JPS6338446B2 - - Google Patents

Info

Publication number
JPS6338446B2
JPS6338446B2 JP56093508A JP9350881A JPS6338446B2 JP S6338446 B2 JPS6338446 B2 JP S6338446B2 JP 56093508 A JP56093508 A JP 56093508A JP 9350881 A JP9350881 A JP 9350881A JP S6338446 B2 JPS6338446 B2 JP S6338446B2
Authority
JP
Japan
Prior art keywords
fibers
layer
activated carbon
fiber layer
infusible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56093508A
Other languages
Japanese (ja)
Other versions
JPS57210017A (en
Inventor
Tomohiko Nakanishi
Kunio Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP9350881A priority Critical patent/JPS57210017A/en
Publication of JPS57210017A publication Critical patent/JPS57210017A/en
Publication of JPS6338446B2 publication Critical patent/JPS6338446B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 本発明は空気清浄器等に使用される吸着性にす
ぐれた活性炭繊維を高収率で得る方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining activated carbon fibers with excellent adsorption properties for use in air purifiers and the like at a high yield.

従来、活性炭繊維を得るには、再生セルロース
繊維、ポリアクリロニトリル繊維、ピツチ繊維等
の有機繊維を不融化処理して不融化繊維となし、
これを炭化、賦活化していた。
Conventionally, in order to obtain activated carbon fibers, organic fibers such as regenerated cellulose fibers, polyacrylonitrile fibers, and pitch fibers are treated to be infusible to make them infusible fibers.
This was carbonized and activated.

不融化処理は、例えば再生セルロース繊維の場
合は酸素の少ない雰囲気において200〜400℃で
0.5〜3時間程度の加熱処理をする。ポリアクリ
ロニトリル繊維の場合は空気中において200〜300
℃で0.5〜2時間程度の加熱処理をする。またピ
ツチ繊維の場合は空気中において100〜300℃で1
〜10時間程度の加熱処理をする。
For example, in the case of regenerated cellulose fibers, infusibility treatment is performed at 200 to 400°C in an oxygen-poor atmosphere.
Heat treatment for about 0.5 to 3 hours. In the case of polyacrylonitrile fibers, it is 200 to 300 in air.
Heat treatment at ℃ for about 0.5 to 2 hours. In addition, in the case of Pituchi fiber, 1
Heat treatment for ~10 hours.

炭化、賦活化処理は一般に、ガスが自由に通過
できる容器に不融化された繊維を充填し、これを
窒素等の不活性ガスの700〜1100℃程度の雰囲気
中で炭化処理し、更に水蒸気、炭酸ガス、酸素等
の活性ガスの単独またはこれ等を含む活性ガスの
上記と同程度の雰囲気中で賦活化処理を行なつて
いる。
Carbonization and activation treatments are generally performed by filling a container through which gas can freely pass through with infusible fibers, carbonizing the fibers in an atmosphere of an inert gas such as nitrogen at a temperature of about 700 to 1100°C, and then adding water vapor, Activation treatment is performed in an atmosphere similar to that described above using an active gas such as carbon dioxide or oxygen alone or containing an active gas such as these.

炭化、賦活化の温度、時間は不融化繊維の種
類、形状、所望する比表面積、ガスの種類、量な
どにより適宜決定される。
The temperature and time of carbonization and activation are appropriately determined depending on the type and shape of the infusible fiber, the desired specific surface area, the type and amount of gas, and the like.

ガスが自由に通過できる容器としては、金属、
セラミツクなどの耐熱性材料を用い、一般にはパ
ンチングメタルや、多孔質セラミツク等が用いら
れる。また、不融化、炭化、賦括化は別工程で行
なつてもよいし、連続的に実施してもよい。
Containers that allow gas to pass freely include metal,
A heat-resistant material such as ceramic is used, and punching metal, porous ceramic, etc. are generally used. Furthermore, infusibility, carbonization, and embedding may be performed in separate steps or may be performed continuously.

ところで、従来は、不融化繊維を容器に充填す
る場合、不融化繊維の集合体をそのままの状態で
容器に収納していた。従つて、これを賦活すると
繊維層の最外部で先ず反応が起り、次第に活性ガ
スが繊維層内部へ進行して反応が進んでゆくが、
繊維層内部と最外部では反応により発生したガス
の移動状態が異る。即ち、繊維層最外部では発生
ガスの滞溜がなく賦活反応は速かに進行する。そ
れに対して繊維層内部では発生したガスは外部に
移動しにくいために滞溜し、賦活反応はこの滞溜
ガスに抑制されて進行が遅い。従つて繊維層全体
として賦活が均一になされない。また、層内部を
充分に賦活化すると最外部の賦活化が進みすぎ
る。このため活性炭繊維の収率は低かつた。
By the way, conventionally, when filling a container with infusible fibers, an aggregate of infusible fibers was stored in the container as is. Therefore, when activated, the reaction first occurs at the outermost part of the fiber layer, and the activated gas gradually advances inside the fiber layer and the reaction progresses.
The state of movement of the gas generated by the reaction is different between the inside of the fiber layer and the outermost layer. That is, at the outermost part of the fiber layer, the generated gas does not accumulate and the activation reaction proceeds quickly. On the other hand, the gas generated inside the fiber layer is difficult to move to the outside and therefore stagnates, and the activation reaction is suppressed by this stagnation gas and progresses slowly. Therefore, the entire fiber layer is not activated uniformly. Furthermore, if the inside of the layer is sufficiently activated, the outermost layer is activated too much. Therefore, the yield of activated carbon fibers was low.

そこで本発明は繊維層の内層部および最外層部
を均一な条件で賦活化処理することにより活性炭
繊維の収率の向上をはかつたものである。
Therefore, the present invention aims to improve the yield of activated carbon fibers by activating the inner layer and the outermost layer of the fiber layer under uniform conditions.

即ち、有機繊維を賦活用活性ガスが通過し得る
耐熱性容器に収納し、有機繊維層の少くとも上面
を、耐熱性容器とは別体の賦活用活性ガスが通過
し得る耐熱性材料よりなり、有機繊維層の変形に
追従して変位し有機繊維層に常時密着した状態を
維持する被覆材層で被覆して賦活化処理を行な
う。この場合、被覆の具体的手段としては、例え
ば耐熱性材料の粒子を用い、各粒子が流動し得る
状態の粒子層で繊維層のまわりを包んで賦活化処
理を行なう。繊維層は賦活反応の進行に伴なつて
体積が収縮するが、上記のように繊維層の変形に
追従して変位する流動性の流動性の粒子層で被覆
することにより処理中において被覆層とその中の
繊維層との密着は維持される。従つて最外部で発
生したガスが直ちに逸散することなく、また内層
部でも発生ガスの移動が抑制されるので、繊維層
は全体が均一に賦活される。従つて、従来方法に
比して所定の吸着率の活性炭繊維を高い収率で得
ることができる。
That is, the organic fibers are stored in a heat-resistant container through which the activated gas can pass, and at least the upper surface of the organic fiber layer is made of a heat-resistant material that is separate from the heat-resistant container and through which the activated gas can pass. , the activation treatment is performed by covering the organic fiber layer with a coating material layer that displaces following the deformation of the organic fiber layer and always maintains a state in close contact with the organic fiber layer. In this case, as a specific means for coating, for example, particles of a heat-resistant material are used, and the fiber layer is wrapped around the fiber layer with a particle layer in which each particle can flow, and the activation treatment is performed. The fiber layer shrinks in volume as the activation reaction progresses, but by covering it with a fluid particle layer that displaces following the deformation of the fiber layer as described above, it can be used as a coating layer during processing. Close contact with the fiber layer therein is maintained. Therefore, the gas generated at the outermost layer does not immediately dissipate, and the movement of the gas generated at the inner layer is also suppressed, so that the entire fiber layer is activated uniformly. Therefore, activated carbon fibers having a predetermined adsorption rate can be obtained at a higher yield than in conventional methods.

以下、本発明の実施例を示す。 Examples of the present invention will be shown below.

実施例 1 第1図に示すように、グラフアイトのフエルト
よりなる直径100mmの筒状容器1に、粒径2〜3
mmのアルミナ粒子よりなる流動変形可能な厚さ10
mmの層3に包んだ状態で、ピツチ繊維を不融化し
た不融化繊維2を収納した。不融化繊維2の層厚
さは30mmで充填密度は0.025g/cm3とした。
Example 1 As shown in Fig. 1, particles with a diameter of 2 to 3
Flow deformable thickness 10 mm made of alumina particles
Infusible fibers 2 made of infusible pitch fibers were housed in a state of being wrapped in a layer 3 of mm. The layer thickness of the infusible fiber 2 was 30 mm, and the packing density was 0.025 g/cm 3 .

そして、容器全体を平炉内に入れ、900℃の窒
素雰囲気中に3時間保持し、不融化繊維3を炭化
した。
Then, the entire container was placed in an open hearth and kept in a nitrogen atmosphere at 900° C. for 3 hours to carbonize the infusible fibers 3.

次に炉内を水蒸気68容量%、窒素32容量%の雰
囲気とし、上記と同温度で賦活化処理を行なつ
た。そして容器1を炉から取出すことにより活性
炭繊維を得た。
Next, the inside of the furnace was made into an atmosphere of 68% by volume of steam and 32% by volume of nitrogen, and activation treatment was performed at the same temperature as above. Activated carbon fibers were obtained by taking out the container 1 from the furnace.

活性炭繊維の収率(不融化繊維に対する活性炭
繊維の重量比)は15.1%であり、活性炭繊維のベ
ンゼン吸着量(JIS−K−1474の方法により求め
た値)は48重量%であつた。
The yield of activated carbon fibers (weight ratio of activated carbon fibers to infusible fibers) was 15.1%, and the amount of benzene adsorbed by the activated carbon fibers (value determined by the method of JIS-K-1474) was 48% by weight.

ちなみに、不融化ピツチ繊維をそのままの状態
で容器内に収納し、他は上記実施例と同一の方法
で処理してた場合の活性炭繊維の収率は4.8%で、
ベンゼン吸着量は47重量%であつた。
By the way, when the infusible pitch fibers were stored in a container as they were, and other things were treated in the same manner as in the above example, the yield of activated carbon fibers was 4.8%.
The amount of benzene adsorbed was 47% by weight.

実施例 2 実施例1と同一の容器に不融化ピツチ繊維を充
填密度0.030g/cm3で収納し、この場合、実施例
1と同様のアルミナ粒子層で包んだ状態とし、炉
内で900℃の窒素雰囲気で3時間炭化処理し、次
に同温度で水蒸気64容量%、窒素36容量%からな
る活性ガスで30分間賦活化処理を行なつて後炉外
へ取出し、活性炭繊維を得た。
Example 2 Infusible pitch fibers were stored in the same container as in Example 1 at a packing density of 0.030 g/cm 3 , in this case wrapped in the same alumina particle layer as in Example 1, and heated at 900°C in a furnace. The fibers were carbonized for 3 hours in a nitrogen atmosphere, and then activated at the same temperature for 30 minutes with an active gas containing 64% by volume of steam and 36% by volume of nitrogen, and then taken out of the furnace to obtain activated carbon fibers.

活性炭繊維の収率は40.3%でベンゼン吸着量は
30重量%であつた。
The yield of activated carbon fiber is 40.3% and the amount of benzene adsorbed is
It was 30% by weight.

比較例として、不融化繊維をそのままの状態で
容器内に収納し、他は上記実施例2と同一方法で
処理した場合の活性炭繊維の収率は32.0%で、ベ
ンゼン吸着量は28重量%であつた。
As a comparative example, the yield of activated carbon fiber was 32.0%, and the amount of benzene adsorbed was 28% by weight, when the infusible fibers were stored in a container as they were and otherwise treated in the same manner as in Example 2 above. It was hot.

実施例 3 パンチングメタル製の一辺100mmの箱状容器に
不融化ピツチ繊維を充填密度0.050g/cm3で収納
し、その囲りを上記各実施例と同様にアルミナ粒
子層で包んだ状態とし、炉内で900℃の窒素雰囲
気で1時間炭化し、続いて同温度の水蒸気67容量
%、窒素33容量%の活性ガス雰囲気で賦活化処理
をした後、炉外へ取出し活性炭繊維を得た。
Example 3 Infusible pitch fibers were stored in a box-shaped container made of punched metal with a side of 100 mm at a packing density of 0.050 g/cm 3 , and the surroundings were wrapped with an alumina particle layer in the same manner as in each of the above examples. Carbonization was carried out in a nitrogen atmosphere at 900°C for 1 hour in a furnace, followed by activation treatment in an active gas atmosphere containing 67% by volume of steam and 33% by volume of nitrogen at the same temperature, and then taken out of the furnace to obtain activated carbon fibers.

活性炭繊維の収率は32.8%で、ベンゼン吸着量
は32重量%であつた。
The yield of activated carbon fibers was 32.8%, and the amount of benzene adsorbed was 32% by weight.

比較例として不融化繊維をそのままの状態で上
記のパンチングメタルの容器に収納し、他は実施
例3と同一の方法で処理した場合の活性炭繊維の
収率は21.5%でベンゼン吸着量は30重量%であつ
た。
As a comparative example, when the infusible fibers were stored as they were in the above punched metal container and otherwise treated in the same manner as in Example 3, the yield of activated carbon fibers was 21.5% and the amount of benzene adsorbed was 30% by weight. It was %.

上記実施例ではいずれも被覆材としてアルミナ
の粒子を用いたが、その他にセラミツク等の耐熱
性材料の粒子を用いてもよい。粒子の大きさは特
に限定はなく、要は層を形成したときに通気性を
有し、かつ各粒子が互に流動して層の形が自由に
変形できればよい。
In all of the above embodiments, alumina particles were used as the coating material, but particles of a heat-resistant material such as ceramic may also be used. There is no particular limitation on the size of the particles, as long as they have air permeability when the layer is formed, and the particles can mutually flow and freely deform the shape of the layer.

また第2図に示すように容器1内の不融化繊維
層2の側面および上面を粒子層3aで覆つて賦活
化処理をした場合でも、従来法に比して賦活均一
化ならびに収率向上に効果がある。更に第3図に
示すように容器1内の不融化繊維層2の上面にの
み通気性の耐熱材プレート3b、例えば多孔質セ
ラミツク等を繊維の収縮による上面の変位に追従
し得るように載置する場合にも従来法に比べて賦
活の均一化、収率向上の効果がある。
Furthermore, even when the side and top surfaces of the infusible fiber layer 2 in the container 1 are covered with the particle layer 3a as shown in FIG. effective. Furthermore, as shown in FIG. 3, a breathable heat-resistant material plate 3b, such as porous ceramic, is placed only on the upper surface of the infusible fiber layer 2 in the container 1 so that it can follow the displacement of the upper surface due to contraction of the fibers. In this case, the activation is more uniform and the yield is improved compared to the conventional method.

また本発明は上記実施例の如きバツチ式の賦活
に限らず、ベルト炉やトンネル炉内で行なう連続
的賦活化処理にも適用できる。
Further, the present invention is not limited to batch-type activation as in the above embodiments, but can also be applied to continuous activation treatment carried out in a belt furnace or tunnel furnace.

また、有機繊維としてはピツチ繊維に限らず再
生セルロース繊維、ポリアクリロニトリル繊維等
を用いても、いずれも同様の効果が得られ、賦活
用活性ガスとしては水蒸気以外の賦活用活性ガス
を用いたときも同様の効果が得られる。
In addition, the same effect can be obtained by using not only pitch fiber but also regenerated cellulose fiber, polyacrylonitrile fiber, etc. as the organic fiber, and when using a reactivating active gas other than water vapor as the reactivating active gas. A similar effect can be obtained.

以上説明したように、本発明は不融化繊維を活
性ガス中で賦活化処理して活性炭繊維を得るに際
し、有機繊維を賦活用活性ガスが通過し得る耐熱
性容器に収納し、有機繊維層の少なくとも上面を
容器とは別体の通気性耐熱材料にて有機繊維層の
収縮による変形に追従して変位する有機繊維層に
常時密着した状態を保持し得るように覆つて賦活
化処理を行なうことを特徴とするもので、これに
より繊維層の外表面および内層部の賦活化条件を
均一にすることができる。従つて、所定の吸着率
の活性炭繊維を得ようとする場合、本発明によれ
ば従来法に比して高い収率で活性炭繊維を得るこ
とが可能である。
As explained above, in the present invention, when obtaining activated carbon fibers by activating infusible fibers in an active gas, the organic fibers are stored in a heat-resistant container through which the activating active gas can pass, and the organic fiber layer is Activation treatment is performed by covering at least the upper surface of the container with a breathable heat-resistant material separate from the container so as to maintain a state in close contact with the organic fiber layer that is displaced following the deformation due to contraction of the organic fiber layer. This makes it possible to make the activation conditions of the outer surface and inner layer of the fiber layer uniform. Therefore, when it is desired to obtain activated carbon fibers with a predetermined adsorption rate, according to the present invention, it is possible to obtain activated carbon fibers with a higher yield than in the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図はそれぞれ本発明にお
ける賦活化処理時の繊維の収納状態を示す図であ
る。 1……容器、2……繊維層、3,3a,3b…
…被覆材層。
FIG. 1, FIG. 2, and FIG. 3 are views showing the storage state of fibers during the activation treatment in the present invention, respectively. 1... Container, 2... Fiber layer, 3, 3a, 3b...
...covering material layer.

Claims (1)

【特許請求の範囲】[Claims] 1 有機繊維に不融化処理、炭化処理および賦活
化処理を順次施して活性炭繊維を製造する方法に
おいて、有機繊維を賦活用活性ガスが通過し得る
耐熱性容器に収納し、有機繊維層の少くとも上面
を、耐熱性容器とは別体の賦活用活性ガスが通過
し得る耐熱性材料よりなり、有機繊維層の変形に
追従して変位し有機繊維層に常時密着した状態を
維持する被覆材層で被覆して賦活化処理を行なう
ことを特徴とする活性炭繊維の製造方法。
1. In a method for producing activated carbon fibers by sequentially subjecting organic fibers to infusible treatment, carbonization treatment, and activation treatment, the organic fibers are stored in a heat-resistant container through which the activation gas can pass, and at least the organic fiber layer is A covering material layer whose upper surface is made of a heat-resistant material through which the activated gas separate from the heat-resistant container can pass, and which displaces following the deformation of the organic fiber layer and maintains a state in close contact with the organic fiber layer at all times. 1. A method for producing activated carbon fiber, which comprises coating the fiber with activated carbon fiber and subjecting it to activation treatment.
JP9350881A 1981-06-17 1981-06-17 Preparation of active carbon fiber Granted JPS57210017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9350881A JPS57210017A (en) 1981-06-17 1981-06-17 Preparation of active carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9350881A JPS57210017A (en) 1981-06-17 1981-06-17 Preparation of active carbon fiber

Publications (2)

Publication Number Publication Date
JPS57210017A JPS57210017A (en) 1982-12-23
JPS6338446B2 true JPS6338446B2 (en) 1988-07-29

Family

ID=14084283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9350881A Granted JPS57210017A (en) 1981-06-17 1981-06-17 Preparation of active carbon fiber

Country Status (1)

Country Link
JP (1) JPS57210017A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173118A (en) * 1984-02-17 1985-09-06 Nippon Soken Inc Activation treatment and device of carbon yarn therefor
CN106829915B (en) * 2017-03-03 2018-10-30 中国科学院合肥物质科学研究院 A kind of method of growth in situ carbon fiber in graphite felt

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160588A (en) * 1978-06-08 1979-12-19 Toyobo Co Ltd Production of short fibrous active carbon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160588A (en) * 1978-06-08 1979-12-19 Toyobo Co Ltd Production of short fibrous active carbon

Also Published As

Publication number Publication date
JPS57210017A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
US3713865A (en) Composite product and method of making same
JPH05254816A (en) Preparation of metal carbide having large specific surface from activated carbon foam
AU7841798A (en) Mercury removal catalyst and method of making and using same
US2950238A (en) Silicon carbide bodies for use in nuclear reactors
EP0323750B1 (en) Process for producing carbon material and carbon/carbon composites
JPS6338446B2 (en)
SE8402852L (en) PROCEDURE FOR MANUFACTURING HOGPOROSA MINERAL BODIES WITH POLYFORM STRUCTURE
US4122220A (en) Method for reducing the gas permeability of a sintered porous silicon nitride body
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
JPS63156542A (en) Method for regenerating activated carbon
JPH01141813A (en) Production of highly oriented sheetlike graphite using laminar compound
JPH02184511A (en) Production of porous graphite
JP2553389B2 (en) Carbon jig for CVD equipment
JPH0299615A (en) Highly graphitized carbon fiber and its production
JP2002121564A (en) Charcoal having large surface area and its manufacture process
DE3267863D1 (en) Method for the preparation of integral shaped replications of shaped, porous and dissolvable materials for use as adsorbents in fixed bed adsorption processes
JP2668119B2 (en) Method for producing silicon carbide-silicon metal material
JPH0454356B2 (en)
JPH0657433A (en) Pulse cvi device
JPS5695334A (en) Regeneration method of active carbon carrying phosphorus compound
WO1991004954A1 (en) Carbon fiber-reinforced composite carbon material having excellent thermal shock resistance and production thereof
JPH0532408A (en) Production of activated carbon structure
JP2553372B2 (en) Method for manufacturing SiC filter
JPS63210088A (en) Manufacture of thermally cracked carbon coated graphite material
Van Deventer et al. Two-stage kinetic model for the non-isothermal decomposition of phenol adsorbed on activated carbon