JP2001203376A - Solar cell - Google Patents

Solar cell

Info

Publication number
JP2001203376A
JP2001203376A JP2000009309A JP2000009309A JP2001203376A JP 2001203376 A JP2001203376 A JP 2001203376A JP 2000009309 A JP2000009309 A JP 2000009309A JP 2000009309 A JP2000009309 A JP 2000009309A JP 2001203376 A JP2001203376 A JP 2001203376A
Authority
JP
Japan
Prior art keywords
impurity diffusion
diffusion layer
type impurity
solar cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000009309A
Other languages
Japanese (ja)
Other versions
JP3781600B2 (en
Inventor
Kimito Hagino
公人 萩野
Minoru Kaneiwa
実 兼岩
Hidetoshi Washio
英俊 鷲尾
Yoshiyuki Suzuki
喜之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000009309A priority Critical patent/JP3781600B2/en
Publication of JP2001203376A publication Critical patent/JP2001203376A/en
Application granted granted Critical
Publication of JP3781600B2 publication Critical patent/JP3781600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell in which the output characteristics and radiation resistance are enhanced without using a thin film cell. SOLUTION: This solar cell has a P-N junction on the light receiving face side of a semiconductor substrate 10 and a passivation film 18 on the rear surface thereof wherein a P type impurity diffusion layer 11 and a P electrode 12 connected therewith, and an N type impurity diffusion layer 13 and an N electrode 14 connected therewith are provided on the surface of the light receiving face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は太陽電池に関し、よ
り詳細には、放射線に曝される環境で使用する宇宙用の
太陽電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell, and more particularly, to a solar cell for space use in an environment exposed to radiation.

【0002】[0002]

【従来の技術】一般に、太陽電池が人工衛星の電源とし
て宇宙で使用される場合、宇宙空間の高エネルギー放射
線(電子線、陽子線等)に曝されるため、太陽電池セル
内部に結晶欠陥が発生し、その欠陥の数に応じて少数キ
ャリアのライフタイムが減少し、出力特性が経時劣化す
る。そこで、宇宙用太陽電池では、耐放射線を改善する
ために、PN接合を浅くしたり、太陽電池の構造にあっ
た基板抵抗率を選択する等の対策がとられている。ま
た、セルの厚さを薄くすることにより、放射線照射後の
少数キャリアの収集効率を改善できることが知られてい
る。
2. Description of the Related Art In general, when a solar cell is used in space as a power source for an artificial satellite, it is exposed to high-energy radiation (electron beam, proton beam, etc.) in outer space, and crystal defects are generated inside the solar cell. The minority carrier lifetime is reduced in accordance with the number of the generated defects, and the output characteristics deteriorate with time. Therefore, in the solar cell for space, in order to improve the radiation resistance, measures such as making the PN junction shallow and selecting a substrate resistivity suitable for the structure of the solar cell are taken. It is also known that the efficiency of collecting minority carriers after irradiation can be improved by reducing the thickness of the cell.

【0003】さらに、太陽電池の出力特性を改善するた
めに、表面に凹凸部、例えば正ピラミッド、逆ピラミッ
ド、Vグループ等を形成し、表面の光の反射損失を低減
するとともに、入射した光の裏面での反射率を改善する
光トラッピング構造が採用されている。
Further, in order to improve the output characteristics of the solar cell, irregularities such as a regular pyramid, an inverted pyramid, and a V group are formed on the surface to reduce the reflection loss of light on the surface and to reduce the incident light. An optical trapping structure that improves the reflectance on the back surface is employed.

【0004】従来の一般的な宇宙用シリコン太陽電池
は、図5に示すように、P型シリコン基板30の受光面
側にN型不純物拡散層31及びN電極32を有し、PN
接合が受光面近傍に形成されているとともに、裏面側に
P型不純物拡散層33及びP電極34を有し、BSF
(裏面電界層)機能が備えられている。なお、シリコン
基板30の受光面側には、シリコン酸化膜35及び反射
防止膜36が、裏面側にはP電極34との間にシリコン
酸化膜35が形成されている。
As shown in FIG. 5, a conventional general space silicon solar cell has an N-type impurity diffusion layer 31 and an N-electrode 32 on the light-receiving surface side of a P-type silicon substrate 30, and a PN
The junction is formed in the vicinity of the light receiving surface, and has a P-type impurity diffusion layer 33 and a P electrode 34 on the back surface side.
(Back surface electric field layer) function is provided. The silicon oxide film 35 and the antireflection film 36 are formed on the light receiving surface side of the silicon substrate 30, and the silicon oxide film 35 is formed between the silicon substrate 30 and the P electrode 34 on the rear surface side.

【0005】このような構造のシリコン太陽電池では、
短波長の光に対して吸収係数が大きいため、シリコン基
板表面から比較的浅い位置で電子−正孔対を生成する。
これに対して、長波長の光は、シリコン基板内部により
深く進み、裏面近傍で電子−正孔対を生成する。そし
て、シリコン基板内に結晶欠陥がない場合には、基板内
での少数キャリアは拡散長が長いため、光生成された少
数キャリアは効率よくPN接合に到達し、電力として取
り出すことができる。しかし、放射線の照射によりシリ
コン基板中に結晶欠陥が発生すると、これが少数キャリ
アの再結合中心として働くことになり、少数キャリアの
拡散長を短くし、PN接合から遠い位置で発生した少数
キャリアはPN接合まで到達せず、電力として取り出す
ことができなくなる。
In a silicon solar cell having such a structure,
Since the absorption coefficient is large for light of a short wavelength, electron-hole pairs are generated at a relatively shallow position from the surface of the silicon substrate.
On the other hand, long-wavelength light travels deeper inside the silicon substrate and generates electron-hole pairs near the back surface. If there is no crystal defect in the silicon substrate, the minority carriers in the substrate have a long diffusion length, so that the photogenerated minority carriers can efficiently reach the PN junction and be extracted as power. However, when a crystal defect occurs in the silicon substrate due to the irradiation of radiation, this acts as a recombination center of the minority carrier, shortening the diffusion length of the minority carrier, and causing the minority carrier generated at a position far from the PN junction to PN. It does not reach the junction and cannot be taken out as power.

【0006】このことは、シリコン太陽電池に放射線を
照射することにより分光感度特性を測定した図6の結果
からも明らかである。なお、図6は、BSFR(バック
・サーフェイス・フィールド・アンド・リフレクター)
型のカバーガラスを形成していない裸の太陽電池セル
(200μm厚)を用いた測定結果である。つまり、放
射線照射量が大きくなるほど長波長感度が低下し、PN
接合から離れた位置で発生した少数キャリアが、放射線
照射によりPN接合に到達しにくくなっていることがわ
かる。
This is clear from the results of FIG. 6 in which the spectral sensitivity characteristics were measured by irradiating the silicon solar cell with radiation. FIG. 6 shows BSFR (Back Surface Field and Reflector)
It is a measurement result using a naked solar cell (200 μm thickness) without forming a mold cover glass. In other words, as the radiation dose increases, the long-wavelength sensitivity decreases, and the PN
It can be seen that minority carriers generated at positions away from the junction are less likely to reach the PN junction due to irradiation.

