JPS6369974A - Production of thin crystalline silicide film - Google Patents

Production of thin crystalline silicide film

Info

Publication number
JPS6369974A
JPS6369974A JP61214608A JP21460886A JPS6369974A JP S6369974 A JPS6369974 A JP S6369974A JP 61214608 A JP61214608 A JP 61214608A JP 21460886 A JP21460886 A JP 21460886A JP S6369974 A JPS6369974 A JP S6369974A
Authority
JP
Japan
Prior art keywords
film
thin film
vapor
gaseous
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61214608A
Other languages
Japanese (ja)
Inventor
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP61214608A priority Critical patent/JPS6369974A/en
Publication of JPS6369974A publication Critical patent/JPS6369974A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the title thin crystalline silicide film at the low temp. of 400 deg.C, by vaporizing a synthetic organometal complex contg. W and Si in a specified ratio, mixing the vapor into the mixture of gaseous Ar and gaseous H2, and generating electric discharge. CONSTITUTION:The whole system except a complex container 6 is evacuated to 10<-7>Torr, and then the gaseous mixture contg. 20% H2 and the balance Ar is introduced 20 into a vacuum vessel 1. The soln. 7 of the organometal complex shown by the formula, [W(CO)5]3SiSi[W(CO)5]3, is then introduced into a vaporization chamber 9 and wholly vaporized, and the vapor is introduced into the vessel 1 at a fixed rate. In this case, a substrate holder electrode 3 provided with a heater is preheated to 400-900 deg.C, and electric discharge is generated while keeping the temp. As a result, a thin film having about 1-3mum thickness is obtained on a substrate 19. The thermal damage on the film surface can be prevented by the method of this invention, and the film has an effect in improving the heat-resistant target electrode in a semiconductor such as FET.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、結晶性シリサイド薄膜の製造方法に関する。[Detailed description of the invention] A. Industrial application field The present invention relates to a method for manufacturing a crystalline silicide thin film.

B0発明の概要 本発明は、基板上に結晶性シリサイド薄膜を形成するに
おいて、 タングステン(W)とケイ素(Sk)とが所定の組成比
となるように合成された金属有機錯体を蒸気化し、その
蒸気を、アルゴンガス(A、)と水素ガス(H2)との
混合ガスに混合して放電させるようにしたことにより、 超伝導材料や耐熱ゲート電極などへの応用が可能な結晶
性シリサイド薄膜を、400℃の比較的低温で成膜でき
るようにしたものである。
B0 Summary of the Invention The present invention involves vaporizing a metal-organic complex synthesized so that tungsten (W) and silicon (Sk) have a predetermined composition ratio in forming a crystalline silicide thin film on a substrate. By mixing steam with a mixed gas of argon gas (A) and hydrogen gas (H2) and discharging it, we have created a crystalline silicide thin film that can be applied to superconducting materials and heat-resistant gate electrodes. , the film can be formed at a relatively low temperature of 400°C.

C0従来の技術 近年、薄膜を利用した半導体デバイスは、半導林産業に
おいて、不可欠のものとなっておシ、その製造方法も、
CVD法、スパッタ法、MBE法等の各糎のものが知ら
れている。
C0 Conventional Technology In recent years, semiconductor devices using thin films have become indispensable in the semiconductor industry, and their manufacturing methods have also changed.
Various adhesive methods such as CVD method, sputtering method, and MBE method are known.

特に、最近、MOCVD (MetatOrganic
ChemicatVapour Depasition
 )法が1薄膜の量産性及び膜質がMBE法並みにすぐ
れたものができるようになったことによシ注目されてい
る。この方法は、例えばGaAs¥l!膜の場合、’I
’MG()リメチルガリウム)等の有機物質とヒ化水素
AsH3のガスをその組成比になるように独立に混合し
、薄膜化を行なうものである。
In particular, recently MOCVD (MetatOrganic
Chemical Vapor Deposition
) method has been attracting attention because it has become possible to produce thin films in mass production and film quality comparable to that of the MBE method. This method can be applied, for example, to GaAs\l! For membranes, 'I
A thin film is formed by independently mixing an organic substance such as 'MG ()trimethyl gallium) and hydrogen arsenide AsH3 gas in such a composition ratio.

D0発明が解決しようとする問題点 しかしながら、このような従来の方法にあっては、化合
物半導体薄膜の組成比を決定するのは原料ガスの混合比
によシ決定されるため、化合物半導体膜の組成を精密且
つ微妙にコントロールするのが非常に難しい問題点かあ
つ九。
D0 Problems to be Solved by the Invention However, in such conventional methods, the composition ratio of the compound semiconductor thin film is determined by the mixing ratio of the raw material gases. The problem is that it is extremely difficult to precisely and delicately control the composition.

また、化合物半導体薄膜を製造する場合に、求める元素
を含む有機物質がなかったシ、危険なガスを必要とした
りする問題点があった。
In addition, when manufacturing a compound semiconductor thin film, there are problems in that organic materials containing the desired elements are not available and dangerous gases are required.

特に、シリサイドをMOCVD法で薄膜状態に作る場合
、高温となるため組成的変動が起こる問題点がある。
In particular, when silicide is formed into a thin film by MOCVD, there is a problem that compositional fluctuations occur due to high temperatures.

この発明は、か\る従来の問題点に着目して案出された
ものであって、超伝導材料や耐熱ゲート電極などへの応
用が可能な結晶性シリサイド薄膜を、400℃の低温で
成膜可能とする、結晶性シリサイド薄膜の製造方法の開
示をその目的としている。
This invention was devised by focusing on the conventional problems, and it is possible to form a crystalline silicide thin film at a low temperature of 400°C, which can be applied to superconducting materials, heat-resistant gate electrodes, etc. The purpose of this paper is to disclose a method for manufacturing a crystalline silicide thin film that can be used as a film.

虱問題点を解決するための手段 本発明は、タングステン(W)とケイ素(Si)とが所
定の組成比となるように合成された金属有機錯体を蒸気
化し、その蒸気を、アルゴンガス(Ar)と水素ガス(
H2)との混合ガスに混合して放電させて結晶性シリサ
イド薄膜を形成させることを、その構成としている。 
 ・ 28作 用 金属有機錯体の蒸気は、アルゴンガス(Ar)と水素ガ
ス(H2)との混合ガス中で放電されて、結晶性シリサ
イド(W5Si)を基板上に形成する。
Means for Solving the Problems The present invention vaporizes a metal-organic complex in which tungsten (W) and silicon (Si) are synthesized in a predetermined composition ratio, and the vapor is injected into argon gas (Ar). ) and hydrogen gas (
Its structure is to form a crystalline silicide thin film by mixing it with a mixed gas with H2) and discharging it.
・28 Action The vapor of the metal-organic complex is discharged in a mixed gas of argon gas (Ar) and hydrogen gas (H2) to form crystalline silicide (W5Si) on the substrate.

G、実施例 以下、本発明を図面に示す実施例に基づき詳細に説明す
る。
G. Examples Hereinafter, the present invention will be explained in detail based on examples shown in the drawings.

なお、図面は本発明の実施例に用いられたプラズマCV
D装置を示している。
Note that the drawings show plasma CV used in the embodiments of the present invention.
D device is shown.

図中、lは真空容器であり、この真空容器1には相対峙
するように、電流格子付電極−2とヒータ付基板ホルダ
電極3が配設されている。
In the figure, l is a vacuum vessel, and an electrode 2 with a current grid and a substrate holder electrode 3 with a heater are disposed in the vacuum vessel 1 so as to face each other.

前記電流格子付電極2は、管状の支持軸4の一端部に設
けられたものであって、この支持軸4は、後記する有機
金属錯体の蒸気を該電極2へ導く。
The current grid-equipped electrode 2 is provided at one end of a tubular support shaft 4, and the support shaft 4 guides the vapor of an organometallic complex, which will be described later, to the electrode 2.

また、電流格子付電極2の端面、(ヒータ付基板ホルダ
電極3と対向する面)に電流格子5が設けられていて、
有機金属鎖体の蒸気の流れの均一化に供されている。
Further, a current grid 5 is provided on the end face of the current grid-equipped electrode 2 (the surface facing the heater-equipped substrate holder electrode 3),
The organometallic chain serves to homogenize the flow of vapor.

図中、6は錯体容器であって、金属有機鉛体液7が封入
されている。この錯体容器6はパルプ12を備えたパイ
プ8で気化室9に連結されてシシ、該気化室9は、流量
計10.バルブ11を備えたパイプ13で前記支持軸4
の他端部に連結されている。
In the figure, 6 is a complex container in which a metal-organic lead liquid 7 is sealed. The complex container 6 is connected by a pipe 8 containing pulp 12 to a vaporization chamber 9, which is connected to a flow meter 10. The support shaft 4 is connected to the pipe 13 provided with the valve 11.
is connected to the other end.

なお、14はマノメータである。Note that 14 is a manometer.

そして、前記支持軸4には、マツチングボックス15 
、 RF電源16が頴次接続されていて、電流格子付電
極に放電電圧を印加し得るようにしている。
A matching box 15 is attached to the support shaft 4.
, an RF power source 16 is connected in series so that a discharge voltage can be applied to the current grid electrode.

一方、ヒータ付基板ホルダ電極3は、支持軸17で真空
容器1に支持され、接地電位とされている。
On the other hand, the heater-equipped substrate holder electrode 3 is supported by the vacuum container 1 by a support shaft 17 and is at ground potential.

また、該電極3にはヒータ18が内蔵されていて、該電
極3に取付けられる基板19を加熱し得るようにしてい
る。
Further, the electrode 3 has a built-in heater 18 so that a substrate 19 attached to the electrode 3 can be heated.

また、前記真空容器1の側壁部には、アルゴンガス及び
水素ガスの混合ガスを導入する導入管加と、排気系21
とが接続されている。なお、nは流量計、乙はバルブで
あって、導入管Iから真空容器1内に一定流量の混合ガ
スを導入可能としている。
Further, on the side wall of the vacuum container 1, there is an introduction tube for introducing a mixed gas of argon gas and hydrogen gas, and an exhaust system 21.
are connected. Note that n is a flowmeter and B is a valve, which allows a constant flow rate of the mixed gas to be introduced into the vacuum container 1 from the introduction pipe I.

本実施例における金属有機錯体は、タングステンカルボ
ニルW(Co)6c瓜W、 = 351.92 :]と
へキサメチルジシラン(CH3)55tst (CH3
)5 Cm、W ”146、4 、 d = 0.72
9 t/譚〕 をモル比で6:1になる様に秤量し、ベ
ンゼンを加えてシュリンクチューブで脱気しながら下記
の反応式に従い所定の金属元素比となる反応生成物であ
り、常温で液体状態となっている。
The metal-organic complex in this example is tungsten carbonyl W (Co) 6c W, = 351.92:] and hexamethyldisilane (CH3) 55tst (CH3
)5 Cm, W ”146,4, d = 0.72
9 t/tan] is weighed so that the molar ratio is 6:1, and benzene is added and degassed in a shrink tube to produce a reaction product with a predetermined metal element ratio according to the reaction formula below. It is in a liquid state.

このような金属有機錯体(W(Co)5)581−8l
(W(CO)5)5  を前記プラズマCVD装置の錯
体容器6へ空気が混入しないようにして封入する。
Such a metal-organic complex (W(Co)5)581-8l
(W(CO)5)5 is sealed in the complex container 6 of the plasma CVD apparatus in such a manner that air is not mixed in.

次に、以下の手製に従って操作を行なう。Next, follow the instructions below.

1)錯体容器6を除き、全系を1.33X10−’Pa
(10Torr)まで真空引きする。
1) Excluding the complex container 6, the entire system is heated to 1.33X10-'Pa
Evacuate to (10 Torr).

2)放電ガスとして水素を20チ含むアルゴン混合ガス
を、流量計n及びバルブnで流量制御し、導入管加から
真空容器1内に導入する。
2) An argon mixed gas containing 20 grams of hydrogen as a discharge gas is introduced into the vacuum vessel 1 through an inlet tube, with the flow rate controlled by a flow meter n and a valve n.

3)金属有機錯体液7を気化室9に導入し、全て気化さ
せ、その蒸気圧は、学ノメータ14により一定圧となる
ようにバルブ12を操作する。
3) The metal-organic complex liquid 7 is introduced into the vaporization chamber 9 and completely vaporized, and the valve 12 is operated so that the vapor pressure becomes a constant pressure using the genometer 14.

4)金属有機錯体蒸気を流量計10を通して、一定流量
にて真空容器1内に導入する。
4) The metal-organic complex vapor is introduced into the vacuum container 1 at a constant flow rate through the flow meter 10.

5)金属有機錯体蒸気1.5α’/min 、アルゴン
ガス(At)十水素ガス(H2)の混合ガス8.5 c
m’/mln  となるよう流量を設定し、排気系21
を調節して全圧20.OPa (0,15Torr )
にする。
5) Metal-organic complex vapor 1.5α'/min, mixed gas of argon gas (At) and decahydrogen gas (H2) 8.5 c
Set the flow rate so that m'/mln, and exhaust system 21
Adjust the total pressure to 20. OPa (0.15 Torr)
Make it.

6)予め、ヒータ付基板ホルダ電極3を、各実験毎に3
00℃、 400’C、500℃、 600′c、 7
00℃。
6) Prepare the heater-equipped substrate holder electrode 3 for each experiment in advance.
00℃, 400'C, 500℃, 600'C, 7
00℃.

800℃、900℃に保っておいて放電を行った。Discharge was performed while maintaining the temperature at 800°C and 900°C.

7)放電は、13.56MHy+の高周波電力(30W
)を投入して放電させて、3時間成膜した。
7) Discharge is performed using a high frequency power of 13.56MHy+ (30W
) was charged and discharged to form a film for 3 hours.

この結果、基板19には、各温度で差はあるが、はぼ1
μm〜3μmであった。
As a result, although there are differences at each temperature, the temperature of the substrate 19 is approximately 1
It was μm to 3 μm.

ti、生成した膜のモルフオロジーとしては、下記の表
の通りであった。
The morphology of the produced film was as shown in the table below.

このように、基板温度が300℃以下では、わずかに水
素を含むアモルファス状態であるが、400℃以上にな
るとW3Si組成をもつ結晶であることが、X線回折に
よシ判った。
Thus, it was found by X-ray diffraction that when the substrate temperature is below 300°C, it is in an amorphous state containing a slight amount of hydrogen, but when it is above 400°C, it is a crystal with a W3Si composition.

なお、タングステン(W)とケイ素(Sl)の比が1:
2となる様に調整して作った金属有機錯体を用いた成膜
においても、400℃以上でWSi2の組成をもつ結晶
薄膜が得られた。また、その薄膜中にはカーボン、水素
等の不純物は入っていなかった。
Note that the ratio of tungsten (W) to silicon (Sl) is 1:
Even in the case of film formation using a metal-organic complex adjusted to have a composition of 2, a crystalline thin film having a composition of WSi2 was obtained at 400° C. or higher. Further, impurities such as carbon and hydrogen were not contained in the thin film.

さらに、金属有機錯体蒸気と、Ar+H2の混合ガスの
割合で、該蒸気が25%以上になると真空容器1内で粉
末(アモルファス)が多量に生成し、薄膜はビーリング
(P@eting )  を起し均一な膜とならない。
Furthermore, if the proportion of the metal-organic complex vapor and the mixed gas of Ar+H2 exceeds 25%, a large amount of powder (amorphous) will be generated in the vacuum container 1, and the thin film will cause beering (P@eting). and the film will not be uniform.

以上、実施例について説明したが、この他に各穏の設計
変更が可能でちゃ、プラズマCVD法の設定条件は上記
実施例に限るものではない。
Although the embodiments have been described above, the setting conditions for the plasma CVD method are not limited to the above embodiments, as other design changes may be made.

H0発明の効果 以上の説明から明らかなように、この発明に係る結晶性
シリサイド薄膜の製造方法にあっては、タングステン(
W)とケイ素(Sl)とが所定の組成比となるように合
成された金属有機錯体を用いたことによシ、組成物変動
がなく、しかも金属有機錯体を調整することによシ薄膜
の組成を精密且つ微妙にコントロール出来る効果がある
Effects of the H0 Invention As is clear from the above explanation, in the method for manufacturing a crystalline silicide thin film according to the present invention, tungsten (
By using a metal-organic complex synthesized so that W) and silicon (Sl) have a predetermined composition ratio, there is no change in composition, and by adjusting the metal-organic complex, thin films can be formed. It has the effect of precisely and delicately controlling the composition.

また、か\る金属有機錯体を用いることにより、薄膜の
成分となる元素を励起用のガスに求める必要がなくなり
、危険性を有するそフシ2ン(stHII)などのガス
や毒性を有するガスの使用を回避することが出来、廃ガ
ス処理の問題も解消出来る効果がある。
In addition, by using such a metal-organic complex, there is no need to use an excitation gas for the elements that will be the components of the thin film. This has the effect of avoiding the use of gas and solving the problem of waste gas treatment.

さらに、結晶性シリサイド薄膜を400℃の低温で作成
することが可能となシ、膜表面の熱的損傷を防止出来る
こととなり、近年注目されている超伝導材料や、半導体
における例えばFET等の耐熱ターゲット電極を向上さ
せる効果がある。
Furthermore, it is possible to create crystalline silicide thin films at a low temperature of 400°C, and thermal damage to the film surface can be prevented. It has the effect of improving the target electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例に用いたプラズマCVD装置の
概略説明図である。
The drawing is a schematic explanatory diagram of a plasma CVD apparatus used in an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)タングステン(W)とケイ素(Si)とが所定の
組成比となるように合成された金属有機錯体を蒸気化し
、その蒸気を、アルゴンガス(Ar)と水素ガス(H_
2)との混合ガスに混合して放電させて結晶性シリサイ
ド薄膜を形成させることを特徴とする結晶性シリサイド
薄膜の製造方法。
(1) A metal-organic complex synthesized so that tungsten (W) and silicon (Si) have a predetermined composition ratio is vaporized, and the vapor is combined with argon gas (Ar) and hydrogen gas (H_
2) A method for producing a crystalline silicide thin film, which comprises forming a crystalline silicide thin film by mixing the mixture with a gas mixture of 2) and discharging the mixture.
(2)前記金属有機錯体は、常温で液体状態である特許
請求の範囲第1項記載の結晶性シリサイド薄膜の製造方
法。
(2) The method for producing a crystalline silicide thin film according to claim 1, wherein the metal-organic complex is in a liquid state at room temperature.
JP61214608A 1986-09-11 1986-09-11 Production of thin crystalline silicide film Pending JPS6369974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61214608A JPS6369974A (en) 1986-09-11 1986-09-11 Production of thin crystalline silicide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214608A JPS6369974A (en) 1986-09-11 1986-09-11 Production of thin crystalline silicide film

Publications (1)

Publication Number Publication Date
JPS6369974A true JPS6369974A (en) 1988-03-30

Family

ID=16658532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214608A Pending JPS6369974A (en) 1986-09-11 1986-09-11 Production of thin crystalline silicide film

Country Status (1)

Country Link
JP (1) JPS6369974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055767A (en) * 2001-08-14 2003-02-26 Tokyo Electron Ltd Method for depositing metallic silicide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055767A (en) * 2001-08-14 2003-02-26 Tokyo Electron Ltd Method for depositing metallic silicide film

Similar Documents

Publication Publication Date Title
JPS59137396A (en) Synthetic method of p type semiconductor diamond
JP2013001601A (en) Method and apparatus for growing diamond crystal
JPH02217473A (en) Forming method of aluminum nitride film
JPS6369974A (en) Production of thin crystalline silicide film
JPS6383273A (en) Method for synthesizing boron nitride film
JPH0347971A (en) Method for synthesis by plasma cvd
JPS62223095A (en) Production of diamond semiconductor
JPH02159021A (en) Control of orientation of microcrystal
US4945857A (en) Plasma formation of hydride compounds
JPH08143393A (en) Electron emitting membrane and its preparation
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPH01104763A (en) Production of thin metal compound film
JP2003026497A (en) Method of producing iron silicide crystal
JPH064915B2 (en) Method for synthesizing cubic boron nitride
JPS60112699A (en) Manufacture of diamond
JPH0733580B2 (en) Method for producing cubic boron nitride film
JPS60127292A (en) Production of diamond
JPS59184519A (en) Method for generating ionized cluster beam and device therefor
JPS6017077A (en) Vapor growth method of high-melting point metal or high-melting point metallic silicide
JPS63239194A (en) Device for producing diamond
JPS6376873A (en) Method for sticking thin film to base material
JPH03257166A (en) Method and device for chemical vapor growth of tantalum oxide film
JPH04357194A (en) Method for selective range growth of diamond
JPH0372600B2 (en)
JPH04341566A (en) Method for synthesizing cubic boron nitride