JPS6390591A - Gasifying method for coal - Google Patents

Gasifying method for coal

Info

Publication number
JPS6390591A
JPS6390591A JP23466186A JP23466186A JPS6390591A JP S6390591 A JPS6390591 A JP S6390591A JP 23466186 A JP23466186 A JP 23466186A JP 23466186 A JP23466186 A JP 23466186A JP S6390591 A JPS6390591 A JP S6390591A
Authority
JP
Japan
Prior art keywords
section
coal
combustion
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23466186A
Other languages
Japanese (ja)
Inventor
Shuntaro Koyama
俊太郎 小山
Atsushi Morihara
淳 森原
Shinji Tanaka
真二 田中
Mitsuhiro Matsuo
松尾 光広
Tomohiko Miyamoto
知彦 宮本
Yoshiki Noguchi
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP23466186A priority Critical patent/JPS6390591A/en
Publication of JPS6390591A publication Critical patent/JPS6390591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Fuel Combustion (AREA)

Abstract

PURPOSE:To obtain a gas, containing methane gas and having a high calorific value, by carrying out jetting layer gasification of coals under conditions, e.g. adjusting feed ratio of a gasifying agent to coal to a lower rate than a partial combustion ratio in a reducing part, increasing the reaction temperature to a higher temperature than the melting temperature of coal ash, etc. CONSTITUTION:The feed ratio of a gasifying agent, e.g. air, oxygen-enriched air, etc., to coal in a reducing part is adjusted to a lower rate than a partial combustion ratio and the reaction temperature is increased to a higher temperature than the melting temperature of coal ash. The feed ratio of the gasifying agent to the coal in a combustion part is kept under condition between partial combustion and complete combustion and the reaction temperature is set at a higher temperature than the melting temperature of the coal ash to gasify coals. The amount of char scattering from the reducing part is remarkably reduced and the amount of scattered particles from the combustion part is minimized to prevent the deterioration of thermal efficiency by external circulation of char.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石炭類のガス化方法に係わり、特に熱効率を向
上するのに好適な噴流層ガス化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a coal gasification method, and particularly to a spouted bed gasification method suitable for improving thermal efficiency.

〔従来の技術〕[Conventional technology]

石炭を石炭灰の溶融温度以上の高温下でガス化すると、
水素ガス、−酸化炭素ガス等の有用ガスの収率が高くな
るので、その技術の実用化が精力的に進められている。
When coal is gasified at a high temperature above the melting temperature of coal ash,
Since the yield of useful gases such as hydrogen gas and carbon oxide gas is increased, efforts are being made to put this technology into practical use.

噴流層方式と呼ばれるこの方式では一般に酸素または空
気等のガス化剤を他の方式により多く使用し、高温でガ
ス化するため、メタンガス等の炭化水素系のガスは大部
分分解することから1発熱量の高いガスは得にくい、こ
のため、噴流層方式においても発熱量の高いガスを得よ
うとする試みが為されている。
This method, called the spouted bed method, generally uses more gasifying agents such as oxygen or air than other methods, and gasifies at high temperatures, so hydrocarbon gases such as methane gas are mostly decomposed, resulting in only one heat generation. It is difficult to obtain a large amount of gas, so attempts have been made to obtain a gas with a high calorific value using the spouted bed method.

Bi−gas法と呼ばれる方式では、まず石炭を熱分解
(高温乾留)によりガス化し、続いてこの時生成するチ
ャーを酸素と灰の溶融温度以上の高温下で反応させる。
In a system called the Bi-gas method, coal is first gasified by thermal decomposition (high-temperature carbonization), and then the char produced at this time is reacted with oxygen at a high temperature higher than the melting temperature of ash.

また特公昭60−30356号及び特開昭54−325
08号に記載のように石炭を二箇所又はそれ以上に分岐
し、還元部と呼ばれる炉上部には石炭のみか又は比較的
少量の空気と一緒に供給し。
Also, Japanese Patent Publication No. 60-30356 and Japanese Patent Publication No. 54-325
As described in No. 08, coal is branched into two or more locations, and the upper part of the furnace, called the reduction section, is supplied with coal alone or together with a relatively small amount of air.

燃焼部と呼ばれる炉下部には石炭と比較的多量の空気を
供給すると同時に、還元部で生成するチャーを燃焼部に
戻しガス化する0石炭を熱分解するか又は少量のガス化
剤と一緒にガス化するとメタンガスが生成できるので1
発熱量の高いガスが得られる。
Coal and a relatively large amount of air are supplied to the lower part of the furnace called the combustion section, and at the same time, the char produced in the reduction section is returned to the combustion section and gasified. When gasified, methane gas can be produced, so 1
Gas with high calorific value can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような方式では、熱分解部又は還元部(以後、還元
部と呼ぶ、)でチャーが生成するので、このチャーをガ
ス化炉出口で捕集し、溶融部又は燃焼部(以後、燃焼部
と呼ぶ、)へ戻す操作が必要となる。この時、ガス化炉
出口におけるチャーの温度は800〜1100℃である
。この高温チャーは一旦ガス化炉の外へ出て循環操作が
可能になる300〜500℃温度まで冷却されるので、
その顕熱が失われ、熱効率が低下するという問題が生じ
る。また、燃焼部へ戻されたチャーはここで大部分がガ
ス化し、また灰は大部分溶融しスラグとなって炉外部に
排出されることが望ましいが、一部のチャーはそのよう
にはならず、再び還元部へ飛散する。その結果、チャー
の循環量は増大する。li環量が一定となった定常状態
では、循環粒子の多くは灰分である。従って多量の灰分
の加熱。
In this type of system, char is generated in the pyrolysis section or reduction section (hereinafter referred to as the reduction section), and this char is collected at the outlet of the gasifier and transferred to the melting section or combustion section (hereinafter referred to as the combustion section). ) is required. At this time, the temperature of the char at the outlet of the gasifier is 800 to 1100°C. This high-temperature char once exits the gasifier and is cooled to a temperature of 300 to 500 degrees Celsius, which enables circulation operation.
A problem arises in that the sensible heat is lost and thermal efficiency is reduced. In addition, it is desirable that most of the char returned to the combustion section be gasified here, and that most of the ash be melted and discharged as slag, but some chars do not do this. Then, it scatters to the reduction section again. As a result, the amount of circulating char increases. In a steady state where the amount of li rings is constant, most of the circulating particles are ash. Hence the heating of large amounts of ash.