【0007】また、図5のような構造のシリコン太陽電
池は、太陽電池セルの厚さによって、図7に示すような
出力劣化特性を有している。つまり、放射線の照射線量
が比較的低い場合には、シリコン基板の膜厚が比較的厚
くても出力特性が良好であるが、放射線の照射線量が高
くなるにつれ、シリコン基板の膜厚が厚いほど、出力特
性が低下しやすくなる。具体的には、1×1014e/c
2以上の放射線が照射された後は、膜厚が50μmの
シリコン基板を用いた太陽電池セルでは、膜厚70μ
m、100μmのシリコン基板を用いた太陽電池セルに
比較して、最も出力特性が高い。
A silicon solar cell having a structure as shown in FIG. 5 has an output deterioration characteristic as shown in FIG. 7 depending on the thickness of the solar cell. In other words, when the radiation dose is relatively low, the output characteristics are good even when the silicon substrate is relatively thick, but as the radiation dose increases, the thicker the silicon substrate, , Output characteristics are likely to be reduced. Specifically, 1 × 10 14 e / c
After irradiation with radiation of m 2 or more, in a solar cell using a silicon substrate having a thickness of 50 μm,
It has the highest output characteristics as compared to a solar cell using a silicon substrate of m or 100 μm.

【0008】[0008]

【発明が解決しようとする課題】しかし、現実の太陽電
池製造工程においては、工程中におけるシリコンウェハ
の割れが多くなり、50μm厚以下の薄いセルを製造す
ることは困難である。また、シリコンウェハの割れに伴
って、図8に示すように、歩留まりの低下が著しくな
り、太陽電池のコストが高くなるという問題がある。
However, in an actual solar cell manufacturing process, the silicon wafer is frequently cracked during the process, and it is difficult to manufacture a thin cell having a thickness of 50 μm or less. In addition, as shown in FIG. 8, there is a problem that the yield is significantly reduced and the cost of the solar cell is increased as shown in FIG.

【0009】薄いシリコン基板を用いた工程中の割れの
原因は、通常、工程の第一段階でシリコンウェハを最終
セル厚さまで薄くするために、その後の不純物拡散工
程、フォトリソグラフィ工程等における機械や人手によ
るウェハのハンドリングによって生じるウェハの周囲に
微細な欠けであり、この欠けにより、ウェハの割れを至
らしめる。このような欠けは、ウェハの厚さが薄くなる
ほど生じやすく、単にセル厚を50μmより薄くするこ
とによっては、さらなる耐放射線性の改善は困難であ
る。本発明は、上記課題に鑑みなされたものであり、薄
膜セルを用いることなく出力特性及び耐放射線性が改善
された太陽電池を提供することを目的とする。
The cause of cracks in a process using a thin silicon substrate is usually caused by reducing the thickness of a silicon wafer to the final cell thickness in the first stage of the process by using a machine or the like in a subsequent impurity diffusion process, a photolithography process, or the like. There is a minute chip around the wafer caused by manual handling of the wafer, and this chip may cause cracking of the wafer. Such chipping is more likely to occur as the thickness of the wafer becomes thinner, and it is difficult to further improve the radiation resistance by simply making the cell thickness less than 50 μm. The present invention has been made in view of the above problems, and has as its object to provide a solar cell having improved output characteristics and radiation resistance without using a thin film cell.

【0010】[0010]

【課題を解決するための手段】本発明によれば、第1導
電型半導体基板の受光面側にPN接合を有し、裏面上に
パッシベーション膜を有する太陽電池であって、受光面
にP型不純物拡散層及び該P型不純物拡散層に接続され
たP電極、N型不純物拡散層と該N型不純物拡散層に接
続されたN電極とを有している太陽電池が提供される。
According to the present invention, there is provided a solar cell having a PN junction on a light-receiving surface side of a first conductivity type semiconductor substrate and a passivation film on a back surface, wherein a P-type light-receiving surface is provided. A solar cell having an impurity diffusion layer, a P electrode connected to the P-type impurity diffusion layer, an N-type impurity diffusion layer, and an N electrode connected to the N-type impurity diffusion layer is provided.

【0011】[0011]

【発明の実施の形態】本発明の太陽電池は、第1導電型
半導体基板と、その受光面の表面に形成されたN型及び
P型の不純物拡散層と、それら不純物拡散層に接続され
たN電極及びP電極と、裏面上に形成されたパッシベー
ション膜とから主として構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A solar cell according to the present invention has a first conductivity type semiconductor substrate, N-type and P-type impurity diffusion layers formed on the surface of a light-receiving surface thereof, and is connected to the impurity diffusion layers. It mainly comprises an N electrode and a P electrode, and a passivation film formed on the back surface.

【0012】本発明における第1導電型半導体基板は、
太陽電池素子の1個又は複数個を同時に形成するための
基板を意味し、ウェハ等を含む。この基板としては、例
えば、シリコン、ゲルマニウム等の元素半導体、Ga
P、GaAs等の化合物半導体等の公知のものを使用す
ることができる。なかでも、シリコン基板が好ましい。
半導体基板は、リン等のN型又はホウ素等のP型のいず
れかの不純物を含有している。なかでも、P型であるこ
とが好ましい。
The first conductivity type semiconductor substrate according to the present invention comprises:
A substrate for forming one or a plurality of solar cell elements at the same time, and includes a wafer and the like. Examples of the substrate include elemental semiconductors such as silicon and germanium, Ga
Known compounds such as compound semiconductors such as P and GaAs can be used. Among them, a silicon substrate is preferable.
The semiconductor substrate contains either an N-type impurity such as phosphorus or a P-type impurity such as boron. Among them, P-type is preferred.

【0013】半導体基板の厚さは、通常の太陽電池に使
用される程度の厚さであれば特に限定されるものではな
く、例えば、50〜400μm程度のものが挙げられ
る。半導体基板の受光面には、N型及びP型の双方の不
純物拡散層が形成されている。この場合のN型及びP型
不純物拡散層は、通常太陽電池に使用されている程度の
不純物濃度を有していることが好ましい。例えば、N型
及び/又はP型不純物拡散層の不純物濃度は、1.0×
1019〜1.0×1020cm-3程度が挙げられる。N型
及びP型不純物拡散層の接合深さは用いる半導体基板の
膜厚、得ようとする太陽電池の特性等により適宜調整す
ることができ、例えば、0.05μm〜2μm程度が適
当である。これにより、半導体基板の受光面側にPN接
合とFSF(表面電界層)機能の双方を併せもったセル
を形成することができる。
The thickness of the semiconductor substrate is not particularly limited as long as it is a thickness that can be used for a normal solar cell, and for example, a thickness of about 50 to 400 μm is mentioned. On the light receiving surface of the semiconductor substrate, both N-type and P-type impurity diffusion layers are formed. In this case, it is preferable that the N-type and P-type impurity diffusion layers have an impurity concentration that is generally used for a solar cell. For example, the impurity concentration of the N-type and / or P-type impurity diffusion layers is 1.0 ×
About 10 19 to 1.0 × 10 20 cm −3 . The junction depth of the N-type and P-type impurity diffusion layers can be appropriately adjusted depending on the thickness of the semiconductor substrate to be used, the characteristics of the solar cell to be obtained, and the like. For example, about 0.05 μm to 2 μm is appropriate. Thus, a cell having both a PN junction and an FSF (surface electric field layer) function can be formed on the light receiving surface side of the semiconductor substrate.

