JPS63283818A - Finishing method by electro-chemical machining - Google Patents

Finishing method by electro-chemical machining

Info

Publication number
JPS63283818A
JPS63283818A JP62117486A JP11748687A JPS63283818A JP S63283818 A JPS63283818 A JP S63283818A JP 62117486 A JP62117486 A JP 62117486A JP 11748687 A JP11748687 A JP 11748687A JP S63283818 A JPS63283818 A JP S63283818A
Authority
JP
Japan
Prior art keywords
processing
workpiece
electrode
current
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62117486A
Other languages
Japanese (ja)
Inventor
Yohei Kuwabara
桑原 陽平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP62117486A priority Critical patent/JPS63283818A/en
Priority to US07/182,808 priority patent/US4842702A/en
Priority to CA000564638A priority patent/CA1325403C/en
Priority to KR1019880004478A priority patent/KR920007643B1/en
Priority to EP88303601A priority patent/EP0289215A3/en
Publication of JPS63283818A publication Critical patent/JPS63283818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To make good the surface quality of a workpiece by applying a current density of 2/3 to the preceding work stage compared with the succeeding work stage, and feeding a pulse current of high density to the preceding work stage. CONSTITUTION:In the preceding work stage, the pulse current of the predetermined current density is supplied between a workpiece 2 and an electrode 4, thereby eluting the element of a workpiece surface 2a. Furthermore, the pulse current of a density higher than said pulse current is supplied, and a film made of an electrolytic product and the like produced on the workpiece surface 2a is thereby peeled off and removed. Thereafter, when a processed depth reaches the predetermined value, the pulse current of a density exceeding 2/3 the density in the preceding work stage is supplied and finish processing is thereby completed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解加工による仕上げ加工方法に係り、特
に難削金属等からなる被加工物の三次元形状の被加工面
を短時間かつ高精度に仕上げて鏡面状の光沢面を得るこ
とができる電解加工による仕上げ加工方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a finishing method using electrolytic machining, and in particular to a method for finishing a three-dimensionally shaped workpiece made of a difficult-to-cut metal in a short time and with high precision. The present invention relates to a finishing method using electrolytic machining that allows for finishing with high precision and obtaining a mirror-like glossy surface.

[従来の技術] 従来の金属加工方法としては、被加工物と電極との間隙
に硝酸ナトリウムや塩化ナトリウム等の電解液を満たし
、この電解液を高速で流すとともに、安定した電解作用
を阻害する電解生成物、すなわち溶出した金属化合物や
金属イオン及び水素ガス等を除去しながら、直流電流を
被加工物から電極に流して加工する電解加工方法(特開
昭61−7192°1号公報及び特開昭60−4422
8号公報参照)と、被加工物と電極とを水、ケロシン等
の加工液中で微小間隙をもって対向させ、かつこれらを
適宜の電源に接続して、前記間隙に瞬発する火花放電や
過渡アーク放電を発生させ、該放電エネルギーにより被
加工物を加工する放電加工方法(特公昭60−2664
6号公報及び特開昭80−177819号公報参照)が
知られている。
[Conventional technology] Conventional metal processing methods involve filling the gap between the workpiece and the electrode with an electrolytic solution such as sodium nitrate or sodium chloride, flowing this electrolytic solution at high speed, and inhibiting stable electrolytic action. An electrolytic machining method in which DC current is passed from the workpiece to the electrode while removing electrolytic products, that is, eluted metal compounds, metal ions, hydrogen gas, etc. Kaisho 60-4422
(Refer to Publication No. 8), the workpiece and the electrode are placed facing each other with a small gap in a machining liquid such as water or kerosene, and these are connected to an appropriate power source to prevent spark discharge or transient arc that occurs instantaneously in the gap. Electrical discharge machining method of generating electrical discharge and machining a workpiece using the electrical discharge energy (Japanese Patent Publication No. 60-2664
6 and Japanese Unexamined Patent Publication No. 80-177819) are known.

[発明が解決しようとする問題点コ しかしながら、前者の電解加工方法にあっては、特に三
次元形状の底付き加工(凹窩状に形成された三次元構造
のものに対する加工をいう)において、被加工物に電極
の精密な転写を行うことが困難で、高精度の表面品質が
得られないという不都合があり、また、後者の放電加工
方法にあっては、良好な面粗度を得ることが困難で、例
えば鏡面仕上げ等の表面仕上げに多くの時間と労力を要
するという不都合があった。
[Problems to be Solved by the Invention] However, in the former electrolytic processing method, particularly in processing with a three-dimensional bottom (meaning processing on a three-dimensional structure formed in the shape of a concave hole), There are disadvantages in that it is difficult to precisely transfer the electrode to the workpiece and high precision surface quality cannot be obtained, and the latter electric discharge machining method has the disadvantage that it is difficult to obtain good surface roughness. However, it is difficult to achieve a surface finish such as a mirror finish, and it takes a lot of time and effort to finish the surface.

そこで、本出願人はこれらの不都合を除去する電解加工
に°よる仕上げ加工方法として、特願昭62−2761
6号を出願したが、この仕上げ加工方法にあっては、仕
上げ加工の前期(以下前加工という)にパルスのオン時
間が5msec以下の一定のパルス電流を供給し、仕上
げ加工の後期(以下後加工という)には10〜60ms
ecの一定のパルス電流を供給していた。
Therefore, the present applicant has proposed a finishing method using electrolytic machining to eliminate these inconveniences, in Japanese Patent Application No. 62-2761.
No. 6 was filed, but in this finishing machining method, a constant pulse current with a pulse on time of 5 msec or less is supplied during the first half of finishing machining (hereinafter referred to as pre-machining), and during the latter half of finishing machining (hereinafter referred to as post-machining). (referred to as processing) takes 10 to 60ms.
A constant pulse current of ec was supplied.

