JPS5826392B2 - Molten blast furnace slag sensible heat utilization method - Google Patents

Molten blast furnace slag sensible heat utilization method

Info

Publication number
JPS5826392B2
JPS5826392B2 JP54027464A JP2746479A JPS5826392B2 JP S5826392 B2 JPS5826392 B2 JP S5826392B2 JP 54027464 A JP54027464 A JP 54027464A JP 2746479 A JP2746479 A JP 2746479A JP S5826392 B2 JPS5826392 B2 JP S5826392B2
Authority
JP
Japan
Prior art keywords
blast furnace
slag
molten
furnace
sensible heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54027464A
Other languages
Japanese (ja)
Other versions
JPS55120696A (en
Inventor
節夫 阿部
喜代太 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP54027464A priority Critical patent/JPS5826392B2/en
Publication of JPS55120696A publication Critical patent/JPS55120696A/en
Publication of JPS5826392B2 publication Critical patent/JPS5826392B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/066Receptacle features where the slag is treated
    • C21B2400/074Tower structures for cooling, being confined but not sealed
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は、高炉から排出される溶融高炉スラグの顕熱利
用方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for utilizing sensible heat of molten blast furnace slag discharged from a blast furnace.

高炉から銑鉄と共に排出されるスラグは約1500℃〜
1600℃の高温の顕熱を有しているが、通常はスラグ
レードル(スラグ鍋)に受け、スラグ処理場へ放流し、
大気で冷却し畑スラグとして粗骨材とするか、水槽の中
で投入し急冷してバラス材としており、高温の顕熱回収
はされていない。
The slag discharged from the blast furnace along with the pig iron is approximately 1500℃~
Although it has high temperature sensible heat of 1600℃, it is usually collected in a slag ladle and discharged to a slag treatment plant.
It is either cooled in the atmosphere and made into coarse aggregate as field slag, or put into a water tank and rapidly cooled to make ballast material, and high-temperature sensible heat is not recovered.

しかし最近は、省エネルギーの見地から、高炉スラグ顕
熱を回収利用する手段が数多く提案されており、その方
法は、主として物理的な顕熱回収方式で、縦型、横型、
円板型、円筒型の各種熱交換器の中にスラグを入れ輻射
、対流、伝導等でスラグ顕熱を回収し、熱風又は蒸気と
して回収する方法である。
However, recently, from the perspective of energy conservation, many methods have been proposed for recovering and utilizing blast furnace slag sensible heat.
This is a method in which slag is placed in various types of disk-type or cylindrical heat exchangers, and the sensible heat of the slag is recovered by radiation, convection, conduction, etc., and then recovered as hot air or steam.

一方、石炭等の灰分の溶融スラグを流動床として用い、
各種石炭又は、重質油を熱分解し、ガスを回収する化学
的な方法もある。
On the other hand, using molten slag containing ash such as coal as a fluidized bed,
There is also a chemical method of pyrolyzing various types of coal or heavy oil to recover gas.

この一例として、第1図に示すオツトールンメル炉(D
erSchlacken bad generaL
Ory、chem −Ing Tecknik 28.
Jahrg、1956/Nr 、1)が知られている。
As an example of this, an Otto-Rummel furnace (D
erSchlacken bad generaL
Ory, chem-Ing Tecknik 28.
Jahrg, 1956/Nr, 1) is known.

即ち、縦型円筒のガス化炉1の中に、石炭灰の溶融スラ
グ2を入れ、下部炉壁に環状交互に配列された粉炭ノズ
ル3とガス化剤ノズル4から、それぞれ粉炭とガス化剤
が、石炭灰の溶融スラグ2の中に吹込まれる。
That is, molten coal ash slag 2 is placed in a vertical cylindrical gasification furnace 1, and pulverized coal and gasification agent are supplied from pulverized coal nozzles 3 and gasification agent nozzles 4, which are alternately arranged in an annular manner on the lower furnace wall. is blown into the molten slag 2 of coal ash.

石炭灰の溶融スラグ2は、縦型円筒炉1の中で、溶融ス
ラグ2と粉炭とガス化剤は旋回しながら接融し、その高
温顕熱(1400℃以上)で、粉炭とガス化剤を熱分解
して、還元ガス(CO+H2)Gを発生させ、該ガスは
上昇管6から採集もれる。
The molten slag 2 of coal ash is melted in the vertical cylindrical furnace 1, the molten slag 2, pulverized coal, and gasifying agent are swirled and melted, and the high temperature sensible heat (1400°C or higher) melts the pulverized coal and the gasifying agent. is thermally decomposed to generate a reducing gas (CO+H2) G, which is collected and leaked from the riser pipe 6.

一方、ガス化後に残った石炭の灰分は、高温還元雰囲気
の中では、溶融スラグとなり、縦型円筒炉1の下部中央
に設けたオーバフロー管5から排出され、溶融スラグの
レベルは一定に保たれるというものである。
On the other hand, the ash content of the coal remaining after gasification becomes molten slag in a high-temperature reducing atmosphere and is discharged from the overflow pipe 5 installed at the bottom center of the vertical cylindrical furnace 1, and the level of molten slag is kept constant. It is said that

オツトールンメル炉における技術思想は、高温還元性雰
囲気中で、石炭等の灰分で溶融スラグを製造し、石炭又
は重質油の熱分解炉の流動床として用いるものである。
The technical idea behind the Ottolummel furnace is to produce molten slag from ash of coal or the like in a high-temperature reducing atmosphere and use it as a fluidized bed in a coal or heavy oil pyrolysis furnace.

石炭等の灰分を常時、溶融状態に保つ熱補償は、吹込み
粉炭又は重質油をガス化剤(空気又は酸素)で部分燃焼
させて行っている。
Thermal compensation for keeping the ash content of coal etc. in a molten state at all times is achieved by partially burning blown pulverized coal or heavy oil with a gasifying agent (air or oxygen).

よって、溶融スラグは、ガス化炉炉外から供給する必要
はない。
Therefore, it is not necessary to supply molten slag from outside the gasifier furnace.

一方、高炉製銑法における高炉炉内の反応は、高温炉内
で、炉頂から投入したコークス又は羽目から吹込んだ重
油が熱分解され高温還元ガスになり鉄鉱石を還元する反
応である。
On the other hand, the reaction inside the blast furnace in the blast furnace ironmaking process is a reaction in which coke introduced from the top of the furnace or heavy oil injected from the slats are thermally decomposed into high-temperature reducing gas and reduce iron ore.

そこで炉頂からのコークス量を減少させるためには羽目
へ重油等燃料(タール、粉コークス、粉炭等)を更に多
量に吹込むことが考えられるが、これら燃料の羽目吹込
みには限界がある。
Therefore, in order to reduce the amount of coke from the top of the furnace, it is possible to inject a larger amount of fuel such as heavy oil (tar, coke breeze, pulverized coal, etc.) into the siding, but there is a limit to the amount of fuel that can be injected into the siding. .

それは羽目燃焼帯(レースウェイ)で重油等燃料が熱分
解して還元ガスとなる反応は吸熱反応であり、吹込み量
を増すと熱焼帯の温度が低下したり煤の発生で通気性を
そこないついには未燃焼重油が残る等で著しく高炉安定
操業に支障が生じるからである。
The reaction in which fuel such as heavy oil is thermally decomposed into reducing gas in the raceway is an endothermic reaction, and as the amount of injection is increased, the temperature of the heating zone decreases and soot is generated, which reduces air permeability. This is because, in the end, unburned heavy oil remains, which seriously impedes the stable operation of the blast furnace.

この解決策として大きく2種類の方法がある。There are two main ways to solve this problem.

一つは熱補償策で高温送風と高炉への酸素吹込みである
One is heat compensation measures, such as high-temperature air blowing and oxygen injection into the blast furnace.

もう一つは高炉炉外で高温還元ガス(CO+H2)を製
造し、高炉シャフト部に吹込む方法である。
The other method is to produce high-temperature reducing gas (CO+H2) outside the blast furnace and inject it into the blast furnace shaft.

前者は、既に国内の大型炉で多数実績のある方法であり
、後者の場合は例えば第2図に示すように、F 、T
、G(Fuji Texaco Ga5)プロセス
(鉄と鋼、1972年第5号)として紹介されている。
The former is a method that has already been proven in many large reactors in Japan, and the latter, for example, as shown in Figure 2,
, G (Fuji Texaco Ga5) process (Tetsu-to-Hagane, No. 5, 1972).

即ち、高炉7の炉外に重油分解炉8を設けここで高温還
元ガス(CO+H2)を発生させ高炉炉内の溶融があま
り進んでいないシャフト部9に吹込むものである。
That is, a heavy oil cracking furnace 8 is provided outside the blast furnace 7, where high-temperature reducing gas (CO+H2) is generated and blown into the shaft portion 9 in the blast furnace where melting has not progressed much.

本発明者らは、これまで別々に考えられていた前述の溶
融スラグ顕熱利用技術と高炉操業技術の両者に着目し、
これらを一元的に結びつけることによって優れた溶融高
炉スラグ顕熱利用技術の存在することを見出したもので
ある。
The present inventors focused on both the above-mentioned molten slag sensible heat utilization technology and blast furnace operation technology, which had been considered separately, and
We discovered that an excellent technology for utilizing the sensible heat of molten blast-furnace slag exists by integrating these elements.

即ち、本発明は高炉から銑鉄と共に副次的に排出される
溶融高炉スラグの高温顕熱で、微粉コークス(高炉前処
理工程でサイズ落ちしたもの)を水蒸気で熱分解した還
元ガスを製造し、この高温還元ガスを高炉シャフト部に
吹込むことにより、より価値の高い塊コークス(高炉コ
ークス比)減を計ることを目的としたものでいわば高炉
炉外に排出された溶融高炉スラグ顕熱を高炉操業の向上
へ自己完結的に結びつけたことを特徴としている。
That is, the present invention produces a reducing gas by thermally decomposing pulverized coke (reduced in size in the blast furnace pretreatment step) with steam using the high temperature sensible heat of molten blast furnace slag that is discharged as a secondary discharge along with pig iron from the blast furnace. By injecting this high-temperature reducing gas into the blast furnace shaft, the purpose is to reduce the amount of more valuable lump coke (blast furnace coke ratio). It is characterized by its self-contained connection to improved operations.

なお、ガス発生炉で吸熱されたスラグは急冷され半凝固
状態となり、系外に排出され次工程で更に公知の各種熱
交換器にかけて排熱回収されるか、水槽に入れて水滓と
される。
The slag that has absorbed heat in the gas generating furnace is rapidly cooled to a semi-solidified state, is discharged from the system, and in the next process is either passed through various known heat exchangers to recover the waste heat, or is placed in a water tank and turned into water slag. .

以下に、本発明を図面に示す具体例について説明する。Below, specific examples of the present invention shown in the drawings will be described.

高炉7には通常数個の出銑口10があり交互に間歇的に
出銑が行なわれる。
The blast furnace 7 usually has several tap holes 10, and tapping is performed alternately and intermittently.

出銑の途中から溶融スラグが出はじめ鋳床樋11で銑鉄
とスラグが比重差で分離された後スラグ溜12に溜めら
れる。
Molten slag begins to come out in the middle of tapping, and after being separated from the slag by the difference in specific gravity in the cast bed trough 11, it is collected in a slag sump 12.

スラグ溜12は、断熱レンガで保熱され、スラグ2は溶
融状態を保つと共に高炉の数個の鋳床樋11から流れて
くるスラグを受け、かつ後工程ヘスラグを送り出しても
空にならない容量を保つものとする。
The slag sump 12 is heat-retained with insulating bricks, and the slag 2 is maintained in a molten state and receives the slag flowing from several cast floor troughs 11 of the blast furnace. shall be maintained.

スラグ溜12の底部から断熱された連絡管13がガス化
炉1の底辺へ接続方向へ直通されており、溶融スラグ2
はガス化炉1の中へ渦巻状に回転して導入される。
An insulated connecting pipe 13 from the bottom of the slag reservoir 12 is directly connected to the bottom of the gasifier 1 in the connection direction, and the molten slag 2
is introduced into the gasifier 1 while rotating in a spiral manner.

ガス化炉1は、縦型円筒形の炉下部に微粉コークスまた
は粉炭(以下は微粉コークスという)を高速で吹込む粉
炭ノズル3と水蒸気を高速に吹込むガス化剤ノズル4が
環状に交互に配列される。
The gasifier 1 has a vertical cylindrical lower part where a pulverized coal nozzle 3 that blows pulverized coke or pulverized coal (hereinafter referred to as pulverized coke) at high speed and a gasifier nozzle 4 that blows steam at high speed are arranged alternately in an annular manner. Arranged.

両者のノズル3,4はそれぞれ炉本体に対し接続方向で
下向きに取付られ、その先端は炉底部にたまった溶融ス
ラグ2の表面に接するか、又は表面下にある。
Both nozzles 3 and 4 are respectively attached to the furnace body facing downward in the connecting direction, and their tips are in contact with the surface of the molten slag 2 accumulated at the bottom of the furnace or are located below the surface.

溶融スラグ2には噴射された粉コークスと蒸気の運動エ
ネルギーが伝わり高速で旋回している。
The kinetic energy of the injected coke powder and steam is transmitted to the molten slag 2, causing it to swirl at high speed.

炉壁14は水冷蛇管又はジャケットから成り、表面はス
ラグの保護膜でおおわれる。
The furnace wall 14 consists of a water-cooled corrugated tube or jacket, the surface of which is covered with a protective film of slag.

溶融スラグ2は、旋回攪拌しながら微粉コークスと水蒸
気に熱を与え、微粉コークスと水蒸気は水性ガス反応に
より還元ガス(CO+H2)Gを発生する。
The molten slag 2 gives heat to the fine coke and steam while swirling and stirring, and the fine coke and steam generate reducing gas (CO+H2) G through a water gas reaction.

発生した還元ガス(CO+H2)Gは、ガス化炉1の炉
頂部の上昇管6を通って高炉7のシャフト部9へ吹き込
まれる。
The generated reducing gas (CO+H2) G is blown into the shaft portion 9 of the blast furnace 7 through the riser pipe 6 at the top of the gasifier 1.

一方、ガス化炉1内で微粉コークスと水蒸気の熱分解で
吸熱され冷却された高炉スラグ2は半凝固状態となり、
中央のオーバーフロ・一管5から水冷スクリューフィダ
ー15で下降しガス化炉1系外に排出される。
On the other hand, the blast furnace slag 2 which has been cooled and absorbed heat due to the thermal decomposition of the pulverized coke and steam in the gasifier 1 becomes a semi-solidified state.
It descends from the central overflow pipe 5 through a water-cooled screw feeder 15 and is discharged to the outside of the gasifier 1 system.

ガス化炉1系外に出たスラグ2は、公知の各種方法で熱
交換され粗骨材及びバラス材とされる。
The slag 2 discharged from the gasifier 1 system is heat-exchanged by various known methods and turned into coarse aggregate and ballast material.

本発明では、スラグ溜を設け、かつ、この溶融スラグ2
をガス化種1底辺にスラグが円周運動を生じる様に流し
、かつガス化後の半凝固スラグは水冷スクリューフィー
ダー15で強制的に系外に搬出する時、スラグ連続化が
なされているため部分燃焼の必要がない。
In the present invention, a slag reservoir is provided, and the molten slag 2
This is because the slag is made continuous when the slag is flowed at the bottom of the gasified species 1 so as to cause circumferential movement, and the semi-solidified slag after gasification is forcibly carried out of the system by the water-cooled screw feeder 15. No need for partial combustion.

この為オツトールンメル炉の部分燃焼式に比べ粉コーク
ス(粉炭)の使用量が少なく済み、かつオツトールンメ
ル炉よりもカロリーの高い還元ガスが得られる。
Therefore, compared to the partial combustion type of the Otto Rummel furnace, less coke powder (pulverized coal) is used, and reducing gas with higher calories than the Otto Rummel furnace can be obtained.

次に本発明における限定条件について説明する。Next, limiting conditions in the present invention will be explained.

(1)水性ガス反応を生じさせる為の温度条件は微粉コ
ークスが還元性雰囲気で赤熱化する温度、即ち800℃
〜1000℃以上が必要である。
(1) The temperature condition for causing the water gas reaction is the temperature at which fine coke becomes red-hot in a reducing atmosphere, that is, 800°C.
~1000°C or higher is required.

しかし溶融スラグ2は1250℃程度の温度で急激に激
固しはじめる為、旋回しながら接触熱分解させる手段と
して利用できるスラグ温度は約1250℃以上が必要で
ある。
However, since the molten slag 2 rapidly begins to solidify at a temperature of about 1250° C., the slag temperature needs to be about 1250° C. or higher to be used as a means for catalytic thermal decomposition while swirling.

(2)また、利用する流動スラグ2は高炉スラグが対象
となる。
(2) Furthermore, the fluidized slag 2 to be used is blast furnace slag.

当反応で発生するガスはioo。℃以上の還元ガスであ
り、冷却せずに有効利用できる方法として高炉吹込みが
あり、プロセスがリサイクルする上からスラグは高炉ス
ラグと限定する。
The gas generated in this reaction is ioo. It is a reducing gas with a temperature of ℃ or above, and blast furnace injection is a method that can be used effectively without cooling, and since the process is recycled, the slag is limited to blast furnace slag.

(3)ガス化炉1で発生した還元ガス(CO+H2)G
の高炉本体7への吹込箇所は、還元ガス温度が1000
℃程度かつ水性ガス反応(熱分解)からみて、圧力はあ
まり高くとれない(5kg/crtfM下)ことから、
高炉本体1の燃焼帯(レースウェイ、約2000℃溶融
状態にありガスの通気性は悪い)をさけて高炉炉内で溶
融があまり進んでいない所に吹込みを行えば量的に多量
に吹込むことが可能である。
(3) Reducing gas (CO+H2) G generated in gasifier 1
The point where the reducing gas is blown into the blast furnace main body 7 has a temperature of 1000
℃ and from the viewpoint of water gas reaction (thermal decomposition), the pressure cannot be very high (below 5 kg/crtfM),
If you avoid the combustion zone (raceway) of the blast furnace body 1 (which is in a molten state of about 2000°C and have poor gas permeability) and blow into the area where melting has not progressed much in the blast furnace, you can blow a large amount. It is possible to incorporate

よって該還元ガスの吹込みは、高炉シャフト部9付近と
限定する。
Therefore, the blowing of the reducing gas is limited to the vicinity of the blast furnace shaft portion 9.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

(1)微粉コークスは700℃以上の還元性雰囲気で水
と反応下記の水性ガス反応が生じ熱分解する。
(1) Fine coke reacts with water in a reducing atmosphere of 700° C. or higher.The following water gas reaction occurs and thermally decomposes.

■ C+H2O−+CO+H2 −31,4kcal /mo 1 ■ C+2H20→CO2+2H2 18,2kcal /mol ■ C+CO□→2C0 38,2k ca l / mo 1 本発明で使用する溶融高炉スラグは1500℃から12
50℃の範囲であり、上記反応は■〜■がほば並行して
進行すると考えられる■〜■を集約すると ■ C+H2O−+CO+H2 29,3k c a l/ mo 1 となり、C2H201モルからCO+H2ガスが2モル
発生することになる。
■ C+H2O-+CO+H2 -31,4kcal/mo 1 ■ C+2H20→CO2+2H2 18,2kcal/mol ■ C+CO□→2C0 38,2k cal/mo 1 The molten blast furnace slag used in the present invention is heated from 1500℃ to 12
The temperature range is 50℃, and the above reactions are thought to proceed almost in parallel.If we put together the above reactions, we get: C+H2O-+CO+H2 29.3k cal/mo 1, and CO+H2 gas is converted from 1 mol of C2H20. 2 moles will be generated.

(2)次に製鉄所の高炉に本発明装置を設置した場合の
ガス発生量及び高炉燃料比への効果を示す。
(2) Next, we will show the effect on the gas generation amount and blast furnace fuel ratio when the device of the present invention is installed in a blast furnace of a steelworks.

(3) 本発明の事例と公知の従来法によるデータを比較して検
証すれば次の如くなる。
(3) Comparing and verifying the data obtained from the case of the present invention and the known conventional method, the results are as follows.

斯る事実から明らかなように本発明は、従来の熱分解還
元ガス発生炉に比べ、溶融高炉スラグ顕熱で熱分解する
方法は、カロリーも高くかつ高炉吹込み時のコークス節
減効果もあることがわかる。
As is clear from these facts, the present invention is based on the fact that, compared to conventional pyrolysis reducing gas generating furnaces, the method of pyrolyzing molten blast furnace slag using sensible heat has a higher calorific value and also has the effect of saving coke during blast furnace injection. I understand.

以上のように、本発明を実施することにより、以下の通
りの効果を発揮する。
As described above, by implementing the present invention, the following effects are exhibited.

(1)微粉コークス(又は粉炭)でより価値の高い高炉
塊コークスが節約できる。
(1) Using pulverized coke (or pulverized coal), more valuable blast furnace lump coke can be saved.

最近は高炉の炉前原料の強化から微粉コークスが余剰に
なる傾向にあるが、この余剰微粉コークスを使い本発明
のガス化炉で還元ガス化し、高炉に吹込むことにより、
価値の高い塊コークスと代替できる。
Recently, there has been a tendency for there to be a surplus of pulverized coke due to the strengthening of the raw material at the front of blast furnaces, but by using this surplus pulverized coke to reduce gasification in the gasification furnace of the present invention and injecting it into the blast furnace,
Can be substituted for high-value lump coke.

(2)新らしい高温域排熱回収技術である。(2) It is a new high-temperature region waste heat recovery technology.

製鉄所における排熱は、主として物理的な熱交換器を通
して熱風又は蒸気として排熱回収がされてきた。
Exhaust heat in steel plants has mainly been recovered as hot air or steam through physical heat exchangers.

本発明は物質の「熱分解」を応用した化学的な方法で、
熱分解の除行なう「吸熱量」は物理的な相変化の数倍に
達する大きなものであり、又反応後の生成分が再利用で
きるものであれば高温域のコンパクト高効率の排熱回収
設備としての新らしい高温域排熱回収技術となる。
The present invention is a chemical method that applies "thermal decomposition" of substances,
The amount of heat absorbed by thermal decomposition is several times larger than the physical phase change, and if the product after the reaction can be reused, compact and highly efficient waste heat recovery equipment in the high temperature range is required. This is a new high-temperature range waste heat recovery technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来型のスラグを用いたガス化炉、第2図は
従来型の高温還元ガスの高炉吹込法、第3図は本発明の
装置の概念図で、第4図は第3図のA−B−C断面図で
ある。 1・・・・・・ガス化炉、2・・・・・・溶融スラグ、
3・・・・・・粉炭ノズル、4・・・・・・ガス北側ノ
ズル、5・・・・・・オーバーフロー管、6・・・・・
・上昇管、7・・・・・・高炉、8・・・・・・重油熱
分解炉、9・・・・・・高炉シャフト部、10・・・・
・・出銑口、11・・・・・・鋳床樋、12・・・・・
−スラグ溜、13・・・・・・連絡管、14・・・・・
・炉壁、15・・・・・・水冷スクリューフィーダー
G・・・・・・還元ガス。
Figure 1 shows a conventional gasification furnace using slag, Figure 2 shows a conventional blast furnace injection method of high-temperature reducing gas, Figure 3 is a conceptual diagram of the apparatus of the present invention, and Figure 4 shows a It is a sectional view taken along the line ABC in the figure. 1... Gasifier, 2... Molten slag,
3... Powdered coal nozzle, 4... Gas north nozzle, 5... Overflow pipe, 6...
・Rising pipe, 7...Blast furnace, 8...Heavy oil pyrolysis furnace, 9...Blast furnace shaft section, 10...
...Tackle mouth, 11...Cast bed trough, 12...
-Slag sump, 13...Connecting pipe, 14...
・Furnace wall, 15...Water-cooled screw feeder
G...Reducing gas.

Claims (1)

【特許請求の範囲】[Claims] 1 高炉から排出された溶融スラグを縦型円筒型ガス化
炉内へ連続的に導入し、前記ガス化炉下部に設けたノズ
ルから粉炭およびガス化剤を溶融スラグに向って高速に
吹込み攪拌して還元ガスを発生せしめ更に該還元ガスを
誘導して高炉シャフト部へ吹込むことを特徴とする溶融
高炉スラグの顕熱利用方法。
1. Molten slag discharged from the blast furnace is continuously introduced into a vertical cylindrical gasifier, and powdered coal and gasifying agent are blown into the molten slag at high speed through a nozzle provided at the bottom of the gasifier and stirred. 1. A method for utilizing sensible heat of molten blast furnace slag, characterized by generating reducing gas by inducing the reducing gas and blowing it into a blast furnace shaft.
JP54027464A 1979-03-09 1979-03-09 Molten blast furnace slag sensible heat utilization method Expired JPS5826392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54027464A JPS5826392B2 (en) 1979-03-09 1979-03-09 Molten blast furnace slag sensible heat utilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54027464A JPS5826392B2 (en) 1979-03-09 1979-03-09 Molten blast furnace slag sensible heat utilization method

Publications (2)

Publication Number Publication Date
JPS55120696A JPS55120696A (en) 1980-09-17
JPS5826392B2 true JPS5826392B2 (en) 1983-06-02

Family

ID=12221829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54027464A Expired JPS5826392B2 (en) 1979-03-09 1979-03-09 Molten blast furnace slag sensible heat utilization method

Country Status (1)

Country Link
JP (1) JPS5826392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777519A (en) * 2019-03-27 2019-05-21 东北大学 A kind of blast furnace cinder waste heat driving gasification reaction system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19522320C1 (en) * 1995-06-20 1996-08-22 Joseph E Doumet Cooling and solidifying red hot molten blast furnace slag in metallurgy
RU2404114C2 (en) 2005-09-30 2010-11-20 Тата Стил Лимитед Method of producing hydrogen and/or other gases from steel work wastes and waste heat
JP5017362B2 (en) 2006-04-28 2012-09-05 ターター スチール リミテッド Method for producing hydrogen gas by thermo-chemical decomposition of water using steelworks slag and waste materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116301A (en) * 1974-07-30 1976-02-09 Shin Meiwa Ind Co Ltd GASUKA SOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116301A (en) * 1974-07-30 1976-02-09 Shin Meiwa Ind Co Ltd GASUKA SOCHI

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777519A (en) * 2019-03-27 2019-05-21 东北大学 A kind of blast furnace cinder waste heat driving gasification reaction system

Also Published As

Publication number Publication date
JPS55120696A (en) 1980-09-17

Similar Documents

Publication Publication Date Title
US4153426A (en) Synthetic gas production
TW518363B (en) Process and apparatus for generating fuel-, synthesis-, and reduction gas from renewable and fossil fuels, biomass, refuse or sludges
US4238226A (en) Method for producing molten iron by submerged combustion
CN102459654B (en) Apparatus for and method of production of iron, semi steel and reducing gases
CN104593085A (en) Coal gasifier for slag granulation and coal gas preparation process
PL135926B1 (en) Method of and apparatus for gasifying carbon containing materials
US6030430A (en) Blast furnace with narrowed top section and method of using
SU938747A3 (en) Process and apparatus for reducing iron oxide and producing molten crude iron
CN106590750A (en) Liquid state deslagging and graded gasifying reaction furnace of constant pressure fixed bed of water cooling wall
CN101845326B (en) Spiral-flow melting pond gasifier
AU2019387395B2 (en) Reactor and process for gasifying and/or melting of feed materials
JPS5826392B2 (en) Molten blast furnace slag sensible heat utilization method
CN111394133A (en) Gasification reduction device and method for co-producing yellow phosphorus and synthesis gas
CN204848782U (en) Slag granulation coal gasifier
EP0066563B1 (en) A gasification apparatus
US7883556B1 (en) Dual fuel slagging gasifier
US4195821A (en) Apparatus for reducing particulate iron oxide to molten iron with solid reductant
US4179278A (en) Method for reducing particulate iron oxide to molten iron with solid reductant
US4944771A (en) Method for methane production
JPH0631347B2 (en) Coal gasifier
US4869729A (en) Apparatus for methane production
JP3293430B2 (en) Scrap melting method
CA1141167A (en) Method and apparatus for reducing iron oxide to molten iron with solid reductant and oxy-fuel burners
JP3293431B2 (en) Scrap melting method
CN116286104A (en) Gasification furnace