冷却を繰り返すことになり、熱損失量の増大を招く、さ
らに、燃焼部へ低温の粒子が多量に供給されると、炉の
温度が低下するので石炭灰を溶融するため過剰のガス化
剤を必要とし、ガス化効率の低下をもたらす。
This results in repeated cooling, which increases the amount of heat loss.Furthermore, when a large amount of low-temperature particles are supplied to the combustion section, the temperature of the furnace decreases, so it is necessary to use excess gasifying agent to melt the coal ash. This results in a decrease in gasification efficiency.

すなわち、生成ガス中にメタンガスを含ませることによ
り発熱量を高めようとするため、還元部でのガス化剤量
をへらす結果、チャーが多量に生成し、ガス化炉外での
循環が必要となり、運転操作及び熱効率の点で好ましく
ない状況が発生する。
In other words, in order to increase the calorific value by including methane gas in the generated gas, reducing the amount of gasifying agent in the reducing section results in a large amount of char being generated, which requires circulation outside the gasifier. , resulting in unfavorable conditions in terms of operation and thermal efficiency.

このような問題の解決法の一つとして、燃焼部に供給さ
れた粒子を完全にガス化し、灰を完全に溶融スラグにし
てて炉外へ排出することが考えられる。このため、前記
技術では、燃焼部の石炭バーナを炉の円周方向に配置し
、旋回流により粒子をガス化炉内に閉じ込めたり、燃焼
部と還元部の間に絞りを設け、燃焼部から還元部へ飛散
する量を極力抑えるようにしたり、これらの効果を併用
したりしている。しかし、その場合でも還元部からの飛
散に対しては考慮されていない。
One possible solution to this problem is to completely gasify the particles supplied to the combustion section and completely turn the ash into molten slag before discharging it outside the furnace. For this reason, in the above technology, the coal burners in the combustion section are arranged in the circumferential direction of the furnace, and the particles are trapped in the gasifier by swirling flow, or a throttle is provided between the combustion section and the reduction section, so that the coal burners are removed from the combustion section. The amount scattered to the reducing section is suppressed as much as possible, and these effects are used in combination. However, even in this case, no consideration is given to scattering from the reducing section.

特願昭57−146082号では石炭の粒子径を選定し
、還元部で石炭を充分反応させることにより生成チャー
の量を著しく減らし、チャーの循環量が熱効率に与える
影響を低減すると同時に1粒子径の選定により燃焼部で
も大部分の灰がスラグに転化するようにしているが、反
応性の低い石炭に対して更に改良する必要がある。米国
特許3,864,100号には生成したチャーをガス化
炉の外部に排出させず、ガス化炉内に設置したサイクロ
ンでチャーを捕集し、ガス化炉内の燃焼部で処理する方
法が開示されている。この方法においても、炉内サイク
ロンの脚部にはバルブが取り付けられており、その作動
条件から考えて高温のチャーを冷却するという制約を免
れるものではない。
In Japanese Patent Application No. 57-146082, the particle size of coal is selected and the amount of generated char is significantly reduced by sufficiently reacting the coal in the reduction section, reducing the influence of the amount of char circulation on thermal efficiency, and at the same time reducing the particle size of 1 particle. Although most of the ash is converted to slag in the combustion section by selecting , it is necessary to make further improvements for coal with low reactivity. U.S. Patent No. 3,864,100 discloses a method in which the generated char is not discharged to the outside of the gasifier, but is collected by a cyclone installed inside the gasifier, and then processed in the combustion section of the gasifier. is disclosed. Even in this method, a valve is attached to the leg of the in-furnace cyclone, and considering its operating conditions, it is not free from the restriction of cooling the high-temperature char.

このように、噴流層ガス化炉において発熱量の高いガス
を得ようとする従来方法ではチャーの外部循環を必要と
するため、熱効率的に不利な点が7存在した。
As described above, the conventional method for obtaining gas with a high calorific value in a spouted bed gasifier requires external circulation of char, which has seven disadvantages in terms of thermal efficiency.

本発明の目的は、チャーの外部循環による熱効率低下を
防止しながら、噴流層ガス化でもメタンガスを含む発熱
量の高いガスを得る石炭ガス化方法を提供することにあ
る。
An object of the present invention is to provide a coal gasification method that obtains gas with a high calorific value including methane gas even in spouted bed gasification while preventing a decrease in thermal efficiency due to external circulation of char.

〔問題点を解決するための手段〕[Means for solving problems]

このため9本発明では還元部のガス化剤と石炭の供給量
の比はメタンガスが生成する条件に抑えた状態で、還元
部の温度を石炭灰の溶融温度以上にし、還元部でも石炭
灰のスラグ化を起こさせるようにした。更に、従来のよ
うに燃焼部の石炭バーナを接線方向に向けて配置し、還
元部と燃焼部の間に絞りを設けるのみならず、還元部の
石炭バーナを炉の接線方向に向けて配置し、この位置よ
り上方のガス出口にも断面積が還元部の断面積より小さ
くなるように絞り部を設けるようにした。
Therefore, in the present invention, the ratio of the supply amount of the gasifying agent to the coal in the reducing section is suppressed to a condition where methane gas is generated, and the temperature of the reducing section is set to be higher than the melting temperature of coal ash. Made it possible to cause slagging. Furthermore, in addition to arranging the coal burners in the combustion section tangentially to the furnace and providing a throttle between the reducing section and the combustion section as in the past, the coal burners in the reducing section are arranged tangentially to the furnace. A constriction part is also provided at the gas outlet above this position so that the cross-sectional area is smaller than the cross-sectional area of the reducing part.

〔作用〕[Effect]

このため、還元部から飛散するチャーの量を著しく低減
できると同時に、燃焼部からの飛散粒子量も極力抑える
ことが可能となり、チャーの循環量が低減し、ガス化効
率、操作量の制御法に与える影響を最小限に抑えること
ができる。また、生成ガスの発熱量もチャーを循環する
従来法と同等のものが得られる。
For this reason, it is possible to significantly reduce the amount of char scattered from the reduction section, and at the same time, it is also possible to minimize the amount of particles scattered from the combustion section, reducing the amount of char circulation, improving gasification efficiency, and controlling the amount of operation. impact can be minimized. Furthermore, the calorific value of the produced gas is equivalent to that of the conventional method in which char is circulated.

従来、メタンガスを発生させるため還元部の温度を比較
的低くする必要があり、このためガス化剤の量を少なく
して操作した。その結果、チャーが生成した。当然のこ
とながら石炭中の灰は溶けることはないので、旋回流を
形成してもガス化炉壁に付着せず飛散が起きた0本発明
は、灰の溶融温度以上でメタンガスを発生させ、かつ、
チャーのガス化を充分行わせることにより、ガス化剤の
少ない還元部でも灰を溶融スラグ化するものである1本
発明は、メタンガスの生成条件及びチャーを飛散させな
い条件の二つの知見に基づいてなされた。 第5図は温
度及び空気供給量/石炭供給量(以後、空気比と呼ぶ、
)とメタンガスの生成量の関係である。この図は電気炉
による加熱により、温度と空気比を独立に変化させたと
きの結果である。メタンガスは石炭の熱分解により生成
するが、ガス化剤の量が多くなるにつれその量は減少す
る。一方、温度を高くするとメタンガスはわずかに減少
する。この図から、メタン量は空気比に支配されること
がわかる。従って、一定量のメタンガスを発生させるに
は空気比を特定の値以下にする必要がある。この空気比
は部分燃焼の量論比以下がよい0通常は部分燃焼の量論
比付近の条件でガス化されるが、メタンガスをより多く
発生させるためにはこの値は大き過ぎる。酸素のない状
態で熱分解したときが最も多く発生するが、温度が低く
なりチャーが発生する。このチャーを還元部で少しでも
多くガス化するためには温度はできるだけ高いほうがよ
い、従来法では発生したチャーは還元部なかなかガス化
できなかった。しがし、空気比が小さくても、温度が高
く、がっ水蒸気や二酸化炭素等のチャーと反応するガス
があればチャーは速やかにガス化する。温度が溶融温度
以上であれば灰は溶融スラグとなる。チャーのガス化が
進まず、未反応のカーボンが一定量以上残ると、たとえ
温度が溶融温度以上でも灰は溶融することはない、従来
法の還元部では空気比を小さくした結果、その空気比で
一義的に決定される温度となる。ガス化炉壁を水冷管又
は耐火、断熱材付の水冷管で構成している場合には、発
生した熱の一部を水冷管を通して水蒸気として回収する
ため、ガス化炉内の温度は更に低下する1発電用のガス
化炉ではできるだけ有効に水蒸気を回収する必要がある
ため、水冷管からの熱逃散量は多きく、還元部の温度が
灰の溶融温度以下になる最大の理由となっている。この
場合1本発明では、少なくとも還元部及び燃焼部を含む
ガス化部では炉壁からの熱回収量は最小限に抑えること
により、温度の低下を防ぐ、その結果、空気比が小さく
ても1500〜1800’Cの高温にでき、水蒸気や二
酸化炭素等によりチャーのガス化を速やかにおこし、灰
を溶かすことができる。
Conventionally, in order to generate methane gas, it was necessary to keep the temperature of the reducing section relatively low, and for this reason, the amount of gasifying agent was reduced. As a result, char was generated. Naturally, the ash in the coal does not melt, so even if a swirling flow is formed, it does not adhere to the gasifier wall and scatters.The present invention generates methane gas at a temperature higher than the melting temperature of the ash, and,
By sufficiently gasifying the char, the ash can be turned into molten slag even in the reducing section with a small amount of gasifying agent.1 The present invention is based on two findings: the conditions for generating methane gas and the conditions for not scattering the char. It was done. Figure 5 shows temperature and air supply amount/coal supply amount (hereinafter referred to as air ratio).
) and the amount of methane gas produced. This figure shows the results when the temperature and air ratio were changed independently by heating with an electric furnace. Methane gas is produced by thermal decomposition of coal, but the amount decreases as the amount of gasifying agent increases. On the other hand, increasing the temperature slightly reduces methane gas. This figure shows that the amount of methane is controlled by the air ratio. Therefore, in order to generate a certain amount of methane gas, it is necessary to keep the air ratio below a certain value. This air ratio should preferably be less than or equal to the stoichiometric ratio for partial combustion. Normally, gasification is performed under conditions near the stoichiometric ratio for partial combustion, but this value is too large in order to generate more methane gas. Most occur when thermal decomposition occurs in the absence of oxygen, but as the temperature drops, char is generated. In order to gasify as much of this char as possible in the reducing section, it is better to keep the temperature as high as possible; in conventional methods, the generated char could not easily be gasified in the reducing section. However, even if the air ratio is small, if the temperature is high and there is a gas that reacts with the char, such as water vapor or carbon dioxide, the char will quickly gasify. If the temperature is above the melting temperature, the ash becomes molten slag. If the gasification of the char does not proceed and a certain amount of unreacted carbon remains, the ash will not melt even if the temperature exceeds the melting temperature. The temperature is uniquely determined by . If the gasifier wall is constructed of water-cooled pipes or water-cooled pipes with fireproof and heat-insulating materials, part of the generated heat is recovered as steam through the water-cooled pipes, which further reduces the temperature inside the gasifier. In a gasifier for power generation, it is necessary to recover steam as effectively as possible, so a large amount of heat escapes from the water-cooled pipes, and this is the biggest reason why the temperature in the reducing section falls below the melting temperature of the ash. There is. In this case 1, in the present invention, the amount of heat recovered from the furnace wall is minimized in the gasification section including the reduction section and the combustion section to prevent the temperature from decreasing.As a result, even if the air ratio is small, the It can be heated to a high temperature of ~1800'C, and the char can be quickly gasified by water vapor, carbon dioxide, etc., and the ash can be melted.