ところで、オン時間が5 msecと短い前加工のパル
ス電流により、被加工物の表面(以下被加工面という)
の面粗度、を向上させ得るが、この前加工を行うと被加
工面が徐々に薄a色の曇った面となり、さらにその上に
電解生成物からなる粘着性の、高い薄いフィルム状の皮
膜が形成される。この皮膜は、加工中に電極が被加工物
から離間した状態で電極と被加工物間に供給される新鮮
な電解液の噴流で除去されるへきものであるが、前記噴
流を電極と被加工物間に一様な流速で供給することが困
難であり、流速が早い箇所では皮膜が除去されるものの
、流速の遅い箇所では皮膜が残存するか、もしくは他の
位置から除去した皮膜が付着したりする。。
By the way, the surface of the workpiece (hereinafter referred to as the workpiece surface) is
However, when this pre-processing is carried out, the surface to be processed gradually becomes a pale a-colored cloudy surface, and a highly sticky thin film-like surface made of electrolytic products is formed on top of the surface. A film is formed. This film is removed by a jet of fresh electrolyte that is supplied between the electrode and the workpiece when the electrode is separated from the workpiece during machining. It is difficult to supply the fluid between objects at a uniform flow rate, and although the film is removed in areas where the flow rate is fast, the film remains in areas where the flow rate is slow, or the film removed from other locations may adhere. or .

したがって、被加工面に皮膜が除去された箇所と皮膜が
残存する箇所とが発生し、このような状態で前加工がお
こなわれると、前記両箇所で加工の進行状態に著しい差
異が生じ、被加工面が電解液流の影響を受けて縞模様と
なり、鏡面状の光沢面を得たい場合など、その表面品質
を損なうという不都合があった。
Therefore, there are areas on the workpiece surface where the film has been removed and areas where the film remains, and if pre-processing is performed in such conditions, there will be a significant difference in the state of processing progress between the two areas, and the processed surface will be damaged. The processed surface becomes striped due to the influence of the electrolytic solution flow, which is disadvantageous in that it impairs the surface quality when a mirror-like glossy surface is desired.

[発明の目的] そこでこの発明は、上記不都合を除去し、特に難削金属
等の被加工物の三次元形状の被加工面を短時間かつ高精
度に仕上げて鏡面状の光沢面を得ることができる電解加
工による仕上げ加工方法を実現するにある。
[Purpose of the Invention] Therefore, the present invention aims to eliminate the above-mentioned disadvantages, and to obtain a mirror-like glossy surface by finishing the three-dimensionally shaped work surface of a workpiece such as a difficult-to-cut metal in a short time and with high precision. The purpose of this invention is to realize a finishing method using electrolytic machining.

[問題点を解決するための手段] この目的を達成するためにこの発明は、電解液を介して
対設した被加工物と電極間にパルスを供給し、前記被加
工物と電極間に生成した電解生成物を間欠的に除去しな
がら仕上げ加工する仕上げ加工方法において、前記パル
スの電流密度を仕上げの前加工°と後加工とで異ならし
め、前加工の電流密度を後加工の電流密度の2/3(二
倍の二)以下に設定するとともに、前加工中に、該前加
工の電流密度より高い電流密度のパルスを間欠的に所定
回数供給することを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the present invention supplies a pulse between a workpiece and an electrode that are disposed opposite to each other via an electrolytic solution, and generates a pulse between the workpiece and the electrode. In a finishing method that performs finishing while intermittently removing the electrolyzed products, the current density of the pulse is made different between the pre-finishing process and the post-processing, and the current density of the pre-processing is made equal to the current density of the post-processing. It is characterized in that the current density is set to 2/3 (twice two) or less, and during pre-processing, pulses with a current density higher than the current density of the pre-processing are intermittently supplied a predetermined number of times.

[作用コ この発明の構成によれば、被加工物の面粗度向上のため
の前加工中に、鏡面状の光沢面を発生し得る電流密度の
高いパルス電流を供給しながら加工するため、前加工中
において被加工面の面粗度を損なうことなく被加工面に
生成する皮膜を確実に除去して、被加工面全体にわたり
均一な加工条件となり、電解液流による縞模様が発生す
ることがないなど良好な表面品質が得られる。
[Function] According to the configuration of the present invention, during pre-processing to improve the surface roughness of the workpiece, processing is performed while supplying a pulsed current with a high current density that can generate a mirror-like glossy surface. Reliably removes the film that forms on the processed surface during pre-processing without impairing the surface roughness of the processed surface, creating uniform processing conditions over the entire processed surface and eliminating striped patterns caused by electrolyte flow. Good surface quality with no scratches can be obtained.

[実施例] 以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.

第1〜4図は、この発明の一実施例を示す。第1〜3図
において、lはこの発明に係る仕上げ加工方法を実施し
得る加工装置で、この加工装置1は、被加工物2を固定
する被加工物固定装置3、電極4を固定する電極固定装
置5、電極駆動部60回転運動を往復運動に変換する駆
動変換部7、パルス電流を発生する電源装置8、モータ
駆動制御部9と加工条件制御部10と電解液流制御部1
1とからなる制御装置12、被加工物に関するデータを
入力する人力装置13、電解液濾過装置14、電解液飛
散防止カバー15等からなる。。
1 to 4 show one embodiment of this invention. In FIGS. 1 to 3, 1 is a processing device capable of implementing the finishing method according to the present invention, and this processing device 1 includes a workpiece fixing device 3 for fixing a workpiece 2, and an electrode for fixing an electrode 4. A fixing device 5, an electrode drive section 60, a drive conversion section 7 that converts rotational motion into reciprocating motion, a power supply device 8 that generates a pulse current, a motor drive control section 9, a processing condition control section 10, and an electrolyte flow control section 1
1, a manual device 13 for inputting data regarding the workpiece, an electrolyte filtration device 14, an electrolyte scattering prevention cover 15, and the like. .

前記被加工物固定装置3は、絶縁性の高いグラナイトも
しくはセラミックスからなり、例えば水平面上でX−Y
方向に移動可能な、もしくは加工装置1に三点支持され
て移動可能なテーブルで、被加工物2をボルト16等に
より固定する。また、前記電極固定装置5は、その下部
に設けたロッド17の下端に、例えば純銅もしくはグラ
ファイトからなる電極4を、その電極面4aと前記被加
工物2の被加工面2aとが三次元方向に一様な間隙18
を保つように固定する。そして、前記電極固定装置5は
、前記電極駆動部6と駆動変換部7とにより前記間隙1
8を所定値に設定すべく上下動する。
The workpiece fixing device 3 is made of highly insulating granite or ceramics, and is, for example,
The workpiece 2 is fixed with bolts 16 or the like using a table that is movable in the direction or supported at three points on the processing device 1 and is movable. Further, the electrode fixing device 5 has an electrode 4 made of, for example, pure copper or graphite attached to the lower end of a rod 17 provided at its lower part, so that the electrode surface 4a and the processed surface 2a of the workpiece 2 are aligned in a three-dimensional direction. uniform gap 18
Fix it to keep it. The electrode fixing device 5 has the electrode driving section 6 and the drive converting section 7 arranged in the gap 1.
8 to a predetermined value.

すなわち、電極駆動部6のロータリーエンコーダ20と
タコジェネレータ21からの信号により前記制御装置1
2のモータ駆動制御部9から出力される制御信号により
、モータ19を回転制御し、このモータ19の回転運動
を駆動変換部7により往復運動に変換して、前記電極固
定装置5を上下動させ一1電極面4aと被加工面2aと
を所定の間隙18に設定する。
That is, the control device 1 is controlled by signals from the rotary encoder 20 and the tacho generator 21 of the electrode drive section
The rotation of the motor 19 is controlled by a control signal outputted from the motor drive control section 9 of No. 2, and the rotational motion of the motor 19 is converted into a reciprocating motion by the drive conversion section 7 to move the electrode fixing device 5 up and down. A predetermined gap 18 is set between the electrode surface 4a and the processed surface 2a.

前記被加工物2と電極4間に電流密度(単位面積当りの
平均電流)が70A/cm2以下のパルス電流を供給す
る電源装置8は、加工条件制御部lOからの制御信号に
より、被加工物20表面積に従って計算した所定の電流
密度のパルス電流を発生するもので、直流電源部22と
充放電部23と充放電制御部24とを有し、例えば第4
図に示す如く構成する。
The power supply device 8 supplies a pulse current with a current density (average current per unit area) of 70 A/cm2 or less between the workpiece 2 and the electrode 4, and the power supply device 8 supplies the workpiece with a pulse current having a current density (average current per unit area) of 70 A/cm2 or less, according to a control signal from the processing condition control unit IO. 20, which generates a pulse current with a predetermined current density calculated according to the surface area of the fourth
It is configured as shown in the figure.

第4図において、直流電源部22は、変圧器25と整流
器26とからなり、変圧器25により電圧を所定値に降
下させ整流器26により整流して直流電流を得て、後述
する蓄電器27−1〜27−nに供給する。
In FIG. 4, the DC power supply unit 22 includes a transformer 25 and a rectifier 26. The voltage is lowered to a predetermined value by the transformer 25 and rectified by the rectifier 26 to obtain a DC current. ~27-n.

また、充放電部23は、被加工物2と電極4との間隙1
8に電荷を放電する複数個の蓄電器27−1〜27−n
と、これらの各蓄電器27−1〜27−nに接続した、
直流電源部22側への電荷の逆流を阻止するダイオード
28−1〜28−〇と、放電側への電荷を放電させるべ
く開閉される放電スイッチ29−1〜29−nと、前記
各蓄電器27−1〜27−nを所定に充電すべく前記直
流電源部22からの電源を給断する充電スイッチ30と
からなる。
Further, the charging/discharging section 23 has a gap 1 between the workpiece 2 and the electrode 4.
8, a plurality of capacitors 27-1 to 27-n
and connected to each of these capacitors 27-1 to 27-n,
Diodes 28-1 to 28-0 that prevent backflow of charges to the DC power supply section 22 side, discharge switches 29-1 to 29-n that are opened and closed to discharge charges to the discharge side, and each of the capacitors 27 -1 to 27-n, and a charging switch 30 for supplying and disconnecting power from the DC power supply section 22 to charge the batteries to a predetermined value.

この充放電部23を制御する充放電制御部24は、蓄電
器27−1〜27−nへ供給する充電電圧値を検出する
電圧検出器31と、前記加工条件制御部lOの充電電圧
設定部36で設定した設定充電電圧値と前記電圧検出器
31で検出した検出充電電圧値とを比較する電圧比較器
32と、前記被加工物2と電極4との間隙18に放電さ
れる電荷の電流値を検出する電流検出器35と、前記加
工条件制御部10の最小電流設定部39て設定した最小
電流値と前記電流検出器35で検出した放電電流値とを
比較する電流比較器34と、前記加工条件制御部lOの
パルス発生部37と電流波形設定部38と前記電流比較
器34とからの入力により前記検出電流値が前記設定電
流値以上の場合には、前記各蓄電器27−1〜27−n
の電荷を放電側に所望に放電させるとともに、前記検出
電流値が前記設定電流値未満の場合には、前記各蓄電器
27−1〜27−nの電荷の放電を停止させるべく前記
各放電スイッチ29−1〜29−nに開閉駆動信号を出
力するゲート回路33とを有している。
A charging/discharging control unit 24 that controls the charging/discharging unit 23 includes a voltage detector 31 that detects charging voltage values supplied to the capacitors 27-1 to 27-n, and a charging voltage setting unit 36 of the processing condition control unit IO. a voltage comparator 32 that compares the set charging voltage value set with the detected charging voltage value detected by the voltage detector 31; and a current value of the charge discharged into the gap 18 between the workpiece 2 and the electrode 4. a current detector 35 that detects the current value, a current comparator 34 that compares the minimum current value set by the minimum current setting unit 39 of the machining condition control unit 10 and the discharge current value detected by the current detector 35; If the detected current value is equal to or greater than the set current value based on the inputs from the pulse generator 37, current waveform setting unit 38, and current comparator 34 of the processing condition control unit IO, each of the capacitors 27-1 to 27 -n
The respective discharge switches 29 are configured to discharge the electric charges of the respective capacitors 27-1 to 27-n as desired to the discharge side, and to stop discharging the electric charges of the respective capacitors 27-1 to 27-n when the detected current value is less than the set current value. -1 to 29-n, and a gate circuit 33 that outputs an opening/closing drive signal.

また、この充放電制御部24を制御する制御装置12の
加工条件制御部10は、前記各蓄電器27−1〜27−
nの充電電圧を設定する充電電圧設定部3Gと、所定時
間幅のパルスを発生するパルス発生部37と、被加工物
2と電極4間に放電する電荷の電流波形を設定する電流
波形設定部38と、最小電流値を設定する最小電流設定
部39と、前記入力装置13の入力データに基づき加工
条件等を演算・処理する演算・処理部(以下CPUとい
う)40等からなる。
Further, the machining condition control unit 10 of the control device 12 that controls the charge/discharge control unit 24 controls each of the power storage units 27-1 to 27-
A charging voltage setting section 3G that sets the charging voltage of n, a pulse generating section 37 that generates a pulse with a predetermined time width, and a current waveform setting section that sets the current waveform of the charge discharged between the workpiece 2 and the electrode 4. 38, a minimum current setting section 39 that sets a minimum current value, and a calculation/processing section (hereinafter referred to as CPU) 40 that calculates and processes machining conditions and the like based on input data from the input device 13.

なお、第4図中符号41は放電スイッチ29−1〜29
−nの開時に逆起電力により各放電スイッチ29−1〜
29−nが破壊するのを防止するダイオードである。
In addition, the reference numeral 41 in FIG. 4 indicates the discharge switches 29-1 to 29.
- Each discharge switch 29-1 ~ due to the back electromotive force when n is opened.
This is a diode that prevents the 29-n from being destroyed.

前記入力°装置13は、被加工物の材質と表面積、仕上
げ加工しろと寸法精度の等級、仕上げ面粗度及び初期電
極間隙等を入力し、これらの各信号を 。
The input device 13 inputs the material and surface area of the workpiece, the finishing margin and dimensional accuracy grade, the finished surface roughness, the initial electrode gap, etc., and outputs these signals.

制御装置12のモータ駆動制御部9及び加工条件制脚部
10に出力する。
It is output to the motor drive control section 9 and the machining condition control section 10 of the control device 12.

前記電解液濾過装置14は、加工で生じた電解生成物を
含む電解液42を濾過するもので、電解液流制御部11
からの制御信号に基づいて、電解液槽43へ電解液42
を一定の液圧で供給するとともに、加工中に被加工面2
aと電極面4a間に生成した電解生成物等を排除するた
めに、1パルスまたは数パルス毎に上昇動作する電極4
と同期して被加工物2と電極4間に新鮮な電解液42を
噴出する如く電磁弁45等を制御する。
The electrolyte filtration device 14 filters an electrolyte 42 containing electrolytic products generated during processing, and the electrolyte flow control unit 11
Based on the control signal from the electrolyte tank 43, the electrolyte 42
is supplied with a constant hydraulic pressure, and the workpiece surface 2 is
The electrode 4 moves upward every pulse or every few pulses in order to eliminate electrolytic products generated between the electrode surface 4a and the electrode surface 4a.
In synchronization with this, the electromagnetic valve 45 and the like are controlled so as to spout fresh electrolyte 42 between the workpiece 2 and the electrode 4.

次に、この装置による仕上げ加工方法について説明する
Next, a finishing method using this apparatus will be explained.

仕上げ加工に際しては、被加工物固定装置3に例えば放
電加工により所望形状に加工された被加工物2を固定す
るとともに、電極固定装置5のロッド17の下端に前記
放電加工時に使用した電極4を固定し、°この電極4を
下降してその電極面4aを、被加工物2の被加工面2a
に対向接触させ、電極4を被加工物2とともに電解液槽
43の電解液42内に浸漬する。そしてこの位置を原点
Aとし、初期電極間隙に保つ位置に電極4を上昇し、電
解液42が被加工面2aと電極面4a間に満ちたら、そ
こを加工原点として仕上げ加工を開始する。
During finishing, the workpiece 2 machined into a desired shape by electric discharge machining, for example, is fixed to the workpiece fixing device 3, and the electrode 4 used during the electric discharge machining is attached to the lower end of the rod 17 of the electrode fixing device 5. The electrode 4 is then lowered and its electrode surface 4a is placed on the workpiece surface 2a of the workpiece 2.
The electrode 4 and the workpiece 2 are immersed in the electrolytic solution 42 of the electrolytic solution tank 43. Then, this position is set as the origin A, and the electrode 4 is raised to a position where the initial electrode gap is maintained. When the electrolytic solution 42 fills between the surface to be processed 2a and the electrode surface 4a, finishing processing is started using this position as the processing origin.

前加工である仕上げ加工前期には、加工条件制御部lO
の制御信号により、電源装置8から所定の電流密度のパ
ルス電流、例えばパルスのオン時間が10msec以下
のパルス電流を被加工物2と電極4間に供給する。これ
により、被加工面2a素材が溶出する。所定のパルス電
流を1回ないし数回供給した後、モータ駆動制御部9の
信号によりモータ19を駆動して電極4を上昇させ、電
極面4aを被加工面2aから離間させる。この離間によ
り、被加工面2aと電極面4a間の電解生成物を電解液
42とともに電解液濾過装置14の電磁弁45等の動作
により排除する。
During the first half of finishing, which is pre-processing, the processing condition control unit lO
In response to the control signal, a pulse current having a predetermined current density, for example, a pulse on time of 10 msec or less, is supplied from the power supply device 8 between the workpiece 2 and the electrode 4. As a result, the material of the processed surface 2a is eluted. After supplying a predetermined pulse current once or several times, the motor 19 is driven by a signal from the motor drive control section 9 to raise the electrode 4 and separate the electrode surface 4a from the surface to be processed 2a. Due to this separation, electrolytic products between the processed surface 2a and the electrode surface 4a are removed together with the electrolytic solution 42 by the operation of the electromagnetic valve 45 of the electrolytic solution filtering device 14, etc.

電解生成物を排除した後は、電極4が下降し、電極面4
a’が被加工面2aに接触する。これにより、前記原点
Aと現位置とを制御装置12で比較して加工1回(lパ
ルスまたは数パルス毎の加工)当りの加工深さを測定す
る。その後、前記被加工面2aと電極面4aが所定の間
隙18を保つように電極4が再び上昇し、電解液層43
内の電解生成物を含まない電解液42を被加工面2aと
電極面4a間に満たすとともに、前記電極4が所定位置
(電極面4aが被加工面2aと所定の間隙比を保つ位置
)に達してから、1〜5秒後にパルス電流が供給され次
の加工が行われる。
After removing the electrolytic products, the electrode 4 is lowered and the electrode surface 4
a' contacts the processed surface 2a. Thereby, the control device 12 compares the origin A and the current position to measure the machining depth per machining (machining every 1 pulse or several pulses). Thereafter, the electrode 4 is raised again so that a predetermined gap 18 is maintained between the surface to be processed 2a and the electrode surface 4a, and the electrolyte layer 43
An electrolytic solution 42 containing no electrolytic products is filled between the surface to be processed 2a and the electrode surface 4a, and the electrode 4 is placed at a predetermined position (a position where the electrode surface 4a maintains a predetermined gap ratio with the surface to be processed 2a). After 1 to 5 seconds, a pulse current is supplied and the next processing is performed.

そして、この前加工が入力装置13の入力データに基づ
いて前記CPU40で計算した回数行われると、CPU
40が電流波形設定部38に制御信号を出力し、電源装
置8から10msecより長い、例えばオン時間が15
msecのパルス電流を被加工物2と電極4間に供給し
、−回もしくは数回の前加工で被加工面2aに生成した
電解生成物などからなる皮膜を剥離して除去する。この
場合、皮膜を除去する10msecより長いパルス電流
は、所定の前加工が行われ゛た直後に供給し、その後電
極4を上昇して被加工物2と電極4間に電解液42を噴
出して除去された皮膜などを排除する。なお、電解液層
43には1回ないし数回の電解加工で生成した電解生成
物とともに排除する電解液42を補うように、電解液濾
過装置14のクリーンタンクから新鮮な電解液42が供
給される。 このように、所定の間隙18を設けて対向
した被加工面2aと電極面4aとの間に電解液42を満
たし、被加工物2と電極4との間にlomsec以下の
所定のパルス電流を供給して、被加工面2a素材を電解
液42内に溶出させた後、被加工面2aと電極面4a間
に生成した電解生成物を排除し、再び電極面4aを被加
工面2aに接触させることにより、加ニー回当りの加工
深さを測定し、その値を累積するとともに、所定回数前
加工を行った後に、10msecより長いパルス電流を
供給して被加工面2aの皮膜を除去し、電極4を上昇さ
せて被加工面2aと電極面4aとの間隙18に新たな電
解液42を噴出させて皮膜などを排除し、電解液が静止
する1〜5秒後にパルス電流を供給し°て加工を行う、
という一連の工程を制御装置12の信号により所定回数
繰り返す。
Then, when this pre-processing is performed the number of times calculated by the CPU 40 based on the input data of the input device 13, the CPU 40
40 outputs a control signal to the current waveform setting unit 38, and the on-time is longer than 10 msec, for example, 15 msec from the power supply device 8.
A pulse current of msec is supplied between the workpiece 2 and the electrode 4 to peel off and remove a film made of electrolytic products generated on the workpiece surface 2a during one or more previous processes. In this case, a pulse current longer than 10 msec to remove the film is supplied immediately after the predetermined pre-processing is performed, and then the electrode 4 is raised to spray the electrolytic solution 42 between the workpiece 2 and the electrode 4. Remove the film etc. that was removed by In addition, fresh electrolyte 42 is supplied to the electrolyte layer 43 from the clean tank of the electrolyte filtration device 14 so as to supplement the electrolyte 42 that is removed together with the electrolytic products generated in one or several electrolytic processes. Ru. In this way, the electrolytic solution 42 is filled between the workpiece surface 2a and the electrode surface 4a, which face each other with a predetermined gap 18, and a predetermined pulse current of less than lomsec is applied between the workpiece 2 and the electrode 4. After supplying and dissolving the material of the surface 2a to be processed into the electrolytic solution 42, the electrolytic products generated between the surface 2a and the electrode surface 4a are removed, and the electrode surface 4a is brought into contact with the surface 2a to be processed again. By doing so, the machining depth per kneading cycle is measured and the value is accumulated, and after pre-machining has been performed a predetermined number of times, a pulse current longer than 10 msec is supplied to remove the film on the work surface 2a. , the electrode 4 is raised to eject new electrolyte 42 into the gap 18 between the surface to be processed 2a and the electrode surface 4a to remove the film, and after 1 to 5 seconds when the electrolyte has stopped, a pulse current is supplied. ° processing,
This series of steps is repeated a predetermined number of times according to a signal from the control device 12.

前記加工深さの累積値が、入力装置13で入力された入
力データに基づいて加工条件制御部10で計算された加
工深さの設定値と比較し、加工深さ累積値が加工深さ設
定値に対し、所定の差(例えば1μm)以内になった時
に、CPU40が電流波形設定部38に制御信号を出力
し、電源装置8のパルスを電流密度が前記前加工の電流
密度の2/3を越える電流密度、−例えばパルスのオン
時間が15〜60msecと長いパルス電流(後加工の
パルス電流)に切換える。そして、この一定の電流密度
のパルス電流で前述した前加工と略同様の方法により所
定回数の後加工を行い仕上げ加工を終了する。
The cumulative value of the machining depth is compared with the set value of the machining depth calculated by the machining condition control unit 10 based on the input data input by the input device 13, and the cumulative value of the machining depth is determined as the machining depth setting. When the difference is within a predetermined value (for example, 1 μm), the CPU 40 outputs a control signal to the current waveform setting unit 38, and the pulse of the power supply 8 is set so that the current density is 2/3 of the current density of the pre-processing. For example, switch to a pulse current with a long pulse on time of 15 to 60 msec (pulse current for post-processing). Then, post-processing is performed a predetermined number of times using this pulsed current having a constant current density in substantially the same manner as the pre-processing described above, and the finishing process is completed.

次に、この発明に係る電解加工における仕上げ加工方法
による一加工例を示す。
Next, an example of processing using the finishing method in electrolytic processing according to the present invention will be shown.

電極   純銅 被加工物材質    工具鋼(面粗度20μm)電解液
       硝酸ナトリウム溶液(濃度40%) 前加工 ■加工パルス パルスオン時間 5msec 電流密度17A/cm2 ■皮膜除去パルス パルスオン時間 15msec 電流密度40A/ c m2 後加工 パルスオン時間 15msec 、電流密度40A/cm” 仕上げ面粗度    Rmax:1μm以下仕上げ面 
     鏡面状の光沢面 このように、この発明に係る電解加工による仕上げ加工
方法にあっては、加工装置に、所望形状に加工された被
加工物と電極とを取付け、仕上げ条件等を入力装置によ
り入力して起動すれば、鏡面状光沢を呈した三次元金属
曲面が無人で短時間に得られ、その表面は、内部応力の
蓄積や、金属組織の変化もないし、機械的亀裂の侵入と
いった変質も全く見られず、加工前の熱処理品質も損な
われることがない等、現在の金型加工で最も省力化が遅
れている仕上げ加工分野で、品質向上と機械化に大きな
効果が得られる。
Electrode Pure copper Workpiece material Tool steel (surface roughness 20μm) Electrolyte Sodium nitrate solution (concentration 40%) Pre-processing ■Processing pulse pulse-on time 5msec Current density 17A/cm2 ■Film removal pulse Pulse-on time 15msec Current density 40A/ cm2 Post-processing pulse on time 15msec, current density 40A/cm" Finished surface roughness Rmax: 1μm or less Finished surface
Mirror-like glossy surface As described above, in the finishing method by electrolytic processing according to the present invention, the workpiece processed into the desired shape and the electrode are attached to the processing device, and the finishing conditions etc. are inputted using the input device. Once input and started, a three-dimensional metal curved surface with mirror-like luster can be obtained unattended in a short time, and the surface will not accumulate internal stress or change the metallographic structure, and will not suffer from deterioration such as the penetration of mechanical cracks. There is no visible heat treatment at all, and the quality of the heat treatment before processing is not compromised.It has a great effect on quality improvement and mechanization in the field of finishing processing, where labor savings are the slowest in current mold processing.

特にこの発明に係る仕上げ加工方法にあっては、被加工
面に生成される皮膜を周期的に除去する方法であるため
、被加工面が粘着性の電解生成物皮膜で覆われ易い電解
加工による仕上げ加工方法において極めて有用である。
In particular, the finishing method according to the present invention is a method of periodically removing a film formed on the surface to be processed. Extremely useful in finishing methods.

すなわち、電解加工による仕上げ加工方法においては、
加工部からの電解生成物の発生を極力低く押えるととも
に、被加工面に電気的な差異が生じないように制御する
ことが重要で、特に被加工面が電解生成物の皮膜で覆わ
れ易い面粗度向上の加工条件下(上記前加工)にあって
は、その皮膜を一様に除去することが非常に重要である
。そのため、この皮膜を除去する方法として、電極を被
加工物から離脱する際に、電解液の強力な噴流で被加工
面全域を清掃する方法も考えられる。しかしながらこの
方法では、三次元形状や間口の狭くて深い被加工物にお
いて、清掃の死角をなくすことが現実に不可能で実施で
きないという問題があるが、この発明によれば、プログ
ラム制御等により被加工物の形状に制約されることなく
、被加工面の皮膜を簡単かつ確実に除去できる。
In other words, in the finishing method using electrolytic processing,
It is important to suppress the generation of electrolytic products from the processing part as much as possible and to control it so that there is no electrical difference on the processed surface, especially when the processed surface is easily covered with a film of electrolytic products. Under processing conditions for improving roughness (the above-mentioned pre-processing), it is very important to uniformly remove the film. Therefore, one possible method for removing this film is to use a powerful jet of electrolyte to clean the entire surface of the workpiece when the electrode is removed from the workpiece. However, with this method, there is a problem in that it is practically impossible to eliminate blind spots in cleaning for workpieces that have a three-dimensional shape or narrow and deep openings. The film on the surface to be processed can be easily and reliably removed without being restricted by the shape of the workpiece.

なお、上記実施例における電極面と被加工面間の電解生
成物を排除するサイクルは、1パルス毎に行うのが被加
工面の全域に亘って最も安定しているが、例えば前加工
のパルスのオン時間が1msecという短い場合は、1
パルスの加工で発生する電解生成物が少ないので、数パ
ルス毎に排除することもできる。
Note that the cycle for eliminating electrolytic products between the electrode surface and the workpiece surface in the above embodiment is most stable if it is performed every pulse over the entire area of the workpiece surface, but for example When the on time of 1 msec is short, 1
Since fewer electrolytic products are generated during pulse processing, they can be removed every few pulses.

また、上記実施例においては、皮膜除去用パルスを間欠
的に供給するタイミング(サイクル)を、人力装置12
の入力データに基づきCPU40て予め計算した加工回
数により、一定の周期で供給するようにしたが、例えば
皮膜の生成状況等の加工の進行度合に応じて、ランダム
に供給することもできる。
Further, in the above embodiment, the timing (cycle) of intermittently supplying pulses for film removal is controlled by the manual device 12.
Although the supply is carried out at regular intervals based on the number of processing operations calculated in advance by the CPU 40 based on the input data, it is also possible to supply the supply at random depending on the degree of processing progress, such as the state of film formation.

さらに、この発明は、金型加工分野に限らず、半導体生
産のシリコン単結晶やガリウムヒソ基材の仕上げ加工、
及び磁気記憶装置のアルミニュウム・ディスクの単結晶
ダイヤモンドによる鏡面加工等のように、機械的加工に
よる表面の僅かな内部応力が問題となっている分野での
仕上げ加工にも応用することができ、また、自動搬送装
置と組み合せて、量産されるハイポイド・ギヤー等の熱
処理後の仕上げ加工に用いることも勿論可能である。
Furthermore, this invention is applicable not only to the field of mold processing, but also to finishing processing of silicon single crystals and gallium histobase materials for semiconductor production.
It can also be applied to finishing in fields where slight internal stress on the surface due to mechanical processing is a problem, such as mirror finishing of aluminum disks in magnetic storage devices with single crystal diamond. Of course, it is also possible to use it in combination with an automatic conveyance device for finishing processing of mass-produced hypoid gears and the like after heat treatment.

[発明の効果] 以上詳細に説明したように、この発明に係る電解加工に
よる仕上げ加工方法にあっては、加工液を介して対設し
た被加工物と電極間にパルス電流を供給し、前記被加工
物と電極間に生成した電解生成物を間欠的に除去しなが
ら仕上げ加工を行うに際し、前記パルスの電流密度を仕
上げの前加工と後加工とで異ならしめ、前加工の電流密
度を後加工の電流密度の2/3(二倍の二)以下に設定
するとともに、前加工中に、該前加工の電流密度より高
い電流密度のパルスを間欠的に所定回数供給するように
したので、被加工面の面粗度を損なうことなぐ、被加工
面に生成する皮膜を確実に除去し、加工条件を被加工面
全域に亘り均一にし得て電解液流による縞模様の発生等
がなく、高精度かつ微小面粗度の鏡面状光沢を呈した三
次元金属表面を短時間に得ることができる。また内部応
力の蓄積や金属組織の変化がなく機械的亀裂の侵入等の
変質が全く見られず、加工前の熱処理品質も損なわない
表面を得ることができ、省力化が遅れている金型加工分
野での品質向上と機械化を達成することができる。
[Effects of the Invention] As explained in detail above, in the finishing method by electrolytic machining according to the present invention, a pulse current is supplied between the workpiece and the electrodes disposed opposite each other via the machining fluid, and the When performing finishing machining while intermittently removing electrolytic products generated between the workpiece and the electrode, the current density of the pulse is made different between the pre-finishing machining and the post-machining, and the current density of the pre-machining is changed to the current density of the post-machining. The current density was set to 2/3 (twice twice) or less of the machining current density, and during pre-processing, pulses with a current density higher than the current density of the pre-processing were intermittently supplied a predetermined number of times. It reliably removes the film formed on the processed surface without damaging the surface roughness of the processed surface, makes the processing conditions uniform over the entire processed surface, and eliminates the occurrence of stripes due to electrolyte flow. A three-dimensional metal surface with high precision and a mirror-like luster with minute surface roughness can be obtained in a short time. In addition, it is possible to obtain a surface that does not accumulate internal stress or change the metal structure, shows no deterioration such as the penetration of mechanical cracks, and does not impair the quality of heat treatment before processing. Quality improvement and mechanization in the field can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施する仕上げ加工装置を示す正面
図、第2図は同装置の側面図、第3図は同装置の概略構
成図、第4図は電流供給手段を示すブロック図である。 1・・・加工装置、2・・・被加工物、2a・・・被加
工面、4・・・電極、6・・・電極駆動部、7・・・駆
動変換部、8・・・電源装置、9・・・モータ駆動制御
部、10・・・加工条件制御部、11・・・加工液流制
御部、12・・・制御装置、13・・・入力装置、14
・・・加工液濾過装置、 40拳・・CPU。 特許出願人  静岡製機株式会社 代表者鈴木重夫
FIG. 1 is a front view showing a finishing device for implementing the present invention, FIG. 2 is a side view of the device, FIG. 3 is a schematic configuration diagram of the device, and FIG. 4 is a block diagram showing a current supply means. be. DESCRIPTION OF SYMBOLS 1... Processing device, 2... Workpiece, 2a... Processing surface, 4... Electrode, 6... Electrode drive part, 7... Drive conversion part, 8... Power supply Apparatus, 9... Motor drive control unit, 10... Processing condition control unit, 11... Processing liquid flow control unit, 12... Control device, 13... Input device, 14
...Processing liquid filtration device, 40 fists...CPU. Patent applicant: Shigeo Suzuki, representative of Shizuoka Seiki Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)電解液を介して対設した被加工物と電極間にパル
スを供給し、前記被加工物と電極間に生成した電解生成
物を間欠的に除去しながら仕上げ加工する仕上げ加工方
法において、前記パルスの電流密度を仕上げの前加工と
後加工とで異ならしめ、前加工の電流密度を後加工の電
流密度の2/3以下に設定するとともに、前加工中に、
該前加工の電流密度より高い所定の電流密度のパルスを
間欠的に供給することを特徴とする電解加工による仕上
げ加工方法。
(1) In a finishing method in which a pulse is supplied between a workpiece and an electrode placed opposite each other via an electrolytic solution, and finishing is performed while intermittently removing electrolytic products generated between the workpiece and the electrode. , the current density of the pulse is made different between the pre-finishing process and the post-processing, the current density of the pre-processing is set to 2/3 or less of the current density of the post-processing, and during the pre-processing,
A finishing processing method by electrolytic processing, characterized in that pulses of a predetermined current density higher than the current density of the pre-processing are intermittently supplied.
(2)前記所定の電流密度が後加工の電流密度と略同じ
である特許請求の範囲第1項記載の電解加工による仕上
げ加工方法。
(2) The finishing method by electrolytic machining according to claim 1, wherein the predetermined current density is substantially the same as the current density of post-processing.
(3)前記前加工のパルスのオン時間を10msec以
下とし、後加工のパルスのオン時間を15msec以上
にしたこと特徴とする特許請求の範囲第1項記載の電解
加工による仕上げ加工方法。
(3) The finishing method by electrolytic machining according to claim 1, characterized in that the on-time of the pre-processing pulse is set to 10 msec or less, and the on-time of the post-processing pulse is set to 15 msec or more.
JP62117486A 1987-04-23 1987-05-13 Finishing method by electro-chemical machining Pending JPS63283818A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62117486A JPS63283818A (en) 1987-05-13 1987-05-13 Finishing method by electro-chemical machining
US07/182,808 US4842702A (en) 1987-04-23 1988-04-18 Method for finishing a work
CA000564638A CA1325403C (en) 1987-04-23 1988-04-20 Method for finishing a work
KR1019880004478A KR920007643B1 (en) 1987-04-23 1988-04-20 Method for finishing work
EP88303601A EP0289215A3 (en) 1987-04-23 1988-04-21 Electrolytic finishing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117486A JPS63283818A (en) 1987-05-13 1987-05-13 Finishing method by electro-chemical machining

Publications (1)

Publication Number Publication Date
JPS63283818A true JPS63283818A (en) 1988-11-21

Family

ID=14712904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117486A Pending JPS63283818A (en) 1987-04-23 1987-05-13 Finishing method by electro-chemical machining

Country Status (1)

Country Link
JP (1) JPS63283818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278220U (en) * 1988-12-01 1990-06-15
JPH03168387A (en) * 1989-11-28 1991-07-22 Shimadzu Corp Turbo-molecular pump and its manufacture
US5078839A (en) * 1988-09-07 1992-01-07 Shizuoka Seiki Co., Ltd. Method for centering in an electrolytic finishing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100291A (en) * 1985-10-28 1987-05-09 Teijin Ltd Gene fragment and plasmid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100291A (en) * 1985-10-28 1987-05-09 Teijin Ltd Gene fragment and plasmid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078839A (en) * 1988-09-07 1992-01-07 Shizuoka Seiki Co., Ltd. Method for centering in an electrolytic finishing system
JPH0278220U (en) * 1988-12-01 1990-06-15
JPH03168387A (en) * 1989-11-28 1991-07-22 Shimadzu Corp Turbo-molecular pump and its manufacture

Similar Documents

Publication Publication Date Title
JPS62255013A (en) Electro-chemical machining device
EP0266180B1 (en) Electrolytic finishing method
KR910006552B1 (en) Electrolytic finishing method
JPS63283818A (en) Finishing method by electro-chemical machining
JPH01257520A (en) Machining method for electrolyte finishing
CA1335803C (en) Finishing method employing electro-chemical machining, and an electro-chemical finishing machine
JPS63306824A (en) Finish machining method by electro-chemical machining
KR920007643B1 (en) Method for finishing work
JPS63196321A (en) Finishing method by electro-chemical machining and device therefore
US4883568A (en) Finishing method employing electro-chemical process
JPS63283817A (en) Finishing method by electro-chemical machining
JPS63267118A (en) Finishing method by electrochemical machining
JPS63306825A (en) Machining gap control device for electro-chemical machine
JPS63267120A (en) Finishing method by electrochemical machining
JPH01135418A (en) Finishing method by electrochemical machining
JPH07100259B2 (en) Finishing method by electrolytic processing
JPH01188230A (en) Finishing method based on electrochemical machining and its device
EP0314498A2 (en) electrolytic finishing method
SU841887A1 (en) Method and apparatus for electroerosion treatment of metals
JPH01121123A (en) Finishing erosion method by electro-chemical machining
JPH02106222A (en) Method of electrolytic finishing work
SU860975A1 (en) Method of electric discharge working
JPH01205919A (en) Finishing work through electrolytic working
JPH0265921A (en) Finishing working through electrolytic working
JPH01321121A (en) Electric machining method for metal