【0014】N型及びP型不純物拡散層の形状は、特に
限定されるものではなく、例えば、平面形状として、そ
れぞれストライプ形状、櫛形状、島形状等種々の形状が
挙げられる。なお、N型及びP型不純物拡散層は、短絡
が生じないように互いに接触しないように配置すること
が好ましく、さらに、光生成されたキャリアを有効に取
り出すために半導体基板の受光面に均等に配置している
ことが好ましい。N型及びP型不純物拡散層の受光面に
おける面積比は、特に限定されるものではなく、例え
ば、N型不純物拡散層がP型不純物拡散層よりも大きい
ことが好ましい。これにより、太陽電池の出力を向上さ
せることができるからである。具体的には、N型及びP
型不純物拡散層の面積比は、N/P=50/50〜90
/10程度が好ましい。なお、半導体基板の受光面は、
入射光の反射を低減させるテクスチャ形状を有していて
もよい。
The shapes of the N-type and P-type impurity diffusion layers are not particularly limited, and, for example, various shapes such as a stripe shape, a comb shape, and an island shape can be cited as a planar shape. The N-type and P-type impurity diffusion layers are preferably arranged so as not to be in contact with each other so that a short circuit does not occur. It is preferable to arrange them. The area ratio of the N-type and P-type impurity diffusion layers on the light receiving surface is not particularly limited. For example, it is preferable that the N-type impurity diffusion layer is larger than the P-type impurity diffusion layer. Thereby, the output of the solar cell can be improved. Specifically, N type and P
N / P = 50 / 50-90
/ 10 is preferable. The light receiving surface of the semiconductor substrate is
It may have a texture shape that reduces reflection of incident light.

【0015】N型及びP型不純物拡散層は、公知の方
法、例えば、フォトリソグラフィ及びエッチング工程に
より形成されるレジストパターン又はパターニングされ
た絶縁膜等をマスクとして用いたイオン注入や熱拡散等
により形成することができる。N型及びP型不純物拡散
層に接続されるN電極及びP電極は、導電性材料から形
成されるものであれば特に限定されるものではなく、例
えば、アルミニウム、金、銀、銅、白金、ニッケル、
鉛、チタン、タンタル、パラジウム等の金属の単層膜、
SnO2、ITO等の透明導電材料、あるいはAl/T
i/Pd、Al/Ti/Pd/Ag、Ti/Pd、Ti
/Pd/Ag、Ti/Ag、Au/Zn/Ag等の積層
膜が挙げられる。N電極及びP電極の膜厚は特に限定さ
れるものではなく、任意に設定することができる。
The N-type and P-type impurity diffusion layers are formed by a known method, for example, ion implantation or thermal diffusion using a resist pattern or a patterned insulating film formed by a photolithography and etching process as a mask. can do. The N-electrode and P-electrode connected to the N-type and P-type impurity diffusion layers are not particularly limited as long as they are formed from a conductive material. For example, aluminum, gold, silver, copper, platinum, nickel,
Single layer film of metal such as lead, titanium, tantalum, palladium,
Transparent conductive materials such as SnO 2 and ITO, or Al / T
i / Pd, Al / Ti / Pd / Ag, Ti / Pd, Ti
/ Pd / Ag, Ti / Ag, Au / Zn / Ag and the like. The thicknesses of the N electrode and the P electrode are not particularly limited, and can be set arbitrarily.

【0016】N電極及びP電極の形状は特に限定される
ものではないが、太陽電池の入射光量を増すために、櫛
形、格子形等の形状で、受光面に対して、それぞれ0.
1〜10%程度の面積で形成することが適当である。N
電極及びP電極は、公知の方法、例えば、真空蒸着法、
BE蒸着法、スパッタリング法等により導電性材料によ
る膜を形成した後、リフトオフ法、フォトリソグラフィ
及びエッチング技術等により所望の形状にパターニング
することにより形成することができる。また、所望の形
状にパターニングされたシードメタルパターンを用いた
電解メッキにより形成してもよい。
The shapes of the N-electrode and the P-electrode are not particularly limited.
It is appropriate to form with an area of about 1 to 10%. N
The electrode and the P electrode are formed by a known method, for example, a vacuum deposition method,
After a film made of a conductive material is formed by a BE evaporation method, a sputtering method, or the like, the film can be formed by patterning into a desired shape by a lift-off method, photolithography, an etching technique, or the like. Alternatively, it may be formed by electrolytic plating using a seed metal pattern patterned into a desired shape.

【0017】なお、半導体基板の受光面においては、上
述したように、N型及びP型不純物拡散層、N電極及び
P電極の他に、パッシベーション膜、絶縁膜、反射防止
膜等をさらに形成してもよい。これら膜は、いずれも入
射光の半導体基板への入射を妨げないように透明である
ことが好ましく、さらに、N電極及びP電極が、N型及
びP型不純物拡散層にそれぞれ直接接続されるように、
所定の形状及び大きさの開口を有していることが好まし
い。例えば、パッシベーション膜としては、膜厚100
〜5000Å程度のシリコン酸化膜、アルミニウムガリ
ウム砒素(Ga 0.2Al0.8As)、ガリウムインジウム
リン(Ga0.51In0.49P)等が挙げられる。また、絶
縁膜としては、膜厚0.1〜2μm程度のシリコン酸化
膜等が挙げられる。反射防止膜としては、膜厚500〜
5000Å程度のシリコン酸化膜、TiO2、Al
23、Si34等が挙げられる。
The light-receiving surface of the semiconductor substrate is
As described above, the N-type and P-type impurity diffusion layers, the N electrode,
In addition to P electrode, passivation film, insulation film, anti-reflection
A film or the like may be further formed. Each of these membranes
Transparent so as not to impede the incident light on the semiconductor substrate
Preferably, the N electrode and the P electrode are N-type and
And P-type impurity diffusion layers, respectively,
It is preferable to have openings of predetermined shape and size
No. For example, as the passivation film, a film thickness of 100
Silicon oxide film of up to 5000 mm, aluminum gully
Um arsenic (Ga 0.2Al0.8As), gallium indium
Phosphorus (Ga0.51In0.49P) and the like. In addition,
The edge film is made of silicon oxide with a thickness of about 0.1 to 2 μm.
And the like. As an antireflection film, a film thickness of 500 to
5,000 膜 silicon oxide film, TiOTwo, Al
TwoOThree, SiThreeNFourAnd the like.

【0018】また、半導体基板の裏面上には、パッシベ
ーション膜が形成されている。ここで裏面とは、半導体
基板の受光面とは反対側の面を意味する。パッシベーシ
ョン膜としては、上記と同様の膜厚及び材料のものが挙
げられる。パッシベーション膜は、半導体基板の裏面に
N電極及び/又はP電極が形成されていない場合には、
裏面全面に形成されていることが好ましく、後述するよ
うに、N型及び/又はP型不純物拡散層の上にN電極及
び/又はP電極が形成されている場合には、N電極及び
/又はP電極が、N型及び/又はP型不純物拡散層にそ
れぞれ直接接続されるように、所定の形状及び大きさの
開口を有していることが好ましい。
Further, a passivation film is formed on the back surface of the semiconductor substrate. Here, the back surface means the surface on the opposite side of the light receiving surface of the semiconductor substrate. Examples of the passivation film include those having the same thickness and material as described above. When the N electrode and / or the P electrode are not formed on the back surface of the semiconductor substrate,
It is preferably formed on the entire back surface. As described later, when an N electrode and / or a P electrode is formed on the N type and / or P type impurity diffusion layer, the N electrode and / or the P electrode are formed. It is preferable that the P electrode has an opening having a predetermined shape and size so as to be directly connected to the N-type and / or P-type impurity diffusion layers, respectively.

【0019】さらにパッシベーション膜の上又は下に、
基板及びパッシベーション膜と屈折率の異なる透明絶縁
膜等がさらに形成されていてもよい。なかでも、透明絶
縁膜はパッシベーション膜の上に形成されることが好ま
しい。透明絶縁膜としては、例えば、TiO2、Al2
3、Si34等が挙げられる。また、その膜厚は、例え
ば、500〜5000Å程度が挙げられる。これによ
り、セルに入射した光の反射率を変化させて、太陽電池
の出力を向上させることができる。なお、透明絶縁膜
も、N型及び/又はP型不純物拡散層の上にN電極及び
/又はP電極が形成されている場合には、パッシベーシ
ョン膜と同様に所定の形状及び大きさの開口を有してい
ることが好ましい。これにより、半導体基板と電極との
接触抵抗を低減させることができ、少数キャリアを有効
に収集することができ、太陽電池の出力を向上させるこ
とができる。
Furthermore, above or below the passivation film,
A transparent insulating film having a different refractive index from the substrate and the passivation film may be further formed. In particular, the transparent insulating film is preferably formed on a passivation film. As the transparent insulating film, for example, TiO 2 , Al 2 O
3 , Si 3 N 4 and the like. The film thickness is, for example, about 500 to 5000 °. Thereby, the output of the solar cell can be improved by changing the reflectance of the light incident on the cell. When the N-type electrode and / or the P-type electrode is formed on the N-type and / or P-type impurity diffusion layer, the transparent insulating film also has an opening having a predetermined shape and size, similarly to the passivation film. It is preferable to have. Thereby, the contact resistance between the semiconductor substrate and the electrode can be reduced, minority carriers can be effectively collected, and the output of the solar cell can be improved.

【0020】半導体基板の裏面には、さらに、半導体基
板の導電型とは異なる及び/又は同じ導電型の不純物拡
散層が形成されていることが好ましい。特に、双方の導
電型の不純物拡散層が形成されている場合には、半導体
基板の受光面及び裏面のそれぞれにPN接合と電界層機
能の双方を併せもったセルを形成することができるため
好ましい。また、不純物拡散層が形成されている場合に
は、不純物拡散層と直接接続されるN電極及び/又はP
電極が形成されていることが好ましい。裏面にN電極又
はP電極が形成されている場合には、半導体基板の受光
面と裏面との双方にN電極又はP電極が形成されること
となり、太陽電池の出力を向上させることができ、裏面
表面にN電極及びP電極の双方が形成されている場合に
は、半導体基板の受光面と裏面との双方にN電極及びP
電極の双方が形成されることとなり、太陽電池の出力を
より向上させることができるからである。不純物拡散層
の不純物濃度、接合深さ、形状、電極の材料、膜厚、形
状等は、上述したようなもの等から適宜選択して用いる
ことができる。
It is preferable that an impurity diffusion layer having a conductivity type different from and / or the same as the conductivity type of the semiconductor substrate is further formed on the back surface of the semiconductor substrate. In particular, when impurity diffusion layers of both conductivity types are formed, a cell having both a PN junction and an electric field layer function can be formed on each of the light receiving surface and the back surface of the semiconductor substrate, which is preferable. . When an impurity diffusion layer is formed, an N electrode and / or a P electrode directly connected to the impurity diffusion layer is formed.
Preferably, an electrode is formed. When the N electrode or the P electrode is formed on the back surface, the N electrode or the P electrode is formed on both the light receiving surface and the back surface of the semiconductor substrate, and the output of the solar cell can be improved, When both the N electrode and the P electrode are formed on the back surface, the N electrode and the P electrode are formed on both the light receiving surface and the back surface of the semiconductor substrate.
This is because both electrodes are formed, and the output of the solar cell can be further improved. The impurity concentration, junction depth, shape, electrode material, film thickness, shape, and the like of the impurity diffusion layer can be appropriately selected from those described above and used.

【0021】半導体基板の裏面にN型及びP型不純物拡
散層の双方が形成されている場合には、受光面のN型不
純物拡散層に対するP型不純物拡散層の面積比が、裏面
のN型不純物拡散層に対するP型不純物拡散層の面積比
より小さいことが好ましい。具体的には、受光面のN型
不純物拡散層に対するP型不純物拡散層の面積比が、上
記の範囲であれば、裏面のN型不純物拡散層に対するP
型不純物拡散層の面積比は、N/P=20/80〜80
/20程度であることが好ましい。つまり、光吸収波長
の異なる受光面と裏面とで、N型不純物拡散層に対する
P型不純物拡散層の面積比を変化させて、最適化(例え
ば、裏面のシリーズ抵抗を減少させる)することによ
り、太陽電池の出力を向上させることができる。
When both the N-type and P-type impurity diffusion layers are formed on the back surface of the semiconductor substrate, the area ratio of the P-type impurity diffusion layer to the N-type impurity diffusion layer on the light receiving surface is equal to the N-type impurity concentration on the back surface. It is preferable that the area ratio of the P-type impurity diffusion layer to the impurity diffusion layer be smaller. Specifically, if the area ratio of the P-type impurity diffusion layer to the N-type impurity diffusion layer on the light receiving surface is within the above range, the P-type impurity diffusion layer on the back surface has a P-type impurity diffusion layer.
N / P = 20 / 80-80
/ 20 is preferable. In other words, by changing the area ratio of the P-type impurity diffusion layer to the N-type impurity diffusion layer between the light receiving surface and the back surface having different light absorption wavelengths, optimization (for example, reduction of the series resistance of the back surface) is achieved. The output of the solar cell can be improved.

【0022】[0022]

【実施例】以下に本発明の太陽電池の実施例を図面に基
づいて説明する。実施の形態1 この実施の形態における太陽電池は、図1に示したよう
に、P型シリコン基板10の受光面側にテクスチャー構
造を有し、受光面側にP型不純物拡散層11とこれに接
続されたP電極12、N型不純物拡散層13とこれに接
続されたN電極14の両方が形成されており、さらに、
裏面側の全面にN型不純物拡散層15とそれに接続され
たN電極16が形成されている。また、シリコン基板1
0の受光面のP型不純物拡散層11及びN型不純物拡散
層13、裏面のN型不純物拡散層15の表面には、シリ
コン酸化膜17、18がそれぞれ形成されており、さら
に受光面のシリコン酸化膜17上には反射防止膜19が
形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the solar cell according to the present invention will be described below with reference to the drawings. Embodiment 1 A solar cell according to this embodiment has a texture structure on the light receiving surface side of a P-type silicon substrate 10 as shown in FIG. Both the connected P electrode 12, the N-type impurity diffusion layer 13 and the N electrode 14 connected thereto are formed.
An N-type impurity diffusion layer 15 and an N-electrode 16 connected thereto are formed on the entire back surface. In addition, the silicon substrate 1
The silicon oxide films 17 and 18 are respectively formed on the surface of the P-type impurity diffusion layer 11 and the N-type impurity diffusion layer 13 on the light-receiving surface and the surface of the N-type impurity diffusion layer 15 on the back surface. An antireflection film 19 is formed on oxide film 17.

