JPS641955B2 - - Google Patents

Info

Publication number
JPS641955B2
JPS641955B2 JP4289878A JP4289878A JPS641955B2 JP S641955 B2 JPS641955 B2 JP S641955B2 JP 4289878 A JP4289878 A JP 4289878A JP 4289878 A JP4289878 A JP 4289878A JP S641955 B2 JPS641955 B2 JP S641955B2
Authority
JP
Japan
Prior art keywords
resin
printed wiring
copper foil
wiring board
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4289878A
Other languages
Japanese (ja)
Other versions
JPS54135364A (en
Inventor
Eiichi Tsunashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4289878A priority Critical patent/JPS54135364A/en
Publication of JPS54135364A publication Critical patent/JPS54135364A/en
Publication of JPS641955B2 publication Critical patent/JPS641955B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】 本発明は安価な樹脂材料を用いて金属箔との接
着強度が強く、十分なはんだ耐熱性を有する印刷
配線板の製造方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for manufacturing a printed wiring board that uses an inexpensive resin material, has strong adhesive strength with metal foil, and has sufficient solder heat resistance.

従来、印刷配線板の基体としてはフエノール樹
脂、エポキシ樹脂などの熱硬化性樹脂が主体であ
り、その供給は銅張積層板という形で供給されて
加工されている。四弗化エチレン樹脂,ポリイミ
ド樹脂などの熱可塑性樹脂はフイルムとして供給
されるが、銅箔の接着性がよくなく、手数のかか
る表面処理を必要とし、価格も熱硬化性樹脂から
成る積層板より上廻つていた。ポリエチレンテレ
フタレイト樹脂はポリエステルフイルムの名称で
供給される。これは安価であるが、はんだ耐熱性
が不足するため印刷配線板の基体として使えな
い。ポリアセタール樹脂もはんだ耐熱性の点で不
適格であり、ポリカーボネイト樹脂,ポリサルフ
オン樹脂,ポリフエニレンオキサイド樹脂などは
耐溶剤性の点で(例えば芳香族系溶剤のメチルエ
チルケトン)使用不適格であつた。銅箔を被着し
た積層板あるいはフイルムは、レジストの印刷、
選択的なエツチング、レジストの除去、孔加工な
どの各工程を経て作られるため、吸水−乾燥のサ
イクルが繰り返される。そのため、印刷配線板基
体の特性の不揃い、特性劣化を伴ないかつ製造量
が毎月1000平方米ともなると、製造に1週間以上
をも要するという問題点があつた。
Conventionally, thermosetting resins such as phenolic resins and epoxy resins have been mainly used as substrates for printed wiring boards, and these resins have been supplied and processed in the form of copper-clad laminates. Thermoplastic resins such as tetrafluoroethylene resin and polyimide resin are supplied as films, but they do not have good adhesion to copper foil, require time-consuming surface treatment, and are more expensive than laminates made of thermosetting resins. It was going around. Polyethylene terephthalate resin is supplied under the name polyester film. Although this material is inexpensive, it cannot be used as a substrate for printed wiring boards because of its lack of solder heat resistance. Polyacetal resins are also unsuitable for use in terms of soldering heat resistance, and polycarbonate resins, polysulfone resins, polyphenylene oxide resins, etc. are unsuitable for use in terms of solvent resistance (for example, the aromatic solvent methyl ethyl ketone). Laminated boards or films coated with copper foil can be used for resist printing,
Since it is made through various steps such as selective etching, resist removal, and hole drilling, the cycle of water absorption and drying is repeated. As a result, there was a problem in that the printed wiring board substrate had uneven characteristics and deteriorated characteristics, and if the production volume was 1,000 square meters per month, it would take more than a week to manufacture.

本発明の方法においては、安価なポリエチレン
テレフタレイト樹脂に着目し、そのはんだ耐熱性
をポリブチレンテレフタレイトとして改良された
樹脂を用いる。この種の樹脂を用いた難燃性モー
ルド樹脂は、1970年に米セラニーズ社から、また
1971年に米GE社および同イーストマンコダツク
社からそれぞれ発表されている。これはガラス粉
とかアスベスト粉を混じて機械的強度の温度特性
を改良したものであるが、印刷配線回路板として
の展開はみられなかつた。その理由は判然としな
いが、恐らく第1の理由として接着剤塗布銅箔と
接着しにくい事実(勿論銅箔のみにも接着しにく
い)また第2の理由として、はんだ耐熱性が充分
でないことにあつたと思われる。
In the method of the present invention, attention is paid to inexpensive polyethylene terephthalate resin, and a resin whose soldering heat resistance has been improved by changing it to polybutylene terephthalate is used. Flame-retardant molding resin using this type of resin was developed by Celanese Company in 1970.
It was announced in 1971 by GE and Eastman Kodak, respectively. This was made by mixing glass powder or asbestos powder to improve the mechanical strength and temperature characteristics, but it was not developed into a printed wiring circuit board. The reason for this is not clear, but the first reason is probably the fact that it is difficult to adhere to adhesive-coated copper foil (of course it is difficult to adhere to copper foil alone), and the second reason is that the solder heat resistance is not sufficient. It seems to be hot.

本発明はまず前記第1のおよび第2の原因を排
除することから始まる。まず第1の原因を排除す
るために公知の接続剤付銅箔はフエノール樹脂,
ブチラール樹脂あるいは合成ゴム系の接着剤を組
成の全部または一部に用いているから、接着性が
よくないことが判明した。つぎに圧延とか電着し
た銅箔を直接接着する方法もあまりよい結果が得
られなかつた。そして最後に、銅箔の裏面に液体
ホーニングによつて凹凸をつけた粗面を成型板に
圧接することによつて接着剤なしの接着が成型板
について可能である事を見出した。成型中に同時
に、銅箔とかアルミ箔の全面あるいは前記箔をダ
イスタンピングした形で接着することも可能であ
つたが、、成型板に対して成型後接着することも
可能であつた。そしてさらに成型とか銅箔接着に
失敗した樹脂を再使用することも可能である事を
見出した。これはまた導電ペイント,抵抗ペイン
ト導体の印刷に失敗した樹脂成型物も再生して使
用できる点で画期的な事実であつた。すなわち工
程不良品を再生可能とし、くずを外部に排出しな
いからである。銅箔裏面の粗面化部分に、亜酸化
銅処理を施こして置く事によつて前記粗面の長期
保管に耐える事も見出した。
The present invention begins by eliminating the first and second causes. First of all, in order to eliminate the first cause, the known copper foil with connecting agent is made of phenolic resin,
It has been found that adhesive properties are poor because butyral resin or synthetic rubber adhesives are used in all or part of the composition. Next, methods of directly adhering rolled or electrodeposited copper foil did not yield very good results. Finally, we discovered that it was possible to bond the molded plate without adhesive by pressing the rough surface of the copper foil, which had been made uneven by liquid honing, onto the molded plate. Although it was possible to bond the entire surface of the copper foil or aluminum foil or the foil in the form of die stamping at the same time during molding, it was also possible to bond the foil to the molding plate after molding. We also discovered that it is possible to reuse resin that has failed in molding or copper foil bonding. This was also an epoch-making fact in that resin moldings that failed to be printed with conductive paint or resistive paint conductors could be recycled and used. In other words, it is possible to recycle defective products in the process and no waste is discharged to the outside. It has also been found that by applying cuprous oxide treatment to the roughened portion on the back side of the copper foil, the roughened surface can withstand long-term storage.

次に第2の原因を排除するために、はんだ耐熱
の条件である260℃・10秒(デイツプソルダリン
グ)、350℃・2秒(はんだごて作業)は銅箔の非
粗面側に当てられる事を考慮すれば、銅箔粗面で
の熱放散と、粗面をおおう厚さ約1μmの亜酸化銅
層による熱バリヤ効果によつて熱の直撃を緩和す
ることができる。さらに樹脂中にガラス粉,アス
ベスト粉などを混じると樹脂自体の熱変形温度が
見掛上高くなり、5Kg/cm2程度の応力負荷であれ
ば、ガラス粉30%で232℃の熱変形温度が得られ
る。(試験法はAGTMのD648)。そして応力負荷
が殆んどない条件下では350℃3秒,260℃・20秒
の無熱変形性を有するようになることを見出し
た。銅箔との接着を樹脂成型時おこなつてエツチ
ング加工をおこなつて導体としたり、樹脂中のガ
ラス粉を少なくしてフレキシブル性配線板とした
りすることも可能であつた。一担樹脂板として成
型後の銅箔接着は200℃、曲げ加工は80〜150℃の
加温下で可能であり、ポストフオーミング印刷配
線板としても使用できる。また銅箔導体を接着す
るときフラツシユな導体として押し込む事もでき
る。
Next, in order to eliminate the second cause, the soldering heat resistance conditions of 260℃ for 10 seconds (dip soldering) and 350℃ for 2 seconds (soldering iron work) are applied to the non-rough side of the copper foil. Considering the fact that the copper foil is exposed to heat, direct heat damage can be alleviated by heat dissipation on the rough surface of the copper foil and the thermal barrier effect of the cuprous oxide layer with a thickness of about 1 μm covering the rough surface. Furthermore, if glass powder, asbestos powder, etc. are mixed into the resin, the heat distortion temperature of the resin itself will apparently increase.If the stress load is about 5 kg/cm2, the heat distortion temperature will be 232℃ with 30% glass powder. can get. (Test method is AGTM D648). We also found that under conditions with almost no stress load, it has a non-thermal deformability of 350°C for 3 seconds and 260°C for 20 seconds. It was also possible to make a conductor by adhering copper foil during resin molding and etching it, or to make a flexible wiring board by reducing the amount of glass powder in the resin. Copper foil can be bonded at 200°C after being molded as a single resin plate, and bending can be performed at 80-150°C, and can also be used as a post-forming printed wiring board. It can also be pressed in as a flat conductor when bonding copper foil conductors.

実施例 第1図に示すように米セラニーズ社のポリブチ
レンテレフタレイト樹脂のガラス粉30%を含む成
型用ペレツト1と金型2とを用意し、射出成形機
によつて成型する。この際、ランナー直径3.0mm,
ランナー長60mm,ゲート直径1.0mm,ランドの長
さ1.0mmのピンゲートを用い、温度240℃,射出圧
力750Kg/cm2で、厚さ1.6mmで10×20cmの成型板4
を得た。樹脂の非流入側に銅箔5として粗面と亜
酸化銅処理面とを有する側を向けて配置してピン
3により形成した孔をテンテイングした形の導体
層5を形成することもできた。
EXAMPLE As shown in FIG. 1, a molding pellet 1 containing 30% glass powder of polybutylene terephthalate resin manufactured by Celanese Co., Ltd. and a mold 2 are prepared and molded using an injection molding machine. At this time, the runner diameter is 3.0mm,
Using a pin gate with a runner length of 60 mm, a gate diameter of 1.0 mm, and a land length of 1.0 mm, a molded plate 4 of 10 x 20 cm with a thickness of 1.6 mm was prepared at a temperature of 240°C and an injection pressure of 750 Kg/cm2.
I got it. It was also possible to form a conductor layer 5 in the form of tenting holes formed by pins 3 by arranging the copper foil 5 with its rough surface and cuprous oxide treated surface facing the non-inflow side of the resin.

以上のように、本発明の方法によれば、金属箔
の一方の面に粗面化処理を施し、この面に樹脂基
体を射出成形して接着させるので、接着剤を使わ
ずに、金属箔と樹脂とを強固に接着することがで
きる。さらに、金属箔の樹脂側を粗面化すること
により、金属箔の非粗面側がはんだ浴等の熱にさ
らされたときに粗面側での熱放散があり、印刷配
線板の耐熱性が向上する。したがつて、従来印刷
配線板として利用できなかつたポリブチレンテレ
フタレイトが使用可能となり、印刷配線板を安価
に提供することができる。さらに、金属箔の粗面
側を亜酸化銅処理すれば、粗面のままでも長期間
保存でき、またはんだ浴等の熱に対して樹脂側へ
伝導しにくくなるため、耐熱性が一段と高められ
る。
As described above, according to the method of the present invention, one surface of the metal foil is subjected to surface roughening treatment, and a resin substrate is injection molded to this surface and bonded. and resin can be firmly bonded. Furthermore, by roughening the resin side of the metal foil, when the non-rough side of the metal foil is exposed to heat from a solder bath, heat dissipates from the rough side, improving the heat resistance of the printed wiring board. improves. Therefore, polybutylene terephthalate, which could not be used for printed wiring boards in the past, can be used, and printed wiring boards can be provided at low cost. Furthermore, if the rough side of the metal foil is treated with cuprous oxide, it can be stored for a long time even with the rough surface, and heat resistance from soldering baths etc. is less likely to be conducted to the resin side, further increasing heat resistance. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例を適用して製
造している印刷配線板の断面図である。 4……成型板、5……導体箔。
FIG. 1 is a sectional view of a printed wiring board manufactured by applying an embodiment of the method of the present invention. 4...Molded plate, 5...Conductor foil.

Claims (1)

【特許請求の範囲】 1 導電性を有する金属箔の一方の面に粗面化処
理を施し、この面にポリブチレンテレフタレイト
系の樹脂エラストマーよりなる樹脂基体を射出成
形して接着させ、フレキシブル印刷配線板を形成
することを特徴とする印刷配線板の製造方法。 2 金属箔の一方の面を粗面化処理した後に亜酸
化銅処理を施すことを特徴とする特許請求の範囲
第1項記載の印刷配線板の製造方法。
[Scope of Claims] 1. One surface of a conductive metal foil is roughened, and a resin base made of a polybutylene terephthalate resin elastomer is injection molded and adhered to this surface to create a flexible material. A method for manufacturing a printed wiring board, the method comprising forming a printed wiring board. 2. The method for manufacturing a printed wiring board according to claim 1, characterized in that one surface of the metal foil is roughened and then subjected to cuprous oxide treatment.
JP4289878A 1978-04-11 1978-04-11 Printed circuit board Granted JPS54135364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4289878A JPS54135364A (en) 1978-04-11 1978-04-11 Printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4289878A JPS54135364A (en) 1978-04-11 1978-04-11 Printed circuit board

Publications (2)

Publication Number Publication Date
JPS54135364A JPS54135364A (en) 1979-10-20
JPS641955B2 true JPS641955B2 (en) 1989-01-13

Family

ID=12648840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4289878A Granted JPS54135364A (en) 1978-04-11 1978-04-11 Printed circuit board

Country Status (1)

Country Link
JP (1) JPS54135364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115556U (en) * 1988-01-29 1989-08-03

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057994A (en) * 1983-09-09 1985-04-03 松下電器産業株式会社 Printed circuit board with printing resistor
WO2004041533A1 (en) 2002-11-08 2004-05-21 Taisei Plas Co., Ltd. Composite of aluminum alloy and resin composition and process for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946786B2 (en) * 1975-03-26 1984-11-14 帝人株式会社 Adhesion method between metal and polyester sheet
JPS5825591B2 (en) * 1975-11-26 1983-05-28 東レ株式会社 Hifukukinzokuseikeihin no seizouhouhou

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115556U (en) * 1988-01-29 1989-08-03

Also Published As

Publication number Publication date
JPS54135364A (en) 1979-10-20

Similar Documents

Publication Publication Date Title
US5733598A (en) Flexible wiring board and its fabrication method
JP2006313834A (en) Method of manufacturing wiring circuit board
JPS641955B2 (en)
JPH0590740A (en) Sheet for transferring conductor circuit, its manufacture, printed wiring body utilizing it, and its manufacture
JPH07106728A (en) Rigid-flexible printed wiring board and manufacture thereof
JPH0964514A (en) Production of printed wiring board
KR100381341B1 (en) Attatchment method of flexible printed circuit board using adhesive
US5421082A (en) Method of forming a decal having conductive paths thereon
JPS622592A (en) Manufacture of smoothing type circuit module
JPH0119414Y2 (en)
JPH09331136A (en) Printed wiring board with conductive paste
JP2551196B2 (en) Transfer sheet for injection molded printed circuit boards
JPH0220155B2 (en)
JPS5917997B2 (en) printed wiring board
JPS60189987A (en) Laminated board with adhesive
JPH0410493A (en) Manufacture of adhesive-coated laminated plate for wiring board by additive method
JPS6134377B2 (en)
JP2522968B2 (en) Printed circuit transfer foil and manufacturing method thereof
JPS61276292A (en) Circuit transfer body and transfer method
JPS5949720B2 (en) Manufacturing method of metal surface board
JPH03142994A (en) Manufacture of transfer sheet for injection molded printed wiring board
JPS5951594A (en) Method of producing printed board
JPS5989493A (en) Method of producing circuit board
JPS62237793A (en) Manufacture of printed wiring board
JPS6030116B2 (en) printed wiring board