JPS59172589A - Gasification of coal - Google Patents

Gasification of coal

Info

Publication number
JPS59172589A
JPS59172589A JP4716283A JP4716283A JPS59172589A JP S59172589 A JPS59172589 A JP S59172589A JP 4716283 A JP4716283 A JP 4716283A JP 4716283 A JP4716283 A JP 4716283A JP S59172589 A JPS59172589 A JP S59172589A
Authority
JP
Japan
Prior art keywords
coal
gasification
burner
oxygen
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4716283A
Other languages
Japanese (ja)
Other versions
JPH0455238B2 (en
Inventor
Shuntaro Koyama
俊太郎 小山
Atsushi Morihara
淳 森原
Mitsuhiro Matsuo
松尾 光広
Hiroshi Miyadera
博 宮寺
Jinichi Tomuro
戸室 仁一
Yoshiki Noguchi
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP4716283A priority Critical patent/JPS59172589A/en
Publication of JPS59172589A publication Critical patent/JPS59172589A/en
Publication of JPH0455238B2 publication Critical patent/JPH0455238B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Fuel Combustion (AREA)

Abstract

PURPOSE:To gasify coal efficiently, by feeding raw material dust coal to two burners in different gasification reaction zones of a gasifying oven and controlling the feed ratio of oxygen to dust coal to a specific value. CONSTITUTION:Raw material dust coal 1 is divided into two lots, which are fed separately into a gasification reaction zone 30 of a gasifying oven through an upper burner 27 and a lower burner 28. The feed ratio of oxygen to dust coal in the upper burner 27 is set at such a value that the temperature near the upper burner 27 may not exceed the fusion temperature of dust coal ash and that of oxygen to dust coal in the lower burner 28 is set higher than that in the upper burner 27 and the temperature near the lower burner 28 is raised to above the fusion temperature of ash. Gas produced in the lower zone and containing CO2, H2O, etc. is made to react as gasifying agent with highly reactive char produced in the upper zone to effect gasification of the char.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は微粉炭をガス化する石炭ガス化方法に係シ、特
に反応速度が大きく、短時間で効率よくガス化する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a coal gasification method for gasifying pulverized coal, and particularly to a method with a high reaction rate and efficient gasification in a short time.

〔従来技術〕[Prior art]

従来、石炭のガス化方法として固定層、流動層、および
噴流層方式等が知られている。この中で噴流層方式の場
合は、石炭灰の融点以上(1300〜1600C)に温
度を高めるので、他方式に比べ、カーボンガス化率やH
2及びCOO20収量等が高めやすく、また、公害性の
副生物が少ないことから、合成ガス及びガスタービン、
スチームタービン複合発電用原料ガスの製造に好適であ
る。
Conventionally, fixed bed, fluidized bed, and spouted bed methods have been known as coal gasification methods. Among these methods, in the case of the spouted bed method, the temperature is raised above the melting point of coal ash (1300-1600C), so compared to other methods, the carbon gasification rate and H
2 and COO20 yields are easy to increase, and there are few polluting by-products, synthetic gas and gas turbines,
Suitable for producing raw material gas for steam turbine combined power generation.

噴流層方式には石炭バーナから、石炭又はチャー(ガス
と共に飛散するカーボン粒子)と、スチーム、並びに酸
素又は空気等のガス化剤を同時に供給する方法と、この
ようなバーナ以外に石炭単独を供給するバーナを加えた
方式がある。
The spouted bed method includes a method in which coal or char (carbon particles scattered with gas), steam, and a gasifying agent such as oxygen or air are simultaneously supplied from a coal burner, and a method in which coal is supplied alone in addition to such a burner. There is a method that includes a burner.

ところで、石炭のガス化反応は大別すると、〔石炭−+
C(チ’t’  ) 、H2、CO,COx 、 CH
4・”(1))〔C(チャー)+02→CO2、C01
H2・・・問曲曲(2)〕〔石炭+02→CO、C02
、H2・・・四・・・川・・・・曲・・・・・・(3)
 :)で表わすことができる。(1)式は、熱分解反応
(又は乾留)である。前記の如く石炭単独バーナを加え
た方式では、この反応が起きやすい。(1)式と(2)
式を明らかに区別して併発させる方式の代表例としては
公知の如く、米国のBI−GASプロセスがある。鷹だ
、石炭バーナから石炭とガス化剤を同時に供給し、意図
的に(1)、 (21式を区別しない(3)式による代
表例としては、TexaCOプロセス、5hell  
−Koppersプロセス等がある。
By the way, the coal gasification reaction can be roughly divided into [coal-+
C (chi't'), H2, CO, COx, CH
4・”(1)) [C (char) +02 → CO2, C01
H2... Interrogation song (2)] [Coal +02 → CO, C02
, H2...Sichuan...song...(3)
:). Equation (1) is a thermal decomposition reaction (or carbonization). This reaction is likely to occur in the system in which a coal-only burner is added as described above. Equation (1) and (2)
As is well known, a typical example of a system in which formulas are clearly distinguished and caused to co-occur is the BI-GAS process in the United States. Takada, a representative example of Equation (3) where coal and gasifying agent are supplied simultaneously from a coal burner and intentionally does not distinguish between Equation (1) and (Equation 21) is the Texas CO process, 5hell
- Koppers process, etc.

いずれのプロセスにおいても、カーボンガス化率(ガス
として生成するカーボン量の、石炭中のカーボン粒子対
する比率)を向上させるための種種の試みがなされてい
る。その最も代表的な方法は、ガスと共に飛散するカー
ボン粒子、即ち、チャーを回収し、再びガス化炉に戻し
てガス化する、いわゆるチャー再循環方法であるが、運
転上又は装置の信頼性等の点で以下の問題を残している
In both processes, various attempts have been made to improve the carbon gasification rate (the ratio of the amount of carbon produced as gas to the carbon particles in the coal). The most typical method is the so-called char recirculation method, in which carbon particles (i.e., char) scattered with the gas are collected and returned to the gasification furnace for gasification. The following problems remain.

即ち、チャー再循環方式は、循環のための、ポンプ、タ
ンク、パルプ等の機器類を必要とするため、ガス化プロ
セスを複雑にし易く、ガス化装置の運転性を悪化させる
。また、チャーの輸送量を正確に測定する手段が確立さ
れておらず循環量の制御が困難である。特にチャーの供
給量によって、ガス化条件が大きく変動するプロセスで
は、チャーの定量循環に多大の設備を必要とする。
That is, since the char recirculation method requires equipment such as a pump, tank, and pulp for circulation, it tends to complicate the gasification process and deteriorates the operability of the gasification apparatus. Furthermore, there is no established means to accurately measure the amount of char transported, making it difficult to control the amount of char being circulated. Particularly in processes where gasification conditions vary greatly depending on the amount of char supplied, a large amount of equipment is required to circulate the char quantitatively.

また、チャーをガス化炉に供給するためには搬送ガスを
必要とするが、これに使用される窒素、スチーム、CO
2、生成ガスの一部等は、ガス化反応にあまシ寄与せず
、これらのガスをガス化炉に必要以上に供給することは
好ましくない。更に、循環するチャーが多くなると、ガ
ス化炉内や、ガス化炉出口から先の配管等の摩耗量が増
大する。
In addition, a carrier gas is required to supply char to the gasification furnace, and nitrogen, steam, and CO are used for this purpose.
2. Some of the produced gases do not contribute significantly to the gasification reaction, and it is not preferable to supply these gases to the gasification furnace more than necessary. Furthermore, as the amount of circulating char increases, the amount of wear on the inside of the gasifier and the piping beyond the outlet of the gasifier increases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微粉炭をガス化炉に一度通過させるだ
けで未反応カーボンを減少することができ、チャーの再
循環の省略若しくは循環量の著しい低減が1スれる石炭
ガス化方法を提供することにある。
An object of the present invention is to provide a coal gasification method that can reduce unreacted carbon by passing pulverized coal through a gasification furnace once, and that eliminates the need to recirculate char or significantly reduces the amount of char circulated. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明に係る石炭ガス化方法では、石炭がガス化炉に供
給されてから、ガス化炉を出るまでの反応過程に着目し
、反応を短時間で終了させるようにしている。即ち、反
応にはどの過程で時間を要するかを調べた結果、石炭の
反応速度は石炭灰の溶融温度を越り、ガス化剤が多量に
ない場合に特に低下することを見出した。この知見に基
づき、石炭をガス化する過程で灰の溶融温度を越えない
反応領域を形成させることによシ反応時間の短縮を図り
、未反応カーボンを低減させるものである。
In the coal gasification method according to the present invention, attention is paid to the reaction process from when coal is supplied to the gasifier until it leaves the gasifier, and the reaction is completed in a short time. That is, as a result of investigating which process requires time for the reaction, it was found that the reaction rate of coal exceeds the melting temperature of coal ash and is particularly reduced when there is not a large amount of gasifying agent. Based on this knowledge, the aim is to shorten reaction time and reduce unreacted carbon by forming a reaction region that does not exceed the melting temperature of ash during the process of gasifying coal.

ここで反応速度について述べると、噴流層方式の如く、
酸素分圧が高い場合は、前記(3)式を次の(4)、 
+51. +61式の3つの過程に分けて考えることが
できる。即ち、 〔石炭(C,)I、0)+02→CO2,H2O,チャ
ー〇・・・(4)〕〔チャー(C)+CO2→2CO・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・−(5) ]〔チャー(C)+H20→H*+C
O・・・・・・・・・・・・・・・・・・・・・(6)
〕(4)〜(6)式のうち、(4)式は燃料反応であシ
、(51,+61式に比べて極めて反応が速い。つまり
、反応時間を左右するのは(51,(6)式である。一
般に石炭又はチャーの反応速度は、それらの物理的、化
学的性状に大きく影響されることが知られている。しか
し、その性状は本来石炭が持っているもの以外に、反応
のさせ方によっても大きく異なることを見出した。以下
、この事実につき説明する。
Regarding the reaction rate, as in the spouted bed method,
When the oxygen partial pressure is high, the above equation (3) can be changed to the following (4),
+51. +61 formula can be divided into three processes. That is, [Coal (C,) I, 0) + 02 → CO2, H2O, Char〇...(4)] [Char (C) + CO2 → 2CO・
・・・・・・・・・・・・・・・・・・・・・・・・
...-(5)] [Char(C)+H20→H*+C
O・・・・・・・・・・・・・・・・・・・・・(6)
] Among equations (4) to (6), equation (4) is a fuel reaction, and the reaction is extremely fast compared to equation (51, +61. In other words, the reaction time is influenced by (51, (6) ) It is generally known that the reaction rate of coal or char is greatly influenced by their physical and chemical properties. We have found that it varies greatly depending on how it is applied.This fact will be explained below.

第1図はいわゆる太平洋炭を酸素量及び温度を任意に変
えてガス化し、ガス化の中間生成物であるチャーを回収
して、そのチャーとスチームとを熱天秤中で(6)式に
従い反応させ、チャー中のカーボンが完全にガス化する
までに要した時間を示したものである。この結果、■1
300〜1400tl:テ生成したチャーの反応完結時
間は短く、反応性に富むことがわかった。
Figure 1 shows so-called Pacific coal being gasified by arbitrarily changing the amount of oxygen and temperature, recovering the char that is an intermediate product of gasification, and reacting the char with steam in a thermobalance according to equation (6). The figure shows the time required for the carbon in the char to completely gasify. As a result, ■1
300-1400 tl: It was found that the reaction completion time of the generated char was short and the reaction was rich.

一方、チャーの反応性はチャーの物性との関係が深い。On the other hand, the reactivity of char is closely related to the physical properties of char.

第2図に石炭の反応条件と生成したチャーの比表面積の
関係を示す。その結果、■1300〜1400Cで生成
したチャーの比表面積が最大であることが明らかとなっ
た。
Figure 2 shows the relationship between the coal reaction conditions and the specific surface area of the generated char. As a result, it was revealed that the specific surface area of the char produced at 1300 to 1400C was the largest.

以上の結果を総合すると、太平洋炭の場合、1300〜
1400t:’付近で反応させるのが、ガス化の中間生
成物であるチャーの反応性を最も高めることができ、あ
る程度のガス化剤が存在しさえすれば短時間に完全ガス
化が可能であることが判明した。
Combining the above results, in the case of Pacific Coal, 1300~
Reaction near 1400t:' can maximize the reactivity of char, which is an intermediate product of gasification, and complete gasification is possible in a short time as long as a certain amount of gasification agent is present. It has been found.

本発明は、1300〜1400t:’の温度がなぜ最適
かという追求を更に進め、これが太平洋炭の灰分の溶融
温度に一致することを見いだしたことから生まれた。石
炭灰の溶融温度をJIS−8801に従って測定した結
果を、灰の組成と合せて第1表に示す。
The present invention was created by further investigating why a temperature of 1300 to 1400 t:' is optimal and finding that this corresponds to the melting temperature of ash in Pacific coal. The results of measuring the melting temperature of coal ash according to JIS-8801 are shown in Table 1 together with the composition of the ash.

第   1   表 酸化雰囲気における太平洋炭の灰の軟化点は1270C
,溶融点は1360tl:’、流動点は1390Cであ
る。このことから一般に、まず、石炭粒子が(4)式に
従い反応し、灰の軟化点を越えると、一部が溶融しはじ
める。この場合、チャーは緻密になり、第2図に示すよ
うに比表面積(又は気孔率)が小さくなシ、肝心の(5
1,(6)式で反応が進もうとする時にはガスがチャー
内部へ拡散しにくくなシ、従来では反応完結時間が長く
なっていたものである。
Table 1 The softening point of Pacific coal ash in an oxidizing atmosphere is 1270C
, the melting point is 1360 tl:', and the pour point is 1390C. From this, generally speaking, coal particles first react according to equation (4), and when the softening point of ash is exceeded, a portion of the coal particles begins to melt. In this case, the char becomes dense and has a small specific surface area (or porosity) as shown in Figure 2.
1, when the reaction is about to proceed according to equation (6), it is difficult for the gas to diffuse into the char, which conventionally takes a long time to complete the reaction.

以上のことは太平洋炭以外についてもあてはまる。前記
第1表に示す如く、ウィツトバンク炭について行った同
様の試験結果からも反応に最適な温度は、同石炭灰分の
溶融点である1420C(酸化雰囲気)に近い1400
〜1500Cである。
The above also applies to other than Pacific coal. As shown in Table 1 above, the optimum temperature for the reaction is 1400C, which is close to 1420C (oxidizing atmosphere), which is the melting point of the Witzbank coal, based on the results of a similar test conducted on Witzbank coal.
~1500C.

このような事実から、同一粒子径、同一ガス化剤供給量
のもとでは、石炭灰分の溶解点付近で反応させるのが、
最も短時間でガス化する方法であることが明らかとなっ
た。
Based on these facts, with the same particle size and the same amount of gasifying agent supplied, it is better to react near the melting point of coal ash.
It has become clear that this is the method that achieves gasification in the shortest time.

石炭のガス化炉では通常、温度は酸素量によってほぼ決
定される。噴流層の場合、石炭灰の溶融点に維持するに
は酸素量が少なくてよく、炭種にもよるが、酸素供給量
の石炭供給量に対する比(α)が0.3〜O,、6(K
9/ K9)でも可能である。ところが、この酸素量で
は石炭を完全にガス化することができず、たとえ極めて
単時間に反応が進んでも、未反応のカーボン粒子、即ち
チャーは必らず残ってしまう。つまり、もつとガス化剤
が必要となる。
In coal gasifiers, the temperature is usually determined approximately by the amount of oxygen. In the case of a spouted bed, a small amount of oxygen is required to maintain the melting point of coal ash, and although it depends on the type of coal, the ratio (α) of the amount of oxygen supplied to the amount of coal supplied is 0.3 to O, 6. (K
9/K9) is also possible. However, coal cannot be completely gasified with this amount of oxygen, and even if the reaction progresses in a very short time, unreacted carbon particles, ie, char, will always remain. In other words, a gasifying agent is required.

一方、ボイラーの条件のように過剰に酸素があると、灰
の溶融温度を越えて、粒子が緻密となっても、ガス化剤
の拡散力が強いため、反応は速く進行する。しかしこの
場合は生成ガスがCO2゜H20のみであるから、ガス
としては使えない。
On the other hand, if there is an excess of oxygen, such as in boiler conditions, the reaction will proceed quickly even if the temperature exceeds the melting temperature of the ash and the particles become dense because the gasifying agent has a strong diffusion force. However, in this case, the produced gas is only CO2°H20, so it cannot be used as a gas.

そこで、本発明では先の知見に基づき、灰溶融温度を越
えない条件と、酸素をある程度過剰に供給する条件を組
合せて石炭をガス化し、後者の条件で生成した0 02
 、 H2を前者の条件で生成した反応性の高いチャー
と接触させ、高効率でガス化させるようにしたものであ
る。
Therefore, in the present invention, based on the previous knowledge, coal is gasified under a combination of conditions that do not exceed the ash melting temperature and conditions that supply a certain amount of excess oxygen.
, H2 is brought into contact with the highly reactive char produced under the former conditions, and gasified with high efficiency.

即ち、ガス化炉のガス化反応領域内に、灰の溶融温度を
越えない温度で石炭を反応させる領域と過剰な酸素によ
ってC02、H20を積極的に発生する条件で石炭を反
応させ°る領域を別々に形成することにより石炭を全体
として高効率でガス化するものである。
That is, in the gasification reaction region of the gasifier, there are two regions: a region where coal is reacted at a temperature that does not exceed the melting temperature of ash, and a region where coal is reacted under conditions that actively generate CO2 and H20 due to excess oxygen. By forming these separately, coal can be gasified as a whole with high efficiency.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第3図に示す実施例に基づいて具体的に
説明する。
The present invention will be specifically explained below based on the embodiment shown in FIG.

第3図は微粉炭ガス化装置の系統図である。FIG. 3 is a system diagram of the pulverized coal gasifier.

石炭1は200メツシユ以下のものが70〜sowt%
となる粒度に粉砕して、石炭貯蔵、粉砕設備(図示せず
)を介してパケットコンベア又は気体輸送なる手段によ
り、常圧石炭ホッパ20に輸送する。ここから、加圧ホ
ッパ21.22に送り、ロータリーフィーダ又はスクリ
ューフィーダ等の石炭定量装置23.24で供給量を制
御する。なお、ホッパ20,21.22及び切シ換え弁
40.41で構成する石炭供給方法はロックホッパ一方
式と呼ばれるもので、ホッパ21と22は同圧で、いず
れもガス化炉よりも0.5〜1. OKq/z”Q高い
圧力にしておく。ホッパ22の石炭がある量まで減少し
たら、弁41を開け、ホッパ21からホッパ22へ自由
落下にょシ石炭を移動させる。ホッパ22に石炭が所定
量たまったら弁41を閉じ、ホッパ21の圧力を常圧ま
で下げ、弁40を開けて、ホッパ20からホッパ21へ
自由落下によシ石炭を移動させる。その後、ホッパ20
へ石炭を輸送すると共に、弁4oを閉じ、ホッパ21の
圧力をホッパ22の圧力に等しくなるまで上げ、次の移
動に備える。以上の方法をくり返すことによシ石炭を連
続的に高圧のガス化炉29に送る。
Coal 1 contains 70 to sowt% less than 200 mesh.
The coal is crushed to a particle size of , and transported to the atmospheric coal hopper 20 via coal storage and crushing equipment (not shown) by a means such as a packet conveyor or gas transportation. From here, it is sent to a pressurized hopper 21.22, and the feed rate is controlled by a coal metering device 23.24, such as a rotary feeder or a screw feeder. The coal supply method consisting of the hoppers 20, 21, 22 and the switching valve 40, 41 is called a one-way lock hopper type, and the hoppers 21 and 22 have the same pressure, and both have a pressure lower than that of the gasifier. 5-1. OKq/z"Q Keep the pressure high. When the coal in the hopper 22 decreases to a certain amount, open the valve 41 and move the coal from the hopper 21 to the hopper 22 in a free fall. When the predetermined amount of coal accumulates in the hopper 22. After that, the valve 41 is closed, the pressure in the hopper 21 is lowered to normal pressure, and the valve 40 is opened to move the coal from the hopper 20 to the hopper 21 by free fall.
At the same time, the valve 4o is closed and the pressure in the hopper 21 is increased until it becomes equal to the pressure in the hopper 22, in preparation for the next movement. By repeating the above method, the coal is continuously sent to the high-pressure gasifier 29.

石炭定量装置は石炭をガス化炉の異なる位置に   一
部々に供給するため、少なくとも22と23で示す如く
2台設ける。石炭は、ここからエジェクタ25.26に
自由落下させ、搬送ガス7によシ、それぞれ供給管2,
3を通して石炭バーナ27゜28に送る。搬送ガスとし
ては窒素、スチーム、空気、二酸化炭素及びガス化炉で
生成したガスの一部等が用いるが、供給管内での炭塵爆
発や閉塞に対する安全性の面からは窒素ガスや二酸化炭
素ガスにすることが望ましい。
At least two coal quantitative devices are provided as shown at 22 and 23 in order to supply coal to different positions of the gasifier. The coal is allowed to fall freely from here to the ejectors 25, 26 and is then fed to the carrier gas 7 through the supply pipes 2 and 2, respectively.
3 to coal burners 27°28. Nitrogen, steam, air, carbon dioxide, and a part of the gas generated in the gasifier are used as the carrier gas, but from the viewpoint of safety against coal dust explosions and blockages in the supply pipe, nitrogen gas and carbon dioxide gas are used. It is desirable to do so.

バーナ27,28からガス化炉29に供給された石炭は
酸素4によってガス化される。この酸素は最初、流動調
節計49によって石炭の供給量に見合う一定量が供給さ
れ、その後、上、下段バーナ27,28毎に区別して供
給される。即ち、上段バーナ・27に供給される酸素は
、供給管5を通り、流量調節計42によって流量を制御
され、残りの酸素が全量、供給管6を通って下段バーナ
28に流れる。この場合、石炭及び酸素の各バーナ27
,28への分配比がガス化効率に対し重要であるが、そ
の分配法については後に更に詳細に説明する。
Coal supplied from burners 27 and 28 to gasifier 29 is gasified by oxygen 4. At first, this oxygen is supplied in a constant amount corresponding to the amount of coal supplied by the flow controller 49, and thereafter, it is separately supplied to the upper and lower burners 27 and 28. That is, the oxygen supplied to the upper stage burner 27 passes through the supply pipe 5 and the flow rate is controlled by the flow rate controller 42, and the remaining oxygen flows in its entirety through the supply pipe 6 to the lower stage burner 28. In this case, each coal and oxygen burner 27
, 28 is important for gasification efficiency, and the distribution method will be explained in more detail later.

石炭ガス化炉29には、ガス化領域30、熱回収領域3
1及びスラグ冷却領域50が構成される。
The coal gasifier 29 includes a gasification region 30 and a heat recovery region 3.
1 and a slag cooling area 50 are configured.

ガス化領域は非常に高温となシ、金属容器で構成するこ
とはできないので、耐火材52で覆う。また、ここから
の輻射による熱損失防止と、粒子滞留時間増大を目的と
し、上部、下部の径はバー°す付近の径よりも縮少しで
ある。ガス化領域30では前記(4)〜(6)式の反応
によりH2,COに豊むガスが発生する。一方、石炭灰
は溶融スラグ9となり、耐火材52の表面に付着して重
力によって下方に流れ、スラグタップ孔53を通ってス
ラグ冷却領域50に落下する。スラグ冷却領域には水が
溜めてあり、溶融スラグ9はここで急冷されて固まシ、
さらにスラグタンク32に落下する。ガス化炉29とス
ラグタンク32の間に切シ換え弁43を設け、平常時は
これを開けておく。従ってスラグタンク32内も水で満
たされている。スラグタンク内に一定量水冷スラグが溜
るか又は一定時間−経過したら、一方の切シ換え弁43
を閉じ、他方の切シ換え弁44を開け、水と水冷スラグ
を共にスラグ分離器33に流し込む。スラグ分離器33
では金銅によって水から水冷スラグ9を分離する。スラ
グタンク32が空になったら切シ換え弁44を閉じ、冷
却水循環ポンプ35から管5イを通して水を流し、タン
ク32の圧力をガス化炉と等しくする。その後、弁53
を閉じ、弁43を開けて、スラグ9が、タンク32に溜
まるようにする。スラグ冷却領域50に溜めである水は
、溶融スラグ9の熱によシ暖まるので、適時切シ換え弁
46を開け、スラグ分離器に流し、水冷管34によシ冷
却する。冷却された水は冷却水循環ポンプ35によシ、
ガス化炉圧まで昇圧し、管14を通して再びガス化炉の
スラグ冷却領域50に供給する。このように冷却水を常
時循環することにより、スラグ冷却領域の水を一定温度
に保つ。この水は長い間の運転で、少しずつ蒸気するの
で、減少した量の水は、適時管16から補充する。
Since the gasification region is at a very high temperature and cannot be constructed from a metal container, it is covered with a refractory material 52. In addition, the diameters of the upper and lower parts are smaller than those near the bar in order to prevent heat loss from radiation and increase particle residence time. In the gasification region 30, gas enriched in H2 and CO is generated by the reactions of equations (4) to (6). On the other hand, the coal ash becomes molten slag 9, adheres to the surface of the refractory material 52, flows downward by gravity, and falls into the slag cooling area 50 through the slag tap hole 53. Water is stored in the slag cooling area, where the molten slag 9 is rapidly cooled and solidified.
Further, it falls into the slag tank 32. A switching valve 43 is provided between the gasifier 29 and the slag tank 32, and is kept open during normal times. Therefore, the inside of the slag tank 32 is also filled with water. When a certain amount of water-cooled slag accumulates in the slag tank or after a certain period of time has passed, one of the switching valves 43
is closed, the other switching valve 44 is opened, and both water and water-cooled slag are flowed into the slag separator 33. Slag separator 33
Then, the water-cooled slag 9 is separated from the water using gold copper. When the slag tank 32 is empty, the switching valve 44 is closed and water is allowed to flow from the cooling water circulation pump 35 through the pipe 5i to equalize the pressure in the tank 32 with that of the gasifier. After that, valve 53
is closed and valve 43 is opened to allow slag 9 to accumulate in tank 32. Since the water stored in the slag cooling area 50 is warmed by the heat of the molten slag 9, the switching valve 46 is opened at an appropriate time, the water flows to the slag separator, and is cooled by the water cooling pipe 34. The cooled water is passed through the cooling water circulation pump 35,
The slag is increased to the gasifier pressure and fed back to the slag cooling area 50 of the gasifier through the pipe 14. By constantly circulating the cooling water in this way, the water in the slag cooling area is kept at a constant temperature. Since this water gradually steams over a long period of operation, the reduced amount of water is replenished from the pipe 16 in a timely manner.

ガス化炉のガス化領域で生成したガスはガス化炉を上昇
し、熱回収領域31に入る。この領域には水冷管を設け
、この管に水を流し、ガス顕熱との熱交換に二ってスチ
ームを発生させる。従ってガス化炉29の出口における
ガスの温度は40LJ〜9000位に低下する。このガ
スを配管11を通してサイクロン36に導き、ガス中に
含まれているダストを分離する。ダストを除去されたガ
スは配管12を通し、次のガス処理工程(図示せず)に
導く。ガスの処理工程は、ガスの用途により異なるが、
通常は、熱交換器、2次すイクロン〜又は洗浄塔等の脱
塵装置及びH2S又はCO2を除去する脱硫装置等から
構成される。
The gas produced in the gasification zone of the gasifier ascends through the gasifier and enters the heat recovery zone 31 . A water-cooled pipe is provided in this area, and water is passed through the pipe to exchange heat with the sensible heat of the gas and generate steam. Therefore, the temperature of the gas at the outlet of the gasifier 29 decreases to about 40LJ to 9000LJ. This gas is led to the cyclone 36 through the pipe 11, and the dust contained in the gas is separated. The gas from which dust has been removed passes through piping 12 and is led to the next gas treatment step (not shown). The gas processing process varies depending on the use of the gas, but
Usually, it consists of a heat exchanger, a dust removal device such as a secondary cyclone or a washing tower, and a desulfurization device for removing H2S or CO2.

サイクロン36で回収された灰、チャー等のダストはダ
ストホッパ37.38に貯溜する。ダスト13の排出方
法は、石炭の供給及びスラグの排出法と同様で、ホッパ
38に一定量溜まった後、切シ換え弁47を閉じ、ホッ
パ38の圧力を常圧にして切シ換え弁48を開け、フィ
ーダ38によシ抜き出す。排出が終了したら、切り換え
弁39を閉じ、ホッパ38をサイクロン36と同じ圧力
まで昇圧させ、切シ換え弁37を開けてダストをホッパ
38に貯溜する。以上のくシ返しによシ、ダストは連続
的に系外に排出される。
Dust such as ash and char collected by the cyclone 36 is stored in dust hoppers 37 and 38. The method for discharging the dust 13 is similar to the method for supplying coal and discharging slag. After a certain amount of dust has accumulated in the hopper 38, the switching valve 47 is closed, and the pressure in the hopper 38 is set to normal pressure. Open it and take it out through the feeder 38. When the discharge is completed, the switching valve 39 is closed, the pressure in the hopper 38 is increased to the same pressure as the cyclone 36, and the switching valve 37 is opened to store the dust in the hopper 38. After the above combing process, the dust is continuously discharged out of the system.

水冷スラグ18及びダスト13は共に灰処理設備及び灰
貯蔵所(図示せず)に送られる。
Both water-cooled slag 18 and dust 13 are sent to an ash treatment facility and ash storage (not shown).

以上の微粉炭ガス化方法において、石炭及び酸素の供給
法、ガス化炉内温度の制御について更に詳細に説明する
In the above pulverized coal gasification method, the method of supplying coal and oxygen and controlling the temperature inside the gasifier will be explained in more detail.

明記の如く、石炭はガス化領域の上段ノ(−す27と下
段バーナ38とに分離して供給される。
As noted, coal is fed separately to the upper burner 27 and lower burner 38 of the gasification zone.

上、下段への供給比率は運転操作因子を少なくし、制御
を簡単にするため1対1とすることが東も好ましい。即
ち、供給する全石炭を上、下)く−ナヘ均等に流れるよ
うに石炭定量装置23.24を作動させればよい。
It is also preferable that the supply ratio to the upper and lower stages be 1:1 in order to reduce operational factors and simplify control. That is, the coal metering devices 23 and 24 may be operated so that all the coal to be supplied flows evenly into the upper and lower portions.

例えば石炭フィーダの回転数を同じにす名等である。一
方、酸素の供給量は石炭供給量に対応させて供給する。
For example, the number of revolutions of the coal feeders should be the same. On the other hand, the amount of oxygen supplied corresponds to the amount of coal supplied.

ところで、ガス化炉の性能を表わす次の2つの効率は、
酸素の石炭に対する供給量の比αに最も強く影響される
ことが知られている。
By the way, the following two efficiencies that express the performance of the gasifier are:
It is known that it is most strongly influenced by the ratio α of the supply amount of oxygen to coal.

そして、酸素量/石炭量=αはηGが最も大きくなる所
を狙って決定されることが多く、炭糧にもよるが、通常
0.7<α< 1.0 (Kg/Kg)である。
Oxygen amount/coal amount = α is often determined by aiming at the point where ηG is the largest, and although it depends on the coal stock, it is usually 0.7 < α < 1.0 (Kg/Kg). .

本実施例で使用した太平洋炭の場合にはα−=0.82
(Ky/に9)である。このようにして石炭供給量が決
まれば酸素の全供給量が決まり、調節計49により制御
される。その後酸素は上段バーナ27と下段バーナ28
に分離して供給される。この場合、上段バーナ27へ供
給する酸素量は、ガス化炉29のガス化領域の上段バー
ナ付近の温度が灰の溶融温度を越えないように制御する
。この制御法は、例えば上段バーナ27と同一高さに設
置した温度計51によシバーナ27付近の温度を常に監
視し、その温度が灰の溶融温度を越えないように制御器
52から酸素上段供給管5の調節計42に信号7を送り
、酸素の流量を調節すればよい。
In the case of Pacific coal used in this example, α-=0.82
(9 in Ky/). When the amount of coal supplied is determined in this manner, the total amount of oxygen supplied is determined, and is controlled by the controller 49. After that, oxygen is transferred to the upper burner 27 and the lower burner 28.
Supplied separately. In this case, the amount of oxygen supplied to the upper burner 27 is controlled so that the temperature near the upper burner in the gasification region of the gasifier 29 does not exceed the melting temperature of the ash. This control method involves constantly monitoring the temperature near the shibana 27 using, for example, a thermometer 51 installed at the same height as the upper burner 27, and supplying oxygen from the upper burner 52 to the upper burner so that the temperature does not exceed the melting temperature of the ash. The signal 7 may be sent to the controller 42 of the tube 5 to adjust the flow rate of oxygen.

なお、下段バーナ28へは上段バーナ27へ供給された
残シの酸素が供給される。本実施例ではガス化炉に供給
する全酸素量と上段に供給する酸素量をそれぞれ調節計
49.42で制御する。
Note that the remaining oxygen supplied to the upper burner 27 is supplied to the lower burner 28 . In this embodiment, the total amount of oxygen supplied to the gasifier and the amount of oxygen supplied to the upper stage are controlled by controllers 49 and 42, respectively.

太平洋炭の場合には石炭を上段、下段に1対1で分配し
、全酸素供給量/全石炭供給量−0,82(K9/に9
)の時、上段酸素供給量/上段石炭供給量−0,36〜
0.38 (K9/1’−9)にすると、上段バーナ2
7付近の温度を1310tll’、即ち灰の溶融温度を
越えない値にすることが確認された。従ってこの場合、
下段酸素供給量/下段石炭供給量は、1.26〜1.2
8 (K9/Kg)であり、温度は灰の溶融温度を越え
る1880Cである。
In the case of Pacific coal, the coal is distributed 1:1 between the upper and lower tiers, and the total oxygen supply amount / total coal supply amount - 0.82 (K9 / 9
), upper stage oxygen supply amount/upper stage coal supply amount -0.36 ~
0.38 (K9/1'-9), upper burner 2
It was confirmed that the temperature around 7 was set to 1310 tll', that is, a value that did not exceed the melting temperature of ash. Therefore, in this case,
The lower stage oxygen supply amount/lower stage coal supply amount is 1.26 to 1.2.
8 (K9/Kg), and the temperature is 1880C, which exceeds the melting temperature of ash.

かかる操作条件のとき、ガス化炉29のガス化領域では
反応が次のように進行している。
Under such operating conditions, the reaction progresses in the gasification region of the gasification furnace 29 as follows.

上段バーナ27から供給された石炭は、酸素量が少ない
条件でガス化するため、カーボンをかなシ含んだチャー
に転化するが、このチャーは灰の溶融温度を越えない条
件で生成したため、前述した如く極めて反応性に富んで
いる。従ってここにH2OやCO2等のガス化剤が存在
すれば短時間の間に(5)、(6)式によシガス化する
。一方、下段に供給した石炭は、通常の酸素量/石炭量
よシも大きい条件で反応するので、極めて単時間で完全
にガス化する。この際、過剰の酸素を供給しているため
、ここから生成すクガス中にはCO,H,の他、C02
、H20が相当置台まれる。そして下段で生成したガス
は、ガス化炉を上昇するので、上段で生成したチャーは
、下段から生成するC 02 。
Since the coal supplied from the upper burner 27 is gasified under conditions with a low oxygen content, it is converted into char containing a small amount of carbon, but since this char is generated under conditions that do not exceed the melting temperature of ash, it is It is extremely reactive. Therefore, if a gasifying agent such as H2O or CO2 is present here, it will be gasified in a short time according to equations (5) and (6). On the other hand, the coal supplied to the lower stage reacts under conditions where the amount of oxygen/coal is greater than the usual amount, so it is completely gasified in a very short time. At this time, since excess oxygen is supplied, the gas produced from this contains CO, H, and CO2.
, H20 is widely used. Since the gas generated in the lower stage ascends through the gasifier, the char generated in the upper stage is C 02 generated in the lower stage.

H2Oを含むガスをガス化剤として反応させることがで
きる。チャーの反応が進行して未反応カーボン量が少な
くなシ、灰となった粒子は、ガス化炉領域内を浮遊する
間に炉壁に付着したシ、下段バーナ28の高温領域に下
降したシして、最終的に大部分が溶融スラグ9となシ、
スラグ冷却領域に落下する。溶融スラグ化しない灰は、
ガスと共に飛散し、サイクロン36によって分離、回収
される。
A gas containing H2O can be reacted as a gasifying agent. When the char reaction progresses and the amount of unreacted carbon is small, particles that become ash adhere to the furnace wall while floating in the gasifier area, and particles that descend to the high temperature area of the lower burner 28. Finally, most of it becomes molten slag 9,
The slag falls into the cooling area. Ash that does not turn into molten slag is
It scatters together with the gas, and is separated and collected by the cyclone 36.

本実施例に係る石炭ガス化方法の試験結果と従来法によ
る結果との比較値を第2表及び第4図に示す。
Table 2 and FIG. 4 show comparison values between the test results of the coal gasification method according to this example and the results of the conventional method.

第2表 1) カーボンガス化率 この第2表において、■は石炭を分離せず、下段バーナ
のみを用い、■、■は本実施例に係る条件で行ったもの
で、全酸素供給量/全石炭供給量はいずれも0.82 
K9/に9である。実施例■ではガス化温度が1630
Cで、カーボンガス化率87.8チ、冷ガス効率66.
3%であったのが、■のように石炭を上段と下段に均等
に分配し、上段を1310t:’に保った結果、サイク
ロンで回収したダクト中のカーボン割合は14.2 W
 t %と著しく低下し、カーボンガス化率、冷ガス効
率はそれぞれ94.1%、713%に向上した。■は上
段と下段への石炭供給比を1対2にし、上段を1330
Cに保った場合であるが、■よシも効率は向上する。
Table 2 1) Carbon gasification rate In this Table 2, ■ indicates that the coal was not separated and only the lower burner was used, and ■ and ■ were conducted under the conditions according to this example, and the total oxygen supply amount / Total coal supply is 0.82 in both cases.
K9/ni9. In Example ■, the gasification temperature was 1630
C, carbon gasification rate 87.8cm, cold gas efficiency 66.
The carbon percentage in the duct recovered by the cyclone was 3%, but as a result of distributing the coal evenly between the upper and lower stages and keeping the upper stage at 1310t:', the carbon percentage in the duct collected by the cyclone was 14.2W.
t%, and the carbon gasification rate and cold gas efficiency improved to 94.1% and 713%, respectively. ■The coal supply ratio to the upper and lower stages is 1:2, and the upper stage is 1330
This is the case where the value is kept at C, but the efficiency also improves in the case of ■.

第4図は上段バーナ27への石炭供給量と全石炭供給量
の比(石炭分配比)のガス化効率に及ぼす影響を示した
もので、石炭分配比を0とするのが従来法に和尚する結
果である。それ以外は本実施例に係る方法によるもので
ある。本発明法によシ、上段と下段に均等分配した場合
が最も効率がよい。
Figure 4 shows the influence of the ratio of the amount of coal supplied to the upper burner 27 to the total amount of coal supplied (coal distribution ratio) on gasification efficiency.The conventional method is to set the coal distribution ratio to 0. This is the result. The rest is based on the method according to this embodiment. According to the method of the present invention, it is most efficient when the water is distributed evenly between the upper and lower stages.

〔発明の効果〕 本発明によれば、石炭の反応過程で反応性に豊むチャー
を生成できるので、ガス化炉から飛散する灰中のカーボ
ンが低減でき、ガス化効率を向上することができる。−
1:fcl ガス化炉の下段は高酸素量で石炭をガス化
するので高温となシ、灰の溶融温度が高い石炭も処理可
能となり、適用炭種の拡大が図れる。
[Effects of the Invention] According to the present invention, highly reactive char can be generated during the coal reaction process, so carbon in the ash scattered from the gasifier can be reduced and gasification efficiency can be improved. . −
1: fcl The lower stage of the gasifier gasifies coal with a high amount of oxygen, so it is not heated to high temperatures, and it is possible to process coal with a high ash melting temperature, making it possible to expand the range of applicable coal types.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は石炭の反応条件と生成チャーの完全反応時間と
の関係を示す特性図、第2図は石炭の反応条件と生成チ
ャーの比表固執との関係を示す特性図、第3図は本発明
の一実施例を示す石炭ガス化方法を示す系統図、第4図
はガス化効率を示す特性図である。 1・・・微粉炭供給管、4・・・酸素供給管、27・・
・上段バーナ、28・・・下段バーナ、29・・・ガス
化炉、32・・・スラグ冷却タンク、36・・・サイク
ロン、°“、、−p−x ) *’)′’o     
   4代理人 弁理士 高橋明〜1j ¥ 10 $2rfJ tooo  /200   /4θ0   /b00 
1800反ん51席(’c) ¥30 輩 4(2) 石波分西cic(ドB/lc>) 第1頁の続き ■出 願 人 バブコック日立株式会社東京都千代田区
大手町2丁目6 番2号
Figure 1 is a characteristic diagram showing the relationship between the reaction conditions of coal and the complete reaction time of the produced char, Figure 2 is a characteristic diagram showing the relationship between the reaction conditions of coal and the fixed ratio of the produced char, and Figure 3 is a characteristic diagram showing the relationship between the reaction conditions of coal and the complete reaction time of the produced char. FIG. 4 is a system diagram showing a coal gasification method according to an embodiment of the present invention, and a characteristic diagram showing gasification efficiency. 1...Pulverized coal supply pipe, 4...Oxygen supply pipe, 27...
・Upper burner, 28...Lower burner, 29...Gasifier, 32...Slag cooling tank, 36...Cyclone, °",, -p-x) *')''o
4 Agent Patent Attorney Akira Takahashi ~ 1j ¥ 10 $2rfJ tooo /200 /4θ0 /b00
1,800 seats, 51 seats ('c) ¥30, 4 (2) Ishinami Bunnishi CIC (Do B/LC>) Continued from page 1 ■ Applicant Babcock Hitachi Co., Ltd. 2-6 Otemachi, Chiyoda-ku, Tokyo number 2

Claims (1)

【特許請求の範囲】[Claims] 1、微粉炭をガス化炉のバーナに供給し、酸素又は空気
とスチームとによって気流中でガス化する石炭ガス化方
法において、供給する微粉炭は、ガス化炉のガス化反応
領域の異なる2ケ所に分け、一方のバーナへ供給する酸
素量の微粉炭供給量に対する比を微粉戻入の溶融温度を
越えない値に設定し、他方のバーナへ供給する酸素量の
微粉炭供給量に対する比を前記一方のバーナのそれより
も大きく設定することを特徴とする石炭ガス化方法。
1. In a coal gasification method in which pulverized coal is supplied to a burner of a gasification furnace and gasified in an air stream with oxygen or air and steam, the pulverized coal to be supplied is used in different gasification reaction regions of the gasification furnace. The ratio of the amount of oxygen supplied to one burner to the amount of pulverized coal supplied is set to a value that does not exceed the melting temperature of fine powder return, and the ratio of the amount of oxygen supplied to the other burner to the amount of pulverized coal supplied is set to a value that does not exceed the melting temperature of fine powder return. A coal gasification method characterized by setting one burner larger than that of the other.
JP4716283A 1983-03-23 1983-03-23 Gasification of coal Granted JPS59172589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4716283A JPS59172589A (en) 1983-03-23 1983-03-23 Gasification of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4716283A JPS59172589A (en) 1983-03-23 1983-03-23 Gasification of coal

Publications (2)

Publication Number Publication Date
JPS59172589A true JPS59172589A (en) 1984-09-29
JPH0455238B2 JPH0455238B2 (en) 1992-09-02

Family

ID=12767377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4716283A Granted JPS59172589A (en) 1983-03-23 1983-03-23 Gasification of coal

Country Status (1)

Country Link
JP (1) JPS59172589A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044412A1 (en) * 1996-05-20 1997-11-27 Hitachi, Ltd. Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system
US5725615A (en) * 1994-10-05 1998-03-10 Hitachi, Ltd. Entrained bed coal gasification reactor and method of gasifying coal
JP2009155659A (en) * 2009-04-14 2009-07-16 Yukuo Katayama Method for coal gasification

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163499A (en) * 2009-01-13 2010-07-29 Electric Power Dev Co Ltd Method for operating entrained-bed gasification furnace
CN102453550B (en) * 2011-05-06 2013-12-04 华东理工大学 Multi-nozzle multi-stage oxygen supplying entrained-flow gasifier and gasification method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432508A (en) * 1977-08-18 1979-03-09 Combustion Eng Operation of coal gasification plant
JPS57139184A (en) * 1981-02-23 1982-08-27 Hitachi Ltd Coal gasification
JPS57174391A (en) * 1981-04-22 1982-10-27 Hitachi Ltd Coal gasification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432508A (en) * 1977-08-18 1979-03-09 Combustion Eng Operation of coal gasification plant
JPS57139184A (en) * 1981-02-23 1982-08-27 Hitachi Ltd Coal gasification
JPS57174391A (en) * 1981-04-22 1982-10-27 Hitachi Ltd Coal gasification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725615A (en) * 1994-10-05 1998-03-10 Hitachi, Ltd. Entrained bed coal gasification reactor and method of gasifying coal
WO1997044412A1 (en) * 1996-05-20 1997-11-27 Hitachi, Ltd. Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system
JP2009155659A (en) * 2009-04-14 2009-07-16 Yukuo Katayama Method for coal gasification

Also Published As

Publication number Publication date
JPH0455238B2 (en) 1992-09-02

Similar Documents

Publication Publication Date Title
US4238226A (en) Method for producing molten iron by submerged combustion
US4270740A (en) Apparatus for producing molten iron by submerged combustion
US8753422B2 (en) Apparatus for and method of production of iron, semi steel and reducing gases
US9175847B2 (en) Two stage dry feed gasification system
JPS5936195A (en) Method for gasifying coal in jetted stream bed
CN105176594B (en) A kind of device and method for brown coal hydrogasification system also Primordial Qi
WO2007128370A1 (en) Process and plant for producing char and fuel gas
US4248626A (en) Method for producing molten iron from iron oxide with coal and oxygen
GB2056498A (en) Method and Apparatus for Producing Molten Iron from Iron Oxide with Coal and Oxygen
US10093996B2 (en) Method and apparatus for recycling top gas for shaft furnace
US20160122669A1 (en) System and method for gasification
BRPI0722330A2 (en) PROCESS AND INSTALLATION FOR PRODUCING COAL AND FUEL GAS
US4201571A (en) Method for the direct reduction of iron and production of fuel gas using gas from coal
US5407179A (en) Fluidized bed direct steelmaking plant
JPS638162B2 (en)
US4412858A (en) Method of converting iron ore into molten iron
JPS59172589A (en) Gasification of coal
TW304982B (en)
US4286775A (en) Apparatus for producing molten iron from iron oxide with coal and oxygen
JPS6157685A (en) Method and apparatus for producing gas from carbon-containing fuel
US4326857A (en) Production of a gas of a high heating value from coal
NO844801L (en) PROCEDURE AND DEVICE FOR REDUCTION OF OXYDE MATERIAL AND GENERATION OF ENERGY GAS
JPS60135509A (en) Oxidated substance reducing method and plant
JPH04314808A (en) Method and equipment for reforming exhaust gas in smelting reduction furnace
CA1148745A (en) Method and apparatus for producing molten iron from iron oxide with coal and oxygen