【0023】なお、受光面側におけるP型不純物拡散層
11とP電極12、N型不純物拡散層13とN電極14
は、図2に示したようにP型シリコン基板10上に配置
しており、P型不純物拡散層11及びN型不純物拡散層
13の上には、それぞれP電極12及びN電極14との
コンタクト部20が形成されている。
It is to be noted that the P-type impurity diffusion layer 11 and the P-electrode 12 and the N-type impurity diffusion layer 13 and the N-electrode 14
Are arranged on the P-type silicon substrate 10 as shown in FIG. 2, and the P-type impurity diffusion layer 11 and the N-type impurity diffusion layer 13 are in contact with the P electrode 12 and the N electrode 14, respectively. A part 20 is formed.

【0024】この実施の形態においては、受光面におけ
るP型不純物拡散層11を数十μm程度の幅で、N型不
純物拡散層13を数十〜数百μm程度の幅で、P型不純
物拡散層11とN型不純物拡散層13との間隔を数十μ
m程度、P型不純物拡散層11の受光面における面積を
5〜50%程度、N型不純物拡散層13の受光面におけ
る面積を50〜90%程度として、平面形状でそれぞれ
櫛形となるように形成した。
In this embodiment, the P-type impurity diffusion layer 11 on the light receiving surface has a width of about several tens of μm and the N-type impurity diffusion layer 13 has a width of about several tens to several hundred μm. The distance between the layer 11 and the N-type impurity diffusion layer 13 is several tens μm.
m, the area on the light-receiving surface of the P-type impurity diffusion layer 11 is about 5 to 50%, and the area on the light-receiving surface of the N-type impurity diffusion layer 13 is about 50 to 90%. did.

【0025】この太陽電池は、以下の工程で製造するこ
とができる。まず、ケミカルエッチングにより薄型化す
るとともに受光面にテクスチャ構造が形成されたシリコ
ンウェハに熱酸化膜を形成する。その後、フォトリソグ
ラフィ技術を用いて、受光面の熱酸化膜の一部を除去
し、P型不純物拡散層を形成する。続いて、受光面及び
裏面上に常圧CVD法により酸化膜を形成し、フォトリ
ソグラフィ技術を用いて、受光面上積層された熱酸化膜
とCVD法による酸化膜の一部、裏面上に形成された酸
化膜の一部を除去し、受光面及び裏面にN型不純物拡散
層を形成する。最後に、フォトリソグラフィ技術を用い
て、受光面と裏面とに電極を形成し、さらに受光面に反
射防止膜を形成する。
This solar cell can be manufactured by the following steps. First, a thermal oxide film is formed on a silicon wafer whose thickness is reduced by chemical etching and a texture structure is formed on a light receiving surface. After that, a part of the thermal oxide film on the light receiving surface is removed by photolithography to form a P-type impurity diffusion layer. Subsequently, an oxide film is formed on the light receiving surface and the back surface by a normal pressure CVD method, and a thermal oxide film laminated on the light receiving surface and a part of the oxide film formed by the CVD method on the back surface are formed by using a photolithography technique. A part of the oxide film is removed, and an N-type impurity diffusion layer is formed on the light receiving surface and the back surface. Finally, electrodes are formed on the light receiving surface and the back surface using photolithography technology, and an anti-reflection film is formed on the light receiving surface.

【0026】実施の形態2 この実施の形態における太陽電池は、図3に示したよう
に、シリコン基板10の裏面側に、P型不純物拡散層2
1とこれに接続されたP電極22、N型不純物拡散層2
3とこれに接続されたN電極24の両方が形成されてい
る以外は、実施の形態1とほぼ同様の構造である。
Embodiment 2 As shown in FIG. 3, a solar cell according to this embodiment has a P-type impurity diffusion layer 2 on the back side of a silicon substrate 10.
1 and a P electrode 22 connected thereto and an N-type impurity diffusion layer 2
The structure is substantially the same as that of the first embodiment except that both the third electrode 3 and the N electrode 24 connected thereto are formed.

【0027】ただし、この実施の形態においては、受光
面におけるP型不純物拡散層11を数十μm程度の幅
で、N型不純物拡散層13を数十〜数百μm程度の幅
で、P型不純物拡散層11とN型不純物拡散層13との
間隔を数十μm程度、P型不純物拡散層11の受光面に
おける面積を5〜50%程度、N型不純物拡散層13の
受光面における面積を50〜90%程度として、平面形
状でそれぞれ櫛形となるように形成した。
In this embodiment, however, the P-type impurity diffusion layer 11 on the light receiving surface has a width of about several tens of μm, the N-type impurity diffusion layer 13 has a width of about several tens to several hundred μm, The distance between the impurity diffusion layer 11 and the N-type impurity diffusion layer 13 is about several tens of μm, the area of the P-type impurity diffusion layer 11 on the light receiving surface is about 5 to 50%, and the area of the N-type impurity diffusion layer 13 on the light receiving surface is about 5%. It was formed so as to have a comb shape in a planar shape with about 50 to 90%.

【0028】また、裏面におけるP型不純物拡散層21
を数十μm程度の幅で、N型不純物拡散層23を数十〜
数百μm程度の幅で、P型不純物拡散層21とN型不純
物拡散層23との間隔を数十μm程度、P型不純物拡散
層11の裏面における面積を10〜50%程度、N型不
純物拡散層13の裏面における面積を50〜85%程度
として、平面形状でそれぞれ櫛形となるように形成し
た。ただし、裏面は受光面と異なり、電極面積をP電極
とN電極が接触しない程度(数十μm以上)の間隔をあ
けて大きくすることができる。
The P-type impurity diffusion layer 21 on the back surface
With a width of about several tens μm and an N-type impurity diffusion layer 23 of several tens to
With a width of about several hundred μm, an interval between the P-type impurity diffusion layer 21 and the N-type impurity diffusion layer 23 of about tens of μm, an area on the back surface of the P-type impurity diffusion layer 11 of about 10 to 50%, The area on the back surface of the diffusion layer 13 was set to about 50 to 85%, and each was formed so as to have a comb shape in a planar shape. However, unlike the light-receiving surface, the back surface can be increased in electrode area with an interval (several tens of μm or more) at which the P electrode and the N electrode do not contact each other.

