mPa・s(30℃)以下であることが好ましい。
【0021】
極性有機溶媒としては、例えばN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルスルホキシド、ヘキサメチルホスフォアミド、テトラヒドロフラン、テトラメチルウレア、トリエチルホスフェイト、トリメチルホスフェイト、などが用いられる。
【0022】
最終的に上記電極合剤スラリーが形成されるのであれば、バインダー組成物を構成するアクリル系共重合体とフッ化ビニリデン系重合体、極性有機溶媒および粉末電極材料の混合の順序には、かなりの任意性がある。もちろんこれら成分を一挙に混合してもよいが、一般には、極性有機溶媒中へのバインダー溶液を予め調製し、それに、粉末電極材料を分散混合する態様が好ましく用いられる。また、予め水性エマルジョン(ラテックス)として得られたアクリル系共重合体のラテックスに、100℃以上の沸点を有する極性有機溶媒を混合して、(減圧)蒸発により水と置きかえて得たアクリル系共重合体の極性有機溶媒中溶液を用意し、別途調製したフッ化ビニリデン系重合体の極性有機溶媒中溶液への粉末電極材料の分散液と混合することも好ましい。これにより、粉末電極材料とアクリル系共重合体の相互作用を弱めることで、アクリル系共重合体バインダーの塗工性をより効果的に改善することができる。
【0023】
本発明のスラリーは、上記バインダー組成物と粉末電極材料を混合して形成される。
【0024】
粉末電極材料は、正極または負極活物質と、必要に応じ導電助剤や各種添加剤を加えたものとからなる。活物質は、正極の場合は、一般式LiMY2(Mは、Co、Ni、Fe、Mn、Cr、V等の遷移金属の少なくとも一種:YはO、S等のカルコゲン元素)で表わされる複合金属カルコゲン化合物、特にLiNixCo1-x2(0≦x≦1)をはじめとする複合金属酸化物やLiMn24などのスピネル構造をとる複合金属酸化物が好ましい。
【0025】
負極の活物質としては、黒鉛、活性炭、あるいはフェノール樹脂やピッチ等を焼成炭化したもの、さらには椰子殻活性炭等の炭素質物質に加えて、金属酸化物系のGeO、GeO2、SnO、SnO2、PbO、PbO2、SiO、SiO2等、或いはこれらの複合金属酸化物等が用いられる。
【0026】
さらに必要に応じて、カーボンブラックや黒鉛などの導電助剤や各種添加剤を添加することが必要である。
【0027】
本発明の非水系電池の基本構造は、図1に断面図を示すように、一般的にはシート状に形成された固体電解質またはセパレータ1を一対の正極2(2a:集電基体、2b:正極合剤層)及び負極3(3a:集電基体、3b:負極合剤層)間に挟持された形態で配置することにより得られる。
【0028】
リチウムイオン電池としての構成を例に取った場合、シート状セパレータ層1は、厚さ2〜100μm、特に5〜200μm程度であることが好ましく用いられる。
【0029】
正極2及び負極3は、鉄、ステンレス鋼、銅、アルミニウム、ニッケル、チタン等の金属箔あるいは金属網等からなり、厚さが5〜100μm、小規模の場合には例えば5〜20μmとなるような集電基体2a、3aの例えば一面に、例えば厚さが10〜1000μmの正極合剤層2b、負極合剤層3bを形成することにより得られる。
【0030】
電解液は、電解質としてLiPF6、LiAsF6、LiClO4、LiBF4、LiCl、LiBr、LiCH3SO3、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、等を、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、プロピオン酸メチル、プロピオン酸エチル、及びこれらの混合溶媒などに溶解したものが用いられるが、必ずしもこれらに限定されるものではない。
【0031】
このようにして得られた図1に示す構造の積層シート状電池体は、必要に応じて、捲回し、折り返し等により更に積層して、容積当たりの電極面積を増大させ、さらには比較的簡単な容器に収容して取り出し電極を形成する等の処理により、例えば、角形、円筒形、コイン型、ペーパー型等の全体構造を有する非水系電池が形成される。
【0032】
【実施例】
以下、図面、実施例および比較例により本発明を更に具体的に説明する。
【0033】
なお、記載するフッ化ビニリデン系重合体の重量平均分子量および電極合剤スラリーの粘度は下記の方法により測定したものである。
【0034】
(重量平均分子量)
フッ化ビニリデン系重合体粉末を濃度0.2重量%で溶解したNMP(N−メチル−2−ピロリドン)溶液について、ゲルパーミエーションクロマトグラフ(日本分光株式会社製;GPC−900、カラムTSK−GEL GMHXL、温度40℃、流速1.0ml/min)を用いて、ポリスチレン換算の重量平均分子量を測定した。
【0035】
(動粘度)
電極合剤スラリーの動粘度は、該電極合剤スラリー0.5mlをE型粘度計(東機産業株式会社製;RE−80R、ロータ3°×R14)を用いて測定温度30℃にて測定した。後記表1および表2に示す値は、0.5rpmの時のものである。
【0036】
<正極の調製>
実施例1
(アクリル系共重合体−1のラテックス)
3リットル攪拌機付き反応容器に、2エチルヘキシルアクリレート(以下「2−EHA」)400g、アクリロニトリル(以下「AN」)60g、ドデシルベンゼンスルホン酸ナトリウム8g、イオン交換水1200および過硫酸カリウム8gを入れて、十分攪拌した後、80℃で重合した。重合添加率は99%で、アクリル系共重合体粒子−1を約30%含むアクリル系共重合体−1のラテックスを得た。
【0037】
(アクリル系共重合体 NMP溶液−1)
アクリル系共重合体−1のラテックスの100gと、N−メチルピロリドン(以下「NMP」)300gとを混合して、ロータリーエバポレーターを用いた減圧下の蒸発操作によって含まれる水をNMPで置換し、アクリル系共重合体のNMP溶液−1を得た。
【0038】
(バインダ溶液の調製)
アクリル系共重合体のNMP溶液−1中に、その樹脂分と同重量のフッ化ビニリデン単独重合体(呉羽化学工業(株)製「KF#1100」;重量平均分子量28万)を加えてバインダー溶液−1を得た。
【0039】
(電極:正極−1の作製)
上記のとおり調製したバインダー溶液−1(樹脂固形分2.5重量部を含む)を、平均粒径5μmのLiCoO2 9.4重量部、導電性カーボンブラック0.3重量部およびN−メチル−2−ピロリドン3.0重量部を混合して電極合剤スラリーを得た。得られたスラリーを厚さ10μmのアルミ箔上に塗布し、130℃で乾燥させ、厚さ100μmの合剤層を有する正極を得た(正極−1)。得られたスラリーについて、調製直後に、厚さ10μmのアルミ箔上に塗布した時、および12時間経過後に再度厚さ10μmのアルミ箔上に塗布した時について、それぞれのスラリーの塗工性を下記の基準で評価した:
A:円滑に塗工出来た。
B:多少分離しているため、塗工は困難であった。
C:固化分離もしくは沈降分離のため、塗工は不可能であった。
【0040】
(剥離強度試験)
上記で得た正極−1において、電極層とアルミ箔との接着強度をJIS K6845に準じて、180℃剥離試験により測定した。なお、塗工性の悪いスラリーを使用して作製した電極は不均一で、剥離強度の値が低く、バラツキも大きかった。尚、剥離強度を測定した電極は、スラリー製作直後に塗布して作成したものである。
【0041】
評価の結果を、以下の実施例および比較例で得られた結果と共に後記表1に纏めて記載する。
【0042】
(電極の柔軟性試験)
上記で得た正極−1について、130℃で5時間真空乾燥後、電極嵩密度が3.2g/ccとなるようにプレスし、更に130℃で1時間真空乾燥を行った後、手折りにより該電極・正極−1の柔軟性を下記の基準で評価した:
A:外観上全く変化がないもの、
+:外観上全く変化がなく、かつ手折り時の感触が柔らかいもの、
B:若干ヒビが入るもの、
C:完全にスジが入るか電極が割れた。
【0043】
実施例2
上記の実施例1のフッ化ビニリデン系重合体の代りに重量平均分子量71万のフッ化ビニリデン単独重合体を用いた以外は、実施例1と同様に評価を行った。
【0044】
実施例3
(アクリル系共重合体−3のラテックス)
3リットル攪拌機付き反応容器に、イオン交換水1120gとドデシルベンゼンスルホン酸ソーダ(以下「Neo.6」)7g、過硫酸カリウム(以下「KPS」)4gと、2−EHA380g、AN60g、グリシジルメタアクリレート(以下「GMA」)20gのモノマーを入れて、30℃で15分攪拌分散後に80℃まで昇温して重合を行い、最大発熱後6時間で冷却してアクリル系共重合体−3のラテックスを得た。この時のモノマーの重合添加率は99.2%、樹脂成分濃度は約30%であった。
【0045】
以下、アクリル系共重合体−1のラテックスの代りにアクリル系共重合体−3のラテックスを用いる以外は、実施例1と同様に評価を行った。
【0046】
実施例4
上記の実施例3のフッ化ビニリデン系重合体を、重量平均分子量71万のフッ化ビニリデン−クロロトリフルオロエチレン−マレイン酸モノメチルの共重合体(VDF/CTFE/MMM=96/4/0.3(重量比))とした以外は、実施例1と同様に評価を行った。
【0047】
実施例5
(アクリロニトリル系共重合体−1のラテックス)
3リットル攪拌機付き反応容器に、イオン交換水1200gとドデシルベンゼンスルホン酸ソーダ(Neo.6)8g、過硫酸カリウム(KPS)8gと、2−EHA184g、AN276gのモノマーを入れて、30℃で15分間攪拌分散後に80℃まで昇温して重合を行い、最大発熱後6時間で冷却してアクリロニトリル系共重合体−1のラテックスを得た。この時のモノマーの重合添加率は99%、樹脂成分濃度は約30%であった。
【0048】
以下、アクリル系共重合体−1のラテックスの代わりに、アクリロニトリル系共重合体−1のラテックスを用いる以外は、実施例1と同様に評価を行った。
【0049】
実施例6
上記の実施例1において、アクリル系共重合体−1の代わりに、上記実施例5のアクリロニトリル系共重合体−1とアクリロニトリル系樹脂(アクリロニトリル/アクリル酸メチル(=90/10)共重合体、「PAN」と略記。三井化学(株)製「BAREX 1000N」)との1:1(重量)混合物を、合計量として実施例1のアクリル系共重合体−1と同量で用いる以外は、実施例1と同様に評価を行った。
【0050】
比較例1
上記実施例1で調製したアクリル系共重合体のNMP−溶液1(樹脂固形分2.3重量部を含む)を、平均粒径5μmのLiCoO2 9.4重量部、導電性カーボンブラック0.3重量部およびN−メチル−2−ピロリドン3.0重量部と混合した。得られた電極合剤スラリーを厚さ10μmのアルミ箔上に塗布し、130℃で乾燥させ、厚さ100μmの合剤層を有する正極を得た。
【0051】
比較例2
フッ化ビニリデン単独重合体(重量平均分子量28万)13重量部を87重量部のNMPに溶解した。得られた溶液(樹脂固形分2.3重量部を含む)を、平均粒径5μmのLiCoO2 9.4重量部、導電性カーボンブラック0.3重量部およびN−メチル−2−ピロリドン2.3重量部と混合した。得られた電極合剤スラリーを厚さ10μmのアルミ箔上に塗布し、130℃で乾燥させ、厚さ100μmの合剤層を有する正極を得た。
【0052】
以下実施例1と同様に評価を行った。
【0053】
比較例3
上記の実施例1において、フッ化ビニリデン系重合体を、重量平均分子量19万のフッ化ビニリデン単独重合体とした以外は、実施例1と同様に評価を行った。
【0054】
比較例4
上記の実施例1においてフッ化ビニリデン系重合体を、アクリロニトリル系樹脂(PAN、三井化学(株)製「BAREX 1000N」)に代えた以外は、実施例1と同様に評価を行った。
【0055】
比較例5
上記の実施例1において、フッ化ビニリデン系重合体を、アクリロニトリル系共重合体−1に代えた以外は、実施例1と同様に評価を行った。
【0056】
比較例6
樹脂固形分55gを含むエチレン−ビニルアルコールコポリマー(EVA、住友化学(株)製「FLEX500」)の水性エマルジョン100gとNMP300gを混合して、ロータリーエバポレーターにて減圧下の操作によって含まれる水をNMPで置換して、EVAのNMP溶液を得た。次いで、このEVAのNMP溶液を同重量のNMPで稀釈した溶液をバインダー溶液として用い、以後、実施例1と同様に正極を調製し、評価した。
【0057】
<負極の調製>
実施例7
上記実施例1で調製したバインダー溶液−1(樹脂固形分4重量部を含む)に対して、メソカーボンマイクロビーズ(大阪ガスケミカル(株)製「MCMB−25−28」、平均粒径25μm、以下「MCMB」)9.4重量部を混合した後、更にNMP3.4重量部を追加し混合した。得られた電極合剤スラリーを厚さ10μmの銅箔上に塗布し、130℃で乾燥させ、厚さ100μmの合剤層を有する負極を得た。得られたスラリーについて、製造直後に厚さ10μmの銅箔上に塗布する時および12時間経過後に再度厚さ10μmの銅箔上に塗布した時について、それぞれのスラリーの塗工性を評価した。
【0058】
得られた負極の剥離強度および柔軟性についても、実施例1の正極と同様に評価を行った。
【0059】
実施例8
上記の実施例7のフッ化ビニリデン系重合体の代りに、重量平均分子量71万のフッ化ビニリデン単独重合体を用いた以外は、実施例5と同様に評価を行った。
【0060】
実施例9
上記の実施例7において、実施例1のアクリル系共重合体ラテックス−1の代りに、実施例3で得られたアクリル系共重合体ラテックス3を用いて、得られたバインダー溶液−5を、バインダー溶液−1の代りに、用いる以外は、実施例5と同様に評価を行った。
【0061】
比較例7
実施例1で調製したアクリル系共重合体のNMP溶液−1(樹脂固形分1重量部を含む)に対して、MCMB9.4重量部を混合した後、更にNMP3.4重量部を追加し混合した。得られた電極合剤スラリーを厚さ10μmの銅箔上に塗布し、130℃で乾燥させ、厚さ100μmの合剤層を有する負極を得た。
【0062】
以下実施例7と、同様に評価を行った。
【0063】
比較例8
比較例2で調製したフッ化ビニリデンの単独重合体(重量平均分子量=28万)のNMP溶液(樹脂固形分2.3重量部を含む)に対して、MCMB9.4重量部を混合した後、更にNMP3.4重量部を追加し混合した。得られたスラリーを厚さ10μmの銅箔上に塗布し、130℃で乾燥させ、厚さ100μmの合剤層を有する負極を得た。
【0064】
以下実施例7と同様に評価を行った。
【0065】
上記、実施例および比較例の結果を、以下の表1および2にまとめて記する。
【0066】
【表1】

Figure 0004361241
【0067】
【表2】
Figure 0004361241
【0068】
【発明の効果】
上述したように、本発明によれば、アクリル系共重合体とフッ化ビニリデン系重合体との組合せからなり、少ない使用量で高接着性と柔軟性を有し、且つ塗布性に適した電極合剤スラリーを形成できる非水系二次電池電極用バインダー組成物、ならびにこれを用いて形成した電極合剤組成物、電極および非水系二次電池が提供される。
【図面の簡単な説明】
【図1】本発明に従い構成可能な、非水系二次電池電極構造体の部分断面図。
【符号の説明】
1:セパレータ
2:正極(2a:集電基体、2b:正極合剤層)
3:負極(3a:集電基体、3b:負極合剤層)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a binder composition used for production of an electrode in a non-aqueous battery, particularly a lithium ion battery, an electrode mixture composition using the binder, an electrode produced from the electrode mixture composition, and the electrode The present invention relates to a non-aqueous secondary battery.
[0002]
[Prior art]
In recent years, the development of electronic technology has been remarkable, and various devices have been reduced in size and weight. Coupled with the reduction in size and weight of electronic devices, there is an increasing demand for reduction in size and weight of batteries that serve as power sources. Non-aqueous secondary batteries using lithium are mainly used as power sources for small electronic devices used in homes such as mobile phones, personal computers, and video camcorders as batteries that can obtain more energy with a small volume and weight. I came. In the production of the electrodes of these lithium non-aqueous secondary batteries, a powdered active material is kneaded with a binder, a liquid material, and, if necessary, additives such as a conductive additive, and an electrode mixture composition (hereinafter referred to as “ The slurry is sometimes applied to a current collector made of a metal such as aluminum, copper, nickel, titanium, and stainless steel, and then the liquid substance is removed by drying to form an electrode. In these steps, the binder not only effectively bonds the active material to the current collector but also plays a role in providing a slurry suitable for coating. The slurry suitable for coating is a uniform dispersion state of the active material in the slurry and maintains a stable viscosity without causing sedimentation separation for at least several days. As a slurry, an electrode having a uniform active material layer can be obtained.
[0003]
As a binder that satisfies the above requirements, vinylidene fluoride polymers are often used, but with the recent reduction in size, thickness, weight, performance, and cost of batteries, less usage is required. Thus, there is a need for an improved binder that has adhesive strength and can impart flexibility to the electrode that can withstand finer winding. In JP-A-8-287915 and JP-A-2001-332265, an acrylic copolymer binder mainly formed from (meth) acrylic acid ester and (meth) acrylonitrile replaces a vinylidene fluoride polymer. It is disclosed as. However, these acrylic copolymer binders are excellent in electrochemical stability (particularly oxidation resistance) in the battery and can be used in a reduced amount, but by themselves cannot form a slurry suitable for coating. There was a problem. Japanese Patent Application Laid-Open No. 2001-283855 discloses a non-fluorinated resin-based emulsion polymer in which an emulsifier is devised to improve slurry stability. It was not satisfactory for the dispersion system.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and its object is to provide a non-aqueous battery binder that can form a slurry suitable for application with high adhesion and flexibility with a small amount of use. It is to provide a composition. It is a further object of the present invention to provide an electrode mixture composition, an electrode and a non-aqueous secondary battery formed using the binder composition.
[0005]
[Means for Solving the Problems]
  According to the present invention, 100 parts by weight of an acrylic copolymer having at least a polymerization unit of (meth) acrylic acid ester and / or (meth) acrylonitrile as a main component, and a vinylidene fluoride system having a weight average molecular weight of 250,000 or more. Polymer 51There is provided a binder composition for a non-aqueous secondary battery electrode suitable for forming an electrode mixture slurry containing 00 parts by weight and having a viscosity of 120,000 mPa · s or less.
[0006]
The background that the present inventors have studied for the above-mentioned purpose and arrived at the present invention will be described a little.
[0007]
As described above, the acrylic copolymer binder disclosed in JP-A-8-27891 and JP-A-2001-332265 is excellent in electrochemical stability, and also excellent in flexibility and binding properties. Although it has potentially excellent characteristics as a binder for non-aqueous secondary battery electrodes, a powder electrode material such as a positive electrode or negative electrode active material and a conductive auxiliary agent added as necessary is added. At times, it has been difficult to obtain a slurry composition having good coating suitability. In particular, the acrylic copolymer binder as described above is generally obtained in an aqueous emulsion state through an aqueous emulsion polymerization, and an aqueous slurry obtained by dispersing a powder electrode material in this is applied onto a current collector. However, when the electrode is formed by drying, it is difficult to completely remove moisture that hinders the nonaqueous battery characteristics. For this reason, an organic solvent having a boiling point of 100 ° C. or higher is added to the aqueous emulsion once formed, and water is preferentially evaporated under heating and replaced with the organic solvent. A composition (electrode mixture slurry) is used. However, in the organic solvent slurry, the acrylic copolymer exhibits remarkable gelation or solidification, and it is difficult to obtain a slurry suitable for coating (see Comparative Example 1 below). On the other hand, the present inventors are conventional representative binder materials, and in JP-A-2001-332265, they are also mentioned as a kind of polymers that are frequently cited as viscosity modifiers or fluidizing agents. When the above-mentioned vinylidene fluoride polymer is added to the above-mentioned acrylic copolymer slurry in an organic solvent, the acrylic copolymer is not gelled or solidified. It has been found that the prevention effect is exerted. The reason for the manifestation of this effect is not necessarily clear, but the vinylidene fluoride polymer occupies the active point of the powder electrode material that acts as the starting point for the gelation of the acrylic copolymer, and the acrylic copolymer gel It is understood to inhibit the solidification or solidification. In particular, a vinylidene fluoride polymer having a weight average molecular weight of 250,000 or more gives a slurry-like electrode mixture composition particularly suitable for coating suitability through its thickening effect. The binder composition of the present invention is obtained based on such knowledge.
[0008]
That is, the present invention provides the above binder composition and an electrode mixture composition in which a powder electrode material is dispersed, and further, a non-aqueous system obtained by applying this composition onto a current collector A secondary battery electrode and a non-aqueous secondary battery including the electrode are provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The acrylic copolymer that is the first component of the binder composition for a non-aqueous secondary battery electrode of the present invention contains at least a polymerization unit of (meth) acrylic acid ester and / or (meth) acrylonitrile as a main component. In general, those generally referred to as acrylic rubber are included. More specifically, (meth) acrylic acid esters include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-amyl acrylate, and isoamyl acrylate. , Alkyl acrylates such as n-hexyl acrylate, 2-ethylhexyl acrylate, hydroxypropyl acrylate, lauryl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, Methacrylic such as isobutyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, hydroxypropyl methacrylate, lauryl methacrylate Alkyl esters; is used, as the carbon number of the alkyl group, 1-12, it is preferably used in particular 2 to 8.
[0010]
(Meth) acrylonitrile includes acrylonitrile and methacrylonitrile.
[0011]
The acrylic copolymer contains at least the above (meth) acrylic acid ester and / or (meth) acrylonitrile as a main component, preferably 50% by weight or more, more preferably 60% by weight or more, A preferred example is a copolymer of (meth) acrylic acid ester and (meth) acrylonitrile, but a copolymer of (meth) acrylic acid ester and (meth) acrylonitrile and another vinyl monomer is also available. Used. In any case, in order to have rubbery characteristics, it is preferable that the first monomer component has a copolymer form of 95% by weight or less.
[0012]
The following are mentioned as an example of the other vinyl monomer copolymerized with the said (meth) acrylic acid ester and / or (meth) acrylonitrile.
[0013]
Monofunctional ethylenically unsaturated carboxylic acid ester monomers include methyl crotonate, ethyl crotonate, propyl crotonate, butyl crotonate, isobutyl crotonate, n-amyl crotonate, isoamyl crotonate, n-hexyl crotonate, croton Crotonic acid alkyl esters such as 2-ethylhexyl acid and hydroxypropyl crotonic acid; Amino group-containing methacrylic acid esters such as dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate; methoxypolyethylene glycol methacrylate, ethoxypolyethylene glycol methacrylate, methoxypolyethylene glycol acrylate, Ethoxy polyethylene glycol acrylate, methoxy diethylene glycol methacrylate, ethoxy diethylene glycol Acrylate, methoxydipropylene glycol methacrylate, methoxydipropylene glycol acrylate, methoxyethyl methacrylate, methoxyethyl acrylate, 2-ethoxyethyl methacrylate, 2-ethoxyethyl acrylate, butoxyethyl methacrylate, butoxyethyl acrylate, phenoxyethyl methacrylate, and phenoxyethyl acrylate Alkoxy group-containing monocarboxylic acid ester such as; (meth) acrylic acid ester having phosphoric acid residue, sulfonic acid residue, boric acid residue, etc. in the alkyl group of acrylic acid alkyl ester or methacrylic acid alkyl ester; It is done.
[0014]
Moreover, as polyfunctional ethylenically unsaturated carboxylic acid ester monomers, dimethacrylic acid esters such as ethylene glycol dimethacrylate and diethylene glycol dimethacrylate; trimethacrylic acid esters such as trimethylolpropane trimethacrylate; polyethylene glycol diacrylate and 1,3-butylene Diacrylic acid esters such as glycol diacrylate; Triacrylic acid esters such as trimethylolpropane triacrylate; Triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, pentaethylene glycol dimethacrylate, hexaethylene glycol dimethacrylate, heptaethylene glycol dimethacrylate , Octaethylene glycol dimethacrylate, tripro Polyalkylene glycol dimethacrylates such as lenglycol dimethacrylate, tetrapropylene glycol dimethacrylate, pentapropylene glycol dimethacrylate, hexapropylene glycol dimethacrylate, heptapropylene glycol dimethacrylate, octapropylene glycol dimethacrylate and some of these methacrylates Compounds changed to acrylates; triethylene glycol diacrylate, tetraethylene glycol diacrylate, pentaethylene glycol diacrylate, hexaethylene glycol diacrylate, heptaethylene glycol diacrylate, octaethylene glycol diacrylate, tripropylene glycol diacrylate, tetrapropylene Glycoldi Acrylate, pentaerythritol propylene glycol diacrylate, hexamethylene glycol diacrylate, hepta propylene glycol diacrylate, polyalkylene glycol acrylates such as octa propylene glycol diacrylate; and the like.
[0015]
If necessary, a part of the ethylenically unsaturated carboxylic acid monomer corresponding to the above (monofunctional or polyfunctional) ethylenically unsaturated carboxylic acid ester (including (meth) acrylic acid ester) An acrylic copolymer can also be formed. Including a crosslinked structure is also a preferred embodiment of the acrylic copolymer.
[0016]
The vinylidene fluoride polymer, which is the second component constituting the binder composition of the present invention, can be copolymerized with vinylidene fluoride in an amount of 80% by weight or more in addition to the homopolymer of vinylidene fluoride. And a copolymer of 20% by weight or less (preferably 0.3% by weight or more) of one or more kinds of monomers. The use of the copolymer is also preferable for enhancing the adhesiveness of the current collecting substrate of the obtained electrode mixture layer. Examples of monomers copolymerizable with vinylidene fluoride include hydrocarbon monomers such as ethylene and propylene; vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, fluoroalkyl vinyl ether Or a fluorine-containing monomer such as allyl glycidyl ether or crotonic acid glycidyl ester may be contained as a copolymer component. Also, in order to further improve the adhesion to current collectors such as metals, monoesters of unsaturated dibasic acid, vinylene carbonate, etc. were copolymerized to introduce polar groups such as carbonyl groups, carboxyl groups, etc. A copolymer is also preferably used. Furthermore, a silane coupling agent or titanate having both a reactive group and a hydrolyzable group in combination with a vinylidene fluoride polymer such as an amino group or a mercapto group in a solvent that dissolves or swells the vinylidene fluoride polymer. A modified vinylidene fluoride polymer obtained by treatment in a system coupling agent is also used.
[0017]
The vinylidene fluoride polymer needs to have a weight average molecular weight (polystyrene equivalent weight average molecular weight by gel permeation chromatography) of 250,000 or more. When the weight average molecular weight is less than 250,000, the viscosity of the electrode mixture slurry is insufficient when the composition ratio is such that the flexibility of the acrylic copolymer and the effect of preventing the gelation of the vinylidene fluoride polymer are harmonized. Thus, the coating suitability is impaired by the separation of the binder solution and the powder electrode material. A polymerization average molecular weight of 280,000 or more is particularly preferable for providing an electrode layer having good adhesion to the current collector. The upper limit of the weight average molecular weight is not particularly defined, but the viscosity suitable for application of the electrode mixture slurry is 120,000 mPa · s or less, and beyond that, the electrode layer is uniformly applied and formed on the current collector. Will be difficult. Therefore, it is preferable to appropriately adjust the weight average molecular weight and the vinylidene fluoride polymer concentration in the electrode mixture slurry so that the viscosity of the electrode mixture slurry is 120,000 mPa · s or less.
[0018]
  To harmonize the flexibility of acrylic copolymer with the anti-gelling effect of vinylidene fluoride polymerIn addition,5 parts of vinylidene fluoride polymer per 100 parts by weight of acrylic copolymer~ 100 weightDivisionIn combination, it is preferable to form the binder composition of the present invention.
[0019]
The amount of the binder used may be a minimum amount that does not cause the powder electrode material to peel from the current collector. More specifically, the binder is used in an amount of 0.1 to 5 parts by weight, particularly 0 to 100 parts by weight of the powder electrode material. It is preferably used at a ratio of 0.5 to 2 parts by weight.
[0020]
In the state before application to the current collector, the liquid electrode mixture composition (electrode mixture slurry) of the present invention has good solubility in both the acrylic copolymer and the vinylidene fluoride polymer. The total amount of the acrylic copolymer and the vinylidene fluoride polymer is 0.5 to 20 parts by weight, particularly 1 to 15 parts per 100 parts by weight of the polar organic solvent having a boiling point of 100 ° C. or higher. The liquid binder composition dissolved or dispersed in a proportion of parts by weight is used in a form in which the powder electrode material in the above proportion is dispersed and mixed. As described above, the viscosity of the electrode mixture slurry in this state is preferably 120,000 mPa · s (30 ° C.) or less.
[0021]
Examples of the polar organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylsulfoxide, hexamethylphosphoamide, tetrahydrofuran, tetramethylurea, triethylphosphine. Fate, trimethyl phosphate, etc. are used.
[0022]
If the electrode mixture slurry is finally formed, the mixing order of the acrylic copolymer and vinylidene fluoride polymer, polar organic solvent and powder electrode material constituting the binder composition is considerably There is arbitraryness. Of course, these components may be mixed all at once, but in general, a mode in which a binder solution in a polar organic solvent is prepared in advance and the powder electrode material is dispersed and mixed is preferably used. In addition, an acrylic copolymer latex obtained by previously mixing an acrylic copolymer latex obtained as an aqueous emulsion (latex) with a polar organic solvent having a boiling point of 100 ° C. or higher and (reduced pressure) was replaced with water. It is also preferable to prepare a solution of the polymer in a polar organic solvent and mix it with a dispersion of the powder electrode material in a separately prepared solution of vinylidene fluoride polymer in the polar organic solvent. Thereby, the applicability | paintability of an acryl-type copolymer binder can be improved more effectively by weakening the interaction of powder electrode material and an acryl-type copolymer.
[0023]
The slurry of the present invention is formed by mixing the binder composition and the powder electrode material.
[0024]
A powder electrode material consists of a positive electrode or negative electrode active material, and what added the conductive support agent and various additives as needed. When the active material is a positive electrode, the general formula LiMY2(M is at least one kind of transition metal such as Co, Ni, Fe, Mn, Cr, and V; Y is a chalcogen element such as O and S), particularly LiNixCo1-xO2Complex metal oxides such as (0 ≦ x ≦ 1) and LiMn2OFourA composite metal oxide having a spinel structure such as is preferable.
[0025]
Active materials for the negative electrode include graphite, activated carbon, or carbonized material such as phenolic resin or pitch calcined, and carbonaceous material such as coconut shell activated carbon, as well as metal oxide GeO and GeO.2, SnO, SnO2, PbO, PbO2, SiO, SiO2Or a composite metal oxide thereof.
[0026]
Furthermore, it is necessary to add conductive assistants such as carbon black and graphite and various additives as necessary.
[0027]
As shown in the cross-sectional view of FIG. 1, the basic structure of the non-aqueous battery of the present invention is generally a sheet-shaped solid electrolyte or separator 1 made of a pair of positive electrodes 2 (2a: current collecting substrate, 2b: It can be obtained by arranging in a form sandwiched between a positive electrode mixture layer) and a negative electrode 3 (3a: current collecting substrate, 3b: negative electrode mixture layer).
[0028]
When the configuration as a lithium ion battery is taken as an example, it is preferable that the sheet separator layer 1 has a thickness of 2 to 100 μm, particularly about 5 to 200 μm.
[0029]
The positive electrode 2 and the negative electrode 3 are made of a metal foil such as iron, stainless steel, copper, aluminum, nickel, titanium, or a metal net, and have a thickness of 5 to 100 μm, for example, 5 to 20 μm in a small scale. For example, the positive electrode mixture layer 2b and the negative electrode mixture layer 3b having a thickness of 10 to 1000 μm, for example, are formed on one surface of each of the current collector bases 2a and 3a.
[0030]
Electrolyte is LiPF as electrolyte6, LiAsF6LiClOFour, LiBFFour, LiCl, LiBr, LiCHThreeSOThree, LiCFThreeSOThree, LiN (CFThreeSO2)2, LiC (CFThreeSO2)Three, Etc., propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl propionate, ethyl propionate, and these Although what was melt | dissolved in the mixed solvent etc. is used, it is not necessarily limited to these.
[0031]
The thus obtained laminated sheet-like battery body having the structure shown in FIG. 1 is further laminated by winding, folding, or the like, if necessary, to increase the electrode area per volume, and relatively simple. For example, a non-aqueous battery having an overall structure such as a square shape, a cylindrical shape, a coin shape, a paper shape, or the like is formed by processing such as housing in a simple container and forming an extraction electrode.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to the drawings, examples and comparative examples.
[0033]
In addition, the weight average molecular weight of the described vinylidene fluoride polymer and the viscosity of the electrode mixture slurry are measured by the following methods.
[0034]
(Weight average molecular weight)
A gel permeation chromatograph (manufactured by JASCO Corporation; GPC-900, column TSK-GEL) was used for NMP (N-methyl-2-pyrrolidone) solution in which vinylidene fluoride polymer powder was dissolved at a concentration of 0.2% by weight. The weight average molecular weight in terms of polystyrene was measured using GMHXL, temperature 40 ° C., flow rate 1.0 ml / min.
[0035]
(Kinematic viscosity)
The kinematic viscosity of the electrode mixture slurry was measured at a measurement temperature of 30 ° C. using 0.5 ml of the electrode mixture slurry using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd .; RE-80R, rotor 3 ° × R14). did. The values shown in Table 1 and Table 2 below are those at 0.5 rpm.
[0036]
<Preparation of positive electrode>
Example 1
(Latex of acrylic copolymer-1)
In a reaction vessel equipped with a 3 liter stirrer, 400 g of 2-ethylhexyl acrylate (hereinafter “2-EHA”), 60 g of acrylonitrile (hereinafter “AN”), 8 g of sodium dodecylbenzenesulfonate, 1200 ion-exchanged water, and 8 g of potassium persulfate were placed. After sufficiently stirring, polymerization was carried out at 80 ° C. The polymerization addition rate was 99%, and an acrylic copolymer-1 latex containing about 30% acrylic copolymer particles-1 was obtained.
[0037]
(Acrylic copolymer NMP solution-1)
100 g of latex of acrylic copolymer-1 and 300 g of N-methylpyrrolidone (hereinafter “NMP”) are mixed, and water contained by evaporation operation under reduced pressure using a rotary evaporator is replaced with NMP. An NMP solution-1 of an acrylic copolymer was obtained.
[0038]
(Preparation of binder solution)
A binder of vinylidene fluoride homopolymer (“KF # 1100” manufactured by Kureha Chemical Industry Co., Ltd .; weight average molecular weight 280,000) having the same weight as that of the resin is added to the NMP solution-1 of the acrylic copolymer. Solution-1 was obtained.
[0039]
(Electrode: Preparation of positive electrode-1)
Binder solution-1 (containing 2.5 parts by weight of resin solid content) prepared as described above was added to LiCoO having an average particle size of 5 μm.2  9.4 parts by weight, 0.3 parts by weight of conductive carbon black and 3.0 parts by weight of N-methyl-2-pyrrolidone were mixed to obtain an electrode mixture slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 10 μm and dried at 130 ° C. to obtain a positive electrode having a mixture layer having a thickness of 100 μm (positive electrode-1). About the obtained slurry, when applied on a 10 μm thick aluminum foil immediately after preparation, and when applied again on a 10 μm thick aluminum foil after 12 hours, the coating properties of the respective slurries are as follows: Based on the following criteria:
A: The coating was smooth.
B: Coating was difficult because of some separation.
C: Coating was impossible due to solidification separation or sedimentation separation.
[0040]
(Peel strength test)
In the positive electrode-1 obtained above, the adhesive strength between the electrode layer and the aluminum foil was measured by a 180 ° C. peel test according to JIS K6845. In addition, the electrode produced using the slurry with poor coating property was non-uniform, the peel strength value was low, and the variation was large. The electrode whose peel strength was measured was prepared by applying immediately after slurry production.
[0041]
The results of evaluation are summarized in Table 1 below together with the results obtained in the following examples and comparative examples.
[0042]
(Electrode flexibility test)
The positive electrode-1 obtained above was vacuum-dried at 130 ° C. for 5 hours, then pressed so that the electrode bulk density was 3.2 g / cc, further vacuum-dried at 130 ° C. for 1 hour, and then manually folded. The flexibility of electrode / positive electrode-1 was evaluated according to the following criteria:
A: No change in appearance,
A+: Appearance is not changed at all, and feels soft when folded by hand,
B: Some cracks,
C: Streaks were completely formed or the electrode was cracked.
[0043]
Example 2
Evaluation was performed in the same manner as in Example 1 except that a vinylidene fluoride homopolymer having a weight average molecular weight of 710,000 was used in place of the vinylidene fluoride polymer of Example 1.
[0044]
Example 3
(Latex of acrylic copolymer-3)
In a reaction vessel equipped with a 3-liter stirrer, 1120 g of ion-exchanged water, 7 g of sodium dodecylbenzenesulfonate (hereinafter “Neo.6”), 4 g of potassium persulfate (hereinafter “KPS”), 380 g of 2-EHA, 60 g of AN, glycidyl methacrylate ( (Hereinafter “GMA”) 20 g of monomer was added, and after stirring and dispersing at 30 ° C. for 15 minutes, the temperature was raised to 80 ° C. to perform polymerization, and after 6 hours after maximum heat generation, the latex of acrylic copolymer-3 was cooled. Obtained. At this time, the polymerization addition rate of the monomer was 99.2%, and the resin component concentration was about 30%.
[0045]
Hereinafter, evaluation was performed in the same manner as in Example 1 except that the latex of acrylic copolymer-3 was used instead of the latex of acrylic copolymer-1.
[0046]
Example 4
The vinylidene fluoride polymer of Example 3 was converted into a vinylidene fluoride-chlorotrifluoroethylene-monomethyl maleate copolymer (VDF / CTFE / MMM = 96/4 / 0.3) having a weight average molecular weight of 710,000. Evaluation was performed in the same manner as in Example 1 except that (weight ratio) was used.
[0047]
Example 5
(Latex of acrylonitrile copolymer-1)
In a reaction vessel equipped with a 3 liter stirrer, 1200 g of ion-exchange water, 8 g of sodium dodecylbenzenesulfonate (Neo.6), 8 g of potassium persulfate (KPS), 184 g of 2-EHA, and 276 g of AN 276 g were placed at 30 ° C. for 15 minutes. After stirring and dispersing, the temperature was raised to 80 ° C. to perform polymerization, and cooling was carried out 6 hours after the maximum heat generation to obtain a latex of acrylonitrile copolymer-1. At this time, the polymerization addition rate of the monomer was 99%, and the resin component concentration was about 30%.
[0048]
The evaluation was performed in the same manner as in Example 1 except that the latex of acrylonitrile copolymer-1 was used instead of the latex of acrylic copolymer-1.
[0049]
Example 6
In Example 1 above, instead of acrylic copolymer-1, acrylonitrile copolymer-1 of Example 5 and acrylonitrile resin (acrylonitrile / methyl acrylate (= 90/10) copolymer, Abbreviated as “PAN.” A 1: 1 (by weight) mixture with Mitsui Chemicals, Inc. “BAREX 1000N”) was used in the same amount as the acrylic copolymer-1 of Example 1 as the total amount. Evaluation was performed in the same manner as in Example 1.
[0050]
Comparative Example 1
The NMP solution 1 of acrylic copolymer prepared in Example 1 (including 2.3 parts by weight of resin solids) was added to LiCoO having an average particle diameter of 5 μm.2  It was mixed with 9.4 parts by weight, conductive carbon black 0.3 parts by weight and N-methyl-2-pyrrolidone 3.0 parts by weight. The obtained electrode mixture slurry was applied on an aluminum foil having a thickness of 10 μm and dried at 130 ° C. to obtain a positive electrode having a mixture layer having a thickness of 100 μm.
[0051]
Comparative Example 2
13 parts by weight of vinylidene fluoride homopolymer (weight average molecular weight 280,000) was dissolved in 87 parts by weight of NMP. The obtained solution (including 2.3 parts by weight of resin solids) was added to LiCoO having an average particle size of 5 μm.2  It was mixed with 9.4 parts by weight, conductive carbon black 0.3 parts by weight and N-methyl-2-pyrrolidone 2.3 parts by weight. The obtained electrode mixture slurry was applied on an aluminum foil having a thickness of 10 μm and dried at 130 ° C. to obtain a positive electrode having a mixture layer having a thickness of 100 μm.
[0052]
Evaluation was performed in the same manner as in Example 1 below.
[0053]
Comparative Example 3
Evaluation was conducted in the same manner as in Example 1 except that the vinylidene fluoride polymer in Example 1 was a vinylidene fluoride homopolymer having a weight average molecular weight of 190,000.
[0054]
Comparative Example 4
Evaluation was performed in the same manner as in Example 1 except that the vinylidene fluoride polymer in Example 1 was replaced with an acrylonitrile resin (PAN, “BAREX 1000N” manufactured by Mitsui Chemicals, Inc.).
[0055]
Comparative Example 5
Evaluation was performed in the same manner as in Example 1 except that the vinylidene fluoride polymer was replaced with acrylonitrile copolymer-1 in Example 1.
[0056]
Comparative Example 6
100 g of an aqueous emulsion of ethylene-vinyl alcohol copolymer (EVA, “FLEX500” manufactured by Sumitomo Chemical Co., Ltd.) containing 55 g of resin solid content is mixed with 300 g of NMP, and the water contained in the rotary evaporator is reduced by NMP. Substitution was performed to obtain an NMP solution of EVA. Subsequently, a solution obtained by diluting this NMP solution of EVA with the same weight of NMP was used as a binder solution, and thereafter, a positive electrode was prepared and evaluated in the same manner as in Example 1.
[0057]
<Preparation of negative electrode>
Example 7
With respect to the binder solution-1 prepared in Example 1 (including 4 parts by weight of resin solids), mesocarbon microbeads (“MCMB-25-28” manufactured by Osaka Gas Chemical Co., Ltd.), an average particle size of 25 μm, (Hereinafter referred to as “MCMB”) 9.4 parts by weight was mixed, and then 3.4 parts by weight of NMP was further added and mixed. The obtained electrode mixture slurry was applied on a copper foil having a thickness of 10 μm and dried at 130 ° C. to obtain a negative electrode having a mixture layer having a thickness of 100 μm. About the obtained slurry, when apply | coating on a 10-micrometer-thick copper foil immediately after manufacture, and when apply | coating on a 10-micrometer-thick copper foil again after 12-hour progress, the coating property of each slurry was evaluated.
[0058]
The peel strength and flexibility of the obtained negative electrode were also evaluated in the same manner as the positive electrode of Example 1.
[0059]
Example 8
Evaluation was performed in the same manner as in Example 5 except that a vinylidene fluoride homopolymer having a weight average molecular weight of 710,000 was used in place of the vinylidene fluoride polymer of Example 7.
[0060]
Example 9
In the above Example 7, instead of the acrylic copolymer latex-1 of Example 1, using the acrylic copolymer latex 3 obtained in Example 3, the obtained binder solution-5 was Evaluation was performed in the same manner as in Example 5 except that the binder solution-1 was used instead of the binder solution-1.
[0061]
Comparative Example 7
After 9.4 parts by weight of MCMB was mixed with NMP solution-1 (including 1 part by weight of resin solids) of the acrylic copolymer prepared in Example 1, 3.4 parts by weight of NMP was further added and mixed. did. The obtained electrode mixture slurry was applied on a copper foil having a thickness of 10 μm and dried at 130 ° C. to obtain a negative electrode having a mixture layer having a thickness of 100 μm.
[0062]
Evaluation was performed in the same manner as in Example 7 below.
[0063]
Comparative Example 8
After mixing 9.4 parts by weight of MCMB to the NMP solution (including 2.3 parts by weight of resin solids) of the homopolymer of vinylidene fluoride (weight average molecular weight = 280,000) prepared in Comparative Example 2, Further, 3.4 parts by weight of NMP was added and mixed. The obtained slurry was applied onto a 10 μm thick copper foil and dried at 130 ° C. to obtain a negative electrode having a mixture layer having a thickness of 100 μm.
[0064]
Evaluation was performed in the same manner as in Example 7 below.
[0065]
The results of Examples and Comparative Examples are summarized in Tables 1 and 2 below.
[0066]
[Table 1]
Figure 0004361241
[0067]
[Table 2]
Figure 0004361241
[0068]
【The invention's effect】
As described above, according to the present invention, an electrode comprising a combination of an acrylic copolymer and a vinylidene fluoride polymer, having high adhesion and flexibility with a small amount of use, and suitable for coating properties. Provided are a binder composition for a non-aqueous secondary battery electrode capable of forming a mixture slurry, and an electrode mixture composition, an electrode and a non-aqueous secondary battery formed using the binder composition.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a non-aqueous secondary battery electrode structure that can be configured in accordance with the present invention.
[Explanation of symbols]
1: Separator
2: Positive electrode (2a: current collecting substrate, 2b: positive electrode mixture layer)
3: Negative electrode (3a: current collecting substrate, 3b: negative electrode mixture layer)

Claims (7)

少なくとも(メタ)アクリル酸エステルおよび/または(メタ)アクリロニトリルの重合単位を主成分として有するアクリル系共重合体100重量部と、重量平均分子量が25万以上のフッ化ビニリデン系重合体5〜00重量部とを含み、粘度が12万mPa・s以下の電極合剤スラリーを形成するのに適した非水系二次電池電極用バインダー組成物。100 parts by weight of an acrylic copolymer having at least a polymerization unit of (meth) acrylic acid ester and / or (meth) acrylonitrile as a main component, and a vinylidene fluoride polymer having a weight average molecular weight of 250,000 or more 5 to 100 A binder composition for a non-aqueous secondary battery electrode suitable for forming an electrode mixture slurry containing 1 part by weight and having a viscosity of 120,000 mPa · s or less. 前記アクリル系共重合体とフッ化ビニリデン系重合体とを、極性有機溶媒中に溶解または分散してなり、液状である請求項1のバインダー組成物。  The binder composition according to claim 1, wherein the acrylic copolymer and the vinylidene fluoride polymer are dissolved or dispersed in a polar organic solvent and are in a liquid state. 請求項1または2のバインダー組成物中に、非水系二次電池電極用の活物質、または活物質と導電助剤を分散させてなる粘度が12万mPa・s以下のスラリー状電極合剤組成物。  A slurry-like electrode mixture composition having a viscosity of 120,000 mPa · s or less obtained by dispersing an active material for a non-aqueous secondary battery electrode or an active material and a conductive additive in the binder composition according to claim 1 or 2. object. 電極活物質が正極活物質である請求項3の電極合剤組成物。  The electrode mixture composition according to claim 3, wherein the electrode active material is a positive electrode active material. 電極活物質が負極活物質である請求項3の電極合剤組成物。  The electrode mixture composition according to claim 3, wherein the electrode active material is a negative electrode active material. 集電体上に、乾燥した請求項3〜5のいずれかに記載の電極合剤組成物の層を形成してなる非水系二次電池電極。  A non-aqueous secondary battery electrode formed by forming a dried layer of the electrode mixture composition according to any one of claims 3 to 5 on a current collector. 正極と負極との間に電解質を配置してなり、該正極と負極の少なくとも一方が請求項6の電極からなる非水系二次電池。  A nonaqueous secondary battery comprising an electrolyte disposed between a positive electrode and a negative electrode, wherein at least one of the positive electrode and the negative electrode comprises the electrode of claim 6.
JP2002125539A 2002-04-26 2002-04-26 Non-aqueous secondary battery electrode binder composition, electrode mixture composition, electrode and secondary battery Expired - Fee Related JP4361241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125539A JP4361241B2 (en) 2002-04-26 2002-04-26 Non-aqueous secondary battery electrode binder composition, electrode mixture composition, electrode and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125539A JP4361241B2 (en) 2002-04-26 2002-04-26 Non-aqueous secondary battery electrode binder composition, electrode mixture composition, electrode and secondary battery

Publications (2)

Publication Number Publication Date
JP2003317722A JP2003317722A (en) 2003-11-07
JP4361241B2 true JP4361241B2 (en) 2009-11-11

Family

ID=29540225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125539A Expired - Fee Related JP4361241B2 (en) 2002-04-26 2002-04-26 Non-aqueous secondary battery electrode binder composition, electrode mixture composition, electrode and secondary battery

Country Status (1)

Country Link
JP (1) JP4361241B2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302300A (en) * 2004-03-19 2005-10-27 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP5088807B2 (en) * 2004-04-19 2012-12-05 パナソニック株式会社 Lithium ion secondary battery and manufacturing method thereof
JP4748439B2 (en) * 2004-07-30 2011-08-17 日立化成工業株式会社 Binder resin composition for lithium battery electrode, electrode and battery
JP4636444B2 (en) * 2004-09-22 2011-02-23 日立化成工業株式会社 Binder resin composition for non-aqueous electrolyte system energy device electrode, non-aqueous electrolyte system energy device electrode, and non-aqueous electrolyte system energy device
KR101245064B1 (en) * 2004-10-06 2013-03-18 니폰 제온 가부시키가이샤 Electrode composition, electrode and battery
JP5232353B2 (en) * 2004-10-06 2013-07-10 日本ゼオン株式会社 Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JP4797405B2 (en) * 2005-03-15 2011-10-19 Jsr株式会社 Binder composition for secondary battery electrode, slurry for secondary battery electrode, and secondary battery electrode
CN101492596B (en) * 2005-03-23 2011-11-23 日本瑞翁株式会社 Binder for electrode of nonaqueous electrolyte secondary battery, electrode, and nonaqueous electrolyte secondary battery
JP5428126B2 (en) * 2005-10-07 2014-02-26 日立化成株式会社 Binder resin composition for non-aqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode and non-aqueous electrolyte energy device using the same
TWI424608B (en) * 2005-12-22 2014-01-21 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode, and secondary battery electrode
TW200740913A (en) * 2006-02-02 2007-11-01 Jsr Corp Polymer composition, paste for secondary battery electrode, and secondary battery electrode
JP5109349B2 (en) * 2006-12-04 2012-12-26 ソニー株式会社 Secondary battery
JP2009117159A (en) 2007-11-06 2009-05-28 Sony Corp Positive electrode and lithium ion secondary battery
JP5392471B2 (en) * 2009-02-12 2014-01-22 株式会社村田製作所 Electrostrictive polymer material, method for producing the same, and electronic component
CN102318108A (en) * 2009-02-12 2012-01-11 大金工业株式会社 Electrode mixture slurry for lithium secondary batteries, and electrode and lithium secondary battery that use said slurry
JP2010244936A (en) * 2009-04-08 2010-10-28 Sony Corp Negative electrode, and nonaqueous electrolyte secondary battery
KR101464841B1 (en) * 2010-03-30 2014-11-25 가부시끼가이샤 구레하 Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery
JP5476246B2 (en) * 2010-07-26 2014-04-23 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery and method for producing positive electrode mixture
JP2013084351A (en) * 2011-10-06 2013-05-09 Nippon Zeon Co Ltd Composite particle for electrochemical device electrode, electrochemical device electrode material, and electrochemical device electrode
WO2013077212A1 (en) * 2011-11-22 2013-05-30 Jsr株式会社 Binder composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, slurry for forming protective film, protective film, and electricity storage device
US10033042B2 (en) * 2012-03-02 2018-07-24 Zeon Corporation Positive electrode for secondary battery, and secondary battery
JP5610164B2 (en) * 2012-03-16 2014-10-22 日本ゼオン株式会社 Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JP5710533B2 (en) * 2012-03-26 2015-04-30 株式会社東芝 Nonaqueous electrolyte secondary battery, electrode for battery, and battery pack
JP5974578B2 (en) * 2012-03-27 2016-08-23 日本ゼオン株式会社 Composite particle for secondary battery positive electrode, positive electrode for secondary battery and secondary battery
KR102060429B1 (en) * 2012-09-28 2019-12-30 제온 코포레이션 Lithium ion secondary battery
KR101739299B1 (en) 2013-09-24 2017-06-08 삼성에스디아이 주식회사 Composite binder composition for secondary battery, cathode and lithium battery containing the binder
KR101768740B1 (en) * 2013-09-30 2017-08-30 주식회사 엘지화학 Positive electrode for secondary battery and secondary battery comprisign the same
KR102234294B1 (en) 2014-01-10 2021-03-31 삼성에스디아이 주식회사 Composite binder composition for secondary battery, cathode and lithium battery containing the binder
KR102234295B1 (en) 2014-01-10 2021-03-31 삼성에스디아이 주식회사 Composite binder composition for secondary battery, cathode and lithium battery containing the binder
KR102222117B1 (en) 2014-01-10 2021-03-03 삼성에스디아이 주식회사 Composite binder composition for secondary battery, cathode and lithium battery containing the binder
AU2018297344B2 (en) 2017-07-07 2021-10-21 Ppg Industries Ohio, Inc. Electrode binder slurry composition for lithium ion electrical storage devices
KR20240046619A (en) 2017-07-07 2024-04-09 피피지 인더스트리즈 오하이오 인코포레이티드 Electrode slurry composition for lithium ion electrical storage devices
US11799086B2 (en) 2017-07-07 2023-10-24 Ppg Industries Ohio, Inc. Electrode binder slurry composition for lithium ion electrical storage devices
CN117501470A (en) * 2022-05-31 2024-02-02 宁德时代新能源科技股份有限公司 Adhesive composition, secondary battery, battery module, battery pack, and electric device
WO2023245491A1 (en) * 2022-06-22 2023-12-28 宁德时代新能源科技股份有限公司 Binder and preparation method therefor, positive electrode slurry, positive electrode sheet, secondary battery, battery module, battery pack, and electric apparatus
JP2024014324A (en) * 2022-07-22 2024-02-01 株式会社クレハ Cathode active material layer, electrode, and solid battery

Also Published As

Publication number Publication date
JP2003317722A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
JP4361241B2 (en) Non-aqueous secondary battery electrode binder composition, electrode mixture composition, electrode and secondary battery
JP4851092B2 (en) Non-aqueous electrolyte battery electrode binder composition and use thereof
JP5625917B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
JP6469879B2 (en) Gel polymer electrolyte, method for producing the same, and electrochemical device including gel polymer electrolyte
JP5494497B2 (en) Slurry for positive electrode mixture of lithium secondary battery, positive electrode using the slurry, and lithium secondary battery
JP4218244B2 (en) Slurry composition for secondary battery electrode, secondary battery electrode and secondary battery
WO2011002097A1 (en) Slurry for electrode mixture of lithium secondary cell, electrode using the slurry, and lithium secondary cell
JP2008171816A (en) Anode for lithium battery, and lithium battery using it
JP5128481B2 (en) Vinyl fluoride based copolymer binder for battery electrodes
JP4253051B2 (en) Nonaqueous battery electrode mixture and nonaqueous battery
JP6020209B2 (en) Method for producing slurry composition for secondary battery negative electrode
JP6413242B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP2005310747A (en) Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
JP6398191B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP7160696B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JP6696534B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP3518712B2 (en) Non-aqueous battery electrode forming binder, electrode mixture, electrode structure and battery
JP4415453B2 (en) Binder for lithium ion secondary battery electrode and use thereof
JP4412808B2 (en) Lithium polymer secondary battery
JP7060405B2 (en) Binder composition, electrode mixture and non-aqueous electrolyte secondary battery
JP4931420B2 (en) Non-aqueous electrolyte battery electrode binder composition and use thereof
JP2003257433A (en) Nonaqueous electrolyte secondary battery and binding agent
JP2006107753A (en) Coating composition for cathode active substance layer, cathode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
CN110754011A (en) Composition for positive electrode
JP2002141068A (en) Binder for forming nonaqueous battery electrode, electrode composite agent, electrode structure and nonaqueous battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4361241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees