JPWO2002031892A1 - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
JPWO2002031892A1
JPWO2002031892A1 JP2002535178A JP2002535178A JPWO2002031892A1 JP WO2002031892 A1 JPWO2002031892 A1 JP WO2002031892A1 JP 2002535178 A JP2002535178 A JP 2002535178A JP 2002535178 A JP2002535178 A JP 2002535178A JP WO2002031892 A1 JPWO2002031892 A1 JP WO2002031892A1
Authority
JP
Japan
Prior art keywords
semiconductor layer
insulating film
solar cell
exposed region
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002535178A
Other languages
Japanese (ja)
Other versions
JP3872428B2 (en
Inventor
大塚 寛之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of JPWO2002031892A1 publication Critical patent/JPWO2002031892A1/en
Application granted granted Critical
Publication of JP3872428B2 publication Critical patent/JP3872428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池100においては、半導体基板1の主表面に凹凸部が形成され、該主表面が絶縁膜3で被覆され、凹凸部を形成する凸部15の少なくとも一部のものの頂上部を包含する形にて、絶縁膜3にて被覆されていない半導体層露出領域5が主表面に形成される。半導体層露出領域5内の凸部15の頂上部25に直接又は他の導電層を介して間接的に接触するように、出力取出用電極7が形成される。半導体層露出領域5は、半導体基板1の主表面を、凹凸部15を含む形にて絶縁膜3で覆い、さらに凸部15の頂上部25以外の領域にて絶縁膜3をエッチング保護膜4で覆い、その後エッチングによって凸部15の頂上部25の絶縁膜3を除去して形成する。In the solar cell 100, an uneven portion is formed on the main surface of the semiconductor substrate 1, the main surface is covered with the insulating film 3, and includes a top portion of at least a part of the protruded portion 15 forming the uneven portion. Thus, a semiconductor layer exposed region 5 not covered with the insulating film 3 is formed on the main surface. The output extraction electrode 7 is formed so as to be in direct contact with the top 25 of the convex portion 15 in the semiconductor layer exposed region 5 directly or indirectly through another conductive layer. The semiconductor layer exposed region 5 covers the main surface of the semiconductor substrate 1 with the insulating film 3 including the concavo-convex portion 15, and further etches the insulating film 3 in a region other than the top 25 of the convex portion 15. Then, the insulating film 3 on the top 25 of the protrusion 15 is removed by etching.

Description

技術分野
本発明は光電変換効率が比較的高く、しかも、低コストで作製できる太陽電池及びその製造方法に関する。
背景技術
太陽電池は、光エネルギーを電力に変換する半導体素子であり、p−n接合形、pin形、ショットキー形などがあるが、p−n接合形が最も広く用いられている。太陽電池をその基板材料をもとに分類すると、大きく分けて、シリコン結晶系太陽電池、アモルファス(非晶質)シリコン系太陽電池、化合物半導体系太陽電池の3種類が挙げられる。シリコン結晶系太陽電池は、更に、単結晶系太陽電池と多結晶系太陽電池に分類される。これらのうち最もエネルギー変換効率が高いものは、化合物半導体系太陽電池であるが、化合物半導体系太陽電池は、その材料となる化合物半導体を作ることが非常に難しく、太陽電池基板の製造コスト面で一般に普及するには問題があり、その用途は限られたものとなっている。他方、化合物半導体系太陽電池の次に変換効率の高い太陽電池としては、シリコン単結晶系太陽電池が続き、太陽電池用シリコン単結晶基板も比較的容易に製造できることから、一般に普及している太陽電池の主力となっている。
太陽電池の出力特性は、一般に、図18に示すような出力電流電圧曲線を、ソーラーシミュレータを用いて測定することにより評価される。この曲線上で、出力電流Ipと出力電圧Vpとの積Ip・Vpが最大となる点Pmを最大出力Pmと呼び、該Pmを太陽電池に入射する総光エネルギー(S×I:Sは素子面積、Iは照射する光の強度)にて除した値:
η≡{Pm/(S×I)}×100 (%) ‥‥(1)
が太陽電池の変換効率ηとして定義される。図18からも明らかな通り、変換効率ηを高めるには、短絡電流Isc(電流電圧曲線上にてV=0のときの出力電流値)あるいは開放電圧Voc(同じくI=0のときの出力電圧値)を大きくすること、及び、出力電流電圧曲線をなるべく角型に近い形状のものとすることが重要である。なお、出力電流電圧曲線の角型の度合いは、一般に、
FF≡Ipm×Vpm/(Isc×Voc) ‥‥(2)
にて定義されるフィルファクタ(曲線因子)により評価でき、該FFの値が1に近いほど出力電流電圧曲線が理想的な角型に近づき、変換効率ηも高められることを意味する。
例えば、シリコン結晶系太陽電池においては、出力取出用の金属電極とシリコン層との直接接触部における電子・正孔の再結合を防止して開放電圧Vocを高めるために、シリコン層表面にSiOなどの絶縁膜を形成する構造が採用されている(いわゆるMISコンタクトあるいはコンタクトパッシベーション)。しかしながら、シリコン層の全表面が上記のような絶縁膜にて覆われていると、発生した光電流は該絶縁膜をトンネル効果で通過しなければならなくなり、光電流収集率が低下して十分な変換効率の向上が見込めなくなる。
これを防止するために、絶縁膜の一部に小さなコンタクトホールを設け、ここに金属電極を形成することで、再結合場所として振舞う金属電極とシリコン層との直接接触部を微小領域に制限し、光電流収集率を向上させることが行なわれている。この場合、いかにして絶縁膜にコンタクトホールを形成するかが問題となる。例えば、実験室的にはフォトレジストなどを用い、絶縁膜をエッチングすることによりコンタクトホールを形成する方法が考えられる。しかしながら、この方法はフォトリソグラフィー技術を利用するために工数とコストがかかりすぎ、太陽電池の量産を図る観点からは現実的でない。
そこで、特開平8−335711号公報には、フォトリソグラフィー技術を用いずにコンタクトホールを形成する方法が提案されている。具体的には、導電性ペーストのスクリーン印刷により出力取出用金属電極のパターンを絶縁膜上に形成し、さらに焼成する。これにより、ペースト内に含まれる金属とガラスのフリットとが熱によって溶融し、絶縁膜を突き破ってエミッタ層に到達することによりコンタクトホールが形成される。この手法は一般にファイヤースルーと称され、簡便にコンタクトホールを形成できることから、単結晶あるいは多結晶太陽電池を作製する際に広く利用されている。
ところで、ファイヤースルー方式による太陽電池作製方法では、表面n型層であるエミッタ層のドーパント濃度を高く設定する必要がある。これは、エミッタ層のドーパント濃度が低い場合、ファイヤースルーにより形成される金属とシリコンとの直接接触部のコンタクト抵抗が十分に下がらず、コンタクト抵抗ロスが大きくなって取り出せる電力が小さくなることにつながるからである。しかしながら、拡散によってエミッタ層のドーパント濃度を高くすると、半導体シリコンとドーパントとの化合物が析出し、表面に多くの欠陥準位が形成されて、表面再結合速度が大きくなる。このような状態になると、太陽電池の短波長感度が低くなり、取り出せる電流が小さくなる不具合を生ずる。
一方、太陽電池の変換効率ηを高めるためには、出力取出用金属電極の形成幅をなるべく小さくし、シャドーイングロスの低減を図ることも重要である。しかしながら、ファイヤースルー方式では電極をスクリーン印刷により形成することから、電極幅を極端に小さくすることは原理的に困難であり、結果としてシャドーイングロス低減のために、複数本形成する電極の配列間隔を広くせざるをえなくなる。このように電極の配列間隔を広くすると、電流取出時において、薄いエミッタ層内での横方向通電距離が長くなることからエミッタ抵抗ロスが大きくなり、変換効率ηは低下せざるを得ない。これらの理由により、ファイヤースルー方式を採用して、変換効率ηの良好な太陽電池、例えばηが20%を超える太陽電池を作製することは困難であるとみなされている。
本発明の課題は、変換効率が高くしかも低コストにて製造可能な太陽電池と、その製造方法とを提供することにある。
発明の開示
上記の課題を解決するために、本発明の太陽電池の第一の構成は、半導体基板の主表面に凹凸部が形成され、該主表面が絶縁膜で被覆されている太陽電池において、凹凸部を形成する凸部の少なくとも一部のものの頂上部を包含する形にて絶縁膜にて被覆されていない半導体層露出領域が主表面に形成されてなり、該半導体層露出領域内において凸部の頂上部の先端高さ位置が、該半導体層露出領域の外周縁における絶縁膜の最大高さ位置よりも高くなっており、かつ半導体層露出領域内の凸部の頂上部に直接又は他の導電層を介して間接的に接触するように、出力取出用電極が形成されていることを特徴とする。
なお、本明細書において半導体基板の主表面とは、半導体基板の厚さ方向における両面(表面、裏面)の少なくともいずれかを意味している。従って、凹凸部は、基板の一方の主表面のみに形成されていてもよいし、両面に形成されていてもいずれでもよい。また、本明細書において半導体層露出領域とは、絶縁膜が完全に除去された場合はもちろん、トンネル電流が流れる程度の厚さ(3nm以下程度)の絶縁膜が残存する場合も概念として含む。
上記第一の構成の太陽電池では、半導体基板の主表面に凹凸部を形成している。このような凹凸部形成は、主に反射損失を防止する目的で従来のシリコン単結晶系太陽電池においても採用されてきたものである。しかしながら、本発明においては、上記凹凸部を反射損失防止の観点のみならず、その特有の形態を、出力取出用電極と半導体層とのコンタクトホールとして機能させるべき半導体層露出領域の形成に利用するところに特徴がある。具体的には、図19Aに例示するように、該半導体層露出領域5を凸部15の頂上部25を包含する形にて形成するとともに、該凸部15の先端高さ位置が、半導体層露出領域5の外周縁における絶縁膜3の最大高さ位置よりも高くする。そして、半導体層露出領域5内の凸部15の頂上部25に直接(又は他の導電層を介して間接的に)接触するように、出力取出用電極7を形成する。
例えば、従来の太陽電池における、フォトリソグラフィーやファイヤースルーにより形成したコンタクトホールでは、図19Bに示すように、半導体層露出領域5はコンタクトホールのいわば底面を形成する形となり、露出領域5内の半導体層2が周囲の絶縁膜3の上縁よりも突出することは決してありえない。この点において、上記本発明の第一に係る太陽電池の構造は、これら従来の太陽電池の構造と決定的に相違する。そして、このような構造を採用することにより、半導体層露出領域5を、以下に示す本発明の太陽電池の製造方法により極めて簡単に形成できる利点を生ずる。
すなわち、該方法は、半導体基板の主表面に凹凸部を形成する工程と、
その半導体基板の主表面を、凹凸部を含む形にて絶縁膜で覆う工程と、
凹凸部を形成する凸部の頂上部以外の領域にて絶縁膜をエッチング保護膜で覆う工程と、
その後エッチングによって凸部の頂上部の絶縁膜を除去することにより、凸部の少なくとも一部のものの頂上部を包含する形にて絶縁膜にて被覆されていない半導体層露出領城を形成する工程と、
半導体層露出領域内の凸部の頂上部に直接又は他の導電層を介して間接的に接触するように、出力取出用電極を形成する工程と、
を含むことを特徴とする。
また、本発明に係る太陽電池の第二の構成は、上記製法の観点から本発明の太陽電池の特徴を捉えたもので、半導体基板の主表面に凹凸部が形成され、該主表面が絶縁膜で被覆され、凹凸部を形成する凸部の少なくとも一部のものの頂上部を包含する形にて絶縁膜にて被覆されていない半導体層露出領域が主表面に形成されてなり、かつ半導体層露出領域内の凸部の頂上部に直接又は他の導電層を介して間接的に接触するように、出力取出用電極が形成された太陽電池において、
半導体層露出領域は、半導体基板の主表面を、凹凸部を含む形にて絶縁膜で覆い、さらに凸部の頂上部以外の領域にて絶縁膜をエッチング保護膜で覆い、その後エッチングによって凸部の頂上部の絶縁膜を除去して形成されたものであることを特徴とする。
上記方法によると、図4Aに示す半導体基板1の主表面に対し、図4Bに示すように、該主表面に形成された凸部15の頂上部25を除く領域が覆われるように、換言すれば凸部15が高さ方向の途中まで埋まり、頂上部のみが突出するようにエッチング保護膜4を形成する。そして、図4Cに示すように、その後エッチングを施すことで、エッチング保護膜4から突出している凸部15の頂上部25の絶縁膜3のみが選択的に除去される。その結果、凸部15の頂上部25を包含する形にて前述の該半導体層露出領域5が形成される。図4Dに示すように、該凸部15の先端高さ位置は、半導体層露出領域5の外周縁における絶縁膜3の最大高さ位置11よりも高くなる。
エッチング保護膜4は、感光性を有さない汎用の高分子レジストを使用でき、上記のような被覆状態を形成するには、エッチング保護膜4の形成厚さを適正に設定するのみでよく、一旦このような被覆状態を形成してしまえば、例えば適当なエッチング液に基板を浸漬するのみで半導体層露出領域5を簡単に形成することができる。従って、面倒で工数の多いフォトリソグラフィー技術は全く不要であり、もちろん、ファイヤースルーも不要であるから、基板表面のドーパント濃度を高めなくとも良好なオーミック接触を得ることが可能となる。これにより太陽電池のフィルファクタを高めることができる。また、表面のドーパント濃度を低くできることから、太陽電池の短波長感度が増大し、短絡電流を向上させることができる。こうして、変換効率の高い高性能の太陽電池が実現可能となる。
次に、本発明に係る太陽電池の第三の構成は、半導体基板の主表面が絶縁膜で被覆されている太陽電池において、絶縁膜にて被覆されていない半導体層露出領域が主表面に形成されてなり、半導体層露出領域と絶縁膜とを一括して覆う透明導電層が形成され、該透明導電層上に出力取出用電極が形成されていることを特徴とする。
この構成では、コンタクトホールとして機能する半導体層露出領域を絶縁膜に形成し、それら半導体層露出領域と絶縁膜とを一括して覆う透明導電層を形成する。そして、出力取出用電極をこの透明導電層上に形成する。このような透明導電層を設けない場合、図13Aに例示するように、半導体基板1側で発生した電流は、抵抗率の比較的高い基板表層部(例えばエミッタ層)2を横方向に流れた後、出力取出用電極か7から取り出される形となるので直列抵抗が大きくなり、損失が生じやすくなる。しかし、本発明の第三の構成に係る太陽電池によれば、図13Bに例示するように、半導体層露出領域5からの電流は、導電率の比較的高い(つまり抵抗率の比較的低い)透明導電層6を横方向に流れた後、出力取出用電極7から取り出すことができる。従って、横方向に電流が流れる際の抵抗損失を大幅に軽減することができる。例えば、図13Aにおいては、出力取出用電極7までの距離LP1が全て、基板表層部2内の横方向導通路とならざるを得ないが、図13Bにおいては、出力取出用電極7の存在の有無にかかわらず、最寄の半導体層露出領域5から透明導電層6へ電流が流れ込めばよいので、その横方向導通長さLP2は、図13Aの横方向導通長さLP1よりも大幅に短くなることが明らかである。また、別の効果として、形成されているのが透明導電層であるから、透明導電層自身によるシャドーイングロスはほとんど発生しない。こうして、太陽電池の短絡電流及び変換効率の向上を図ることができる。
特に、出力取出用電極を汎用のスクリーン印刷で形成する場合、出力取出用電極7の幅が大きくなるから、シャドウイングロス軽減のため、その形成間隔を広くする必要がある。図13Aに示すように、透明導電層を設けない場合は、横方向電流による直列抵抗増大が問題となるが、上記本発明に係る太陽電池の第三の構成では、図13Bに示すように、透明導電層6が横方向導通路として機能するため、該問題の影響を劇的に軽減することができる。また、直列抵抗が増大すると出力取出用電極の形成間隔を大きくするにも一定の限界が生ずるのに対し、本発明の第三の構成に係る太陽電池によると、透明導電層6上に設けられる出力取出用電極7,7の形成間隔を相当大きくとっても直列抵抗はそれほど高くならず、結果としてシャドウイングロスをさらに小さくすることが可能である。
また、本発明では基板表層部(例えばエミッタ層)にて横方向に電流を流す必要がないため、そのシート抵抗を高くしても、例えばn型エミッタ層を形成する場合は、シート抵抗を100Ω/□からはるかに高くしても問題はない。つまり、基板表層部のドーパント濃度をさらに下げることが可能である。これにより、表面再結合速度をさらに下げることが可能となり、変換効率を上昇させることができる。
なお、上記本発明に係る太陽電池の第三の構成は、前述の第一の構成あるいは第二の構成と組み合わせることができる。この場合、出力取出用電極7,7は、図13Bに示すように、基板主表面の各所に散らばった凸部15に対応する位置に形成することができる。他方、第三の構成を第一あるいは第二の構成とは無関係に独立して実施することもできる。図7Eにおいては、基板1の主表面に凸部15が形成されておらず、絶縁層3にはフォトリソグラフィー等にて半導体層露出部35が形成されている。
次に、本発明に係る太陽電池の第四の構成は、半導体基板の主表面が絶縁膜で被覆されている太陽電池において、絶縁膜にて被覆されていない半導体層露出領域が主表面に複数形成されてなり、それら半導体層露出領域の一部のものにおいて、出力取出用電極が半導体層に直接接して形成される一方、出力取出用電極が形成されない残余の半導体層露出領域が透明な補助絶縁層にて被覆されていることを特徴とする。
半導体層露出領域において出力取出用電極が半導体層に直接接して形成される太陽電池の構成においては、例えば前述のように半導体基板の主表面の凹凸プロファイルを利用して、いわば偶発的に半導体露出領域を形成する形にすると、出力取出用電極を形成したときに、必ずしも全ての半導体露出領域が出力取出用電極とのコンタクトホールとして利用されず、出力取出用電極の形成領城から外れた位置にある半導体露出領域が残ってしまう場合がある。上記第四の構成では、コンタクトホールとして利用されないそのような残余の半導体層露出領域を透明な補助絶縁層にて被覆することで半導体層露出領域をパッシベーションでき、半導体層露出領域から半導体層に汚れ付着等による望まざるリーク電流等が生ずることを効果的に防止することができる。また、補助絶縁層は透明に構成されるから、該補助絶縁層形成によるシャドウイングロスも生じにくい。なお、このような補助絶縁層は、上記残余の半導体層露出領域と絶縁膜と出力取出用電極とを一括して覆うものとすれば形成が容易であり、製造コストを削減することができる。
上記本発明に係る太陽電池の第四の構成は、前述の第一の構成あるいは第二の構成と組み合わせることが可能である。例えば、図7Fでは、半導体層露出領域5が凸部15の頂上部25に形成され、出力取出用電極7はこの半導体層露出領域5にて半導体層2に直接接している。他方、第一の構成あるいは第二の構成と無関係に第四の構成を実施することもできる。図7Gに示す例では、基板1の主表面に凸部15が形成されておらず、絶縁層3にはフォトリソグラフィー等にて半導体層露出部35が形成されている。いずれの構成においても、補助絶縁層10は、残余の半導体層露出領域5’と絶縁膜3と出力取出用電極7とを一括して覆うものとなっている。
発明を実施するための最良の形態
以下、本発明に係るいくつかの実施の形態を、図面を用いて説明する。なお、実施の形態を説明するための全図面において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
図1Aは、本発明の太陽電池の一実施形態を模式的に示す断面図である。該太陽電池100は、シリコン単結晶基板1(以下、単に基板1と記載する:本実施形態ではp型とする)の第一主表面側に不純物の拡散層2(本実施形態ではn型とする)が形成され、p−n接合部をなしている。この拡散層2のように半導体基板の表面近傍に新たに形成された層を本発明においては半導体層2と総称する。半導体層2の表面には、絶縁膜(パッシベーション膜)3、透明導電層6及び出力取出用電極7がこの順序にて形成されている。
ここで、基板1の第一主表面には凹凸部が形成され、絶縁膜3はその凹凸部を覆う形で形成されている。そして、凹凸部を形成する多数の凸部15の一部のものの頂上部25を包含する形にて、絶縁膜3にて被覆されていない半導体層露出領域5が形成されている。図19Aに拡大して示すように、該半導体層露出領域5内において凸部15の頂上部25の先端高さ位置は、該半導体層露出領域5の外周縁における絶縁膜3の最大高さ位置(すなわち絶縁膜3の内周縁11の最大高さ位置)よりも高くなっている。そして、透明導電層6は、半導体層露出領域5内の凸部15の頂上部25において、半導体層2に直接接触しており、その上に形成された出力取出用電極7は、透明導電層6を介して半導体層2にいわば間接的に接触する形となっている。
半導体層露出領域5は、当該半導体層露出領域5の形成される基板1の主表面(ここでは第一主表面)において、合計面積率が1%以下となるように形成するのがよい。半導体層露出領域5は透明導電層6とのコンタクトホールとして機能し、該位置では表面再結合速度が非常に大きくなるから、上記合計面積率を1%以下にすることにより、実効的な表面再結合速度を低減することが可能である。これにより開放電圧及び変換効率を向上させることができる。他方、該形成面積率は最低でも0.001%程度確保されていないと、コンタクト近傍の電流集中により抵抗が増加して十分な変換効率の向上が見込めなくなる。
基板1の構成材料である単結晶シリコンは波長400〜1100nmの領域で6.00〜3.50の大きな屈折率を持つため、太陽光線が入射したときの反射損失が問題となる。上記の凹凸部は主として太陽電池の受光面となる第一主表面の反射防止のために形成されるものであり、図2Aに示すように、外面が(111)面の多数のピラミッド状突起55からなるランダムテクスチャ構造とすることができる。このようなテクスチャ構造は、シリコン単結晶の(100)面を、ヒドラジン水溶液や水酸化ナトリウムなどのエッチング液を用いて異方性エッチングすることにより形成することができる。半導体層露出領域5は、そのピラミッド状突起55の先端部を含むように形成できる。
また、この他にも、図2Bに示すように、V溝が一定間隔で配列した形態のもの(溝内面は、例えばシリコン単結晶の互いに交差する(111)面である)を採用することもできる。このようなV溝は、フォトリソグラフィーを用いて、例えば希釈NaOH水溶液を用いた異方性エッチングにより形成できる。該形態では、隣接するV溝間に挟まれる三角屋根状形態のリブ状部56が凸部であり、その稜線部が頂上部となる。半導体層露出領域5は、その稜線の例えば一部のみを含む形にて形成できる。本形態では、溝の形態をそろえることで、出力取出用電極を規則的な形状で形成でき、直列損失低減をより効果的に図ることができる。また、フォトリソグラフィーを用いれば、図2Cに示すように、図2Bのリブ状部56を格子状にクロスさせた形態の格子状リブ57ともできる。これは換言すれば、ピラミッド状の凹部を格子状に配列した形態の、いわゆる逆ピラミッド凹凸部を形成することである。これによると、表面反射を一層効果的に抑制することができる。
なお、反射防止効果が十分に得られ、かつ、頂上部のみを露出させた形にてエッチング保護膜4により覆う工程の実施の容易性を考慮すれば、形成する凸部15の谷底部から頂上部までの最大高さを0.1μm以上30μm以下とすることが望ましい。
次に、絶縁膜3は酸化物系あるいは窒化物系のものを使用できる。ここでは、基板1がシリコン単結晶基板であり、絶縁膜3は、所定の雰囲気下での熱処理にて形成されたシリコンの酸化膜あるいは窒化膜(例えばCVD法により形成できる)として構成されている。これにより、絶縁膜3は表面再結合速度の小さなパッシベーション膜として機能する。
そして、絶縁膜3への半導体層露出領域5の形成方法は、図4を用いて既に説明した通りである。例えば弗酸等のエッチングに対して十分な耐性を有する高分子材料、例えばノボラック系樹脂等をレジスト材料として用いて塗布液を作製する。なお、塗布液の粘性は、適当な溶媒を用いて調整することができる。図8Aに示すように、この塗布液を、公知の塗布方法、例えばスピンコート法あるいはスプレー法等により塗布する。すると、隣接する凸部15,15の間に形成される凹部16には、塗布液が溜まって塗布層24が形成される。次いで溶媒を蒸発・乾燥させると、図8Bに示すように、塗布層24はレジスト層4’となり、凹部16の底部付近を部分的に埋めた形となる。
そして、図8C及び図8Dに示すように、このような塗布層24の形成及び乾燥を繰り返すことにより、レジスト層4’は次第に厚みを増してゆく。そして、凸部15の頂上部25が必要十分な高さだけ露出した状態になれば、レジスト層4’のそれ以上の形成を止め、図4Cに示すように、これを最終的なエッチング保護膜4として用いる。この状態で、基板の第一主表面側を、弗酸等を含有するエッチング液に浸漬し、凸部15の突出した頂上部25を覆う絶縁膜(例えば酸化シリコン膜)を溶解・除去すれば、半導体層露出領域5が形成される。エッチングが終了すれば、図4Dに示すように、エッチング保護膜4をアセトンやMEK(メチルエチルケトン)等の有機溶媒を用いて除去する。
エッチング保護膜4を形成する際に用いる塗布液は、適度に粘度調整したもの(例えば0.04〜0.1N・s/m)を使用する必要がある。もし、塗布液の粘度が過度に大きいと、図9Aに示すように、塗布層24の液面から露出しようとする凸部15の頂上部25に対し、表面張力により液が回り込む形で残留しやすく、乾燥後において、図9Bに示すように、凸部15の頂上部25に余分なエッチング保護膜4aが残留し、エッチングの妨げとなる。これに対し、適度に粘度調整された塗布液を用いた場合は、図9Cに示すように、凸部15の頂上部25を液面から過不足なく露出させることができる。この場合、乾燥後に多少のエッチング保護膜4aが頂上部25に残留しても、図9Dに示すように、その残留膜は薄く多孔質のものとなるか、あるいは島状となって、絶縁膜3が少なくとも部分的には露出した状態を確実に形成することができる。この場合、この露出部からエッチング液が染み込むので、エッチング保護膜4aが残留している部分の絶縁膜3も除去することができる。そして、このように凸部15の山頂部におけるエッチング保護膜4aの残留量を少なくすることで、図7Cに示すように、エッチング保護膜4aの膜表面位置に対応して、半導体層露出領域5の外周縁をなす絶縁膜3の内周縁部上面11を平坦に形成することが可能となる。これにより、絶縁膜3の残留が少なく、形成面積のばらつきも低く抑えた半導体層露出領域5を形成することが可能となる。
なお、ある凸部15の周囲を完全に取り囲む形にエッチング保護膜4により覆うことができれば、図7Bあるいは図7Cに例示したように、凸部15の基端側外周面が絶縁膜3にて覆われ、その凸部15の先端部が絶縁膜3の上縁11よりも突出する形で半導体層露出領域5を形成することができる。しかしながら、全ての凸部15の高さが理想的に揃っているわけではなく、例えば図10Aに示すように、周囲に存在する凸部15よりも高さの小さい凸部15’が形成されていると、これがエッチング保護膜4中に完全に埋没してしまうこともある。この場合、これら凸部15’の頂上部25の絶縁膜3は当然に除去されない。図7Dにも、絶縁膜3の除去されない凸部15’が形成される例を示している。これらの凸部15’は、出力取出用電極7との接触を妨げない程度であれば、多少形成されていても差し支えないものである。
他方、エッチング保護膜4は、全ての凹部内に均一に充填されるのが理想的ではあるが、例えばランダムテクスチャ構造を採用した場合などにおいては、外部に開放した凹部など、図10Bに示すように、塗布液の溜まりにくい凹部16’が形成されていることもある。この場合、このような凹部16’やこれに隣接する凸部35にはエッチング保護膜4が十分に形成されないことから、半導体層露出領域5内において絶縁膜3が全体にわたって除去された凸部35として存在する場合がある。
なお、図11Aに示すように、形成面積のばらつきが小さい半導体層露出領域5を一様に形成するには、図8Dに示すように、エッチング保護膜4の膜面高さ位置を略一定にそろえることが望ましい。
次に、透明導電層6は、例えば、酸化スズ(SnO)あるいは酸化インジウム(In)などの導電性酸化物被膜として構成することができる。具体的には、アンチモン(Sb)をドープした酸化スズ膜(いわゆるネサ膜)あるいはスズ(Sn)をドープした酸化インジウム膜(いわゆるITO膜)が高導電率であり、本発明に好適に使用できる。このうちネサ膜は導電率が高く、太陽電池の直列抵抗の減少に特に貢献する。他方、ITO膜はネサ膜よりは導電率が多少劣るが安価である。なお、上記ネサ膜やITO膜以外にも、例えば、CdSnO、ZnSnO、ZnSnO、MgIn、イットリウム(Y)をドープしたCdSb、SnをドープしたGaInOなどを透明導電層6の材質として使用することができる。
これらの導電性酸化物被膜は、気相成膜法、例えば化学蒸着法(Chemical Vapour deposition:CVD)あるいはスパッタリングや真空蒸着などの物理蒸着法(Phisical Vapour deposition:PVD)にて形成することができるが、ゾル−ゲル法など他の方法を用いて形成してもよい。図11Bに示すように、透明導電層6は、半導体層露出領域5と絶縁膜3とを一括して覆うものとして形成され、図7Dあるいは図11Cに示すように、該透明導電層6上に出力取出用電極7が形成される。これらの図では、出力取出用電極7はいずれも半導体層露出領域5に重なる位置関係にて形成されているが、透明導電層6の導電率が高いことから、図12に示すように、出力取出用電極7の形成位置が半導体層露出領域5の位置から多少外れていても差し支えない。
太陽電池100の直列抵抗を減少させる観点において、透明導電層6は、電気比抵抗を5×10−5〜3×10−4Ω・cm程度に調整しておくことが望ましい。例えば、スパッタリングにより作製したITO膜は電気比抵抗の値を、例えば1×10−4〜2.8×10−4Ω・cmとすることができる。他方、ネサ膜はCVD法により、例えば1×10−4Ω・cm以下の低抵抗率の膜を得ることができる。
なお、上記の透明導電層6は、基板1を構成するシリコン単結晶と屈折率の異なるものを採用することで、反射防止膜として機能させることもできる。反射防止膜として機能させる場合、透明導電層6の構成材料の屈折率は1.5〜2.5であるのがよい。例えば、ネサ膜の場合、屈折率は2.0程度であり、その厚みを40〜70nm程度とする場合に、顕著な反射防止効果を得ることができる。なお、透明導電層6とともに、あるいは透明導電層6に代えて、反射防止膜を別途形成するようにしてもよい。例えば透明導電層6上にMgF膜など屈折率が透明電極層6より低い膜を形成すれば、反射率がさらに低減し、生成電流密度をさらに高くすることができる。
出力取出用電極7は、銀粉末などの金属粉末を含有したペーストを用いて、スクリーン印刷等の公知の厚膜印刷法により所望の電極パターンを透明導電層6上に印刷して焼成することにより形成することができる。また、熱硬化型ペーストを使用することにより、より低温で出力取出電極7を形成することも可能である。図17に示すように、基板1の第一主表面側は太陽電池の受光面となるので、出力取出用電極7は、p−n接合部48への光の入射効率を高めるために、例えば内部抵抗低減のため適当な間隔で形成された太いバスバー電極と、そのバスバー電極から所定間隔で櫛型に分岐するフィンガー電極とを有するものとして構成できる。ただし、透明導電層6の導電率が十分に高い場合には、フィンガー電極を省略したり、あるいは形成する場合でもその形成間隔を広く設定したりすることが可能である。
なお、上記のようなスクリーン印刷を用いる場合、出力取出用電極7(バスバー電極あるいはフィンガー電極)の形成幅はある程度広くなる。この場合、図1Aあるいは図7Dに示すように、出力取出用電極7は、半導体層露出領域5と周囲の絶縁層3とにまたがる形で形成される。スクリーン印刷により、このように特有の形態にて形成された出力取出用電極7は広幅であるから、シャドーイングロス低減のために複数本形成する電極の配列間隔を広くする必要がある。しかしながら、従来のファイヤースルー方式により製造された太陽電池と異なり、本構成では透明導電層6が形成されているから抵抗ロスが小さく、変換効率ηを高めることができる。
図1Aに戻り、基板1の第二主表面には、裏面反射防止のための凹凸部が形成され、絶縁膜3がそれら凹凸部を覆う形で形成されている。また、凸部15の山頂部に半導体層露出部5が形成されている。ただし、該第二主表面側は受光面とはならないため、その全面が出力取出用電極8により覆われている。なお、太陽電池セルの軽量化のため基板1の厚さを薄くする場合は、第二主表面側の電極8での少数キャリアの再結合・消滅を防止するために、図1Bに示すように、該第二主表面側に基板1と同一導電型であってより高濃度の高濃度拡散層9を形成することができる(いわゆるBSF(back surface field)層)。
以下、図1の太陽電池100の作用について説明する。太陽電池100は、図16に示すように、光照射により、禁制帯幅以上のエネルギーを有するフォトンを吸収すると、p型領域及びn型領域では光励起により電子と正孔とが少数キャリアとして生成し、それぞれ接合部に向けて拡散する。接合部には、電気二重層の形成により内部電界(いわゆる「作りつけられた(build−in)電界」)が生じており、少数キャリアとして拡散してきた電子と正孔とはこの内部電界により、電子はn型領域に、正孔はp型領域にそれぞれ引き込まれて分離され、多数キャリアとなる。その結果、p型領域とn型領域とはそれぞれ正と負とに帯電して、各部に設けた電極(図1:7,8)間に太陽電池の起電力ΔEが生ずる。
ここで、絶縁膜にて基板表面をパッシベーションする場合、コンタクトホールをファイヤースルー方式にて形成すると、半導体層2、ここでは表面n型層であるエミッタ層のドーパント濃度を3×1020cm−3(シート抵抗換算:40Ω/□)以下程度に設定しなければ、ファイヤースルーにて形成される電極接触部の抵抗を十分な値、例えば0.01Ωcm程度まで下げることができない。つまり、ファイヤースルー方式では接触抵抗ロスを軽減するために、必然的に半導体層2のドーパント濃度を上げざるをえなかった。また、スクリーン印刷にて形成される出力取出用電極7の幅が細くても100μm以上は確保しなければならず、また、シャドーイングロスを5%前後にするには例えば電極間ピッチを2〜3mmにする必要があった。
しかしながら、図1の太陽電池100の構成によると、コンタクトホールとなる半導体層露出領域5を、ファイヤースルー方式を用いず、しかも単純なエッチングにより簡単に形成することができる。従って、当然に半導体層2のドーパント濃度も3×1020cm−3(シート抵抗換算:40Ω/□)より小さい値に設定することが可能となる。また、図13Bに示すように、透明導電層6を用いているから、透明電極層6を用いない図13Aの場合と比較して、半導体層2内において横方向に電流を長い距離流す必要がなくなる。例えば、透明導電層6としてネサ膜やITO膜を使用する場合、反射防止膜として利用する厚み(40〜70nm)があれば、そのシート抵抗は10〜25Ω/□程度と低くできる。これにより、透明導電層6上に設けられる出力取出用電極7は従来のもの(2〜3mm)に比べ、例えば2倍にしても直列抵抗がそれほど増加しないので、シャドウイングロスを大幅に軽減することができる。
なお、上記実施形態では、凹凸部をエッチングにて形成したが、機械的加工により凹凸部を形成することもできる。例えば、図2Bに例示するような溝形態のものは、切削加工により簡単に形成することができる。例えば軸線方向に複数配列した回転刃を基板表面から所定深さまで食い込ませる形で回転させつつ、基板と回転刃とを溝形成方向に相対移動させることにより、複数列の溝部を一括して形成することができる。
なお、本発明においては、直列抵抗がそれほど増加する心配のない場合には、図7A〜図7Cあるいは図5に示すように、透明導電層6を省略し、半導体層露出領域5において出力取出用電極7を半導体層2に直接接触させることができる。この場合、図7Fに示すように、出力取出用電極7が形成されない残余の半導体層露出領域5’を補助絶縁層10にて被覆することができる。この図の例では、補助絶縁層10は、出力取出用電極7を形成した後、上記残余の半導体層露出領域5’と絶縁膜3と出力取出用電極7とを一括して覆うものとして形成されている。補助絶縁層10の材質としては、窒化珪素、酸化珪素等の無機系絶縁膜を採用することができる。この場合、補助絶縁層10の形成厚さを適度に調整することで、これを反射防止膜としても機能させることができる。
(実験例)
以下、本発明の効果を確認するために行なった実験結果について説明する。
(実験例1)
図1Aに示す太陽電池を、図3のフローチャートを示す工程にて作製した。まず、シリコン単結晶インゴットから切り出されたアズスライス状態のp型結晶シリコン基板1(抵抗率2Ω・cm(ドーパント濃度7.2×1015cm−3)のボロンドープ品)を用意した。なお、基板1の厚さは300μmである。該基板1は、水酸化ナトリウム水溶液(濃度:40質量%)により化学エッチングして、スライスによるダメージ層を取り除いた後、イソプロピルアルコールを加えた水酸化ナトリウム水溶液(水酸化ナトリウム濃度:3質量%)に浸し、ウェットエッチングすることにより、図2Aに示すランダムテクスチャ形態の凹凸部を基板1の両主表面に形成した。
凹凸形成の終了した基板1を洗浄後、リンを熱拡散することによりシート抵抗200Ω/□のn型拡散層2(リン拡散層)を、第一主表面に形成した。次いで、基板表面に生じたリンガラスをエッチングして除去した後、酸化を行い、厚さ約5nmの二酸化珪素膜を絶縁膜3として両主表面に形成した。そして、塗布液をスピンオン法で順次乾かしながら両面に塗布することにより、図4に示すように凸部15の頂上部25のいくつかが飛び出すように、ノボラック樹脂を主体とするエッチング保護膜4を形成した。引き続き濃度10質量%の弗酸水溶液中に浸漬して、その頂上部25の絶縁膜3のみをエッチングし、半導体層露出部5を形成した。次いで、基板をアセトンに浸漬してエッチング保護膜4を溶解・除去した。
次に、基板1の第一主表面に、透明導電層6としてアンチモンをドープした二酸化スズ膜を常圧CVDにより堆積した。この透明導電層6の膜厚は、反射防止膜も兼ねるため60nmとした。次に、基板1の第一主表面に、銀ペーストを用いたスクリーン印刷法により表面に、図17に示す形態の出力取出用電極7のパターンを、また第二主表面の全面にアルミニウムペーストを用いて出力取出用電極8のパターンをそれぞれ形成した。その後、温度400℃で水素アニールを行い、太陽電池100を完成させた(実施例品1)。
なお、上記リン拡散工程時に、表面にリン、裏面にボロンを同時に拡散した以外は、上記と同様の工程を用いて、図1Bに示すような、裏面に高濃度p型拡散層9(BSF層)を設けた太陽電池101のサンプルも作製した(実施例品2)。他方、上記と同一の基板1を用いて従来のファイヤースルー技術を用いて作製した太陽電池も作製した(比較例品)。なお、透明電極6は比較例品では形成していない。各太陽電池は、以下のようにして性能評価試験を行なった。すなわち、10cm角の受光面積を有する太陽電池ユニットに組み立て、ソーラーシミュレータ(光強度:1kW/m、スペクトル:AM1.5グローバル)を用いて、温度25℃での電流電圧特性を測定した。その結果を図14に示す。また、表1にこれら太陽電池の太陽電池諸特性を示す。さらに、図15にこれらの太陽電池の内部量子効率を示す。

Figure 2002031892
実施例品1及び実施例品2では、半導体表層部2であるエミッタ層のシート抵抗を200Ω/□に設定できた。他方、ファイヤースルー方式を用いた比較例品では、該シート抵抗は40〜50Ω/□であった。そして、表1に示すように、比較例品に比べて実施例品1及び実施例品2では、フィルファクタが減少していないことがわかる。これは、実施例品1及び実施例品2において透明導電層のシート抵抗が低く、コンタクト抵抗の増加が抑制されたためであると考えられる。
また、比較例品と比べた場合、実施例品1及び実施例品2では開放電圧が大幅に向上している。これは、エミッタ層のドーパント濃度が低減され、表面再結合速度が低減されたたことと、半導体層露出領域5に基づくコンタクトホールの面積を制限できたための結果であると考えられる。なお、実施例品1及び実施例品2に使用した基板1は、走査型電子顕微鏡(SEM)による表面観察から、半導体層露出領域5の第一主表面における合計面積率は、おおよそ1%となっていることを確認した。
比較例品と比べた場合、実施例品1及び実施例品2では短絡電流も増加している。これは、シャドーイングロスの低減と短波長感度の増加によるものと考えられる。比較例品では電流はエミッタ層内を横方向に流れるが、本実施例では代わりに透明導電層6内を流れる。透明導電層6のシート抵抗は約10Ω/□であり、比較例品と比べて、電極ピッチを例えば2倍にしても同程度の抵抗ロスで済む。よって、シャドーイングロスを半分にでき、これが短絡電流の増加に大きく寄与したものと考えられる。また、図15に示すように、実施例品1及び実施例品2は短波長感度も増大していることがわかる。これは上記説明したように、エミッタ層のドーパント濃度が低くなり、表面再結合速度が低減されたことによる。
そして、実施例品1及び実施例品2では、開放電圧、短絡電流及びフィルファクタが各々増加したことにより、20%前後の変換効率を得ることができた。特に、裏面側にBSF層を導入した実施例品2では変換効率が20%を越える太陽電池が得られた。
なお、本実施例における太陽電池では、裏面全面に電極を形成しているが、裏面側にも表面同様、透明導電膜と櫛形電極を形成し、裏面側からも光が入射する構造にしても構わない。また、200Ω/□のn型拡散層を形成したが、100Ω/□より高い値にできれば、短波長感度が増大し、太陽電池特性が向上する。さらに、作製プロセスにおいて、本実施例では絶縁膜として酸化膜(二酸化珪素膜)を利用したが、窒化珪素膜でも構わない。また、拡散層の形成には熱拡散法を用いたが、イオン打ち込み法やスピンオン法など、本発明の構造が形成可能であれば、いかなる手段を用いることも可能である。
(実験例2)
図5に示す構造の太陽電池103を以下のようにして作製した。まず、CZ法にて作製したp型単結晶シリコン基板1(厚さ250μm、抵抗率0.5Ω・cmのガリウムドープ品)を用意し、実験例1と同様にダメージ層をエッチングした後、両面にランダムテクスチャ面を形成した。テクスチャ形成後、Pを含有する塗布剤を塗布し、850℃で熱拡散を行い、表面にシート抵抗が約100Ω/□のn型拡散層2を形成した。
その後、800℃でパイロジェニック酸化を行い、さらに、実験例1と同様の方法で半導体層露出領域5を形成した。この後、実験例1と同様の出力取出用電極7,8を第一及び第二主表面にそれぞれ形成した。続いて、反射防止膜を兼ねた補助絶縁膜10として窒化珪素膜をプラズマCVDによって形成し、太陽電池103を完成させた(実施例品3)。この際、基板温度は400℃に設定し、膜堆積後に、実験例1と同様の水素アニール処理を行った。該実施例品3について、実験例1と同様に性能評価試験を行なった。結果を表2に示す
Figure 2002031892
これによると、実施例品3では、前述の実施例品1及び2と比較して短絡電流が減少し、一方で、開放電圧が増加していることがわかる。短絡電流が減少した原因は電極幅、電極ピッチが従来方式のものと変わらないためであると考えられる。つまり、表1に示した実施例品1及び2と比較してシャドーイング面積が増加したことによる。一方、開放電圧が増加した理由は、基板抵抗率を2.0Ω・cmから0.5Ω・cmに下げたことによるものと考えられる。一般的に基板抵抗率を下げると逆飽和電流密度が減少し、開放電圧は増加する。しかし、p型基板において抵抗率が2.0Ω・cm程度の場合、光劣化の問題を検討しておく必要がある。光劣化とは、太陽電池セルに強い光を照射すると太陽電池基板のライフタイムの低下が起こり、十分な変換効率を得ることができなくなる現象である。
この光劣化の有無を調べるために、上記ガリウムドープCZシリコン単結晶基板を用いて作製した太陽電池と、通常のボロンドープCZシリコン単結晶基板(抵抗率0.5Ω・cm)を用いた以外は全く同様の方法にて作製した太陽電池とを、25℃にて、上記ソーラーシミュレータの下で疑似太陽光を照射し続け、電流電圧特性の光照射時間依存性を調べた。その結果、ボロンドープ基板から作製された太陽電池は擬似太陽光下で10時間照射すると、1割程度の変換効率の劣化がみられた。それに対し、ガリウムドープ基盤を用いた太陽電池は、若干の変換効率の変動が見られたが、劣化に相当する特性の変化は見られなかった。このように、ガリウムドープ基板を利用することで光劣化の問題は回避でき、開放電圧と変換効率を改善することができた。なお、本実施例ではCZ法によるガリウムドープのp型基板を利用したが、格子間酸素濃度を数ppm以下としたMCZ基板、FZ基板でも光劣化問題は回避可能である。また、n型基板を用い、ボロン等を用いてp型のエミッタ層を形成しても光劣化問題は回避可能である。
(実験例3)
図6に示す太陽電池104を以下のようにして作製した(なお、図6では煩雑となることを避けるため、凹凸部及び反射防止膜を描かずに、表面近傍の部分のみを示した)。まず、CZ法にて作製したp型単結晶シリコン基板1(厚さ250μm、抵抗率2Ω・cmのボロンドープ品)を用意し、ダイサを用いて、第一主表面に断面が三角形をしたリブ状の凸部45,45を2mm間隔で形成した(凸部45,45の間の領域は凹部とみなすことができる)。この際、基板1の第一主表面から各凸部45,45の頂上までの高さを約30μmとした。
次に、ダメージ層を化学エッチングした後、両主表面に凹凸部として、高さ5μm程度のランダムテクスチャ構造を形成した。その後、実験例2と同様に熱拡散を行い、表面にシート抵抗が約100Ω/□のn型拡散層2を形成し、続いて、熱酸化を行うことにより絶縁膜3としての酸化膜を形成した。そして、第二主表面側に実験例1と同様の方法によりエッチング保護膜を形成する一方、第一主表面にはエッチング保護膜として、ゴム系樹脂からなる耐フッ酸仕様の印刷レジストを、厚さ20μmとなるようにスクリーン印刷を用いて塗布した。こうすることにより、最初にダイサで形成した凸部45,45の頂上部25が稜線方向に周期的に印刷レジスト表面から突き出ることになる。
レジストを乾燥後、10質量%フッ酸水溶液に基板1を浸漬し、凸部45,45の頂上部25に半導体層露出部5を形成した。次いで、溶媒を用いてレジストを洗い流した後、スクリーン印刷法により、第一主表面には銀ペーストを用いて図6に示す出力取出用電極7のパターンを、第二主表面にはアルミニウムペーストを用いて全面に出力取出用電極8のパターンを形成した。この時、第一主表面側の出力取出用電極7は、凸部45,45の頂上の半導体層露出部5に重なる形で印刷されるよう、位置合わせする必要があるが、コンタクト幅に対して電極7の幅が半導体層露出部5の幅の10倍程度あるため、比較的ラフに位置合わせが可能である。続いて、反射防止膜としてTiO膜(図示せず)を常圧CVDによって60nmの厚さに形成し、太陽電池104を完成させた(実施例品4)。
該実施例品4の性能評価を実験例1と同様に行なったところ、開放電圧0.667V、短絡電流密度36.9mA/cm、フィルファクタ0.770、変換効率19.0%が得られ、従来のスクリーン印刷/ファイヤースルー方式より特性が向上した。
【図面の簡単な説明】
図1Aは、本発明に係る太陽電池の第一例の断面構造を示す模式図。
図1Bは、本発明に係る太陽電池の第二例の断面構造を示す模式図。
図2Aは、半導体基板に形成する凹凸部の形態の第一例を示す斜視図。
図2Bは、同じく第二例を示す斜視図。
図2Cは、同じく第三例を示す斜視図。
図3は、実験例における太陽電池の製造工程を示すフローチャートである。
図4Aは、本発明における半導体層露出領域の形成方法を示す工程説明図。
図4Bは、図4Aに続く工程説明図。
図4Cは、図4Bに続く工程説明図。
図4Dは、図4Cに続く工程説明図。
図5は、実験例2で用いた太陽電池の断面構造を示す模式図。
図6は、実験例3で用いた太陽電池の要部を拡大して示す斜視図。
図7Aは、本発明の太陽電池の、要部断面構造の第一例を示す模式図。
図7Bは、同じく第二例を示す模式図。
図7Cは、同じく第三例を示す模式図。
図7Dは、同じく第四例を示す模式図。
図7Eは、同じく第五例を示す模式図。
図7Fは、同じく第六例を示す模式図。
図7Gは、同じく第七例を示す模式図。
図8Aは、塗布液を用いてエッチング保護膜を段階的に厚く形成する例を示す工程説明図。
図8Bは、図8Aに続く工程説明図。
図8Cは、図8Bに続く工程説明図。
図8Dは、図8Cに続く工程説明図。
図9Aは、塗布液の粘度とエッチング保護膜の形成状態との関係を説明する図。
図9Bは、図9Aに続く説明図。
図9Cは、図9Bに続く説明図。
図9Dは、図9Cに続く説明図。
図10Aは、エッチング保護膜の形成形態と、半導体層露出部の形成態様との関係を例示して示す断面模式図。
図10Bは、同じく別例を示す断面模式図。
図11Aは、透明導電層を組み込んだ本発明の太陽電池の、製造工程の第一例を示す断面模式図。
図11Bは、同じく第二例を示す断面模式図。
図11Cは、同じく第三例を示す断面模式図。
図12は、透明導電層を組み込んだ本発明の太陽電池における、出力取出用電極の形成態様の変形例を示す断面模式図。
図13Aは、透明導電層の有無による、表層部を流れる電流経路の違いを説明する図。
図13Bは、図13Aに続く説明図。
図14は、実験例1における各太陽電池の電流電圧特性を示すグラフ。
図15は、同じく内部量子効率と波長との関係を示すグラフ。
図16は、p−n接合を利用した太陽電池の原理説明図。
図17は、受光面側における出力取出用電極の形成形態の一例を模式的に示す斜視図。
図18は、太陽電池の電流電圧曲線の説明図。
図19Aは、本発明と従来方法との半導体層露出部の形成形態の違いを対比して説明する模式図。
図19Bは、図19Aに続く説明図。Technical field
The present invention relates to a solar cell that has relatively high photoelectric conversion efficiency and can be manufactured at low cost, and a method for manufacturing the solar cell.
Background art
A solar cell is a semiconductor element that converts light energy into electric power, and includes a pn junction type, a pin type, and a Schottky type, and the pn junction type is most widely used. When solar cells are classified based on their substrate materials, there are roughly three types: silicon crystal solar cells, amorphous (amorphous) silicon solar cells, and compound semiconductor solar cells. Silicon crystal solar cells are further classified into single crystal solar cells and polycrystalline solar cells. Among these, the compound semiconductor solar cell has the highest energy conversion efficiency, but it is very difficult to make a compound semiconductor as a material of the compound semiconductor solar cell, and the manufacturing cost of the solar cell substrate is low. In general, there is a problem in widespread use, and its use is limited. On the other hand, as a solar cell having the next highest conversion efficiency after a compound semiconductor solar cell, a silicon single crystal solar cell follows, and a silicon single crystal substrate for a solar cell can also be manufactured relatively easily. It has become the mainstay of batteries.
The output characteristics of a solar cell are generally evaluated by measuring an output current voltage curve as shown in FIG. 18 using a solar simulator. On this curve, the point Pm at which the product Ip · Vp of the output current Ip and the output voltage Vp is maximum is called the maximum output Pm, and the total light energy (S × I: S is the element) incident on the solar cell. Area, I is the value divided by the intensity of the irradiated light):
η≡ {Pm / (S × I)} × 100 (%) (1)
Is defined as the conversion efficiency η of the solar cell. As is apparent from FIG. 18, in order to increase the conversion efficiency η, the short-circuit current Isc (output current value when V = 0 on the current-voltage curve) or the open circuit voltage Voc (also output voltage when I = 0). It is important to increase the value) and to make the output current voltage curve as close to a square as possible. Note that the degree of squareness of the output current voltage curve is generally
FF≡Ipm × Vpm / (Isc × Voc) (2)
It means that the output current-voltage curve approaches an ideal square shape and the conversion efficiency η increases as the value of the FF is closer to 1.
For example, in a silicon crystal solar cell, in order to prevent the recombination of electrons and holes in the direct contact portion between the metal electrode for output extraction and the silicon layer and increase the open-circuit voltage Voc, the surface of the silicon layer is made of SiO. 2 A structure for forming an insulating film such as MIS contact or contact passivation is employed. However, if the entire surface of the silicon layer is covered with the insulating film as described above, the generated photocurrent must pass through the insulating film by the tunnel effect, and the photocurrent collection rate is sufficiently lowered. Improvement in conversion efficiency cannot be expected.
In order to prevent this, a small contact hole is provided in a part of the insulating film, and by forming a metal electrode here, the direct contact portion between the metal electrode that acts as a recombination site and the silicon layer is limited to a minute region. In order to improve the photocurrent collection rate, it has been carried out. In this case, how to form a contact hole in the insulating film becomes a problem. For example, in a laboratory, a method of forming a contact hole by using a photoresist or the like and etching an insulating film can be considered. However, this method requires too much man-hours and costs for using the photolithography technique, and is not practical from the viewpoint of mass production of solar cells.
In view of this, Japanese Patent Application Laid-Open No. 8-335711 proposes a method for forming a contact hole without using a photolithography technique. Specifically, the pattern of the metal electrode for output extraction is formed on the insulating film by screen printing of a conductive paste, and further fired. As a result, the metal and glass frit contained in the paste are melted by heat, and the contact hole is formed by breaking through the insulating film and reaching the emitter layer. This method is generally referred to as fire-through, and can be easily formed as a contact hole. Therefore, this method is widely used in the production of single crystal or polycrystalline solar cells.
By the way, in the solar cell manufacturing method by a fire through system, it is necessary to set the dopant concentration of the emitter layer which is a surface n-type layer high. This is because when the dopant concentration of the emitter layer is low, the contact resistance of the direct contact portion between the metal and silicon formed by fire-through is not sufficiently lowered, and the contact resistance loss is increased and the power that can be extracted is reduced. Because. However, when the dopant concentration in the emitter layer is increased by diffusion, a compound of semiconductor silicon and a dopant is precipitated, many defect levels are formed on the surface, and the surface recombination rate is increased. If it becomes such a state, the short wavelength sensitivity of a solar cell will become low, and the malfunction which the electric current which can be taken out becomes small will arise.
On the other hand, in order to increase the conversion efficiency η of the solar cell, it is also important to reduce the shadowing loss by reducing the formation width of the output extraction metal electrode as much as possible. However, since the electrodes are formed by screen printing in the fire-through method, it is theoretically difficult to make the electrode width extremely small. As a result, in order to reduce the shadowing loss, the arrangement interval of the plurality of electrodes to be formed is reduced. It must be wide. If the electrode arrangement interval is increased in this way, the lateral conduction distance in the thin emitter layer becomes longer at the time of current extraction, so that the emitter resistance loss increases and the conversion efficiency η has to be reduced. For these reasons, it is considered difficult to produce a solar cell having a good conversion efficiency η, for example, a solar cell having η exceeding 20% by adopting the fire-through method.
An object of the present invention is to provide a solar cell that can be manufactured at a low cost with high conversion efficiency, and a manufacturing method thereof.
Disclosure of the invention
In order to solve the above problems, the first configuration of the solar cell of the present invention is a solar cell in which an uneven portion is formed on the main surface of a semiconductor substrate, and the main surface is covered with an insulating film. A semiconductor layer exposed region that is not covered with an insulating film is formed on the main surface so as to include the top of at least a part of the convex portion forming the convex portion, and the convex portion is formed in the semiconductor layer exposed region. The tip height position of the top is higher than the maximum height position of the insulating film at the outer peripheral edge of the semiconductor layer exposed region, and is directly or other conductive on the top of the convex portion in the semiconductor layer exposed region. The output extraction electrode is formed so as to be indirectly contacted through the layer.
In the present specification, the main surface of the semiconductor substrate means at least one of both surfaces (front surface and back surface) in the thickness direction of the semiconductor substrate. Therefore, the uneven portion may be formed only on one main surface of the substrate, or may be formed on both surfaces. Further, in this specification, the semiconductor layer exposed region includes not only the case where the insulating film is completely removed but also the case where the insulating film having a thickness (about 3 nm or less) through which a tunnel current flows remains.
In the solar cell having the first configuration, the uneven portion is formed on the main surface of the semiconductor substrate. Such concavo-convex portion formation has been employed in conventional silicon single crystal solar cells mainly for the purpose of preventing reflection loss. However, in the present invention, the uneven portion is used not only for the purpose of preventing reflection loss but also for its unique form to form a semiconductor layer exposed region that should function as a contact hole between the output extraction electrode and the semiconductor layer. There is a feature. Specifically, as illustrated in FIG. 19A, the semiconductor layer exposed region 5 is formed so as to include the top portion 25 of the convex portion 15, and the tip height position of the convex portion 15 is the semiconductor layer. It is set higher than the maximum height position of the insulating film 3 at the outer peripheral edge of the exposed region 5. Then, the output extraction electrode 7 is formed so as to be in direct contact (or indirectly through another conductive layer) with the top 25 of the convex portion 15 in the semiconductor layer exposed region 5.
For example, in a contact hole formed by photolithography or fire-through in a conventional solar cell, as shown in FIG. 19B, the semiconductor layer exposed region 5 forms a bottom surface of the contact hole, and the semiconductor in the exposed region 5 The layer 2 can never protrude beyond the upper edge of the surrounding insulating film 3. In this respect, the structure of the solar cell according to the first aspect of the present invention is decisively different from the structure of these conventional solar cells. By adopting such a structure, there is an advantage that the semiconductor layer exposed region 5 can be extremely easily formed by the method for manufacturing a solar cell of the present invention described below.
That is, the method includes a step of forming an uneven portion on the main surface of the semiconductor substrate;
Covering the main surface of the semiconductor substrate with an insulating film in a form including irregularities;
A step of covering the insulating film with an etching protective film in a region other than the top of the convex portion forming the concave and convex portions;
Thereafter, the insulating film on the top of the convex portion is removed by etching, thereby forming a semiconductor layer exposed castle that is not covered with the insulating film so as to include the top of at least a part of the convex portion. When,
Forming an output extraction electrode so as to contact the top of the convex portion in the semiconductor layer exposed region directly or indirectly through another conductive layer;
It is characterized by including.
In addition, the second configuration of the solar cell according to the present invention captures the characteristics of the solar cell of the present invention from the viewpoint of the above-described manufacturing method. The main surface of the semiconductor substrate is formed with uneven portions, and the main surface is insulated. A semiconductor layer exposed region that is covered with a film and that is not covered with an insulating film is formed on the main surface so as to include the tops of at least some of the convex portions that form the concave and convex portions, and the semiconductor layer In the solar cell in which the electrode for output extraction is formed so as to contact the top of the convex portion in the exposed region directly or indirectly through another conductive layer,
The semiconductor layer exposed region is formed by covering the main surface of the semiconductor substrate with an insulating film so as to include a concavo-convex portion, and further covering the insulating film with an etching protective film in a region other than the top of the convex portion, and then etching the convex portion It is characterized by being formed by removing the insulating film at the top.
In other words, according to the above method, the main surface of the semiconductor substrate 1 shown in FIG. 4A is covered so that the region excluding the top 25 of the convex portion 15 formed on the main surface is covered as shown in FIG. 4B. For example, the etching protection film 4 is formed so that the convex portion 15 is buried partway in the height direction and only the top portion protrudes. Then, as shown in FIG. 4C, by performing etching thereafter, only the insulating film 3 on the top portion 25 of the convex portion 15 protruding from the etching protection film 4 is selectively removed. As a result, the semiconductor layer exposed region 5 described above is formed so as to include the top 25 of the convex portion 15. As shown in FIG. 4D, the tip height position of the protrusion 15 is higher than the maximum height position 11 of the insulating film 3 at the outer peripheral edge of the semiconductor layer exposed region 5.
The etching protection film 4 can use a general-purpose polymer resist having no photosensitivity, and in order to form the above-described covering state, it is only necessary to set the formation thickness of the etching protection film 4 appropriately. Once such a covering state is formed, the semiconductor layer exposed region 5 can be easily formed simply by immersing the substrate in an appropriate etching solution, for example. Therefore, a troublesome and labor-intensive photolithography technique is not required at all, and, of course, no fire-through is required. Therefore, a good ohmic contact can be obtained without increasing the dopant concentration on the substrate surface. This can increase the fill factor of the solar cell. Moreover, since the dopant concentration on the surface can be lowered, the short wavelength sensitivity of the solar cell is increased, and the short-circuit current can be improved. In this way, a high-performance solar cell with high conversion efficiency can be realized.
Next, in a third configuration of the solar cell according to the present invention, in the solar cell in which the main surface of the semiconductor substrate is covered with an insulating film, a semiconductor layer exposed region that is not covered with the insulating film is formed on the main surface. Thus, a transparent conductive layer that collectively covers the semiconductor layer exposed region and the insulating film is formed, and an output extraction electrode is formed on the transparent conductive layer.
In this configuration, a semiconductor layer exposed region functioning as a contact hole is formed in the insulating film, and a transparent conductive layer is formed to collectively cover the semiconductor layer exposed region and the insulating film. Then, an output extraction electrode is formed on the transparent conductive layer. When such a transparent conductive layer is not provided, as illustrated in FIG. 13A, the current generated on the semiconductor substrate 1 side flows in the lateral direction through the substrate surface layer portion (for example, the emitter layer) 2 having a relatively high resistivity. Thereafter, the output is taken out from the output extraction electrode 7, so that the series resistance is increased and loss is easily generated. However, according to the solar cell according to the third configuration of the present invention, as illustrated in FIG. 13B, the current from the semiconductor layer exposed region 5 has a relatively high conductivity (that is, a relatively low resistivity). After flowing through the transparent conductive layer 6 in the lateral direction, it can be taken out from the output extraction electrode 7. Therefore, it is possible to greatly reduce the resistance loss when the current flows in the lateral direction. For example, in FIG. 13A, all of the distance LP1 to the output extraction electrode 7 must be a lateral conduction path in the substrate surface layer portion 2, but in FIG. 13B, the presence of the output extraction electrode 7 exists. Regardless of the presence or absence, it is sufficient that a current flows from the nearest semiconductor layer exposed region 5 to the transparent conductive layer 6, so that the lateral conduction length LP2 is significantly shorter than the lateral conduction length LP1 of FIG. 13A. It is clear that As another effect, since the transparent conductive layer is formed, shadowing loss due to the transparent conductive layer itself hardly occurs. Thus, the short circuit current and conversion efficiency of the solar cell can be improved.
In particular, when the output extraction electrode is formed by general-purpose screen printing, the width of the output extraction electrode 7 is increased. Therefore, it is necessary to widen the formation interval in order to reduce shadowing loss. As shown in FIG. 13A, in the case where a transparent conductive layer is not provided, an increase in series resistance due to a lateral current becomes a problem, but in the third configuration of the solar cell according to the present invention, as shown in FIG. Since the transparent conductive layer 6 functions as a lateral conduction path, the influence of the problem can be drastically reduced. In addition, when the series resistance increases, there is a certain limit to increase the formation interval of the output extraction electrodes. On the other hand, the solar cell according to the third configuration of the present invention is provided on the transparent conductive layer 6. Even if the formation interval of the output extraction electrodes 7 and 7 is considerably large, the series resistance is not so high, and as a result, the shadowing loss can be further reduced.
Further, in the present invention, since it is not necessary to flow a current laterally in the substrate surface layer portion (for example, the emitter layer), even when the sheet resistance is increased, for example, when an n-type emitter layer is formed, the sheet resistance is set to 100Ω. There is no problem even if it is much higher than / □. That is, it is possible to further reduce the dopant concentration in the surface layer portion of the substrate. As a result, the surface recombination rate can be further reduced, and the conversion efficiency can be increased.
The third configuration of the solar cell according to the present invention can be combined with the first configuration or the second configuration described above. In this case, as shown in FIG. 13B, the output extraction electrodes 7 and 7 can be formed at positions corresponding to the convex portions 15 scattered in various places on the main surface of the substrate. On the other hand, the third configuration can be implemented independently of the first or second configuration. In FIG. 7E, the convex portion 15 is not formed on the main surface of the substrate 1, and the semiconductor layer exposed portion 35 is formed on the insulating layer 3 by photolithography or the like.
Next, a fourth configuration of the solar cell according to the present invention is a solar cell in which a main surface of a semiconductor substrate is covered with an insulating film, and a plurality of exposed regions of the semiconductor layer not covered with the insulating film are provided on the main surface. In some of the exposed regions of the semiconductor layer, the output extraction electrode is formed in direct contact with the semiconductor layer, while the remaining semiconductor layer exposed region where the output extraction electrode is not formed is transparent. It is characterized by being covered with an insulating layer.
In the configuration of the solar cell in which the output extraction electrode is formed in direct contact with the semiconductor layer in the exposed region of the semiconductor layer, for example, as described above, the semiconductor surface is accidentally exposed by using the uneven surface profile of the main surface of the semiconductor substrate. When the output extraction electrode is formed, not all of the semiconductor exposed region is used as a contact hole with the output extraction electrode, and the position is outside the formation region of the output extraction electrode. In some cases, the exposed semiconductor region may remain. In the fourth configuration, the semiconductor layer exposed region can be passivated by covering the remaining semiconductor layer exposed region that is not used as a contact hole with a transparent auxiliary insulating layer, and the semiconductor layer is contaminated from the semiconductor layer exposed region. It is possible to effectively prevent an undesired leakage current due to adhesion or the like. In addition, since the auxiliary insulating layer is transparent, shadowing loss due to the formation of the auxiliary insulating layer hardly occurs. Such an auxiliary insulating layer can be easily formed if the remaining semiconductor layer exposed region, the insulating film, and the output extraction electrode are covered together, and the manufacturing cost can be reduced.
The fourth configuration of the solar cell according to the present invention can be combined with the first configuration or the second configuration described above. For example, in FIG. 7F, the semiconductor layer exposed region 5 is formed on the top 25 of the convex portion 15, and the output extraction electrode 7 is in direct contact with the semiconductor layer 2 at the semiconductor layer exposed region 5. On the other hand, the fourth configuration can be implemented regardless of the first configuration or the second configuration. In the example shown in FIG. 7G, the convex portion 15 is not formed on the main surface of the substrate 1, and the semiconductor layer exposed portion 35 is formed on the insulating layer 3 by photolithography or the like. In any configuration, the auxiliary insulating layer 10 covers the remaining semiconductor layer exposed region 5 ′, the insulating film 3, and the output extraction electrode 7 together.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, several embodiments according to the present invention will be described with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof is omitted.
FIG. 1A is a cross-sectional view schematically showing one embodiment of the solar cell of the present invention. The solar cell 100 includes an impurity diffusion layer 2 (in this embodiment, n-type) on the first main surface side of a silicon single crystal substrate 1 (hereinafter simply referred to as the substrate 1; in this embodiment, p-type). Is formed, forming a pn junction. In the present invention, a layer newly formed near the surface of the semiconductor substrate, such as the diffusion layer 2, is collectively referred to as the semiconductor layer 2. On the surface of the semiconductor layer 2, an insulating film (passivation film) 3, a transparent conductive layer 6, and an output extraction electrode 7 are formed in this order.
Here, an uneven portion is formed on the first main surface of the substrate 1, and the insulating film 3 is formed so as to cover the uneven portion. Then, the semiconductor layer exposed region 5 that is not covered with the insulating film 3 is formed so as to include the top portions 25 of some of the convex portions 15 that form the concave and convex portions. As shown in an enlarged view in FIG. 19A, the tip height position of the top 25 of the convex portion 15 in the semiconductor layer exposed region 5 is the maximum height position of the insulating film 3 on the outer peripheral edge of the semiconductor layer exposed region 5. That is, it is higher than (the maximum height position of the inner peripheral edge 11 of the insulating film 3). The transparent conductive layer 6 is in direct contact with the semiconductor layer 2 at the top 25 of the convex portion 15 in the semiconductor layer exposed region 5, and the output extraction electrode 7 formed thereon is a transparent conductive layer. In other words, the semiconductor layer 2 is indirectly contacted via 6.
The semiconductor layer exposed region 5 is preferably formed so that the total area ratio is 1% or less on the main surface (here, the first main surface) of the substrate 1 on which the semiconductor layer exposed region 5 is formed. The semiconductor layer exposed region 5 functions as a contact hole with the transparent conductive layer 6, and the surface recombination speed becomes very high at this position. Therefore, by reducing the total area ratio to 1% or less, effective surface recombination is achieved. It is possible to reduce the binding speed. Thereby, an open circuit voltage and conversion efficiency can be improved. On the other hand, if the formation area ratio is not secured at least about 0.001%, the resistance increases due to current concentration in the vicinity of the contact, and sufficient conversion efficiency cannot be expected.
Since single crystal silicon which is a constituent material of the substrate 1 has a large refractive index of 6.00 to 3.50 in a wavelength range of 400 to 1100 nm, reflection loss when sunlight enters is a problem. The uneven portion is formed mainly for preventing reflection of the first main surface that serves as a light receiving surface of the solar cell. As shown in FIG. 2A, a large number of pyramidal protrusions 55 whose outer surface is a (111) surface. A random texture structure consisting of Such a texture structure can be formed by anisotropically etching the (100) plane of a silicon single crystal using an etching solution such as an aqueous hydrazine solution or sodium hydroxide. The semiconductor layer exposed region 5 can be formed so as to include the tip of the pyramidal protrusion 55.
In addition, as shown in FIG. 2B, a configuration in which V grooves are arranged at regular intervals (the inner surface of the grooves is, for example, (111) surfaces of silicon single crystals intersecting each other) may be adopted. it can. Such a V-groove can be formed by photolithography, for example, by anisotropic etching using a diluted NaOH aqueous solution. In this form, the triangular roof-shaped rib-like part 56 sandwiched between adjacent V-grooves is a convex part, and its ridge line part is the top. The semiconductor layer exposed region 5 can be formed so as to include only a part of the ridgeline, for example. In this embodiment, by aligning the grooves, the output extraction electrode can be formed in a regular shape, and the series loss can be reduced more effectively. If photolithography is used, as shown in FIG. 2C, a lattice-like rib 57 having a shape in which the rib-like portions 56 of FIG. 2B are crossed in a lattice shape can be obtained. In other words, this is to form a so-called inverted pyramid uneven portion in a form in which pyramidal concave portions are arranged in a lattice pattern. According to this, surface reflection can be more effectively suppressed.
In consideration of the ease of carrying out the step of covering the surface with the etching protective film 4 with a sufficient antireflection effect and exposing only the top, the top from the bottom of the valley of the convex portion 15 to be formed. It is desirable that the maximum height to the portion is 0.1 μm or more and 30 μm or less.
Next, the insulating film 3 can be an oxide type or nitride type. Here, the substrate 1 is a silicon single crystal substrate, and the insulating film 3 is configured as a silicon oxide film or nitride film (which can be formed by, for example, a CVD method) formed by heat treatment in a predetermined atmosphere. . Thereby, the insulating film 3 functions as a passivation film having a low surface recombination speed.
The method of forming the semiconductor layer exposed region 5 on the insulating film 3 is as already described with reference to FIG. For example, a coating material is prepared using a polymer material having sufficient resistance to etching such as hydrofluoric acid, for example, a novolac resin as a resist material. The viscosity of the coating solution can be adjusted using an appropriate solvent. As shown in FIG. 8A, this coating solution is applied by a known coating method such as spin coating or spraying. As a result, the coating liquid accumulates in the concave portion 16 formed between the adjacent convex portions 15 and 15 to form the coating layer 24. Next, when the solvent is evaporated and dried, as shown in FIG. 8B, the coating layer 24 becomes a resist layer 4 ′, and the bottom portion of the recess 16 is partially filled.
Then, as shown in FIGS. 8C and 8D, the resist layer 4 ′ gradually increases in thickness by repeating the formation and drying of the coating layer 24 as described above. Then, when the top 25 of the protrusion 15 is exposed to a necessary and sufficient height, the resist layer 4 ′ is not formed any further, and this is used as a final etching protective film as shown in FIG. 4C. Used as 4. In this state, if the first main surface side of the substrate is immersed in an etching solution containing hydrofluoric acid or the like, and an insulating film (for example, a silicon oxide film) covering the protruding top portion 25 of the convex portion 15 is dissolved and removed. Then, the semiconductor layer exposed region 5 is formed. When the etching is completed, as shown in FIG. 4D, the etching protective film 4 is removed using an organic solvent such as acetone or MEK (methyl ethyl ketone).
The coating liquid used when forming the etching protective film 4 is a liquid whose viscosity is adjusted moderately (for example, 0.04 to 0.1 N · s / m 2 ) Must be used. If the viscosity of the coating liquid is excessively large, as shown in FIG. 9A, the liquid remains around the top 25 of the convex portion 15 to be exposed from the liquid surface of the coating layer 24 due to surface tension. After drying, as shown in FIG. 9B, an excessive etching protective film 4a remains on the top 25 of the convex portion 15 and hinders etching. On the other hand, when a coating liquid whose viscosity is adjusted moderately is used, as shown in FIG. 9C, the top 25 of the convex portion 15 can be exposed from the liquid level without excess or deficiency. In this case, even if some etching protective film 4a remains on the top 25 after drying, as shown in FIG. 9D, the residual film becomes thin or porous, or becomes an island shape, and the insulating film It is possible to reliably form a state in which 3 is at least partially exposed. In this case, since the etching solution permeates from the exposed portion, the portion of the insulating film 3 where the etching protection film 4a remains can be removed. Then, by reducing the residual amount of the etching protective film 4a at the peak of the convex portion 15 in this way, as shown in FIG. 7C, the semiconductor layer exposed region 5 corresponds to the film surface position of the etching protective film 4a. The upper surface 11 of the inner peripheral edge of the insulating film 3 that forms the outer peripheral edge of the insulating film 3 can be formed flat. As a result, it is possible to form the semiconductor layer exposed region 5 in which the remaining insulating film 3 is small and variation in the formation area is suppressed to be low.
If the etching protection film 4 can completely cover the periphery of a certain convex portion 15, the base end side outer peripheral surface of the convex portion 15 is covered with the insulating film 3 as illustrated in FIG. 7B or FIG. 7C. The semiconductor layer exposed region 5 can be formed in such a manner that the tip portion of the convex portion 15 is covered and protrudes from the upper edge 11 of the insulating film 3. However, the heights of all the convex portions 15 are not ideally aligned. For example, as shown in FIG. 10A, a convex portion 15 ′ having a height smaller than the convex portions 15 existing around is formed. If so, it may be completely buried in the etching protective film 4. In this case, the insulating film 3 on the top portion 25 of the convex portions 15 ′ is not naturally removed. FIG. 7D also shows an example in which a convex portion 15 ′ from which the insulating film 3 is not removed is formed. These convex portions 15 ′ may be formed to some extent as long as they do not hinder contact with the output extraction electrode 7.
On the other hand, it is ideal that the etching protective film 4 is uniformly filled in all the recesses. However, in the case of adopting a random texture structure, for example, the recesses opened to the outside are shown in FIG. 10B. In addition, there may be a recess 16 'in which the coating liquid is difficult to accumulate. In this case, since the etching protection film 4 is not sufficiently formed in the concave portion 16 ′ and the convex portion 35 adjacent thereto, the convex portion 35 in which the insulating film 3 is entirely removed in the semiconductor layer exposed region 5. May exist.
As shown in FIG. 11A, in order to uniformly form the semiconductor layer exposed region 5 having a small variation in formation area, the height of the film surface of the etching protection film 4 is made substantially constant as shown in FIG. 8D. It is desirable to align.
Next, the transparent conductive layer 6 is made of, for example, tin oxide (SnO 2 ) Or indium oxide (In 2 O 3 ) Or the like. Specifically, a tin oxide film doped with antimony (Sb) (so-called Nesa film) or an indium oxide film doped with tin (Sn) (so-called ITO film) has a high conductivity and can be suitably used in the present invention. . Among these, the nesa film has a high conductivity and contributes particularly to the reduction of the series resistance of the solar cell. On the other hand, the ITO film is slightly inferior in conductivity to the nesa film but is cheaper. In addition to the Nesa film and the ITO film, for example, Cd 2 SnO 4 , Zn 2 SnO 4 ZnSnO 3 MgIn 2 O 4 CdSb doped with yttrium (Y) 2 O 6 Sn doped GaInO 3 Etc. can be used as the material of the transparent conductive layer 6.
These conductive oxide films can be formed by a vapor deposition method, for example, chemical vapor deposition (CVD) or physical vapor deposition (PVD) such as sputtering or vacuum deposition. However, other methods such as a sol-gel method may be used. As shown in FIG. 11B, the transparent conductive layer 6 is formed so as to cover the semiconductor layer exposed region 5 and the insulating film 3 together. As shown in FIG. 7D or FIG. 11C, the transparent conductive layer 6 is formed on the transparent conductive layer 6. An output extraction electrode 7 is formed. In these figures, the output extraction electrodes 7 are all formed in a positional relationship overlapping the semiconductor layer exposed region 5, but since the conductivity of the transparent conductive layer 6 is high, as shown in FIG. The formation position of the extraction electrode 7 may be slightly deviated from the position of the semiconductor layer exposed region 5.
From the viewpoint of reducing the series resistance of the solar cell 100, the transparent conductive layer 6 has an electrical resistivity of 5 × 10. -5 ~ 3x10 -4 It is desirable to adjust to about Ω · cm. For example, an ITO film produced by sputtering has an electrical resistivity value of, for example, 1 × 10 -4 ~ 2.8x10 -4 It can be set to Ω · cm. On the other hand, the Nesa film is formed by CVD, for example, 1 × 10. -4 A film having a low resistivity of Ω · cm or less can be obtained.
The transparent conductive layer 6 can also function as an antireflection film by adopting a material having a refractive index different from that of the silicon single crystal constituting the substrate 1. When functioning as an antireflection film, the refractive index of the constituent material of the transparent conductive layer 6 is preferably 1.5 to 2.5. For example, in the case of a nesa film, the refractive index is about 2.0, and when the thickness is about 40 to 70 nm, a remarkable antireflection effect can be obtained. An antireflection film may be separately formed together with the transparent conductive layer 6 or instead of the transparent conductive layer 6. For example, MgF on the transparent conductive layer 6 2 If a film having a refractive index lower than that of the transparent electrode layer 6 such as a film is formed, the reflectance can be further reduced and the generated current density can be further increased.
The output extraction electrode 7 is obtained by printing and baking a desired electrode pattern on the transparent conductive layer 6 by a known thick film printing method such as screen printing using a paste containing metal powder such as silver powder. Can be formed. Further, the output extraction electrode 7 can be formed at a lower temperature by using a thermosetting paste. As shown in FIG. 17, since the first main surface side of the substrate 1 is a light receiving surface of the solar cell, the output extraction electrode 7 is provided, for example, in order to increase the incident efficiency of light to the pn junction 48. A thick bus bar electrode formed at an appropriate interval for reducing internal resistance and a finger electrode branched from the bus bar electrode into a comb shape at a predetermined interval can be used. However, when the conductivity of the transparent conductive layer 6 is sufficiently high, it is possible to omit the finger electrodes or to widen the formation interval even when they are formed.
When screen printing as described above is used, the formation width of the output extraction electrode 7 (bus bar electrode or finger electrode) is increased to some extent. In this case, as shown in FIG. 1A or 7D, the output extraction electrode 7 is formed so as to straddle the semiconductor layer exposed region 5 and the surrounding insulating layer 3. Since the output extraction electrode 7 formed in such a specific form by screen printing is wide, it is necessary to widen the arrangement interval of a plurality of electrodes to be formed in order to reduce shadowing loss. However, unlike the solar cell manufactured by the conventional fire-through method, the transparent conductive layer 6 is formed in this configuration, so that the resistance loss is small and the conversion efficiency η can be increased.
Returning to FIG. 1A, an uneven portion for preventing back surface reflection is formed on the second main surface of the substrate 1, and an insulating film 3 is formed so as to cover the uneven portion. Further, the semiconductor layer exposed portion 5 is formed at the peak portion of the convex portion 15. However, since the second main surface side does not become a light receiving surface, the entire surface is covered with the output extraction electrode 8. When reducing the thickness of the substrate 1 to reduce the weight of the solar battery cell, as shown in FIG. 1B, in order to prevent recombination / annihilation of minority carriers at the electrode 8 on the second main surface side. A high-concentration diffusion layer 9 having the same conductivity type as that of the substrate 1 and having a higher concentration can be formed on the second main surface side (a so-called BSF (back surface field) layer).
Hereinafter, the operation of the solar cell 100 of FIG. 1 will be described. As shown in FIG. 16, when the solar cell 100 absorbs photons having energy larger than the forbidden band width by light irradiation, electrons and holes are generated as minority carriers by photoexcitation in the p-type region and the n-type region. Each diffuses toward the joint. An internal electric field (so-called “built-in electric field”) is generated at the junction due to the formation of the electric double layer, and electrons and holes diffused as minority carriers are caused by this internal electric field. Electrons are drawn into the n-type region, and holes are drawn into the p-type region and separated into major carriers. As a result, the p-type region and the n-type region are charged positively and negatively, respectively, and an electromotive force ΔE of the solar cell is generated between the electrodes (FIG. 1: 7, 8) provided in each part.
Here, in the case where the substrate surface is passivated with an insulating film, if the contact hole is formed by the fire-through method, the dopant concentration of the emitter layer which is the semiconductor layer 2, here the surface n-type layer, is 3 × 10. 20 cm -3 (Sheet resistance conversion: 40Ω / □) Unless set to about the following, the resistance of the electrode contact portion formed by fire-through is a sufficient value, for example, 0.01Ωcm 2 It cannot be lowered to the extent. That is, in the fire-through method, the dopant concentration of the semiconductor layer 2 has inevitably been increased in order to reduce the contact resistance loss. Further, even if the width of the output extraction electrode 7 formed by screen printing is narrow, it is necessary to ensure 100 μm or more, and in order to make the shadowing loss around 5%, for example, the pitch between the electrodes is 2 to 3 mm. It was necessary to be.
However, according to the configuration of the solar cell 100 in FIG. 1, the semiconductor layer exposed region 5 serving as a contact hole can be easily formed by simple etching without using the fire-through method. Therefore, naturally the dopant concentration of the semiconductor layer 2 is also 3 × 10. 20 cm -3 It becomes possible to set a value smaller than (sheet resistance conversion: 40Ω / □). Further, as shown in FIG. 13B, since the transparent conductive layer 6 is used, it is necessary to flow a current in the lateral direction in the semiconductor layer 2 for a longer distance than in the case of FIG. 13A where the transparent electrode layer 6 is not used. Disappear. For example, when a nesa film or an ITO film is used as the transparent conductive layer 6, the sheet resistance can be lowered to about 10 to 25Ω / □ if there is a thickness (40 to 70 nm) used as an antireflection film. As a result, the output extraction electrode 7 provided on the transparent conductive layer 6 has a series resistance that does not increase so much even if it is doubled, for example, compared with the conventional one (2 to 3 mm), so that shadowing loss can be greatly reduced. Can do.
In the above embodiment, the uneven portion is formed by etching, but the uneven portion can also be formed by mechanical processing. For example, the groove shape illustrated in FIG. 2B can be easily formed by cutting. For example, a plurality of rows of grooves are collectively formed by rotating a plurality of rotating blades arranged in the axial direction so as to bite from the surface of the substrate to a predetermined depth while relatively moving the substrate and the rotating blade in the groove forming direction. be able to.
In the present invention, when there is no concern that the series resistance increases so much, as shown in FIGS. 7A to 7C or 5, the transparent conductive layer 6 is omitted, and the output extraction is performed in the semiconductor layer exposed region 5. The electrode 7 can be in direct contact with the semiconductor layer 2. In this case, as shown in FIG. 7F, the remaining semiconductor layer exposed region 5 ′ where the output extraction electrode 7 is not formed can be covered with the auxiliary insulating layer 10. In the example of this figure, after forming the output extraction electrode 7, the auxiliary insulating layer 10 is formed so as to cover the remaining semiconductor layer exposed region 5 ', the insulating film 3, and the output extraction electrode 7 collectively. Has been. As the material of the auxiliary insulating layer 10, an inorganic insulating film such as silicon nitride or silicon oxide can be employed. In this case, by appropriately adjusting the formation thickness of the auxiliary insulating layer 10, it can function as an antireflection film.
(Experimental example)
Hereinafter, experimental results performed to confirm the effects of the present invention will be described.
(Experimental example 1)
The solar cell shown in FIG. 1A was produced by the process shown in the flowchart of FIG. First, an as-sliced p-type crystalline silicon substrate 1 cut out from a silicon single crystal ingot (resistivity 2 Ω · cm (dopant concentration 7.2 × 10 15 cm -3 ) Boron doped product) was prepared. The thickness of the substrate 1 is 300 μm. The substrate 1 is chemically etched with a sodium hydroxide aqueous solution (concentration: 40% by mass) to remove a damaged layer due to slicing, and then added with isopropyl alcohol (sodium hydroxide aqueous solution: 3% by mass). The concavo-convex portions having the random texture form shown in FIG. 2A were formed on both main surfaces of the substrate 1 by dipping in the substrate and performing wet etching.
After cleaning the substrate 1 with the unevenness formed, an n-type diffusion layer 2 (phosphorus diffusion layer) having a sheet resistance of 200Ω / □ was formed on the first main surface by thermally diffusing phosphorus. Next, the phosphorus glass produced on the substrate surface was removed by etching, and then oxidation was performed to form a silicon dioxide film having a thickness of about 5 nm as an insulating film 3 on both main surfaces. Then, an etching protective film 4 mainly composed of a novolac resin is formed so that some of the top portions 25 of the convex portions 15 are projected as shown in FIG. Formed. Subsequently, it was immersed in a hydrofluoric acid aqueous solution having a concentration of 10% by mass, and only the insulating film 3 at the top 25 was etched to form the semiconductor layer exposed portion 5. Next, the substrate was immersed in acetone to dissolve and remove the etching protective film 4.
Next, a tin dioxide film doped with antimony as the transparent conductive layer 6 was deposited on the first main surface of the substrate 1 by atmospheric pressure CVD. The thickness of the transparent conductive layer 6 was set to 60 nm because it also serves as an antireflection film. Next, the pattern of the output extraction electrode 7 having the form shown in FIG. 17 is formed on the surface of the first main surface of the substrate 1 by a screen printing method using silver paste, and the aluminum paste is applied to the entire surface of the second main surface. The pattern of the electrode 8 for output extraction was each formed. Thereafter, hydrogen annealing was performed at a temperature of 400 ° C. to complete the solar cell 100 (Example product 1).
It should be noted that a high-concentration p-type diffusion layer 9 (BSF layer) is formed on the back surface as shown in FIG. A sample of the solar cell 101 provided with a) was also produced (Example product 2). On the other hand, the solar cell produced using the same board | substrate 1 as the above using the conventional fire through technique was also produced (comparative example goods). In addition, the transparent electrode 6 is not formed in the comparative example product. Each solar cell was subjected to a performance evaluation test as follows. That is, a solar cell unit having a light receiving area of 10 cm square is assembled into a solar simulator (light intensity: 1 kW / m 2 , Spectrum: AM1.5 global), and current-voltage characteristics at a temperature of 25 ° C. were measured. The result is shown in FIG. Table 1 shows the characteristics of these solar cells. Further, FIG. 15 shows the internal quantum efficiency of these solar cells.
Figure 2002031892
In Example Product 1 and Example Product 2, the sheet resistance of the emitter layer which is the semiconductor surface layer portion 2 could be set to 200Ω / □. On the other hand, in the comparative example product using the fire-through method, the sheet resistance was 40 to 50Ω / □. As shown in Table 1, it can be seen that the fill factor is not decreased in the example product 1 and the example product 2 as compared with the comparative product. This is considered to be because in Example Product 1 and Example Product 2, the sheet resistance of the transparent conductive layer was low, and the increase in contact resistance was suppressed.
Moreover, when compared with the comparative product, the open circuit voltage is significantly improved in the practical product 1 and the practical product 2. This is considered to be a result of the fact that the dopant concentration in the emitter layer was reduced, the surface recombination rate was reduced, and the area of the contact hole based on the semiconductor layer exposed region 5 could be limited. The substrate 1 used in Example Product 1 and Example Product 2 has a total area ratio of about 1% on the first main surface of the semiconductor layer exposed region 5 based on surface observation by a scanning electron microscope (SEM). It was confirmed that
When compared with the comparative example product, the short-circuit current also increases in the example product 1 and the example product 2. This is thought to be due to a reduction in shadowing loss and an increase in short wavelength sensitivity. In the comparative product, the current flows laterally in the emitter layer, but in this embodiment, it flows in the transparent conductive layer 6 instead. The sheet resistance of the transparent conductive layer 6 is about 10 Ω / □, and comparable resistance loss can be achieved even if the electrode pitch is doubled, for example, compared to the comparative product. Therefore, the shadowing loss can be halved, which is considered to have greatly contributed to the increase in the short-circuit current. Further, as shown in FIG. 15, it is understood that the short wavelength sensitivity of the example product 1 and the example product 2 is also increased. As described above, this is because the dopant concentration in the emitter layer is lowered and the surface recombination rate is reduced.
In Example Product 1 and Example Product 2, conversion efficiency of about 20% could be obtained by increasing the open circuit voltage, the short circuit current, and the fill factor. Particularly, in Example Product 2 in which the BSF layer was introduced on the back side, a solar cell having a conversion efficiency exceeding 20% was obtained.
In the solar cell in this example, the electrodes are formed on the entire back surface, but the transparent conductive film and the comb-like electrode are formed on the back surface as well as the surface so that light can enter from the back surface. I do not care. Moreover, although the 200-ohm / square n-type diffused layer was formed, if it can be made a value higher than 100 ohm / square, a short wavelength sensitivity will increase and a solar cell characteristic will improve. Further, in this embodiment, an oxide film (silicon dioxide film) is used as an insulating film in this embodiment, but a silicon nitride film may be used. In addition, although the thermal diffusion method is used for forming the diffusion layer, any means such as an ion implantation method or a spin-on method can be used as long as the structure of the present invention can be formed.
(Experimental example 2)
The solar cell 103 having the structure shown in FIG. 5 was produced as follows. First, a p-type single crystal silicon substrate 1 (250 μm thick, gallium-doped product having a resistivity of 0.5 Ω · cm) prepared by the CZ method was prepared, and after etching the damaged layer in the same manner as in Experimental Example 1, A random textured surface was formed. After texture formation, P 2 O 5 A coating agent containing was applied, thermal diffusion was performed at 850 ° C., and an n-type diffusion layer 2 having a sheet resistance of about 100Ω / □ was formed on the surface.
Thereafter, pyrogenic oxidation was performed at 800 ° C., and the semiconductor layer exposed region 5 was formed by the same method as in Experimental Example 1. Thereafter, output extraction electrodes 7 and 8 similar to those in Experimental Example 1 were formed on the first and second main surfaces, respectively. Subsequently, a silicon nitride film was formed by plasma CVD as the auxiliary insulating film 10 also serving as an antireflection film, and the solar cell 103 was completed (Example product 3). At this time, the substrate temperature was set to 400 ° C., and after the film deposition, the same hydrogen annealing treatment as in Experimental Example 1 was performed. With respect to Example Product 3, a performance evaluation test was conducted in the same manner as in Experimental Example 1. The results are shown in Table 2.
Figure 2002031892
According to this, it can be seen that in the example product 3, the short-circuit current is reduced as compared with the above-described example products 1 and 2, while the open circuit voltage is increased. The reason why the short-circuit current is reduced is considered to be because the electrode width and the electrode pitch are not different from those of the conventional system. That is, the shadowing area is increased as compared with the example products 1 and 2 shown in Table 1. On the other hand, the reason why the open circuit voltage increased is thought to be that the substrate resistivity was lowered from 2.0 Ω · cm to 0.5 Ω · cm. Generally, when the substrate resistivity is lowered, the reverse saturation current density is decreased and the open circuit voltage is increased. However, when the resistivity is about 2.0 Ω · cm in the p-type substrate, it is necessary to consider the problem of light degradation. Photodegradation is a phenomenon in which when a solar cell is irradiated with strong light, the lifetime of the solar cell substrate is reduced and sufficient conversion efficiency cannot be obtained.
In order to investigate the presence or absence of this photodegradation, a solar cell produced using the gallium-doped CZ silicon single crystal substrate and a normal boron-doped CZ silicon single crystal substrate (resistivity 0.5 Ω · cm) were used. The solar cell produced by the same method was continuously irradiated with simulated sunlight under the solar simulator at 25 ° C., and the light irradiation time dependency of the current-voltage characteristics was examined. As a result, when the solar cell produced from the boron-doped substrate was irradiated for 10 hours under simulated sunlight, the conversion efficiency was reduced by about 10%. On the other hand, solar cells using a gallium-doped substrate showed some change in conversion efficiency, but no change in characteristics corresponding to deterioration was observed. Thus, by using the gallium doped substrate, the problem of photodegradation could be avoided, and the open circuit voltage and the conversion efficiency could be improved. In this embodiment, a gallium-doped p-type substrate by the CZ method is used, but the photodegradation problem can be avoided even with an MCZ substrate or FZ substrate having an interstitial oxygen concentration of several ppm or less. Further, even if an n-type substrate is used and a p-type emitter layer is formed using boron or the like, the light deterioration problem can be avoided.
(Experimental example 3)
The solar cell 104 shown in FIG. 6 was manufactured as follows (in FIG. 6, only the portion in the vicinity of the surface is shown without drawing the uneven portion and the antireflection film in order to avoid complication). First, a p-type single crystal silicon substrate 1 (a boron-doped product having a thickness of 250 μm and a resistivity of 2 Ω · cm) prepared by the CZ method is prepared, and using a dicer, a rib shape having a triangular cross section on the first main surface The convex portions 45, 45 were formed at intervals of 2 mm (the region between the convex portions 45, 45 can be regarded as a concave portion). At this time, the height from the first main surface of the substrate 1 to the top of each convex portion 45, 45 was set to about 30 μm.
Next, after chemically etching the damaged layer, a random texture structure having a height of about 5 μm was formed as an uneven portion on both main surfaces. Thereafter, thermal diffusion is performed in the same manner as in Experimental Example 2 to form an n-type diffusion layer 2 having a sheet resistance of about 100Ω / □ on the surface, and subsequently, thermal oxidation is performed to form an oxide film as the insulating film 3. did. Then, an etching protective film is formed on the second main surface side by the same method as in Experiment Example 1, while a hydrofluoric acid resistant printing resist made of a rubber-based resin is formed on the first main surface as an etching protective film. The film was applied by screen printing so as to have a thickness of 20 μm. By doing so, the top portions 25 of the convex portions 45, 45 formed first by the dicer protrude periodically from the surface of the printing resist in the ridge line direction.
After drying the resist, the substrate 1 was immersed in a 10% by mass hydrofluoric acid aqueous solution, and the semiconductor layer exposed portion 5 was formed on the top portions 25 of the convex portions 45 and 45. Next, the resist is washed away using a solvent, and then the pattern of the output extraction electrode 7 shown in FIG. 6 is used on the first main surface using silver paste, and the aluminum paste is used on the second main surface by screen printing. The pattern of the output extraction electrode 8 was formed on the entire surface. At this time, the output lead-out electrode 7 on the first main surface side needs to be aligned so as to be printed so as to overlap the semiconductor layer exposed portion 5 on the top of the convex portions 45, 45, but with respect to the contact width. Since the width of the electrode 7 is about 10 times the width of the exposed portion 5 of the semiconductor layer, the alignment can be performed relatively roughly. Subsequently, TiO as an antireflection film 2 A film (not shown) was formed to a thickness of 60 nm by atmospheric pressure CVD to complete the solar cell 104 (Example product 4).
When the performance evaluation of Example Product 4 was performed in the same manner as in Experimental Example 1, the open-circuit voltage was 0.667 V and the short-circuit current density was 36.9 mA / cm. 2 A fill factor of 0.770 and a conversion efficiency of 19.0% were obtained, and the characteristics were improved as compared with the conventional screen printing / fire-through method.
[Brief description of the drawings]
FIG. 1A is a schematic diagram showing a cross-sectional structure of a first example of a solar cell according to the present invention.
FIG. 1B is a schematic diagram showing a cross-sectional structure of a second example of the solar cell according to the present invention.
FIG. 2A is a perspective view showing a first example of the shape of a concavo-convex portion formed on a semiconductor substrate.
FIG. 2B is a perspective view showing a second example.
FIG. 2C is a perspective view showing a third example.
FIG. 3 is a flowchart showing a manufacturing process of the solar cell in the experimental example.
FIG. 4A is a process explanatory view showing a method for forming a semiconductor layer exposed region in the present invention.
FIG. 4B is a process explanatory diagram following FIG. 4A.
FIG. 4C is a process explanatory diagram following FIG. 4B.
FIG. 4D is a process explanatory diagram following FIG. 4C.
FIG. 5 is a schematic diagram showing a cross-sectional structure of the solar cell used in Experimental Example 2.
FIG. 6 is an enlarged perspective view showing a main part of the solar cell used in Experimental Example 3.
FIG. 7A is a schematic diagram showing a first example of a cross-sectional structure of a main part of the solar cell of the present invention.
FIG. 7B is a schematic diagram showing a second example.
FIG. 7C is a schematic diagram showing a third example.
FIG. 7D is a schematic diagram showing a fourth example.
FIG. 7E is a schematic diagram showing a fifth example.
FIG. 7F is a schematic diagram showing a sixth example.
FIG. 7G is a schematic diagram showing a seventh example.
FIG. 8A is a process explanatory view showing an example in which an etching protective film is formed thicker in steps using a coating solution.
FIG. 8B is a process explanatory diagram following FIG. 8A.
FIG. 8C is a process explanatory diagram following FIG. 8B.
FIG. 8D is a process explanatory diagram following FIG. 8C.
FIG. 9A is a diagram for explaining the relationship between the viscosity of the coating liquid and the formation state of the etching protective film.
FIG. 9B is an explanatory diagram following FIG. 9A.
FIG. 9C is an explanatory diagram following FIG. 9B.
FIG. 9D is an explanatory diagram following FIG. 9C.
FIG. 10A is a schematic cross-sectional view illustrating the relationship between the formation form of the etching protective film and the formation form of the exposed portion of the semiconductor layer.
FIG. 10B is a schematic cross-sectional view showing another example.
FIG. 11A is a schematic cross-sectional view showing a first example of the manufacturing process of the solar cell of the present invention incorporating a transparent conductive layer.
FIG. 11B is a schematic cross-sectional view showing a second example.
FIG. 11C is a schematic cross-sectional view showing a third example.
FIG. 12 is a schematic cross-sectional view showing a modification of the mode of forming the output extraction electrode in the solar cell of the present invention incorporating the transparent conductive layer.
FIG. 13A is a diagram for explaining a difference in a current path flowing through a surface layer portion depending on the presence or absence of a transparent conductive layer.
FIG. 13B is an explanatory diagram following FIG. 13A.
FIG. 14 is a graph showing current-voltage characteristics of each solar cell in Experimental Example 1.
FIG. 15 is a graph showing the relationship between internal quantum efficiency and wavelength.
FIG. 16 is a diagram illustrating the principle of a solar cell using a pn junction.
FIG. 17 is a perspective view schematically showing an example of a form of forming an output extraction electrode on the light receiving surface side.
FIG. 18 is an explanatory diagram of a current-voltage curve of a solar cell.
FIG. 19A is a schematic diagram illustrating the difference in the formation form of the exposed portion of the semiconductor layer between the present invention and the conventional method.
FIG. 19B is an explanatory diagram following FIG. 19A.

Claims (18)

半導体基板の主表面に凹凸部が形成され、該主表面が絶縁膜で被覆されている太陽電池において、前記凹凸部を形成する凸部の少なくとも一部のものの頂上部を包含する形にて前記絶縁膜にて被覆されていない半導体層露出領域が前記主表面に形成されてなり、該半導体層露出領域内において前記凸部の頂上部の先端高さ位置が、該半導体層露出領域の外周縁における前記絶縁膜の最大高さ位置よりも高くなっており、かつ前記半導体層露出領域内の前記凸部の頂上部に直接又は他の導電層を介して間接的に接触するように、出力取出用電極が形成されていることを特徴とする太陽電池。In a solar cell in which a concavo-convex portion is formed on the main surface of a semiconductor substrate and the main surface is covered with an insulating film, the solar cell includes the top of at least a part of the ridges forming the concavo-convex portion A semiconductor layer exposed region not covered with an insulating film is formed on the main surface, and the tip height position of the top of the convex portion in the semiconductor layer exposed region is the outer peripheral edge of the semiconductor layer exposed region. The output extraction is performed so as to be higher than the maximum height position of the insulating film and to be in direct contact with the top of the convex portion in the exposed region of the semiconductor layer or directly through another conductive layer. A solar cell, characterized in that an electrode is formed. 前記凸部の基端側外周面が前記絶縁膜にて覆われてなり、その凸部の先端部が前記絶縁膜の上縁よりも突出している請求の範囲第1項記載の太陽電池。2. The solar cell according to claim 1, wherein a base end side outer peripheral surface of the convex portion is covered with the insulating film, and a distal end portion of the convex portion protrudes from an upper edge of the insulating film. 前記半導体層露出領域の外周縁をなす前記絶縁膜の内周縁部上面が平坦に形成されている請求の範囲第1項又は第2項に記載の太陽電池。3. The solar cell according to claim 1, wherein an upper surface of an inner peripheral edge of the insulating film that forms an outer peripheral edge of the semiconductor layer exposed region is formed flat. 前記他の導電層は、前記半導体層露出領域と前記絶縁膜とを一括して覆う透明導電層であり、該透明導電層上に前記出力取出用電極が形成されている請求の範囲第1項ないし第3項のいずれかに記載の太陽電池。The other conductive layer is a transparent conductive layer that collectively covers the semiconductor layer exposed region and the insulating film, and the output extraction electrode is formed on the transparent conductive layer. The solar cell according to any one of Items 3 to 3. 半導体基板の主表面が絶縁膜で被覆されている太陽電池において、前記絶縁膜にて被覆されていない半導体層露出領域が前記主表面に形成されてなり、前記半導体層露出領域と前記絶縁膜とを一括して覆う透明導電層が形成され、該透明導電層上に出力取出用電極が形成されていることを特徴とする太陽電池。In a solar cell in which a main surface of a semiconductor substrate is covered with an insulating film, a semiconductor layer exposed region not covered with the insulating film is formed on the main surface, and the semiconductor layer exposed region, the insulating film, A solar cell is characterized in that a transparent conductive layer is formed to collectively cover and an output extraction electrode is formed on the transparent conductive layer. 前記半導体層露出領域が前記主表面に複数形成され、それら半導体層露出領域の一部のものにおいて、前記出力取出用電極が前記半導体層に直接接して形成される一方、前記出力取出用電極が形成されない残余の半導体層露出領域が透明な補助絶縁層にて被覆されている請求の範囲第1項ないし第3項のいずれかに記載の太陽電池。A plurality of the semiconductor layer exposed regions are formed on the main surface, and in a part of the semiconductor layer exposed regions, the output extraction electrode is formed in direct contact with the semiconductor layer, while the output extraction electrode is The solar cell according to any one of claims 1 to 3, wherein a remaining semiconductor layer exposed region that is not formed is covered with a transparent auxiliary insulating layer. 半導体基板の主表面が絶縁膜で被覆されている太陽電池において、前記絶縁膜にて被覆されていない半導体層露出領域が前記主表面に複数形成されてなり、それら半導体層露出領域の一部のものにおいて、前記出力取出用電極が前記半導体層に直接接して形成される一方、前記出力取出用電極が形成されない残余の半導体層露出領域が透明な補助絶縁層にて被覆されていることを特徴とする太陽電池。In a solar cell in which a main surface of a semiconductor substrate is covered with an insulating film, a plurality of semiconductor layer exposed regions not covered with the insulating film are formed on the main surface, and a part of the semiconductor layer exposed regions is formed. The output extraction electrode is formed in direct contact with the semiconductor layer, while the remaining semiconductor layer exposed region where the output extraction electrode is not formed is covered with a transparent auxiliary insulating layer. A solar cell. 前記補助絶縁層が前記残余の半導体層露出領域と前記絶縁膜と前記出力取出用電極とを一括して覆うものである請求の範囲第6項又は第7項に記載の太陽電池。The solar cell according to claim 6 or 7, wherein the auxiliary insulating layer collectively covers the remaining semiconductor layer exposed region, the insulating film, and the output extraction electrode. 前記半導体層露出領域は、前記半導体基板の前記主表面を、前記凹凸部を含む形にて前記絶縁膜で覆い、さらに前記凸部の前記頂上部以外の領域にて前記絶縁膜をエッチング保護膜で覆い、その後エッチングによって前記凸部の前記頂上部の絶縁膜を除去して形成されたものである請求の範囲第1項ないし第8項のいずれかに記載の太陽電池。The exposed region of the semiconductor layer covers the main surface of the semiconductor substrate with the insulating film so as to include the concavo-convex portion, and further etches the insulating film in a region other than the top of the convex portion. The solar cell according to any one of claims 1 to 8, wherein the solar cell is formed by covering with, and then removing the insulating film at the top of the convex portion by etching. 半導体基板の主表面に凹凸部が形成され、該主表面が絶縁膜で被覆され、前記凹凸部を形成する凸部の少なくとも一部のものの頂上部を包含する形にて前記絶縁膜にて被覆されていない半導体層露出領域が前記主表面に形成されてなり、かつ前記半導体層露出領域内の前記凸部の頂上部に直接又は他の導電層を介して間接的に接触するように、出力取出用電極が形成された太陽電池において、
前記半導体層露出領域は、前記半導体基板の前記主表面を、前記凹凸部を含む形にて前記絶縁膜で覆い、さらに前記凸部の前記頂上部以外の領域にて前記絶縁膜をエッチング保護膜で覆い、その後エッチングによって前記凸部の前記頂上部の絶縁膜を除去して形成されたものであることを特徴とする太陽電池。
Concave and convex portions are formed on the main surface of the semiconductor substrate, the main surface is covered with an insulating film, and is covered with the insulating film so as to include the tops of at least some of the convex portions forming the concave and convex portions. An output is formed such that an unexposed semiconductor layer exposed region is formed on the main surface and is in direct contact with the top of the convex portion in the semiconductor layer exposed region directly or through another conductive layer. In the solar cell on which the extraction electrode is formed,
The exposed region of the semiconductor layer covers the main surface of the semiconductor substrate with the insulating film so as to include the concavo-convex portion, and further etches the insulating film in a region other than the top of the convex portion. The solar cell is formed by covering with, and then removing the insulating film on the top of the convex portion by etching.