【0029】この太陽電池は、熱酸化膜をシリコンウェ
ハの両面に形成し、フォトリソグラフィ技術により受光
面及び裏面の熱酸化膜の一部を除去し、受光面及び裏面
の両方にP型不純物拡散層を形成し、受光面及び裏面に
常圧CVD法により酸化膜を形成し、フォトリソグラフ
ィ技術により受光面及び裏面の熱酸化膜と酸化膜との一
部を除去し、受光面及び裏面の両方にN型不純物拡散層
を形成する以外は、実施の形態1と同様の方法により形
成することができる。このような構成にすることによ
り、裏面にもBSF機能をもたせることができるため、
受光面のP型不純物拡散層の割合を小さくすることがで
き、これにより、受光面でのPN接合の面積を大きくと
ることができる。
In this solar cell, a thermal oxide film is formed on both sides of a silicon wafer, a part of the thermal oxide film on the light receiving surface and the back surface is removed by photolithography, and P-type impurity diffusion is performed on both the light receiving surface and the back surface. A layer is formed, an oxide film is formed on the light receiving surface and the back surface by the normal pressure CVD method, a part of the thermal oxide film and the oxide film on the light receiving surface and the back surface is removed by photolithography technology, and both the light receiving surface and the back surface are removed. Except that an N-type impurity diffusion layer is formed in the same manner as in the first embodiment. With such a configuration, the back surface can also have a BSF function,
It is possible to reduce the ratio of the P-type impurity diffusion layer on the light receiving surface, thereby increasing the area of the PN junction on the light receiving surface.

【0030】実施の形態3 この実施の形態における太陽電池は、図4に示したよう
に、シリコン基板10の裏面側のシリコン酸化膜上に、
膜厚500〜5000Å程度のTiO2等からなる透明
絶縁膜25が形成されている以外は、実施の形態1と同
様の構造である。
Embodiment 3 As shown in FIG. 4, a solar cell according to this embodiment has a structure in which a silicon oxide film on the back side of a silicon substrate 10 is formed on a silicon oxide film.
The structure is the same as that of the first embodiment except that a transparent insulating film 25 made of TiO 2 or the like having a thickness of about 500 to 5000 ° is formed.

【0031】この太陽電池は、受光面及び裏面上に常圧
CVD法により酸化膜を形成した後、裏面に透明絶縁膜
を形成し、フォトリソグラフィ技術を用いて、裏面上に
形成された酸化膜と透明絶縁膜との一部を除去する以外
は、実施の形態1とほぼ同様の方法により形成すること
ができる。このような構成にすることにより、従来問題
となっていたパッシベーション膜と電極との間に生成さ
れる合金に起因するセルの入射光の反射率減少を抑制す
ることができる。
In this solar cell, an oxide film is formed on a light receiving surface and a back surface by a normal pressure CVD method, then a transparent insulating film is formed on the back surface, and the oxide film formed on the back surface is formed by using a photolithography technique. It can be formed by a method substantially similar to that of Embodiment 1 except that a part of the transparent insulating film is removed. With such a configuration, it is possible to suppress a decrease in the reflectance of incident light of the cell due to an alloy generated between the passivation film and the electrode, which has conventionally been a problem.

【0032】[0032]

【発明の効果】本発明によれば、受光面の表面にP型不
純物拡散層とP型不純物拡散層に接続されたP電極、N
型不純物拡散層とN型不純物拡散層に接続されたN電極
との双方を有しているため、受光面側にPN接合とFS
F(表面電界層)機能の両方を併せもった太陽電池を形
成することができ、太陽電池セルの出力を向上させるこ
とができる。また、半導体基板の裏面表面に、半導体基
板とは異なる又は同じ導電型の不純物拡散層と、該不純
物拡散層に接続された電極がさらに形成されてなる場合
には、受光面及び裏面の双方にN電極又はP電極を有す
るため、太陽電池セルの出力をより向上させることがで
きる。
According to the present invention, a P-type impurity diffusion layer, a P electrode connected to the P-type impurity diffusion layer,
PN junction and FS on the light-receiving surface side because it has both the N-type impurity diffusion layer and the N-electrode connected to the N-type impurity diffusion layer.
A solar cell having both F (surface electric field layer) functions can be formed, and the output of the solar cell can be improved. In the case where an impurity diffusion layer of a different or the same conductivity type as the semiconductor substrate and an electrode connected to the impurity diffusion layer are further formed on the back surface of the semiconductor substrate, both the light receiving surface and the back surface are formed. Because of having the N electrode or the P electrode, the output of the solar cell can be further improved.

【0033】特に、半導体基板の裏面表面に、P型不純
物拡散層及び該P型不純物拡散層に接続されたP電極、
N型不純物拡散層及び該N型不純物拡散層に接続された
N電極がさらに形成される場合には、受光面側のみなら
ず、裏面においてもPN接合と電界層機能の両方を併せ
もったセルを形成することができるとともに、受光面及
び裏面の双方において、生成したキャリアを外部に取り
出すことができるため、放射線照射に起因する半導体基
板の劣化によりキャリア拡散長が短くなったセルにおい
ても、キャリアを有効に電力として外部に取り出すこと
ができ、放射線照射によって劣化した太陽電池セルにお
いても、出力を一層向上させることができる。しかも、
受光面近傍(厚さ数μm程度)だけで太陽電池として機
能させることができ、セル内部で格子欠陥が発生して
も、太陽電池としての機能を失わないことから、宇宙環
境での耐放射線が向上され、寿命末期での変換効率を大
幅に改善することが可能となる。
In particular, a P-type impurity diffusion layer and a P-electrode connected to the P-type impurity diffusion layer are provided on the back surface of the semiconductor substrate.
When an N-type impurity diffusion layer and an N-electrode connected to the N-type impurity diffusion layer are further formed, a cell having both a PN junction and an electric field layer function not only on the light receiving surface side but also on the back surface. Can be formed, and the generated carriers can be taken out to the outside on both the light receiving surface and the back surface. Therefore, even in a cell in which the carrier diffusion length is shortened due to deterioration of the semiconductor substrate due to radiation irradiation, the carrier can be formed. Can be effectively extracted to the outside as electric power, and the output can be further improved even in a solar battery cell deteriorated by irradiation with radiation. Moreover,
It can function as a solar cell only in the vicinity of the light receiving surface (about a few μm in thickness). Even if a lattice defect occurs inside the cell, it does not lose its function as a solar cell. It is possible to significantly improve the conversion efficiency at the end of life.

【0034】しかも、受光面のP拡散層とN拡散層(P
電極とN電極)の間隔を裏面のP拡散層とN拡散層(P
電極とN電極)の間隔と等しくして、受光面のN電極の
真下に裏面のP電極、受光面のP電極の真下に裏面のN
電極を形成することで、セル内部のPN接合と電界層の
距離が小さくなるため、開放電圧を大きくし、太陽電池
の特性を改善することが可能となる。
Moreover, the P diffusion layer and the N diffusion layer (P
The distance between the P electrode and the N diffusion layer (P
(Electrode and N electrode), the back P electrode just below the N electrode on the light receiving surface, and the back N just below the P electrode on the light receiving surface.
By forming the electrodes, the distance between the PN junction inside the cell and the electric field layer is reduced, so that the open-circuit voltage can be increased and the characteristics of the solar cell can be improved.