以上が空気比が少なくても灰を溶融できることの理由で
ある0次に、溶融スラグを飛散させない方法について説
明する。還元部において1石炭バーすを接線方向に向け
て配置することにより、ガス化炉中にガス、粒子の旋回
流が形成できる。しかし、ガスは全体として上昇するの
で粒子は旋回しながら上昇し、ガス化炉の出口に向かう
、ガス。
The above is the reason why ash can be melted even if the air ratio is small. Next, a method for preventing molten slag from scattering will be explained. By arranging one coal bar in the tangential direction in the reduction section, a swirling flow of gas and particles can be formed in the gasifier. However, as the gas as a whole rises, the particles swirl and rise, heading towards the outlet of the gasifier.

粒子が上昇する途中に、断面積が急に縮小された箇所が
あると、ここで圧力差が生じる。ガスが旋回運動をして
いる場合、この圧力差は旋回運動を増長するように作用
する。その結果、粒子の旋回速度は増大し遠心力が増す
、従って粒子はガスの流れから分離し炉内に長く留まる
。この間にガス化され、灰は溶けて炉壁に付着する。こ
のため還元部から飛び出る粒子量はわずかで、しかもこ
の粒子中のカーボン量は少ない。
If there is a point on the way up where the cross-sectional area of the particle suddenly decreases, a pressure difference will occur at that point. If the gas is in a swirling motion, this pressure difference acts to increase the swirling motion. As a result, the swirling speed of the particles increases and the centrifugal force increases, so that the particles separate from the gas flow and remain in the furnace longer. During this time, it is gasified and the ash melts and adheres to the furnace walls. Therefore, the amount of particles that fly out from the reducing section is small, and the amount of carbon in these particles is also small.

一方、燃焼部においても、還元部と同様旋回流により粒
子は炉内に長く留まると同時に、高温度で操作するため
、灰が溶は炉壁に付着する。このスラグは炉壁を伝わっ
て炉の底から冷却部に滴下する。還元部と燃焼部の間の
断面積を縮小することにより、前記と同様の原理により
燃焼部に留まる時間が長い上に、灰が溶けることから、
燃焼部から還元部への飛散粒子量は極めて少なくなる。
On the other hand, in the combustion section, particles remain in the furnace for a long time due to swirling flow, as in the reduction section, and at the same time, since the operation is carried out at high temperatures, molten ash adheres to the furnace walls. This slag travels along the furnace wall and drips from the bottom of the furnace into the cooling section. By reducing the cross-sectional area between the reducing section and the combustion section, the ash stays in the combustion section for a longer time based on the same principle as above, and the ash melts.
The amount of particles scattered from the combustion section to the reduction section becomes extremely small.

以上の原理により、従来の噴流層ガス化炉が持っていた
高い発熱量のガスを得ることによる欠点を軽減できる。
According to the above principle, the drawbacks of conventional spouted bed gasifiers due to the fact that they cannot obtain gas with a high calorific value can be alleviated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

微粉炭1はガス化炉2の還元部3及び燃焼部4に供給さ
れる。同時に空気又は酸素含有ガス等のガス化剤5も還
元部3及び燃焼部4に供給される。
Pulverized coal 1 is supplied to a reduction section 3 and a combustion section 4 of a gasifier 2. At the same time, a gasifying agent 5 such as air or oxygen-containing gas is also supplied to the reducing section 3 and the combustion section 4.

この場合、ガス化剤と石炭の供給量割合は燃焼部より還
元部の方を小さくする。還元部と燃焼部の間に下段絞り
部6、また還元部の石炭バーナ上部に上段絞り部7が設
けである。還元部の石炭バーナは複数本を円周方向に向
けてv1置され、炉内に旋回流が形成される。ここに供
給された石炭は石炭灰の溶融温度以上の条件でガス化さ
れる。生成したチャーは旋回しながら還元部に長く留ま
りこの間に燃焼部4で生成した。水蒸気、二酸化炭素に
富む高温のガス20と接触し、充分ガス化され、灰分が
多い粒子となり、溶けて炉壁に付着する。
In this case, the ratio of gasification agent to coal supply is made smaller in the reduction section than in the combustion section. A lower throttle section 6 is provided between the reducing section and the combustion section, and an upper throttle section 7 is provided above the coal burner in the reducing section. A plurality of coal burners in the reduction section are arranged in the v1 direction in the circumferential direction, and a swirling flow is formed in the furnace. The coal supplied here is gasified under conditions above the melting temperature of coal ash. The generated char remained in the reduction section for a long time while swirling, and was generated in the combustion section 4 during this time. It comes into contact with a high-temperature gas 20 rich in water vapor and carbon dioxide, and is sufficiently gasified to form particles with a high ash content, which are melted and adhered to the furnace wall.

炉壁を伝わって流下し、下段絞り部6から燃焼部へ滴下
する。還元部4と燃焼部3は耐火、断熱材または水冷管
の表面にこれらを張り付けた構造である。水冷管は熱交
換器の役目となる一方、耐火材の表面が冷えるため材料
をガス及び溶融スラブによる腐食から守ることができる
。この場合、炉内で発生した熱は炉壁を伝わって逃げる
ことになるが、断熱材の厚みや熱交換器の蒸気条件を調
節することにより熱交換量を最/11限に抑え、炉内の
温度が灰の溶融温度より小さくならないようにする。こ
のため、還元部の温度は1500〜1700℃と灰の溶
融温度以上となる。
It flows down along the furnace wall and drips from the lower constriction section 6 to the combustion section. The reducing section 4 and the combustion section 3 have a structure in which they are pasted on the surface of a fireproof or insulating material or a water-cooled pipe. The water-cooled tubes act as heat exchangers, while cooling the refractory surface and protecting the material from corrosion by gases and molten slabs. In this case, the heat generated in the furnace will escape through the furnace walls, but by adjusting the thickness of the insulation material and the steam conditions of the heat exchanger, the amount of heat exchanged can be suppressed to the 11th limit. temperature should not be lower than the melting temperature of the ash. Therefore, the temperature of the reducing section is 1,500 to 1,700°C, which is higher than the melting temperature of the ash.

還元部でわずかに残った粒子8はガス化炉2から生成し
たガス9と一緒に排出され、ガス化炉の熱回収部19へ
はいる。熱回収部19は水冷管または水冷管に僅かに耐
火材を張り付けた構造になっている。サイクロ10で捕
集される。生成ガス9はその後ガス精製工程(ここでは
図示していない)へ導かれる。捕集された粒子8は一旦
、サイクロンホッパ11にたまり、その後フィーダ12
で定量され、水蒸気又は生成ガス等による気流搬送によ
りガス化炉2の燃焼部4へ供給される。燃焼部4では石
炭及び粒子8がともにガス化される。
The few particles 8 remaining in the reduction section are discharged from the gasifier 2 together with the generated gas 9, and enter the heat recovery section 19 of the gasifier. The heat recovery section 19 has a structure in which a water-cooled pipe or a water-cooled pipe is slightly covered with a refractory material. Collected by Cyclo 10. The produced gas 9 is then led to a gas purification step (not shown here). The collected particles 8 are temporarily accumulated in the cyclone hopper 11, and then transferred to the feeder 12.
and is supplied to the combustion section 4 of the gasifier 2 by airflow conveyance using water vapor, generated gas, or the like. In the combustion section 4, both coal and particles 8 are gasified.

燃焼部の石炭バーナも複数本を円周方向に向け、炉内に
旋回流が形成されるようにする。燃焼部の温度は160
0〜1900’Cと灰の溶融温度以上とする。溶融スラ
グは遠心力により壁側に押しやられ、炉壁に付着し、こ
こを伝わって流下し、燃焼部4の底18からスラグ冷却
部14に滴下する。
A plurality of coal burners in the combustion section are also oriented in the circumferential direction to form a swirling flow inside the furnace. The temperature of the combustion part is 160
0 to 1900'C, above the melting temperature of ash. The molten slag is pushed toward the wall by the centrifugal force, adheres to the furnace wall, flows down along this wall, and drips from the bottom 18 of the combustion section 4 into the slag cooling section 14.

スラグ冷却部14には水が溜められているので。Because water is stored in the slag cooling section 14.

滴下したスラグは急冷され固化する。固化したスラグ1
7はロックホッパシステム等の方法により排出される。
The dropped slag is rapidly cooled and solidified. solidified slag 1
7 is discharged by a method such as a lock hopper system.

以上が本発明の全体構成である。第2図に上段絞り部と
石炭バーナ付近の詳細を示す1石炭バーナ21は複数第
3図に示すように円周方向に向けて設置しである。各バ
ーナの吹き出し方向の線に外接する円を旋回円21と呼
びその直径を旋回円径と呼ぶ、ガス化炉内の粒子は遠心
力により壁側に押しやられ、旋回運動を続ける。ガス全
体は上昇しているので、粒子も旋回しながら上昇する。
The above is the overall configuration of the present invention. A plurality of coal burners 21 are shown in FIG. 2 in detail around the upper constriction section and the coal burners, and are installed in the circumferential direction as shown in FIG. The circle circumscribing the line in the blowing direction of each burner is called the swirling circle 21, and its diameter is called the diameter of the swirling circle.The particles in the gasifier are pushed toward the wall by centrifugal force and continue their swirling motion. Since the entire gas is rising, the particles also rise while swirling.

ガス出口のガス速度分布を第4図(a)、(b) 。Figure 4 (a) and (b) show the gas velocity distribution at the gas outlet.

(◇)に示す、(a)は円周方向速度分布、(b)は軸
方向速度分布、(c)は半径方向速度分布をそれぞれ表
す、ガス化部の出口が絞っであると、円周方向速度は壁
側で小さくなり炉の中心側に向かうほど大きくなる。し
かし更に中心寄りになると、旋回方向速度は小さくなる
一方、軸方向速度は大きくなり、半径方向速度も中心方
向の値をとる。従って、絞りがない場合は壁側を旋回し
ながら上昇してきた粒子はそのまま炉を出てゆくが。
(◇) shows the velocity distribution in the circumferential direction, (b) shows the velocity distribution in the axial direction, and (c) shows the velocity distribution in the radial direction. The directional velocity decreases toward the wall and increases toward the center of the furnace. However, when moving further toward the center, the speed in the turning direction decreases, while the speed in the axial direction increases, and the speed in the radial direction also takes a value toward the center. Therefore, if there is no throttle, the particles that ascend while swirling along the wall will exit the furnace as is.

絞りがあるとそこで炉の中心側に向かおうとする。If there is a restriction, it will try to move toward the center of the furnace.

しかし、中心にいくほど円周方向速度が速くなり、遠心
力が大きくなるため壁方向に戻される。遠心力とガスか
ら受ける抗力が釣り合い、炉を飛び出ることはない、こ
のような流れを達成するためには、絞り部の径より、石
炭バーナの旋回円径を大きくするのが良い、絞り部にお
ける円周方向速度は、絞り径の位置で最大となる。これ
より中心側が強制渦で、壁側か自由渦である0石炭バー
ナの旋回円径を絞り径より大きくすると1石炭バーナか
ら吹きでた粒子は初めから強制渦の領域に存在するので
、遠心力による封じ込めの作用により炉内に留まる0反
対に1石炭バーナの旋回円径が絞り径より小さいと、石
炭バーナから吹きでた粒子は初めから自由渦の領域に存
在し、円周方向速度が小さいため遠心力が弱く、更に炉
中心及び炉出口方向に向かうのでガス流に同伴し炉を飛
び出しやすい。
However, as it moves toward the center, the speed in the circumferential direction increases, and the centrifugal force increases, so it is returned toward the wall. The centrifugal force and the drag force from the gas are balanced and the gas does not fly out of the furnace.In order to achieve this kind of flow, it is better to make the turning circle diameter of the coal burner larger than the diameter of the throttle part. The circumferential speed is maximum at the aperture diameter. From this point, the center side is a forced vortex, and the wall side is a free vortex. 0 If the swirling circle diameter of the coal burner is larger than the throttle diameter, the particles blown out from the coal burner will exist in the region of forced vortices from the beginning, so they will be affected by centrifugal force. On the other hand, if the swirling circle diameter of the coal burner is smaller than the orifice diameter, the particles blown out from the coal burner will remain in the free vortex region from the beginning, and the circumferential velocity will be small, so they will be centrifuged. The force is weak, and since it is directed towards the center of the furnace and the furnace exit, it is easy to get carried away by the gas flow and fly out of the furnace.

表1にニルメロ炭を空気でガス化したときの実験結果を
示す1例1は還元部を水冷壁構造と、かつ出口に絞りが
ない従来法の結果である。還元部の空気比1.4kg/
kg 、燃焼部の空気比=7.0kg/−とすると、還
元部の温度=1083℃、燃焼部の温度=1743℃と
なり燃焼部では灰が溶けるが、還元部では溶けず、ここ
で生成した粒子は飛散した。飛散粒子量は回収し、再度
燃焼部でガス化するが、バランスしたときの粒子循環量
は石炭の供給量に対し57.8%と多く、カーボンガス
化率は91.8%、冷ガス効率は47.8%であった。
Table 1 shows the experimental results when Nilmero coal was gasified with air. Example 1 is the result of a conventional method in which the reduction section has a water-cooled wall structure and there is no restriction at the outlet. Air ratio of reduction section 1.4kg/
kg, the air ratio in the combustion section = 7.0kg/-, the temperature in the reduction section = 1083℃, the temperature in the combustion section = 1743℃, and the ash melts in the combustion section, but does not melt in the reduction section, and the ash generated here The particles were scattered. The amount of scattered particles is collected and gasified again in the combustion section, but the amount of particles circulated when balanced is 57.8% of the amount of coal supplied, the carbon gasification rate is 91.8%, and the cold gas efficiency is high. was 47.8%.

生成ガス中のメタンガス濃度は2.37%、ガスの発熱
量は828kcaμ/ N mであった。
The methane gas concentration in the generated gas was 2.37%, and the calorific value of the gas was 828 kcaμ/N m.

例2は還元部石炭、空気量は例1と同じにし、水冷をし
ないばあいである。その結果、燃焼部の温度は1743
℃、還元部の温度は1695℃と、例1より高くなった
。その結果、還元部で生成したチャーのガス化が進み、
灰の一部を溶融することが可能となり、粒子循環割合が
小さくなり、ガス化効率は向上した。
Example 2 uses the same coal and air amount as Example 1 in the reducing section, and does not use water cooling. As a result, the temperature of the combustion part is 1743
The temperature of the reduction section was 1695°C, which was higher than in Example 1. As a result, the gasification of the char produced in the reduction section progresses,
It became possible to melt part of the ash, reducing the particle circulation rate and improving gasification efficiency.

更に、例3は例2と同じの石炭、空気量のもとで、還元
部の出口に絞りを設けた場合である。その結果、還元部
の温度は僅かに低下し、また、生成ガス中のCH4は例
2と同様であるが、チャーとCox 、HzOの反応が
促進し、Go、Hzは増大した。この反応による吸熱量
が例2より増加したため還元部の温度は僅かに低下した
。また、粒子循環割合は更に低下した。これらの効果に
より、ガス化効率が例2より更に向上した。
Furthermore, Example 3 is a case where the same amount of coal and air as in Example 2 is used, but a throttle is provided at the outlet of the reducing section. As a result, the temperature of the reduction section decreased slightly, and although CH4 in the generated gas was the same as in Example 2, the reactions between char, Cox, and HzO were promoted, and Go and Hz increased. Since the amount of heat absorbed by this reaction was increased compared to Example 2, the temperature of the reduction section was slightly lowered. In addition, the particle circulation rate further decreased. Due to these effects, the gasification efficiency was further improved compared to Example 2.

この実験結果により、空気比は一定でも、還元部と燃焼
部の温度を調節することにより、還元部と燃焼部いずれ
も灰の溶融温度以上になること、空気比を一定にすれば
、生成ガス中に一定のメタンガスを含ませることが可能
であることが明らかとなった。
The results of this experiment show that even if the air ratio is constant, by adjusting the temperature of the reducing section and the combustion section, both the reducing section and the combustion section will be at or above the melting temperature of the ash.If the air ratio is kept constant, the produced gas It has become clear that it is possible to contain a certain amount of methane gas.

還元部の温度を高める方法は水冷をしないことばかりで
はない。また、石炭、空気の分配比も本実施例に限られ
るものではない0本実施例の結果は小型の実験装置によ
るものなので、規模が異なれば還元部および燃焼部への
石炭供給割合、空気比の値は本実施例と異なってくる。
Not using water cooling is not the only way to raise the temperature of the reduction section. Furthermore, the distribution ratio of coal and air is not limited to this example.The results of this example are based on a small experimental device, so if the scale is different, the coal supply ratio to the reduction section and the combustion section, the air ratio The value of is different from this example.

また石炭量によっても石炭、空気の分配比を変える必要
がある。
It is also necessary to change the distribution ratio of coal and air depending on the amount of coal.

たとえば燃焼部に供給する石炭の量を還元部に供給する
よりも少なくし、かつ燃焼部の空気比を例1より大きく
すると、燃焼部では例1より燃焼の絶対量が少ないので
発生する熱量は少ないが、空気比は高いので、ガスの温
度自身は高い、その結果、還元部に持ち込む熱量はあま
り変化をさせないことができ、還元部を高温にできると
ともに。
For example, if the amount of coal supplied to the combustion section is smaller than that supplied to the reduction section and the air ratio of the combustion section is made larger than in Example 1, the amount of heat generated in the combustion section is smaller than in Example 1 because the absolute amount of combustion is smaller than in Example 1. Although it is small, since the air ratio is high, the temperature of the gas itself is high.As a result, the amount of heat carried into the reduction section can be kept from changing much, and the reduction section can be heated to a high temperature.

還元部への石炭量が多いのでメタンガスを多く発生させ
、生成ガスの発熱量をたかめることができる。いずれに
してもガス化炉の操作条件として重要なことは、還元部
においてはメタンガスを特定の値以上にするため、空気
比は特定の値以下にすること、灰を溶融スラグとして滴
下するため温度を灰の溶融温度以上にすることである。
Since the amount of coal to the reduction section is large, it is possible to generate a large amount of methane gas and increase the calorific value of the generated gas. In any case, the important operating conditions for the gasifier are that in order to increase the methane gas above a certain value in the reduction section, the air ratio must be below a certain value, and that the ash be dropped as molten slag, so the temperature is above the melting temperature of the ash.

また、燃焼部においては高温にし、灰を溶融スラグにす
るため、空気比はできるだけ大きくすることである。
In addition, the air ratio should be as high as possible in order to raise the temperature in the combustion section and turn the ash into molten slag.

ただし、この場合、空気比を大きくする結果、燃焼部か
らの生成ガスの発熱量は低いので、還元部からの生成ガ
スと混合したときに全体のガスの発熱量を出来るだけ高
くするため、燃焼部から生成するガス量を少なくする。
However, in this case, as a result of increasing the air ratio, the calorific value of the generated gas from the combustion section is low, so when mixed with the generated gas from the reducing section, the combustion Reduce the amount of gas generated from the

言い換えると燃焼部に供給する石炭の量を還元部へ供給
する量より少なくすることなどの、熱収支上のバランス
を考慮する必要がある。
In other words, it is necessary to consider the balance in terms of heat balance, such as making the amount of coal supplied to the combustion section smaller than the amount supplied to the reduction section.

〔発明の効果〕〔Effect of the invention〕

本発明によれば還元部においてガス化剤の量を少なくし
ても発熱量の高い生成ガスが得られると共に、ガス化炉
から飛散する粒子量を低減出来るので、ガス化効率を向
上させる効果がある。特にガス化剤に空気を用いた場合
に、粒子の外部循環操作を最小限に抑えて一定の発熱量
を有する生成ガスを製造できる効果がある。
According to the present invention, a generated gas with a high calorific value can be obtained even if the amount of gasification agent is reduced in the reduction section, and the amount of particles scattered from the gasification furnace can be reduced, so that the effect of improving gasification efficiency is achieved. be. Particularly when air is used as the gasification agent, it is possible to produce a generated gas having a constant calorific value while minimizing the external circulation of particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のフロー、第2図は第1図の
部分詳細、第3図は第2図の石炭バーナの断面図、第4
図は石炭のガス化特性、第5図はガス化炉内のガス流れ
の説明図である。 1・・・石炭、2・・・ガス化炉、3・・・還元部、4
・・・燃焼部、5・・・ガス化剤、6・・・下段絞り部
、7・・・上部絞も′L図 9;8 荊3図 杢4図 高5図 雪1を(比(K$/鴎〕
Fig. 1 is a flowchart of an embodiment of the present invention, Fig. 2 is a partial detail of Fig. 1, Fig. 3 is a sectional view of the coal burner shown in Fig. 2, and Fig. 4
The figure shows the gasification characteristics of coal, and FIG. 5 is an explanatory diagram of the gas flow in the gasifier. 1... Coal, 2... Gasifier, 3... Reduction section, 4
... Combustion part, 5... Gasification agent, 6... Lower throttle part, 7... Upper throttle part'L figure 9; 8 K$/seagull]

Claims (1)

【特許請求の範囲】 1、還元部と燃焼部の反応部からなり、石炭をそれぞれ
の反応部へ供給してガス化する方法において、還元部に
おける空気又は酸素又は酸素富化空気等のガス化剤と石
炭の供給量の比を部分燃焼の比率より小さくし、かつ反
応温度を石炭灰の溶融温度以上とし、燃焼部におけるガ
ス化剤と石炭の供給量の比を部分燃焼と完全燃焼の間の
条件にし、かつ、反応温度を石炭灰の溶融温度以上とし
た石炭のガス化方法。 2、還元部のガス出口に断面積が還元部より小さい絞り
部を、また燃焼部と還元部の間に断面積が燃焼部より小
さい絞り部を、それぞれ設けた炉でガス化する、前記第
1項記載の石炭ガス化方法。
[Claims] 1. In a method comprising a reaction section of a reduction section and a combustion section and supplying coal to each reaction section for gasification, gasification of air, oxygen, oxygen-enriched air, etc. in the reduction section The ratio of the supply amount of gasification agent and coal is made smaller than the ratio of partial combustion, and the reaction temperature is set higher than the melting temperature of coal ash, and the ratio of the supply amount of gasification agent and coal in the combustion section is set between partial combustion and complete combustion. A method for gasifying coal under the following conditions and in which the reaction temperature is higher than the melting temperature of coal ash. 2. Gasification is performed in a furnace provided with a constriction section having a cross-sectional area smaller than that of the reducing section at the gas outlet of the reducing section, and a constricting section having a cross-sectional area smaller than the combustion section between the combustion section and the reducing section, respectively. Coal gasification method according to item 1.
JP23466186A 1986-10-03 1986-10-03 Gasifying method for coal Pending JPS6390591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23466186A JPS6390591A (en) 1986-10-03 1986-10-03 Gasifying method for coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23466186A JPS6390591A (en) 1986-10-03 1986-10-03 Gasifying method for coal

Publications (1)

Publication Number Publication Date
JPS6390591A true JPS6390591A (en) 1988-04-21

Family

ID=16974501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23466186A Pending JPS6390591A (en) 1986-10-03 1986-10-03 Gasifying method for coal

Country Status (1)

Country Link
JP (1) JPS6390591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150463A (en) * 2006-12-15 2008-07-03 Mitsubishi Heavy Ind Ltd Two-stage entrained bed gasification oven and method for controlling operation of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150463A (en) * 2006-12-15 2008-07-03 Mitsubishi Heavy Ind Ltd Two-stage entrained bed gasification oven and method for controlling operation of the same

Similar Documents

Publication Publication Date Title
US4773917A (en) Coal gasifier
CA2306889C (en) Method and device for producing combustible gas, synthesis gas and reducing gas from solid fuels
US5620487A (en) High performance, multi-stage, pressurized, airblown, entrained flow coal gasifier system
CN104629810B (en) Fluidized-bed gasification furnace and application thereof
JPS5936195A (en) Method for gasifying coal in jetted stream bed
KR20000015802A (en) Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system
US1866399A (en) Continuous process for producing high heating value gas
JPS614788A (en) Carbon gasification
JPH1017873A (en) Coal gasification oven
US3968052A (en) Synthesis gas manufacture
JPH07228910A (en) Method and equipment for manufacturing iron
JPS6390591A (en) Gasifying method for coal
JP3976888B2 (en) Coal air bed gasification method and apparatus
JPH0472877B2 (en)
JPH0240279B2 (en)
JPH02206687A (en) Cooling type blowing burner
US4135893A (en) Mixing method and device
JPS6324556B2 (en)
JPH0547595B2 (en)
JP4029223B2 (en) Coal gasifier and control method thereof
JPH075896B2 (en) Coal gasifier
JPS59172589A (en) Gasification of coal
JPS5826392B2 (en) Molten blast furnace slag sensible heat utilization method
JPH0331757B2 (en)
JPS61218690A (en) Coal gasifier