前記凹凸部がテクスチャ、V溝及び逆ピラミッドの少なくともいずれかよりなる請求の範囲第1項ないし第10項のいずれかに記載の太陽電池。The solar cell according to any one of claims 1 to 10, wherein the uneven portion is made of at least one of a texture, a V-groove, and an inverted pyramid. 前記半導体層露出領域は、当該半導体層露出領域の形成される主表面において、合計面積率が1%以下となるように形成されている請求の範囲第1項ないし第11項のいずれかに記載の太陽電池。12. The semiconductor layer exposed region according to any one of claims 1 to 11, wherein the semiconductor layer exposed region is formed so that a total area ratio is 1% or less on a main surface where the semiconductor layer exposed region is formed. Solar cells. 前記出力取出用電極は、前記半導体層露出領域と周囲の絶縁層とにまたがる形で形成されている請求の範囲第1項ないし第12項のいずれかに記載の太陽電池。The solar cell according to any one of claims 1 to 12, wherein the output extraction electrode is formed so as to straddle the semiconductor layer exposed region and a surrounding insulating layer. 半導体基板の主表面に凹凸部を形成する工程と、
その半導体基板の前記主表面を、前記凹凸部を含む形にて前記絶縁膜で覆う工程と、
前記凹凸部を形成する凸部の頂上部以外の領域にて前記絶縁膜をエッチング保護膜で覆う工程と、
その後エッチングによって前記凸部の前記頂上部の絶縁膜を除去することにより、前記凸部の少なくとも一部のものの頂上部を包含する形にて前記絶縁膜にて被覆されていない半導体層露出領域を形成する工程と、
前記半導体層露出領域内の前記凸部の頂上部に直接又は他の導電層を介して間接的に接触するように、出力取出用電極を形成する工程と、
を含むことを特徴とする太陽電池の製造方法。
Forming a concavo-convex portion on the main surface of the semiconductor substrate;
Covering the main surface of the semiconductor substrate with the insulating film in a form including the uneven portion;
A step of covering the insulating film with an etching protective film in a region other than the top of the convex portion forming the uneven portion;
Thereafter, the insulating film on the top of the convex portion is removed by etching, thereby exposing an exposed region of the semiconductor layer not covered with the insulating film so as to include the top of at least a part of the convex portion. Forming, and
Forming an output extraction electrode so as to directly or indirectly contact the top of the convex portion in the semiconductor layer exposed region via another conductive layer;
The manufacturing method of the solar cell characterized by including.
前記凹凸部をエッチングにて形成する工程を含む請求の範囲第14項に記載の太陽電池の製造方法。The method for manufacturing a solar cell according to claim 14, comprising a step of forming the uneven portion by etching. 前記凹凸部を機械的加工によって形成する工程を含む請求の範囲第14項又は第15項に記載の太陽電池の製造方法。The method for manufacturing a solar cell according to claim 14, comprising a step of forming the uneven portion by mechanical processing. 前記半導体層露出領域を前記主表面に複数形成する工程と、それら半導体層露出領域の一部のものにおいて、前記出力取出用電極を前記半導体層に直接接して形成する工程と、前記出力取出用電極が形成されない残余の半導体層露出領域を補助絶縁層にて被覆する工程とを含む請求の範囲第14項ないし第16項のいずれかに記載の太陽電池の製造方法。A step of forming a plurality of the semiconductor layer exposed regions on the main surface, a step of forming the output extraction electrode in direct contact with the semiconductor layer in a part of the semiconductor layer exposed region, and the output extraction The method for manufacturing a solar cell according to any one of claims 14 to 16, further comprising a step of covering a remaining semiconductor layer exposed region where no electrode is formed with an auxiliary insulating layer. 前記補助絶縁層を、前記残余の半導体層露出領域と前記絶縁膜と前記出力取出用電極とを一括して覆うものとして形成する請求の範囲第17項記載の太陽電池の製造方法。18. The method for manufacturing a solar cell according to claim 17, wherein the auxiliary insulating layer is formed so as to cover the remaining semiconductor layer exposed region, the insulating film, and the output extraction electrode in a lump.
JP2002535178A 2000-10-06 2000-11-30 Manufacturing method of solar cell Expired - Lifetime JP3872428B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000308516 2000-10-06
JP2000308516 2000-10-06
PCT/JP2000/008486 WO2002031892A1 (en) 2000-10-06 2000-11-30 Solar cell and method of manufacture thereof

Publications (2)

Publication Number Publication Date
JPWO2002031892A1 true JPWO2002031892A1 (en) 2004-02-26
JP3872428B2 JP3872428B2 (en) 2007-01-24

Family

ID=18788811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002535178A Expired - Lifetime JP3872428B2 (en) 2000-10-06 2000-11-30 Manufacturing method of solar cell

Country Status (5)

Country Link
JP (1) JP3872428B2 (en)
KR (1) KR100790956B1 (en)
CN (1) CN1284248C (en)
TW (1) TW480737B (en)
WO (1) WO2002031892A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1623586A4 (en) * 2003-04-25 2011-02-16 Qualcomm Inc Methods and apparatus for extending mobile ip
KR101010531B1 (en) * 2006-05-02 2011-01-24 스페이스 에너지 가부시키가이샤 Method for manufacturing semiconductor substrate, sola semiconductor substrate, and etching liquid
CN101017857B (en) * 2006-05-31 2010-04-14 成都加佳好科技有限公司 Te solar battery composed of non-planar battery chip
JP5121203B2 (en) * 2006-09-29 2013-01-16 三洋電機株式会社 Solar cell module
KR100879594B1 (en) * 2006-12-08 2009-01-21 송청담 Solar cell of thin amorphous sillicon film and method of making the solar cell
WO2008100603A1 (en) 2007-02-15 2008-08-21 Massachusetts Institute Of Technology Solar cells with textured surfaces
KR20090007063A (en) * 2007-07-13 2009-01-16 삼성에스디아이 주식회사 Solar cell and preparing method thereof
KR101447433B1 (en) * 2007-12-28 2014-10-10 주성엔지니어링(주) Wafer type Solar Cell and Method for manufacturing the same
KR100882140B1 (en) * 2008-03-19 2009-02-06 한국철강 주식회사 Microcrystalline silicon solar cell and fabrication method
US8673679B2 (en) * 2008-12-10 2014-03-18 Applied Materials Italia S.R.L. Enhanced vision system for screen printing pattern alignment
CA2781085A1 (en) * 2009-11-18 2011-05-26 Solar Wind Technologies, Inc. Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof
CN102804395A (en) * 2010-03-15 2012-11-28 夏普株式会社 Substrate for photoelectric conversion device, photoelectric conversion device using same, method for producing the substrate for photoelectric conversion device, and method for manufacturing the photoelectric conversion device
EP3309845A3 (en) * 2010-03-26 2018-06-27 Tetrasun, Inc. Shielded electrical contact and doping through a passivating dielectric layer in a high-efficiency crystalline solar cell, including structure and methods of manufacture
US8071418B2 (en) * 2010-06-03 2011-12-06 Suniva, Inc. Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
JP4980494B2 (en) * 2010-06-25 2012-07-18 三菱電機株式会社 Solar cell and manufacturing method thereof
TWI423456B (en) * 2010-07-27 2014-01-11 Au Optronics Corp Photoelectric transducer
TWI433341B (en) 2010-12-29 2014-04-01 Au Optronics Corp Method of fabricating a solar cell
CN103283001A (en) 2011-03-08 2013-09-04 可持续能源联盟有限责任公司 Efficient black silicon photovoltaic devices with enhanced blue response
US9722101B2 (en) * 2012-04-25 2017-08-01 Kaneka Corporation Solar cell, solar cell manufacturing method, and solar cell module
CN105409010A (en) * 2013-05-10 2016-03-16 Rct解决方案有限责任公司 Solar cell and method for producing same
JP5830147B1 (en) * 2014-09-04 2015-12-09 信越化学工業株式会社 Solar cell and method for manufacturing solar cell
JP6502651B2 (en) 2014-11-13 2019-04-17 信越化学工業株式会社 Method of manufacturing solar cell and method of manufacturing solar cell module
TWI566424B (en) * 2015-01-12 2017-01-11 財團法人工業技術研究院 Optoelectronic element and solar cell employing the same
US9673341B2 (en) 2015-05-08 2017-06-06 Tetrasun, Inc. Photovoltaic devices with fine-line metallization and methods for manufacture
JP6394618B2 (en) * 2016-01-26 2018-09-26 三菱電機株式会社 Solar cell and method for manufacturing solar cell
CN105762076B (en) * 2016-02-29 2019-01-18 重庆平伟实业股份有限公司 A kind of production technology of diffused high-voltage great-current Schottky chip
CN108987413B (en) * 2017-06-02 2023-12-29 信越化学工业株式会社 Substrate for semiconductor and method for manufacturing the same
JP7362317B2 (en) * 2019-07-02 2023-10-17 株式会社東芝 Solar cells, laminates, multijunction solar cells, solar cell modules, and solar power generation systems
CN112993064B (en) * 2021-05-20 2021-07-30 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206272A (en) 1985-03-08 1986-09-12 Sharp Corp Solar cell
JPS62237768A (en) 1986-04-08 1987-10-17 Oki Electric Ind Co Ltd Manufacture of compound semiconductor sorar battery
JPH05291597A (en) * 1992-04-14 1993-11-05 Toyota Motor Corp Single crystal silicon solar cell
JPH09199738A (en) * 1996-01-19 1997-07-31 Hitachi Ltd Solar cell
JP3772456B2 (en) * 1997-04-23 2006-05-10 三菱電機株式会社 Solar cell, method for manufacturing the same, and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
WO2002031892A1 (en) 2002-04-18
KR20030036893A (en) 2003-05-09
KR100790956B1 (en) 2008-01-03
CN1284248C (en) 2006-11-08
TW480737B (en) 2002-03-21
JP3872428B2 (en) 2007-01-24
CN1454395A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP3872428B2 (en) Manufacturing method of solar cell
JP5629013B2 (en) Semiconductor device and manufacturing method thereof
US8603851B2 (en) Solar cell and method of manufacturing the same by simultaneously forming first and second doping regions
JP4170701B2 (en) Solar cell and manufacturing method thereof
KR100847741B1 (en) Point-contacted heterojunction silicon solar cell having passivation layer between the interface of p-n junction and method for fabricating the same
KR101110825B1 (en) Interdigitated back contact solar cell and manufacturing method thereof
KR101295552B1 (en) Solar cell and method for manufacturing the same
JP2013526053A (en) Solar cell and manufacturing method thereof
US8981210B2 (en) Solar battery cell and method of manufacturing the solar battery cell
KR101878397B1 (en) Solar cell and method for fabricating the same
JP2010130023A (en) Solar cell and method of manufacturing the same
WO2011074280A1 (en) Photovoltaic device and method for preparation thereof
KR100990864B1 (en) Solar cell and method for manufacturing the same
KR100990108B1 (en) Solar cell and method for manufacturing the same
KR20120087513A (en) Solar cell and manufacturing method thereof
JP2001203376A (en) Solar cell
KR101920639B1 (en) Back contact solar cell and manufacturing methode thereof
KR20140003669A (en) Solar cell and manufacturing method thereof
KR20130068962A (en) Solar cell and method for manufacturing the same
KR102132741B1 (en) Solar cell and method for manufacturing the same
KR20120035291A (en) Method for manufacturing solar cell
KR20140093382A (en) Method for manufacturing solar cell
KR101153378B1 (en) Back junction solar cells using a Floating junction and method for manufacturing thereof
KR101239793B1 (en) Solar cell and mehtod for manufacturing the same
KR101579321B1 (en) Method for manufacturing solar cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Ref document number: 3872428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151027

Year of fee payment: 9

EXPY Cancellation because of completion of term