【0035】さらに、1つのセル内に2つのN電極と2
つのP電極との4つの電極を備えるため、4通りのN−
P電極の組み合わせが可能となるため、4種のセルを並
列に接続した構造を実現することができ、有効に太陽電
池セルの出力を向上させることが可能となる。加えて、
一つのセル中にP電極及びN電極をそれぞれ2つ有する
ため、例えば、一方の電極が断線した場合でも、太陽電
池としての機能を損なうことを防止することができる。
しかも、セル厚を特に薄膜化することなく、放射線照射
による劣化に起因する出力低下を防止することができる
ため、セル割れによる歩留まり低下を防止することが可
能となり、太陽電池を安価に提供することができる。
Further, two N electrodes and two
Four P-electrodes and four N-electrodes
Since a combination of P electrodes is possible, a structure in which four types of cells are connected in parallel can be realized, and the output of the solar cell can be effectively improved. in addition,
Since one cell has two P electrodes and two N electrodes, for example, even if one of the electrodes is disconnected, it is possible to prevent the function as a solar cell from being impaired.
Moreover, it is possible to prevent a decrease in output due to deterioration due to radiation irradiation without particularly reducing the cell thickness, so that it is possible to prevent a decrease in yield due to cell cracking, and to provide a solar cell at low cost. Can be.

【0036】また、受光面のN型不純物拡散層に対する
P型不純物拡散層の面積比が、裏面のN型不純物拡散層
に対するP型不純物拡散層の面積比より小さい場合に
は、短絡電流の最適化を図ることができ、太陽電池の出
力をより向上させることができる。
When the area ratio of the P-type impurity diffusion layer to the N-type impurity diffusion layer on the light receiving surface is smaller than the area ratio of the P-type impurity diffusion layer to the N-type impurity diffusion layer on the back surface, the short-circuit current is optimized. The output of the solar cell can be further improved.

【0037】さらに、半導体基板の裏面上のパッシベー
ション膜の上に、さらに透明絶縁膜が形成される場合に
は、屈折率の異なる透明絶縁膜を形成することにより、
裏面におけるセルの入射光の反射率を変化させて、太陽
電池の出力を向上させることができる。しかも、従来問
題となっていたパッシベーション膜と電極との間に生成
される合金に起因するセルの入射光の反射率の減少を抑
制することができる。また、半導体基板がP型であり、
受光面の表面に形成されたN型不純物拡散層がP型不純
物拡散層よりも広い場合には、効率的な光電変換を行う
ことができ、太陽電池の出力をより向上させることがで
きる。
Further, when a transparent insulating film is further formed on the passivation film on the back surface of the semiconductor substrate, the transparent insulating films having different refractive indexes are formed.
The output of the solar cell can be improved by changing the reflectance of the incident light of the cell on the back surface. In addition, it is possible to suppress a decrease in the reflectance of incident light of the cell due to the alloy generated between the passivation film and the electrode, which has conventionally been a problem. Also, the semiconductor substrate is P-type,
When the N-type impurity diffusion layer formed on the surface of the light receiving surface is wider than the P-type impurity diffusion layer, efficient photoelectric conversion can be performed, and the output of the solar cell can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の太陽電池の実施の形態を示す要部の概
略断面図である。
FIG. 1 is a schematic sectional view of a main part showing an embodiment of a solar cell of the present invention.

【図2】図1の太陽電池の要部の概略平面図である。FIG. 2 is a schematic plan view of a main part of the solar cell of FIG.

【図3】本発明の太陽電池の別の実施の形態を示す要部
の概略断面図である。
FIG. 3 is a schematic sectional view of a main part showing another embodiment of the solar cell of the present invention.

【図4】本発明の太陽電池のさらに別の実施の形態を示
す要部の概略断面図である。
FIG. 4 is a schematic cross-sectional view of a main part showing still another embodiment of the solar cell of the present invention.

【図5】従来の太陽電池の実施の形態を示す要部の概略
断面図である。
FIG. 5 is a schematic sectional view of a main part showing an embodiment of a conventional solar cell.

【図6】従来の太陽電池の放射線照射による分光感度特
性を示すグラフである。
FIG. 6 is a graph showing spectral sensitivity characteristics of a conventional solar cell due to radiation irradiation.

【図7】従来の太陽電池のセル厚による出力劣化特性を
示すグラフである。
FIG. 7 is a graph showing output degradation characteristics depending on the cell thickness of a conventional solar cell.

【図8】従来の太陽電池のセル厚による歩留まりを示す
グラフである。
FIG. 8 is a graph showing the yield depending on the cell thickness of a conventional solar cell.

【符号の説明】[Explanation of symbols]

10 シリコン基板(半導体基板) 11、21 P型不純物拡散層 12、22 P電極 13、15、23 N型不純物拡散層 14、16、24 N電極 17 シリコン酸化膜 18 シリコン酸化膜(パッシベーション膜) 19 反射防止膜 20 コンタクト部 25 透明絶縁膜 Reference Signs List 10 Silicon substrate (semiconductor substrate) 11, 21 P-type impurity diffusion layer 12, 22 P electrode 13, 15, 23 N-type impurity diffusion layer 14, 16, 24 N electrode 17 Silicon oxide film 18 Silicon oxide film (passivation film) 19 Antireflection film 20 Contact part 25 Transparent insulating film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鷲尾 英俊 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 鈴木 喜之 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 5F051 AA02 BA02 BA18 DA03 DA20 EA18 FA14 FA16 FA17 FA19 FA24 GA14 HA07  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hidetoshi Washio 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Inventor Yoshiyuki Suzuki 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Incorporated F term (reference) 5F051 AA02 BA02 BA18 DA03 DA20 EA18 FA14 FA16 FA17 FA19 FA24 GA14 HA07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型半導体基板の受光面側にPN
接合を有し、裏面上にパッシベーション膜を有する太陽
電池であって、受光面にP型不純物拡散層及び該P型不
純物拡散層に接続されたP電極、N型不純物拡散層及び
該N型不純物拡散層に接続されたN電極を有しているこ
とを特徴とする太陽電池。
A PN is provided on a light receiving surface side of a first conductivity type semiconductor substrate.
What is claimed is: 1. A solar cell having a junction and a passivation film on a back surface, comprising: a P-type impurity diffusion layer on a light-receiving surface; a P electrode connected to the P-type impurity diffusion layer; an N-type impurity diffusion layer; A solar cell having an N electrode connected to a diffusion layer.
【請求項2】 半導体基板の裏面に、半導体基板とは異
なる導電型の不純物拡散層と該不純物拡散層に接続され
た電極がさらに形成されてなる請求項1に記載の太陽電
池。
2. The solar cell according to claim 1, wherein an impurity diffusion layer of a conductivity type different from that of the semiconductor substrate and an electrode connected to the impurity diffusion layer are further formed on a back surface of the semiconductor substrate.
【請求項3】 半導体基板の裏面に、半導体基板と同じ
導電型の不純物拡散層と該不純物拡散層に接続された電
極がさらに形成されてなる請求項1に記載の太陽電池。
3. The solar cell according to claim 1, further comprising an impurity diffusion layer having the same conductivity type as that of the semiconductor substrate and an electrode connected to the impurity diffusion layer formed on a back surface of the semiconductor substrate.
【請求項4】 半導体基板の裏面に、P型不純物拡散層
及び該P型不純物拡散層に接続されたP電極、N型不純
物拡散層及び該N型不純物拡散層に接続されたN電極が
さらに形成されてなる請求項1に記載の太陽電池。
4. A P-type impurity diffusion layer, a P-electrode connected to the P-type impurity diffusion layer, an N-type impurity diffusion layer, and an N-electrode connected to the N-type impurity diffusion layer on the back surface of the semiconductor substrate. The solar cell according to claim 1 formed.
【請求項5】 受光面のN型不純物拡散層に対するP型
不純物拡散層の面積比が、裏面のN型不純物拡散層に対
するP型不純物拡散層の面積比より小さい請求項4に記
載の太陽電池。
5. The solar cell according to claim 4, wherein the area ratio of the P-type impurity diffusion layer to the N-type impurity diffusion layer on the light receiving surface is smaller than the area ratio of the P-type impurity diffusion layer to the N-type impurity diffusion layer on the back surface. .
【請求項6】 半導体基板の裏面上のパッシベーション
膜の上に、さらに前記半導体基板及びパッシベーション
膜と屈折率の異なる透明絶縁膜が形成されてなる請求項
1〜5のいずれか1つに記載の太陽電池。
6. The semiconductor device according to claim 1, wherein a transparent insulating film having a different refractive index from the semiconductor substrate and the passivation film is formed on the passivation film on the back surface of the semiconductor substrate. Solar cells.
【請求項7】 半導体基板がP型であり、受光面に形成
されたN型不純物拡散層がP型不純物拡散層よりも面積
が広い請求項1〜6のいずれか1つに記載の太陽電池。
7. The solar cell according to claim 1, wherein the semiconductor substrate is P-type, and the N-type impurity diffusion layer formed on the light receiving surface has a larger area than the P-type impurity diffusion layer. .
JP2000009309A 2000-01-18 2000-01-18 Solar cell Expired - Fee Related JP3781600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000009309A JP3781600B2 (en) 2000-01-18 2000-01-18 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000009309A JP3781600B2 (en) 2000-01-18 2000-01-18 Solar cell

Publications (2)

Publication Number Publication Date
JP2001203376A true JP2001203376A (en) 2001-07-27
JP3781600B2 JP3781600B2 (en) 2006-05-31

Family

ID=18537478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009309A Expired - Fee Related JP3781600B2 (en) 2000-01-18 2000-01-18 Solar cell

Country Status (1)

Country Link
JP (1) JP3781600B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489667A2 (en) * 2003-06-20 2004-12-22 Interuniversitair Microelektronica Centrum Vzw Method for backside surface passivation of solar cells and solar cells with such passivation
JP2006523025A (en) * 2003-04-10 2006-10-05 サンパワー コーポレイション Metal contact structure for solar cell and manufacturing method
US7964499B2 (en) 2008-05-13 2011-06-21 Samsung Electronics Co., Ltd. Methods of forming semiconductor solar cells having front surface electrodes
JP2011181963A (en) * 2011-06-20 2011-09-15 Sanyo Electric Co Ltd Method of manufacturing solar cell module
WO2012043670A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Solar cell and solar cell module
JP2012119537A (en) * 2010-12-01 2012-06-21 Ulvac Japan Ltd Method of manufacturing photoelectric conversion device
CN102544181A (en) * 2012-02-28 2012-07-04 常州天合光能有限公司 Double-surface crystalline silicon solar cell structure and manufacturing process thereof
CN103069573A (en) * 2010-06-24 2013-04-24 夏普株式会社 Solar cell
CN103646983A (en) * 2013-11-29 2014-03-19 常州天合光能有限公司 Back emitter symmetric hetero-junction solar cell and preparation method thereof
JP2014239104A (en) * 2013-06-06 2014-12-18 信越化学工業株式会社 Solar cell, solar cell module, and method for manufacturing the same
CN108682701A (en) * 2018-05-07 2018-10-19 张家港协鑫集成科技有限公司 Solar cell and its manufacture craft
EP1854147B1 (en) * 2005-03-03 2021-03-24 SunPower Corporation Preventing harmful polarization of solar cells

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523025A (en) * 2003-04-10 2006-10-05 サンパワー コーポレイション Metal contact structure for solar cell and manufacturing method
EP1489667A3 (en) * 2003-06-20 2014-12-03 Imec Method for backside surface passivation of solar cells and solar cells with such passivation
EP1489667A2 (en) * 2003-06-20 2004-12-22 Interuniversitair Microelektronica Centrum Vzw Method for backside surface passivation of solar cells and solar cells with such passivation
EP1854147B1 (en) * 2005-03-03 2021-03-24 SunPower Corporation Preventing harmful polarization of solar cells
US7964499B2 (en) 2008-05-13 2011-06-21 Samsung Electronics Co., Ltd. Methods of forming semiconductor solar cells having front surface electrodes
CN103069573A (en) * 2010-06-24 2013-04-24 夏普株式会社 Solar cell
WO2012043670A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Solar cell and solar cell module
JP2012119537A (en) * 2010-12-01 2012-06-21 Ulvac Japan Ltd Method of manufacturing photoelectric conversion device
JP2011181963A (en) * 2011-06-20 2011-09-15 Sanyo Electric Co Ltd Method of manufacturing solar cell module
CN102544181A (en) * 2012-02-28 2012-07-04 常州天合光能有限公司 Double-surface crystalline silicon solar cell structure and manufacturing process thereof
JP2014239104A (en) * 2013-06-06 2014-12-18 信越化学工業株式会社 Solar cell, solar cell module, and method for manufacturing the same
CN103646983A (en) * 2013-11-29 2014-03-19 常州天合光能有限公司 Back emitter symmetric hetero-junction solar cell and preparation method thereof
CN103646983B (en) * 2013-11-29 2016-09-07 常州天合光能有限公司 Emitters on back side symmetry heterojunction solar battery and preparation method thereof
CN108682701A (en) * 2018-05-07 2018-10-19 张家港协鑫集成科技有限公司 Solar cell and its manufacture craft
CN108682701B (en) * 2018-05-07 2021-06-04 张家港协鑫集成科技有限公司 Solar cell and manufacturing process thereof

Also Published As

Publication number Publication date
JP3781600B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
US11538945B2 (en) Solar cell
US10424685B2 (en) Method for manufacturing solar cell having electrodes including metal seed layer and conductive layer
KR101142861B1 (en) Solar cell and manufacturing method of the same
EP2353187B1 (en) Solar cell and method of manufacturing the same
KR20120031630A (en) Semiconductor device and manufacturing method thereof
KR20100068832A (en) Solar cell and manufacturing method thereof
KR101878397B1 (en) Solar cell and method for fabricating the same
KR101729745B1 (en) Solar cell and manufacturing method thereof
KR101699301B1 (en) Bifacial solar cell module
JP3781600B2 (en) Solar cell
KR101155890B1 (en) Solar cell and method for manufacturing the same
KR20110018651A (en) Solar cell and manufacturing method thereof
KR101708242B1 (en) Solar cell and manufacturing method thereof
KR100322708B1 (en) Method for fabricating self-voltage applying solar cell
KR101757887B1 (en) Solar cell
KR101757880B1 (en) Solar cell
KR102120120B1 (en) Solar cell and manufacturing method thereof
KR20160106038A (en) Solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees