JPH07100259B2 - Finishing method by electrolytic processing - Google Patents

Finishing method by electrolytic processing

Info

Publication number
JPH07100259B2
JPH07100259B2 JP23351987A JP23351987A JPH07100259B2 JP H07100259 B2 JPH07100259 B2 JP H07100259B2 JP 23351987 A JP23351987 A JP 23351987A JP 23351987 A JP23351987 A JP 23351987A JP H07100259 B2 JPH07100259 B2 JP H07100259B2
Authority
JP
Japan
Prior art keywords
pulse
electrode
processing
electrolytic
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23351987A
Other languages
Japanese (ja)
Other versions
JPS6478722A (en
Inventor
陽平 桑原
輝雄 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP23351987A priority Critical patent/JPH07100259B2/en
Priority to EP88308596A priority patent/EP0308246A1/en
Priority to CA000577676A priority patent/CA1328423C/en
Priority to US07/245,422 priority patent/US4885066A/en
Priority to KR1019880012006A priority patent/KR910006552B1/en
Publication of JPS6478722A publication Critical patent/JPS6478722A/en
Publication of JPH07100259B2 publication Critical patent/JPH07100259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2300/00Power source circuits or energization
    • B23H2300/10Pulsed electrochemical machining

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解加工による仕上げ加工方法に係り、特
に難削金属等からなる被加工物の三次元形状の被加工面
を鏡面状の光沢面に仕上げる電解加工による仕上げ加工
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a finishing method by electrolytic processing, and in particular, a three-dimensional processed surface of a work made of a difficult-to-cut metal or the like has a mirror-like gloss. The present invention relates to a finishing method by electrolytic processing for finishing a surface.

[従来の技術] 従来の金属加工方法としては、電解加工方法及び放電加
工方法が知られている。前者の電解加工方法としては、
被加工物と電極との間隙に硝酸ナトリウムや塩化ナトリ
ウム等の電解液を満たし、この電解液を高速で流すとと
もに、安定した電解作用を阻害する電解生成物、すなわ
ち溶出した金属化合物や金属イオン及び水素ガス等を除
去しながら、直流電流を被加工物から電極に流して加工
するものが、例えば特開昭61−71921号公報及び特開昭6
0−44228号公報に開示されている。
[Prior Art] As a conventional metal working method, an electrolytic working method and an electric discharge working method are known. As the former electrolytic processing method,
The gap between the workpiece and the electrode is filled with an electrolytic solution such as sodium nitrate or sodium chloride, and the electrolytic solution is caused to flow at a high speed, and an electrolytic product that inhibits a stable electrolytic action, that is, an eluted metal compound or metal ion and A method in which a direct current is passed from an object to be processed to an electrode while removing hydrogen gas and the like is used for processing is disclosed in, for example, Japanese Patent Laid-Open Nos.
No. 0-44228.

また、後者の放電加工方法としては、被加工物と電極と
を水、ケロシン等の加工液中で微小間隙をもって対向さ
せ、かつこれらを適宜の電源に接続して、前記間隙に瞬
発する火花放電や過渡アーク放電を発生させ、該放電エ
ネルギーにより被加工物を加工するものが、例えば特公
昭60−26646号公報及び特開昭60−177819号公報に開示
されている。
In the latter electric discharge machining method, the workpiece and the electrode are made to face each other in a machining liquid such as water or kerosene with a minute gap, and these are connected to an appropriate power source so that spark discharge occurs in the gap. A method in which a transient arc discharge is generated and a workpiece is processed by the discharge energy is disclosed in, for example, Japanese Patent Publication No. 60-64646 and Japanese Patent Publication No. 60-177819.

[発明が解決しようとする問題点] しかしながら、前者の電解加工方法にあっては、機械加
工手段として致命的な欠陥がある。すなわち、特に三次
元形状の底付き加工(凹窩状に形成された三次元構造の
ものに対する加工をいう)において、複雑な輪郭形状を
有する被加工物と電極との間隙に電解液を一様な流速で
流すのが不可能で電解液の供給に差が生じ、位置によっ
て電解生成物の濃度が変わり、また、前記間隙に高い液
圧を作用させても電解液の流入口と排出口とでは電解生
成物の濃度が変わる。そのため、一様な密度の電流を与
えても、前記間隙の各部分で加工条件、特に加工の進行
速度が変わって間隙寸法に差異が生じ、被加工物に電極
の精密な転写を行うことが困難で、高精度の表面品質が
得られないという不都合があった。
[Problems to be Solved by the Invention] However, the former electrolytic processing method has a fatal defect as a machining means. That is, in particular, in machining with a three-dimensional bottom (meaning machining for a three-dimensional structure formed in a concave shape), the electrolytic solution is uniformly applied to the gap between the workpiece and the electrode having a complicated contour shape. Since it is impossible to flow at a high flow rate, there is a difference in the supply of the electrolytic solution, the concentration of the electrolytic product changes depending on the position, and even if a high liquid pressure is applied to the above-mentioned gap, Then, the concentration of the electrolysis product changes. Therefore, even if a current having a uniform density is applied, the machining conditions, especially the progressing speed of the machining is changed at each part of the gap, and the gap dimension is different, so that the electrode can be precisely transferred to the workpiece. However, it is difficult to obtain a high-precision surface quality.

また、素材形状から全ての加工を電解加工で行うと、多
量の電解生成物を含む電解液が発生してその汚水処理に
時間とコストを要するという不都合があった。
Further, if all processing is performed by electrolytic processing from the material shape, there is a disadvantage that an electrolytic solution containing a large amount of electrolytic product is generated and the wastewater treatment requires time and cost.

一方、後者の放電加工方法においては、面粗度をRmax:2
0μm程度にまで仕上げるのには比較的高能率である
が、それ以上の仕上げ面粗度に到達させるには1A以下の
微小電流での加工となり、特に表面積の大きな被加工物
では、仕上げ時間が長くかかり非能率であるとともに、
表面積が大きいと被加工物の被加工面と電極間の静電容
量が大きくなり、放電電流を微小に絞りきれずに良好な
面粗度を得ることが困難であるという不都合があった。
On the other hand, in the latter electric discharge machining method, the surface roughness is Rmax: 2
It is relatively efficient to finish up to about 0 μm, but in order to reach a finished surface roughness higher than that, machining with a minute current of 1 A or less is necessary, especially for a workpiece with a large surface area It takes a long time and is inefficient,
If the surface area is large, the electrostatic capacity between the surface to be processed of the workpiece and the electrode becomes large, and it is difficult to obtain a good surface roughness without being able to finely limit the discharge current.

また、加工された表面は、絶縁油を用いた通常の放電加
工では、硬化した変質層が生じるとともに熱応力による
微細亀裂が深く侵入し、また純水を用いたワイヤー放電
加工では軟化層が生じるなど、両放電加工とも表面品質
が好ましくなく、そのため、表面品質に高精度や長寿命
を要求する使用条件にあっては、形状精度が損なわれる
のを承知で、手動による表面研磨加工を行っており、表
面仕上げに多くの時間と労力を要するという不都合があ
った。
In addition, on the processed surface, a hardened deteriorated layer is generated by ordinary electric discharge machining using insulating oil, and fine cracks due to thermal stress penetrate deeply, and a softened layer is generated by wire electric discharge machining using pure water. Surface quality is not good for both types of electrical discharge machining.Therefore, under operating conditions that require high accuracy and long life for surface quality, we know that the shape accuracy will be impaired, and perform manual surface polishing. However, there is an inconvenience that it takes a lot of time and labor to finish the surface.

[発明の目的] そこでこの発明は、上記不都合を除去し、特に難削金属
等からなる被加工物の三次元形状の被加工面を短時間か
つ高精度に仕上げて、鏡面状の光沢面等を得ることがで
きる電解加工による仕上げ加工方法を実現するにある。
[Object of the Invention] Therefore, the present invention eliminates the above-mentioned inconvenience, and in particular, finishes a three-dimensional work surface of a work piece made of a difficult-to-cut metal or the like in a short time with high accuracy to provide a mirror-like glossy surface. It is to realize a finishing method by electrolytic processing that can obtain

[問題点を解決するための手段] この目的を達成するためにこの発明は、静止した電解液
を介して対設した被加工物とこの被加工面の形状に合わ
せられた加工電極の電極面との間に、加工用のパルスを
供給するとともに、前記パルスを供給した後、前記被加
工面と電極面との間に生成した電解生成物を間欠的に除
去しながら仕上げ加工する電解加工による仕上げ加工方
法において、仕上げ加工の前期にはオン時間を2〜10ms
ecとした第1のパルスを供給し、仕上げ加工の後期には
オン時間を20〜60msecとした第2のパルスを供給すると
ともに、前記第1のパルス及び第2のパルスのピーク電
流密度を30〜50A/cm2の範囲で同一としたことを特徴と
する。
[Means for Solving the Problems] In order to achieve this object, the present invention is directed to an object to be machined oppositely through a stationary electrolytic solution and an electrode surface of a machining electrode matched with the shape of the surface to be machined. And, by supplying a pulse for processing, after the pulse is supplied, electrolytic processing for finishing while intermittently removing the electrolytic product generated between the surface to be processed and the electrode surface In the finishing method, the on-time is 2 to 10 ms in the first term of finishing.
ec is supplied with a first pulse, and a second pulse with an ON time of 20 to 60 msec is supplied in the latter stage of finishing, and the peak current density of the first pulse and the second pulse is 30. It is characterized in that they are the same in the range of up to 50 A / cm 2 .

[作用] この発明の構成によれば、被加工物と電極間の電解液が
静止した状態で、第1のパルスを単一もしくは複数パル
ス供給した後に、被加工物と電極間に生成した電解生成
物を排除するという一連の工程を繰返すことにより、被
加工面の面粗度を向上させ、その後、前記第1のパルス
とピーク電流密度が略同等で、パルスのオン時間が2倍
以上の第2のパルスを、静止した電解液中で単一もしく
は複数パルス供給した後に、電解生成物を排除するとい
う工程の繰返しにより、被加工面の面粗度を損なうこと
なく、鏡面状の光沢面を得ることができる。
[Operation] According to the configuration of the present invention, the electrolytic solution generated between the work piece and the electrode after the first pulse is supplied in a single or a plurality of pulses while the electrolyte solution between the work piece and the electrode is stationary. By repeating a series of steps of eliminating the product, the surface roughness of the surface to be processed is improved, and thereafter, the peak current density is substantially equal to that of the first pulse, and the ON time of the pulse is twice or more. By repeating the process of supplying the second pulse to the stationary electrolyte in single or multiple pulses and then removing the electrolytic products, the mirror-finished glossy surface can be obtained without impairing the surface roughness of the surface to be processed. Can be obtained.

[実施例] 以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。
Embodiments Embodiments of the present invention will be described in detail and specifically below with reference to the drawings.

第1〜5図は、この発明の一実施例を示すものである。
第1図において、この発明の仕上げ加工方法を実施し得
る電解加工装置1は、電極3を固定する電極固定装置
4、電極駆動部5の回転運動を往復運動に変換する駆動
変換部6、パルス電流を発生する電源装置7、モータ駆
動制御部8と加工条件制御部9と電解液流制御部10等か
らなる制御装置11、被加工物2に関する各種データを入
力する入力装置12、電解液を濾過する電解液濾過装置13
等からなる。
1 to 5 show an embodiment of the present invention.
In FIG. 1, an electrolytic processing apparatus 1 capable of carrying out the finishing processing method of the present invention includes an electrode fixing device 4 for fixing an electrode 3, a drive converting section 6 for converting a rotational movement of an electrode driving section 5 into a reciprocating movement, and a pulse. A power supply device 7 for generating an electric current, a control device 11 including a motor drive control unit 8, a processing condition control unit 9, an electrolytic solution flow control unit 10, etc., an input device 12 for inputting various data on the workpiece 2, and an electrolytic solution. Electrolyte filtering device for filtering 13
Etc.

前記電極固定装置4は、その下部に設けたロッド14の下
端に、例えば純銅もしくはグラファイトからなる電極3
を、その電極面3aと被加工物2の被加工面2aとが三次元
方向に一様な間隙15を保つように固定する。そして、前
記電極固定装置4は、電極駆動部5と駆動変換部6とに
より前記間隙15を所定値に設定すべく上下動する。すな
わち、電極駆動部5のロータリーエンコーダ16とタコジ
ェネレータ17からの信号により前記制御装置11のモータ
駆動制御部8から出力される制御信号により、モータ18
を回転制御して、前記電極固定装置4を上下動させ、電
極面3aと被加工面2aとを所定の間隙15に設定する。
The electrode fixing device 4 has an electrode 3 made of, for example, pure copper or graphite at a lower end of a rod 14 provided at a lower portion thereof.
Is fixed so that the electrode surface 3a and the processed surface 2a of the workpiece 2 maintain a uniform gap 15 in the three-dimensional direction. Then, the electrode fixing device 4 moves up and down by the electrode driving unit 5 and the drive converting unit 6 so as to set the gap 15 to a predetermined value. That is, the motor 18 is controlled by the control signal output from the motor drive control section 8 of the control device 11 by the signals from the rotary encoder 16 of the electrode drive section 5 and the tacho generator 17.
Is controlled so that the electrode fixing device 4 is moved up and down to set a predetermined gap 15 between the electrode surface 3a and the processed surface 2a.

前記被加工物2と電極3間にパルス電流を供給する電源
装置7は、加工条件制御部9からの制御信号により、被
加工物2の表面積に従って計算した所定の電流密度のパ
ルスを発生するもので、直流電源部20と充放電部21と充
放電制御部22とを有し、例えば第2、3図に示す如く構
成する。
The power supply device 7 for supplying a pulse current between the work piece 2 and the electrode 3 generates a pulse having a predetermined current density calculated according to the surface area of the work piece 2 according to a control signal from the processing condition control section 9. Then, it has a DC power supply unit 20, a charging / discharging unit 21, and a charging / discharging control unit 22, and is configured as shown in FIGS.

第2図において、直流電源部20は、変圧器23と整流器24
とからなり、変圧器23により電圧を所定値に降下させ整
流器24により整流して直流電流を得て、後述する蓄電器
25−1〜25−nに供給する。
In FIG. 2, the DC power supply unit 20 includes a transformer 23 and a rectifier 24.
And a voltage is reduced to a predetermined value by a transformer 23 and rectified by a rectifier 24 to obtain a direct current, and a power storage device described later.
Supply 25-1 to 25-n.

また、充放電部21は、被加工物2と電極3との間隙15に
電荷を放電する複数個の蓄電器25−1〜25−nと、これ
らの各蓄電器25−1〜25−nに接続し直流電源部20側へ
の電荷の逆流を阻止するダイオード26−1〜26−nと、
放電側への電荷を放電させるべく開閉される放電スイッ
チ27−1〜27−nと、前記各蓄電器25−1〜25−nを所
定に充電すべく前記直流電源部20からの電源を給断する
充電スイッチ28とからなる。
Further, the charging / discharging unit 21 is connected to a plurality of capacitors 25-1 to 25-n that discharge electric charges into the gap 15 between the workpiece 2 and the electrode 3 and each of these capacitors 25-1 to 25-n. And diodes 26-1 to 26-n that prevent the reverse flow of charges to the DC power supply unit 20 side,
The discharge switches 27-1 to 27-n that are opened and closed to discharge the electric charge to the discharge side and the power supply from the DC power supply unit 20 to charge the capacitors 25-1 to 25-n in a predetermined manner are disconnected. And a charging switch 28 for charging.

この充放電部21を制御する充放電制御部22は、蓄電器25
−1〜25−nへ供給する充電電圧値を検出する電圧検出
器30と、前記加工条件制御部9の充電電圧設定部36で設
定した設定充電電圧値と前記電圧検出器30で検出した検
出充電電圧値とを比較する電圧比較器31と、前記電極3
と被加工物2との間隙15に放電される電荷の電流値を検
出する電流検出器35と、この電流検出器35で検出した電
流値のピーク値をホールドするピークホールド回路32
と、前記加工条件制御部9のピーク電流設定部39で設定
したピーク電流値と前記ピークホールド回路32でホール
ドしたピーク電流値とを比較する電流比較器34と、前記
加工条件制御部9のパルス発生部37と電流波形設定部38
からの入力により前記各蓄電器25−1〜25−nの電荷の
放電を停止させるべく前記各放電スイッチ27−1〜27−
nに開閉駆動信号を出力するゲート回路33とを有してい
る。
The charging / discharging control unit 22 that controls the charging / discharging unit 21 includes a capacitor 25
-1 to 25-n, a voltage detector 30 for detecting a charging voltage value, a set charging voltage value set by the charging voltage setting unit 36 of the processing condition control unit 9 and detection detected by the voltage detector 30. The voltage comparator 31 for comparing the charging voltage value with the electrode 3
Current detector 35 for detecting the current value of the electric charge discharged in the gap 15 between the workpiece 2 and the workpiece 2, and the peak hold circuit 32 for holding the peak value of the current value detected by the current detector 35.
And a current comparator 34 for comparing the peak current value set by the peak current setting unit 39 of the processing condition control unit 9 with the peak current value held by the peak hold circuit 32, and the pulse of the processing condition control unit 9 Generator 37 and current waveform setting unit 38
The discharge switches 27-1 to 27- for stopping the discharge of the electric charges of the capacitors 25-1 to 25-n by the input from
and a gate circuit 33 that outputs an opening / closing drive signal to n.

また、この充放電制御部22を制御する制御装置11の加工
条件制御部9は、前記各蓄電器25−1〜25−nの充電電
圧を設定する充電電圧設定部36と、所定時間幅のパルス
を発生するパルス発生部37と、被加工物2と電極3間に
放電する電荷の電流波形を設定する電流波形設定部38
と、ピーク電流値を設定するピーク電流設定部39と、前
記入力装置12の入力データに基づき加工条件等を演算・
処理する演算・処理部(CPU)40等からなる。なお、第
2図中符号29は放電スイッチ27−1〜27−nの開時に逆
起電力により各放電スイッチ27−1〜27−nが破壊する
のを防止するダイオードである。
In addition, the processing condition control unit 9 of the control device 11 that controls the charge / discharge control unit 22 includes a charging voltage setting unit 36 that sets the charging voltage of each of the capacitors 25-1 to 25-n, and a pulse having a predetermined time width. And a current waveform setting section 38 for setting the current waveform of the electric charge discharged between the workpiece 2 and the electrode 3.
And a peak current setting unit 39 for setting a peak current value, and processing conditions etc. are calculated based on the input data of the input device 12.
The processing / processing unit (CPU) 40 for processing is included. Reference numeral 29 in FIG. 2 is a diode for preventing the discharge switches 27-1 to 27-n from being destroyed by the counter electromotive force when the discharge switches 27-1 to 27-n are opened.

なお、ここで、蓄電器25−1〜25−nが充放電する際の
前記CPU40の制御について説明する。まずCPU40は、入力
装置12により入力された被加工物2の被加工面2aの表面
積に基づき、供給パルスのピーク電流密度が所定値とな
る充電電圧値を、予め記憶装置に入力されている特性表
により算出し、この充電電圧値を加工条件制御部9の充
電電圧設定部36に出力するとともに、ピーク電流密度の
所定値をピーク電流設定部39に出力する。
The control of the CPU 40 at the time of charging / discharging the capacitors 25-1 to 25-n will be described. First, the CPU 40 has a characteristic that the charging voltage value at which the peak current density of the supply pulse becomes a predetermined value is preliminarily input to the storage device based on the surface area of the processing surface 2a of the workpiece 2 input by the input device 12. The charging voltage value calculated from the table is output to the charging voltage setting unit 36 of the processing condition control unit 9, and the predetermined value of the peak current density is output to the peak current setting unit 39.

そして、被加工物2と電極3間に所定のピーク電流密度
のパルス電流が供給されると、このパルス電流の電流値
が電流検出器35により検出され、その時のピーク値がピ
ークホールド回路32によりホールドされる。このホール
ドされたピーク値と前記ピーク電流設定部39で設定した
ピーク値とを電流比較器34が比較し、その結果をCPU40
に出力する。CPU40は、電流比較器34からの比較結果に
より、充電電圧設定値36の充電電圧値の増減を行い、供
給するパルス電流のピーク電流密度が常に所定値となる
ように制御する。
When a pulse current having a predetermined peak current density is supplied between the workpiece 2 and the electrode 3, the current value of this pulse current is detected by the current detector 35, and the peak value at that time is detected by the peak hold circuit 32. To be held. The current comparator 34 compares the held peak value with the peak value set by the peak current setting unit 39, and the result is compared with the CPU 40.
Output to. The CPU 40 increases or decreases the charging voltage value of the charging voltage setting value 36 based on the comparison result from the current comparator 34, and controls so that the peak current density of the supplied pulse current is always a predetermined value.

第3図は、第2図の概略構成図を具体化した回路構成図
であり、以下これについて説明する。前記充放電部21
は、各蓄電器25−1〜25−nの電源側に逆流阻止用のダ
イオード26−1〜26−nを接続し、放電側に放電スイッ
チ27−1〜27−nを接続している。この放電スイッチ27
−1〜27−nはそれぞれ同一の構成であるため、以下放
電スイッチ27−1について説明する。
FIG. 3 is a circuit configuration diagram embodying the schematic configuration diagram of FIG. 2, which will be described below. The charging / discharging unit 21
Connects backflow blocking diodes 26-1 to 26-n to the power source side of each of the capacitors 25-1 to 25-n and discharge switches 27-1 to 27-n to the discharge side. This discharge switch 27
Since -1 to 27-n have the same configuration, the discharge switch 27-1 will be described below.

放電スイッチ27−1は、5個のトランジスタ50−1〜54
−1と、6個の抵抗55−1〜60−1で構成し、前記充放
電制御部22のゲート回路33のANDゲート49−1から入力
される開閉駆動信号により、各トランジスタ50−1〜54
−1を順次オンし、蓄電器25−1の電荷を放電する。図
中符号62は電極端子、63は被加工物端子、61−1は蓄電
器25−1と並列に接続した抵抗である。なお、放電スイ
ッチ27−1は、トランジスタ50−1〜54−1による構成
に限らず、例えばGTOサイリスタと電解効果トランジス
タあるいは2個のサイリスタ等で構成し、ゲート回路に
設けた2組のANDゲートによりオン・オフ動作させるこ
ともできる。
The discharge switch 27-1 includes five transistors 50-1 to 54
-1 and six resistors 55-1 to 60-1 and each of the transistors 50-1 to 50-1 according to the open / close drive signal input from the AND gate 49-1 of the gate circuit 33 of the charge / discharge control unit 22. 54
-1 is sequentially turned on to discharge the electric charge of the electric storage device 25-1. In the figure, reference numeral 62 is an electrode terminal, 63 is a workpiece terminal, and 61-1 is a resistor connected in parallel with the capacitor 25-1. In addition, the discharge switch 27-1 is not limited to the configuration of the transistors 50-1 to 54-1 but may be, for example, a GTO thyristor and a field effect transistor or two thyristors, and two sets of AND gates provided in the gate circuit. Can be turned on / off by.

また、前記充電スイッチ28は、4個のトランジスタ64〜
67と、5個の抵抗68〜72で構成し、前記充電電圧設定部
36のD/A変換器36aから出力される設定充電電圧値Vsと電
圧検出器30の検出充電電圧値Viとを電圧比較器31により
比較し、この電圧比較器31の出力により各トランジスタ
64〜67をオン・オフして直流電源部20からの電源を給断
し、各蓄電器25−1〜25−nを所定に充電する。なお、
直流電源部20と充電スイッチ28との間には、充電スイッ
チ28の保護のために、一端を接続したダイオード107の
他端をコンデンサ108と抵抗109とを介して接地してい
る。
In addition, the charging switch 28 includes four transistors 64 to
67 and five resistors 68 to 72, the charging voltage setting unit
The set charge voltage value Vs output from the D / A converter 36a of 36 and the detected charge voltage value Vi of the voltage detector 30 are compared by the voltage comparator 31, and each transistor is output by the output of this voltage comparator 31.
The power supply from the DC power supply unit 20 is turned off by turning on / off the power supply units 64 to 67, and the respective capacitors 25-1 to 25-n are charged in a predetermined manner. In addition,
Between the DC power supply unit 20 and the charging switch 28, in order to protect the charging switch 28, the other end of the diode 107 having one end connected thereto is grounded via the capacitor 108 and the resistor 109.

前記直流電源部20は、各コイル105−1〜105−3により
所定に電圧を降下させ、各ダイオード106−1〜106−3
により整流して直流電源を得て、抵抗110を介して出力
する。
The DC power supply unit 20 drops the voltage in a predetermined manner by the coils 105-1 to 105-3, and the diodes 106-1 to 106-3
Is rectified to obtain a DC power source and output via a resistor 110.

前記充放電制御部22の電圧検出器30は、一端を接地した
コンデンサ73を有し、このコンデンサ73と並列に接続し
た2つの直列抵抗74、75により分圧して得た充電電圧値
を出力する。この電圧検出器30の出力側は、抵抗76を介
して電圧比較器31の比較器78の一方の入力側に接続して
いる。また比較器78の他方の入力側には、前記加工条件
制御部9の充電電圧設定部36の出力側が抵抗77を介して
接続している。前記抵抗76、77と比較器78との間には、
ダイオード81、82を接続している。比較器78の出力側に
は抵抗79を接続し、この抵抗79に一端に接地したダイオ
ード80を接続し、前記充電スイッチ28のトランジスタ64
のベースに接続している。
The voltage detector 30 of the charge / discharge control unit 22 has a capacitor 73 whose one end is grounded, and outputs a charging voltage value obtained by dividing the voltage by two series resistors 74 and 75 connected in parallel with the capacitor 73. . The output side of the voltage detector 30 is connected to one input side of the comparator 78 of the voltage comparator 31 via the resistor 76. The output side of the charging voltage setting section 36 of the processing condition control section 9 is connected to the other input side of the comparator 78 via a resistor 77. Between the resistors 76 and 77 and the comparator 78,
The diodes 81 and 82 are connected. A resistor 79 is connected to the output side of the comparator 78, a diode 80 grounded at one end is connected to the resistor 79, and the transistor 64 of the charging switch 28 is connected.
Connected to the base of.

前記電流検出器35は、電極端子62の接地側に抵抗90を設
け、この抵抗90の電極端子62側を増幅器93の一方の入力
側に抵抗91を介して接続するとともに、この増幅器93の
他方の入力側を抵抗92を介して接地する。この増幅器93
は、出力側を前記抵抗91を接続した入力側に抵抗95を介
して接続するとともに、出力側を増幅器94の一方の入力
側に接続する。増幅器94は、出力側を他方の入力側に接
続し、放電される電荷の放電電流値を検出して出力す
る。
The current detector 35 is provided with a resistor 90 on the ground side of the electrode terminal 62, connects the electrode terminal 62 side of the resistor 90 to one input side of an amplifier 93 via the resistor 91, and connects the other side of the amplifier 93. The input side of is connected to ground via resistor 92. This amplifier 93
Connects the output side to the input side to which the resistor 91 is connected via the resistor 95, and connects the output side to one input side of the amplifier 94. The amplifier 94 has its output side connected to the other input side, detects the discharge current value of the discharged electric charge, and outputs it.

前記ピークホールド回路32は、前記電流検出器35の増幅
器94の出力側を増幅器111の他方の入力側に接続すると
ともに、この増幅器111の一方の入力側をダイオード112
を介して出力側に接続する。また、増幅器111の一方の
入力側は抵抗114を介して増幅器116の一方の入力側と出
力側にそれぞれ接続するとともに、増幅器111の出力側
はダイオード113を介して増幅器116の他方の入力側に接
続する。前記増幅器116の他方の入力側はコンデンサ115
を介して接地し、このコンデンサ115の両端にアナログ
スイッチ104を接続する。アナログスイッチ104は加工条
件制御部9もしくはCPU40に設けたリセットパルス発生
部160に接続する。
The peak hold circuit 32 connects the output side of the amplifier 94 of the current detector 35 to the other input side of the amplifier 111, and connects one input side of the amplifier 111 to the diode 112.
To the output side via. Further, one input side of the amplifier 111 is connected to one input side and output side of the amplifier 116 via the resistor 114, and the output side of the amplifier 111 is connected to the other input side of the amplifier 116 via the diode 113. Connecting. The other input side of the amplifier 116 is a capacitor 115.
It is grounded through and the analog switch 104 is connected to both ends of this capacitor 115. The analog switch 104 is connected to the processing condition controller 9 or the reset pulse generator 160 provided in the CPU 40.

このピークホールド回路32は、前記電流検出器35で検出
した電流値のピーク値をホールド(保持)し、この値を
電流比較器34に出力するとともに、前記リセットパルス
発生部160のリセットパルスによりリセットされる。
The peak hold circuit 32 holds (holds) the peak value of the current value detected by the current detector 35, outputs this value to the current comparator 34, and resets it by the reset pulse of the reset pulse generator 160. To be done.

前記加工条件制御部9のピーク電流設定部39のD/A変換
器39aの出力側と前記ピークホールド回路32の増幅器116
の出力側は、それぞれ抵抗96、97を介して電流比較器34
の比較器98の入力側に接続するとともに、各抵抗96、97
と比較器98との間には、それぞれダイオード101、102を
接続する。比較器98の出力側には抵抗99を接続し、この
抵抗99に一端を接地した定電圧ダイオード100を接続す
るとともに、増幅器93の出力側を前記加工条件制御部9
のCPU40の端子103に接続する。
The output side of the D / A converter 39a of the peak current setting section 39 of the processing condition control section 9 and the amplifier 116 of the peak hold circuit 32.
The output side of the current comparator 34 is connected via resistors 96 and 97, respectively.
Connected to the input side of the comparator 98 of
Diodes 101 and 102 are respectively connected between and and the comparator 98. A resistor 99 is connected to the output side of the comparator 98, a constant voltage diode 100 whose one end is grounded is connected to the resistor 99, and the output side of the amplifier 93 is connected to the processing condition control unit 9
Connect to the terminal 103 of the CPU 40.

前記ゲート回路33は、前記電流波形設定部38の一時記憶
装置38aと前記パルス発生部37の出力端子とを、各ANDゲ
ート49−1〜49−nに接続している。各ANDゲート49−
1〜49−nは、前記電流波形設定部38の一時記憶装置38
aとパルス発生部37の出力端子から入力する信号によ
り、放電を制御すべく各放電スイッチ27−1〜27−nを
開閉駆動する。すなわち、一時記憶装置38aの制御信号
により、前記各蓄電器25−1〜25−nの電荷を放電側に
所望に放電させるべく放電スイッチ27−1〜27−nの各
トランジスタ50−1〜50−nを選択的にオンして各蓄電
器25−1〜25−nを放電させるとともに、前記各蓄電器
25−1〜25−nの電荷の放電を停止させるべく前記放電
スイッチ27−1〜27−nの各トランジスタ50−1〜50−
nをオフして各蓄電器25−1〜25−nの放電を停止させ
る。
The gate circuit 33 connects the temporary storage device 38a of the current waveform setting unit 38 and the output terminal of the pulse generating unit 37 to the AND gates 49-1 to 49-n. Each AND gate 49-
1 to 49-n are temporary storage devices 38 of the current waveform setting unit 38.
The discharge switches 27-1 to 27-n are opened / closed to control the discharge by a and a signal input from the output terminal of the pulse generator 37. That is, the transistors 50-1 to 50- of the discharge switches 27-1 to 27-n are used to discharge the charges of the capacitors 25-1 to 25-n to the discharge side as desired by the control signal of the temporary storage device 38a. n is selectively turned on to discharge each of the capacitors 25-1 to 25-n, and
The respective transistors 50-1 to 50- of the discharge switches 27-1 to 27-n are arranged to stop the discharge of the electric charges of 25-1 to 25-n.
By turning off n, the discharge of each of the capacitors 25-1 to 25-n is stopped.

前記入力装置12は、被加工物2の材質と表面積、仕上げ
加工しろと寸法精度の等級、仕上げ面粗度及び電極間隙
等を入力し、これらの各信号を制御装置11のモータ駆動
制御部8及び加工条件制御部9に出力する。
The input device 12 inputs the material and surface area of the workpiece 2, finishing margin and dimensional accuracy grade, finished surface roughness, electrode gap, etc., and outputs these signals to the motor drive controller 8 of the controller 11. And output to the processing condition control unit 9.

前記電解液瀘過装置13は、加工で生じた電解生成物を含
む電解液を瀘過するもので、例えば第4図の如く構成す
る。すなわち、電解液濾過装置13は、加工槽41からの電
解生成物を多く含んだ戻り電解液を貯留するダーティタ
ンク117と、このダーティタンク117の電解液を電磁ポン
プ118で汲み上げフィルタ119を通してから遠心分離処理
する遠心分離機120と、この遠心分離機120で分離処理し
た電解生成物を含まない電解液を貯留するクリーンタン
ク121と、このクリーンタンク121の電解液を汲み上げる
電磁ポンプ122と、加工槽41への液圧を調整するための
絞り弁123、124と、クリーンタンク121からの電解液を
被加工物2と電極3の間隙に噴出させることにより、該
間隙に生じた電解生成物等を排する電磁弁125と、加工
槽41へ供給する電解液の液圧を測定指示する液圧計126
等からなる。なお、図中127、128はダーティタンク117
の液面を検出する上限フロートスイッチ及び下限フロー
トスイッチ、129は遠心分離機120を駆動するモータであ
る。
The electrolytic solution filtering device 13 filters an electrolytic solution containing an electrolytic product generated by processing, and is configured as shown in FIG. 4, for example. That is, the electrolytic solution filtering device 13 includes a dirty tank 117 that stores a return electrolytic solution containing a large amount of electrolytic products from the processing tank 41, and the electrolytic solution in the dirty tank 117 is pumped by an electromagnetic pump 118 and then filtered through a centrifugal filter 119. A centrifuge 120 for separation treatment, a clean tank 121 for storing an electrolytic solution containing no electrolytic product separated by the centrifuge 120, an electromagnetic pump 122 for pumping the electrolytic solution in the clean tank 121, and a processing tank. Throttle valves 123 and 124 for adjusting the liquid pressure to 41, and the electrolytic solution from the clean tank 121 are jetted into the gap between the workpiece 2 and the electrode 3 to remove the electrolytic products generated in the gap. Solenoid valve 125 for discharging and hydraulic pressure meter 126 for measuring and instructing the hydraulic pressure of the electrolytic solution supplied to the processing tank 41
Etc. In the figure, 127 and 128 are dirty tanks 117.
An upper limit float switch and a lower limit float switch for detecting the liquid level of the liquid crystal display device, and a motor 129 for driving the centrifuge 120.

この電解液濾過装置13を制御する電解液流制御部10は、
加工条件制御部9からの制御信号に基づいて、加工槽41
へ電解液Dを一定の液圧で供給するとともに、加工中に
被加工面2aと電極面3a間に生成した電解生成物等を排除
するために、1パルスまたは数パルス毎に上昇動作する
電極3と同期して被加工物2と電極3間に新鮮な電解液
を噴出する如く電磁ポンプ118、122、絞り弁123、124及
び電磁弁125等を制御する。
The electrolytic solution flow control unit 10 that controls the electrolytic solution filtering device 13,
Based on the control signal from the processing condition control unit 9, the processing tank 41
An electrode that supplies electrolytic solution D at a constant fluid pressure to the electrode and that moves upward every one pulse or several pulses in order to eliminate electrolytic products and the like generated between the processed surface 2a and the electrode surface 3a during processing. The electromagnetic pumps 118 and 122, the throttle valves 123 and 124, the electromagnetic valve 125, and the like are controlled so that a fresh electrolytic solution is ejected between the workpiece 2 and the electrode 3 in synchronization with the workpiece 3.

次に、この装置による仕上げ加工動作について第5図の
フローチャートにより説明する。
Next, the finishing operation by this apparatus will be described with reference to the flowchart of FIG.

仕上げ加工に際しては、電極固定装置4のロツド14の下
端に電極3を、また、図示しない被加工物固定装置に被
加工物2をそれぞれ取付け(130)、そして電極3を下
降してその電極面3aを、電解加工あるいは放電加工によ
り所望形状に加工された、例えば熱処理を行った特殊鋼
等からなる被加工物2の被加工面2aに対向接触させ(13
1)、この位置を原点Aとする。そして、加工槽41内に
電解液Dを供給するとともに(132)、電極3を上昇さ
せて所定電極間隙を維持し(133)、電解液が被加工面2
aと電極面3a間に満ち、電解液が静止(電解液の流れ・
動きが略停止した状態をいう)したら(134)、加工条
件制御部9の制御信号により、電源装置7から面粗度向
上用の所定のパルス電流(第1のパルス電流)を被加工
物2と電極3間に供給する(135)。
At the time of finishing, the electrode 3 is attached to the lower end of the rod 14 of the electrode fixing device 4, and the work piece 2 is attached to the work piece fixing device (not shown) (130), and the electrode 3 is lowered to move its electrode surface. 3a is brought into contact with the work surface 2a of the work 2 made of a special steel or the like that has been processed into a desired shape by electrolytic machining or electric discharge machining (13
1) Let this position be the origin A. Then, while supplying the electrolytic solution D into the processing tank 41 (132), the electrode 3 is raised to maintain a predetermined electrode gap (133), and the electrolytic solution is applied to the processed surface 2
filled between a and the electrode surface 3a, and the electrolyte solution is stationary (electrolyte solution flow
When the movement is almost stopped) (134), a predetermined pulse current (first pulse current) for improving the surface roughness is supplied from the power supply device 7 by the control signal of the processing condition control unit 9. And the electrode 3 (135).

そして、このパルス電流を所定回数供給した後(13
6)、モータ駆動制御部8の信号によりモータ18を駆動
して電極3を上昇させ(137)、電極面3aを被加工面2a
から離間させ、被加工面2aと電極面3a間の溶出した電解
生成物を電解液とともに電解液瀘過装置13の電磁弁125
等の動作により排除する(138)。
After supplying this pulse current a predetermined number of times (13
6) The motor 18 is driven by the signal from the motor drive control unit 8 to raise the electrode 3 (137), and the electrode surface 3a is moved to the processed surface 2a.
And the eluted electrolysis product between the surface 2a to be processed and the electrode surface 3a is separated together with the electrolytic solution by the solenoid valve 125 of the electrolytic solution filtering device 13.
It is excluded by the action such as (138).

電解生成物を排除した後は、電極3が下降し、電極面3a
が被加工面2aに接触する(139)。これにより、前記原
点Aと現位置とを制御装置11で比較して加工1回(1パ
ルスまたは数パルス毎の加工)当りの加工深さを測定
し、これを累積する(140)。そして、この累積値と予
め設定した設定値とを比較し(141)、加工深さの累積
値が設定値に対し所定の差(例えば1μm)に達してい
ない場合には、加工回数を判断し(142)、ステップ133
〜141を所定回数繰返す。
After removing the electrolysis products, the electrode 3 descends and the electrode surface 3a
Contacts the work surface 2a (139). As a result, the origin A and the current position are compared by the control device 11 to measure the machining depth per machining (machining every one pulse or several pulses), and this is accumulated (140). Then, this cumulative value is compared with a preset setting value (141), and if the cumulative value of the working depth has not reached a predetermined difference (for example, 1 μm) from the set value, the number of times of working is judged. (142), Step 133
Repeat 141 to a predetermined number of times.

そして、加工回数が所定回数行われると、CPU40が電流
波形設定部38に制御信号を出力し、電源装置7から供給
されるパルス電流を皮膜除去用の所定のパルス電流に切
換えるとともに(143)、電極3を上昇させて被加工物
2と所定間隙を維持させ(144)、被加工面2aと電極面3
a間の電解液が静止したら(145)、前記の切換えたパル
ス電流を被加工物2と電極3間に供給し(146)、一回
もしくは数回の加工で被加工面2aに生成した電解生成物
などからなる皮膜を被加工面2aから剥離して除去する。
When the number of times of processing is performed a predetermined number of times, the CPU 40 outputs a control signal to the current waveform setting unit 38 to switch the pulse current supplied from the power supply device 7 to a predetermined pulse current for film removal (143), The electrode 3 is raised to maintain a predetermined gap with the workpiece 2 (144), and the workpiece surface 2a and the electrode surface 3
When the electrolytic solution between a and quiescent (145), the switched pulse current is supplied between the workpiece 2 and the electrode 3 (146), and the electrolysis generated on the workpiece surface 2a by one or several machining operations. A film made of a product or the like is peeled from the work surface 2a and removed.

この皮膜除去用のパルス電流を所定回数供給して被加工
面2aの皮膜を除去すると(147)、電極3を上昇させ(1
48)、除去された皮膜等が含まれる電解液を被加工面2a
と電極面3a間から排除する(149)。そして、電解液を
排除すると、電源装置7から供給されるパルス電流を前
記の面粗度向上用のパルス電流に切換えて電極を下降さ
せ(150)、ステップ133へ移り面粗度向上のための加工
を行う。
When the pulse current for film removal is supplied a predetermined number of times to remove the film on the work surface 2a (147), the electrode 3 is raised (1
48), the electrolytic solution containing the removed film, etc.
And between the electrode surface 3a (149). Then, when the electrolytic solution is removed, the pulse current supplied from the power supply device 7 is switched to the pulse current for improving the surface roughness to lower the electrode (150), and the process proceeds to step 133 to improve the surface roughness. Perform processing.

この一連の加工により加工深さの累積値が設定値と比較
し、累積値が加工深さ設定値に対し、所定の差以内にな
った時に、ステップ141でYESとなり、加工条件制御部9
の制御信号により電源装置7から供給されるパルス電流
を光沢面形成用の所定のパルス電流(第2のパルス電
流)に切換える(151)。そして、このパルス電流で前
述したステップ133〜138と同様の加工を所定回数繰返し
(152〜158)、全ての仕上げ加工を終了する(159)。
By this series of machining, the cumulative value of the machining depth is compared with the set value, and when the cumulative value is within the predetermined difference from the preset value of the machining depth, YES is determined in step 141 and the machining condition control unit 9
The pulse current supplied from the power supply device 7 is switched to a predetermined pulse current (second pulse current) for forming a glossy surface by the control signal of (151). Then, the same processing as steps 133 to 138 described above is repeated a predetermined number of times with this pulse current (152 to 158), and all finishing processing is completed (159).

なお、パルス電流を切換えるタイミングの検出は、上記
の加工深さの累積値と設定値との比較による検出に限ら
ず、例えば加工しろから加工終了するまでのクーロン量
を計算してこの値により検出制御することもできる。
The detection of the timing of switching the pulse current is not limited to the detection by comparing the cumulative value of the machining depth with the set value, but for example, the Coulomb amount from the machining allowance to the end of machining is calculated and the detection control is performed by this value. You can also do it.

また、上記実施例においては、所定のパルス電流を供給
後、電解生成物を排除するために、電極3を一旦上昇さ
せたが、例えば電極3に1個もしくは複数個の電解液噴
出孔を設けた場合などは、電極3を上昇させずに所定の
電極間隙を維持した状態で、適宜の手段により前記噴出
孔から電解液を噴出して電解生成物を排除することもで
きる。また、面粗度向上用のパルス電流による加工中に
被加工面2aに皮膜が形成されない場合は、上記実施例の
皮膜除去用のパルス電流の供給ステップを省略すること
もできる。
Further, in the above-mentioned embodiment, the electrode 3 was once moved up in order to eliminate the electrolysis products after supplying a predetermined pulse current. However, for example, the electrode 3 is provided with one or a plurality of electrolyte solution ejection holes. In such a case, the electrolytic solution can be ejected by ejecting the electrolytic solution from the ejection hole by an appropriate means while maintaining the predetermined electrode gap without raising the electrode 3. Further, when the film is not formed on the surface to be processed 2a during the processing with the pulse current for improving the surface roughness, the step of supplying the pulse current for removing the film in the above embodiment can be omitted.

ところで、加工槽41には1回ないし数回の電解加工で生
成した電解生成物とともに排除する電解液を補うよう
に、電解液瀘過装置13のクリーンタンク121から新鮮な
電解液が供給されるが、ここで、電解液瀘過装置13の動
作について説明する。
By the way, a fresh electrolytic solution is supplied from the clean tank 121 of the electrolytic solution filtering device 13 to the processing tank 41 so as to supplement the electrolytic solution that is removed together with the electrolytic product generated by one or several times of electrolytic processing. However, the operation of the electrolytic solution filtering device 13 will now be described.

加工槽41から戻る電解生成物を含んだ電解液は、ダーテ
ィタンク117に貯留され、その液面レベルは、上・下の
フロートスイッチ127、128で検出されて電解液流制御部
10に入力される。電解液流制御部10は、ダーティタンク
117内の液面レベルが所定値に達したら、即ち液面レベ
ルが上・下のフロートスイッチ127、128間にある時、電
磁ポンプ118に駆動信号を出力し、ダーティタンク117内
の電解液を汲み上げ、フィルタ119を通して遠心分離機1
20に送出する。
The electrolytic solution containing the electrolytic product returned from the processing tank 41 is stored in the dirty tank 117, and the liquid level thereof is detected by the upper and lower float switches 127 and 128 to detect the electrolytic solution flow control unit.
Entered in 10. The electrolyte flow control unit 10 is a dirty tank.
When the liquid level in 117 reaches a predetermined value, that is, when the liquid level is between the upper and lower float switches 127 and 128, a drive signal is output to the electromagnetic pump 118 to remove the electrolytic solution in the dirty tank 117. Pump and centrifuge through filter 119 1
Send to 20.

遠心分離機120は、電解液流制御部10の制御信号により
モータ129が回転し、電解液を分離処理する。そして、
分離処理され電解生成物を含まない電解液は、クリーン
タンク121に貯留され、加工条件制御部9からの信号に
より、電解液流制御部10が電磁ポンプ122、絞り弁123、
124、電磁弁125に制御信号を送り、電解液がクリーンタ
ンク121から汲み上げられて加工槽41内に噴出される。
In the centrifuge 120, the motor 129 is rotated by the control signal of the electrolytic solution flow control unit 10 to separate the electrolytic solution. And
The separated electrolytic solution containing no electrolytic product is stored in the clean tank 121, and in response to a signal from the processing condition control section 9, the electrolytic solution flow control section 10 causes the electromagnetic pump 122, the throttle valve 123,
A control signal is sent to the solenoid valve 125 and the solenoid valve 125, and the electrolytic solution is pumped up from the clean tank 121 and ejected into the processing tank 41.

この場合、クリーンタンク121と加工槽41との間に液圧
を測定指示する液圧計126と、絞り弁1123、124を設け、
液圧計の液圧が電解液流制御部10の設定値に対し低い場
合は、加工槽41側の絞り弁124の開閉度を大きくすると
ともに、クリーンタンク121側の絞り弁123の開閉度を小
さくして、電解液が加工槽41側に多く流入するように
し、液圧計126の液圧が前記設定値に対し高い場合は、
絞り弁123の開閉度を大きくするとともに、絞り弁124の
開閉度を小さくして、電解液がクリーンタンク121側に
多く戻るようにする。また、クリーンタンク121と加工
槽41間に設けられる電磁弁125は、電極3の上昇動作と
同期した電解液流制御部10からの制御信号により、クリ
ーンタンク121からの電解液を被加工物2と電極3の間
隙に噴出し、該間隙の電解生成物を含む電解液を排除す
る如く動作する。
In this case, between the clean tank 121 and the processing tank 41, a fluid pressure gauge 126 for instructing measurement of fluid pressure, and throttle valves 1123 and 124 are provided.
When the hydraulic pressure of the hydraulic pressure gauge is lower than the set value of the electrolyte flow control unit 10, the opening / closing degree of the throttle valve 124 on the processing tank 41 side is increased and the opening / closing degree of the throttle valve 123 on the clean tank 121 side is decreased. Then, a large amount of the electrolytic solution flows into the processing tank 41 side, and when the hydraulic pressure of the hydraulic pressure gauge 126 is higher than the set value,
The open / close degree of the throttle valve 123 is increased and the open / close degree of the throttle valve 124 is decreased so that a large amount of electrolytic solution returns to the clean tank 121 side. Further, the solenoid valve 125 provided between the clean tank 121 and the processing tank 41 causes the electrolytic solution from the clean tank 121 to be processed by the control signal from the electrolytic solution flow control unit 10 synchronized with the rising operation of the electrode 3. It jets into the gap between the electrode 3 and the electrode 3 and operates so as to remove the electrolytic solution containing the electrolytic product in the gap.

このように、電解液流制御部10は、クリーンタンク121
から加工槽41に流入する電解液の液圧が常に一定になる
如く制御するとともに、電極3の上昇動作と同期して、
被加工物2と電極3間の電解生成物を含む電解液を排除
する如く制御する。
As described above, the electrolyte flow control unit 10 includes the clean tank 121.
Is controlled so that the liquid pressure of the electrolytic solution flowing into the processing tank 41 from is always constant, and in synchronization with the rising operation of the electrode 3,
The control is performed so as to eliminate the electrolytic solution containing the electrolytic product between the workpiece 2 and the electrode 3.

なお、電解液の供給は上記実施例に限らず、例えば直列
に連結した第1及び第2のシリンダを設け、この第1の
シリンダには加工槽41側とクリーンタンク121側への電
解液の逆流を阻止する一対の逆止弁を設けるとともに、
第2のシリンダにコンプレッサを接続して、このコンプ
レッサにより第2のシリンダを作動させることにより第
1のシリンダを作動させ、第1のシリンダ内に吸引され
た電解液を被加工物2と電極3間に噴出するようにして
もよい。
The supply of the electrolytic solution is not limited to the above-described embodiment, and for example, first and second cylinders connected in series are provided, and the electrolytic solution is supplied to the processing tank 41 side and the clean tank 121 side in the first cylinder. With a pair of check valves to prevent backflow,
A compressor is connected to the second cylinder, and the second cylinder is operated by this compressor to operate the first cylinder, so that the electrolytic solution sucked into the first cylinder causes the workpiece 2 and the electrode 3 to move. You may make it spout in the meantime.

次に、この発明に係る電解加工による仕上げ加工方法を
第6〜9図の加工例に基づき説明する。
Next, the finishing method by electrolytic processing according to the present invention will be described based on the processing examples of FIGS.

第6図は、 電 極 純銅 被加工物材質 工具鋼 被加工面の表面積 25cm2 電極間隙 0.1mm 加工液 硝酸ナトリウム溶液 (濃度40%) とする条件のもとに行った加工データであり、第7図は
供給するパルス電流の波形を示し、第7図中toffはパル
スの休止時間で第6図の加工例の場合は、略250msecで
ある。
Fig. 6 shows machining data performed under the conditions of electrode pure copper, material of work material, tool steel, surface area of work surface 25 cm 2, electrode gap 0.1 mm, working solution sodium nitrate solution (concentration 40%). FIG. 7 shows the waveform of the supplied pulse current. In FIG. 7, toff is the pulse rest time, which is about 250 msec in the case of the processing example of FIG.

第6図の加工例によれば、パルス電流のピーク電流密度
が32A/cm2〜48A/cm2で、パルス電流のオン時間が3〜7m
secの場合(加工例1〜4、7、8)に、例えば第8図
(加工例3の結果)に示すように被加工面の面粗度が大
幅に向上し、その表面は滑り面になり、加工例5、6、
9に示すように、ピーク電流密度が40もしくは48A/cm2
でオン時間が20msec以上になると、例えば第9図(加工
例9の結果)に示すように、被加工面の面粗度の大幅な
向上は見られないものの、被加工面の面性状(面の凹凸
状態)を損なうことなく、仕上げ面が光沢面になる結果
となった。
According to the processing example of FIG. 6, the peak current density of the pulse current is 32 A / cm 2 to 48 A / cm 2 , and the ON time of the pulse current is 3 to 7 m.
In the case of sec (processing examples 1 to 4, 7 and 8), for example, as shown in FIG. 8 (result of processing example 3), the surface roughness of the surface to be processed is significantly improved, and the surface becomes a sliding surface. And processing examples 5 and 6,
As shown in 9, the peak current density is 40 or 48 A / cm 2
When the on-time is 20 msec or more, the surface roughness of the surface to be machined (surface texture) is not significantly improved, for example, as shown in FIG. 9 (result of processing example 9). As a result, the finished surface became a glossy surface without impairing the (unevenness state of).

また、ピーク電流密度が30A/cm2未満の場合は、被加工
面に厚い酸化皮膜が形成されるとともに、面粗度の向上
もみられず、ピーク電流密度が50A/cm2を超える場合
は、被加工面の面性状が変化してしまうという結果が得
られた。
When the peak current density is less than 30 A / cm 2 , a thick oxide film is formed on the surface to be processed, and the surface roughness is not improved.When the peak current density exceeds 50 A / cm 2 , The result was that the surface properties of the work surface changed.

なお、第6図における加工例では、総加工電気量が約50
0クーロン/cm2の場合であるが、これより少ない電気量
の場合でも、第6図と略同様の結果が得られることが確
認されている。
In addition, in the processing example in FIG. 6, the total amount of processing electricity is about 50.
Although it is the case of 0 coulomb / cm 2 , it has been confirmed that the result substantially similar to that of FIG. 6 can be obtained even when the amount of electricity is smaller than this.

このように、供給するパルス電流のピーク値電流密度を
30〜50A/cm2に設定するとともに、パルス電流のオン時
間を2〜10msecに設定すれば、単にパルス電流の平均電
流密度を規定して仕上げ加工する場合に比べ、狭い電流
密度の範囲内で被加工面の面粗度を大幅に向上させるこ
とができる。また、同じピーク電流密度の範囲内でパル
スのオン時間を大きくしたパルス電流により光沢面を得
ることができるため、特に仕上げ加工の前期に面粗度向
上用のパルス電流を供給し、仕上げ加工の後期に光沢面
形成用のパルス電流を供給する電流加工による仕上げ加
工方法において、被加工物と電極間に供給するパルス電
流の切換えをパルスのオン時間のみの切換えで行うこと
ができて、その切換操作が容易であり、高品質の光沢面
を短時間に得られるなど優れた効果が得られる。
In this way, the peak value current density of the supplied pulse current
If 30 to 50 A / cm 2 is set and the ON time of the pulse current is set to 2 to 10 msec, compared with the case of simply defining the average current density of the pulse current and finishing, within a narrow current density range. The surface roughness of the surface to be processed can be greatly improved. Also, since a glossy surface can be obtained with a pulse current with a long pulse on time within the same peak current density range, a pulse current for surface roughness improvement is supplied especially during the first period of finish processing to improve the finish processing. In the finishing processing method by current processing that supplies the pulse current for forming the glossy surface in the latter half, the switching of the pulse current supplied between the work piece and the electrode can be performed by switching only the on time of the pulse. It is easy to operate and has excellent effects such as obtaining a high-quality glossy surface in a short time.

一例として、第6図の加工例に示す条件を使用して仕上
げ加工を行ったところ、次のような結果を得た。
As an example, when finishing processing was performed using the conditions shown in the processing example of FIG. 6, the following results were obtained.

電 極 純銅 被加工物 工具鋼 被加工面の表面積 25cm2 電解液 硝酸ナトリウム溶液 (濃度40%) 仕上げ加工前期(加工例3) ピーク電流密度 40A/cm2 オン時間 5msec 仕上げ加工後期(加工例9) ピーク電流密度 48A/cm2 オン時間 40msec 仕上げ面粗度 Rmax:1μm以下 仕上げ面 鏡面状の光沢面 この場合、光沢面形成用のパルス電流のピーク電流密度
は、面粗度向上用のパルス電流のピーク電流密度と同一
に設定する方が切換操作上好ましいが、光沢面形成用の
パルス電流のピーク電流密度が50A/cm2で面粗度向上用
のパルス電流のピーク電流密度が30A/cm2であっても、
また、光沢面形成用のパルス電流のピーク電流密度が30
A/cm2で面粗度向上用のパルス電流のピーク電流密度が5
0A/cm2であつても、前記加工例と略同等の結果が得られ
ることが確認されている。
Electrode Pure copper Workpiece Tool steel Surface area of the work surface 25cm 2 Electrolyte Sodium nitrate solution (concentration 40%) Finishing previous period (Processing example 3) Peak current density 40A / cm 2 On-time 5msec Finishing finishing period (Processing example 9) ) Peak current density 48A / cm 2 On-time 40msec Finished surface roughness Rmax: 1μm or less Finished surface Mirror-like glossy surface In this case, the peak current density of the pulse current for glossy surface formation is the pulse current for improving the surface roughness. It is preferable for the switching operation to set the same as the peak current density of, but the peak current density of the pulse current for forming glossy surface is 50 A / cm 2 and the peak current density for improving the surface roughness is 30 A / cm. Even if 2 ,
Also, the peak current density of the pulse current for forming glossy surface is 30
The peak current density of the pulse current for improving surface roughness is 5 at A / cm 2.
It has been confirmed that even at 0 A / cm 2 , the result substantially equivalent to that of the above-mentioned processing example can be obtained.

なお、面粗度向上用及び光沢面形成用のパルス電流のピ
ーク電流密度は、被加工物の材質によりある程度変化さ
せ得るが、上記の範囲内でパルスのオン時間がより長
く、ピーク電流密度がより高いパルス電流を用いるのが
作業能率の面から好ましい。
The peak current density of the pulse current for improving the surface roughness and forming the glossy surface can be changed to some extent depending on the material of the workpiece, but within the above range, the pulse on time is longer and the peak current density is It is preferable to use a higher pulse current in terms of work efficiency.

また、電極を被加工面から離間させ、電極面と被加工面
間の電解生成物を排除するサイクルも、1パルス毎に行
うのが被加工面の全面にわたって最も安定しているが、
パルスのオン時間が短い場合には、1パルスの加工で発
生する電解生成物も少ないので、数パルス供給毎に排除
することもできる。
Further, the cycle of separating the electrode from the surface to be processed and eliminating the electrolytic product between the electrode surface and the surface to be processed is most stable over the entire surface to be processed, although it is performed every pulse.
When the ON time of the pulse is short, the electrolytic product generated in the processing of one pulse is small, so that it can be eliminated every several pulses of supply.

このように、この発明に係る電解加工よる仕上げ加工方
法にあっては、仕上げ加工装置に、所望形状に加工され
た、例えば熱処理を行った特殊鋼等からなる被加工物と
電極とを取付け、仕上げ条件等を入力装置により入力し
て起動すれば、ピーク電流密度が30A/cm2〜50A/cm2で、
パルスのオン時間が2〜10msecのパルス電流により微小
面粗度の表面品質が得られ、この得られた被加工面を、
ピーク電流密度が前記パルス電流と略同等でパルスのオ
ン時間が20〜60msecのパルス電流により、面粗度を損な
うことなく鏡面状の光沢を呈した三次元金属曲面を無人
で短時間で得ることができる。また、その表面は、内部
応力の蓄積や金属組織の変化もないし、機械的亀裂の侵
入といった変質も全く見られず、加工前の熱処理品質も
損なわれることがない等、現在の金型加工で最も省力化
が遅れている仕上げ加工分野で、品質向上と機械化に大
きな効果が得られる。また、電解液瀘過装置により、電
解生成物を多く含んだ電解液を簡単かつ安価に処理する
ことができる。
As described above, in the finishing method by electrolytic machining according to the present invention, the finishing apparatus is provided with the workpiece and the electrode which have been machined into a desired shape and are made of, for example, heat-treated special steel. If you input the finishing conditions with an input device and start it, the peak current density is 30 A / cm 2 ~ 50 A / cm 2 ,
Surface quality with minute surface roughness can be obtained by pulse current with pulse on time of 2 to 10 msec.
To obtain a three-dimensional metallic curved surface with a mirror-like gloss without impairing the surface roughness in a short time by a pulse current with a peak current density approximately equal to the pulse current and a pulse on time of 20 to 60 msec. You can In addition, the surface has no accumulation of internal stress, no change in metallographic structure, no deterioration such as intrusion of mechanical cracks, no deterioration of heat treatment quality before processing, etc. In the finishing field, where labor saving has been delayed most, great effects can be obtained for quality improvement and mechanization. Further, the electrolytic solution filtering device can easily and inexpensively process the electrolytic solution containing a large amount of electrolytic products.

なお、この発明は、金型加工分野に限らず、半導体生産
のシリコン単結晶やガリウムヒソ基材の仕上げ加工、及
び磁気記憶装置のアルミニュウム・ディスクの単結晶ダ
イヤモンドによる鏡面加工等のように、機械的加工によ
る表面の僅かな内部応力が問題となっている分野での仕
上げ加工にも応用することができる。また、自動搬送装
置と組み合せて、量産されるハイポイド・ギヤー等の熱
処理後の仕上げ加工に用いることも勿論可能である。
The present invention is not limited to the field of die processing, and is not limited to mechanical processing such as finish processing of silicon single crystal or gallium arsenide base material for semiconductor production, and mirror surface processing of single crystal diamond of aluminum disk of magnetic memory device. It can also be applied to finish processing in fields where slight internal stress on the surface due to processing is a problem. Further, it is of course possible to use in combination with an automatic carrying device for finishing after heat treatment of mass-produced hypoid gears and the like.

[発明の効果] 以上詳細に説明したように、この発明に係る電解加工に
よる仕上げ加工方法にあっては、静止した電解液を介し
て対設した被加工物と電極間に、仕上げ加工の前期には
第1のパルスを供給し、仕上げ加工の後期には第2のパ
ルスを供給するとともに、前記各パルスを供給した後に
前記被加工物と電極間に生成した電解生成物を除去しな
がら仕上げ加工する仕上げ加工方法において、前記第2
のパルスのオン時間を前記第1のパルスのオン時間の2
倍以上に設定したので、第1のパルスにより微小面粗度
の被加工面が得られ、第2のパルスによりこの微小面粗
度を損なうことなく、鏡面状の光沢を呈した被加工面を
短時間かつ高精度に得ることができる。また、内部応力
の蓄積や金属組織の変化がなく機械的亀裂の侵入等の変
質が全く見られず、加工前の熱処理品質も損なわない表
面を得ることができ、省力化が遅れている金型加工分野
での品質向上と機械化を達成することができる等の効果
を奏する。
[Effects of the Invention] As described in detail above, in the finishing method by electrolytic machining according to the present invention, the finish machining process is performed between the workpiece and the electrode oppositely placed via the stationary electrolytic solution. Is supplied with a first pulse, and a second pulse is supplied in the latter stage of the finishing process, and after the respective pulses are supplied, the electrolytic product generated between the workpiece and the electrode is removed while finishing. In the finishing method for processing, the second
The on-time of the pulse of 2 times the on-time of the first pulse
Since it is set to be more than double, the first pulse gives a processed surface with a minute surface roughness, and the second pulse gives a processed surface having a mirror-like luster without impairing the minute surface roughness. It can be obtained in a short time and with high accuracy. Also, there is no accumulation of internal stress or change of metal structure, no alteration such as intrusion of mechanical cracks is seen at all, and it is possible to obtain a surface that does not impair the heat treatment quality before processing. It has effects such as quality improvement and mechanization in the processing field.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明を実施する仕上げ加工装置のブロック
図、第2図は電源装置のブロック図、第3図は電源装置
の回路構成図、第4図は電解液濾過装置の概略構成図、
第5図は仕上げ加工動作を示すフローチャート、第6図
は加工例を示す図、第7図(A)はパルス波形図、第7
図(B)はパルス波形の拡大図、第8図(A)(B)は
加工前・後の被加工面の面粗度の一例を示すグラフ、第
9図(A)(B)は面粗度の他の例を示すグラフであ
る。 1……電解加工装置、2……被加工物、 2a……被加工面、3……電極、3a……電極面 7……電源装置、8……モータ駆動制御部、 9……加工条件制御部、10……加工液流制御部、 11……制御装置、12……入力装置、 13……加工液瀘過装置、40……CPU、 Jp……ピーク電流密度、 ton……パルスオン時間。
FIG. 1 is a block diagram of a finishing device for carrying out the present invention, FIG. 2 is a block diagram of a power supply device, FIG. 3 is a circuit configuration diagram of the power supply device, and FIG. 4 is a schematic configuration diagram of an electrolytic solution filtration device.
FIG. 5 is a flowchart showing the finishing processing operation, FIG. 6 is a drawing showing a processing example, FIG. 7 (A) is a pulse waveform chart, and FIG.
Figure (B) is an enlarged view of the pulse waveform, Figures 8 (A) and (B) are graphs showing an example of the surface roughness of the processed surface before and after processing, and Figures 9 (A) and (B) are the surfaces. It is a graph which shows the other example of roughness. 1 ... Electrolytic machining device, 2 ... Workpiece, 2a ... Work surface, 3 ... Electrode, 3a ... Electrode surface 7 ... Power supply device, 8 ... Motor drive control unit, 9 ... Machining conditions Control unit, 10 …… Machining liquid flow control unit, 11 …… Control device, 12 …… Input device, 13 …… Machining liquid filtering device, 40 …… CPU, Jp …… Peak current density, ton …… Pulse on time .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】静止した電解液を介して対設した被加工物
とこの被加工面の形状に合わせられた加工電極の電極面
との間に、加工用のパルスを供給するとともに、前記パ
ルスを供給した後、前記被加工面と電極面との間に生成
した電解生成物を間欠的に除去しながら仕上げ加工する
電解加工による仕上げ加工方法において、 仕上げ加工の前期にはオン時間を2〜10msecとした第1
のパルスを供給し、仕上げ加工の後期にはオン時間を20
〜60msecとした第2のパルスを供給するとともに、前記
第1のパルス及び第2のパルスのピーク電流密度を30〜
50A/cm2の範囲で同一としたことを特徴とする電解加工
による仕上げ加工方法。
1. A machining pulse is supplied between an object to be machined oppositely through a stationary electrolytic solution and an electrode surface of a machining electrode matched with the shape of the surface to be machined, and the pulse is provided. In the finishing process method by electrolytic machining in which the electrolytic product generated between the surface to be processed and the electrode surface is intermittently removed after finishing, the on-time is 2 to 1st with 10msec
Pulsed for 20 hours in the latter half of the finishing process.
A second pulse of 60 msec is supplied, and peak current densities of the first pulse and the second pulse are 30 to 30 msec.
A finishing method by electrolytic machining, which is the same in the range of 50 A / cm 2 .
JP23351987A 1987-09-17 1987-09-17 Finishing method by electrolytic processing Expired - Lifetime JPH07100259B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23351987A JPH07100259B2 (en) 1987-09-17 1987-09-17 Finishing method by electrolytic processing
EP88308596A EP0308246A1 (en) 1987-09-17 1988-09-16 Electrolytic finishing method
CA000577676A CA1328423C (en) 1987-09-17 1988-09-16 Electrolytic finishing method
US07/245,422 US4885066A (en) 1987-09-17 1988-09-16 Electrolytic finishing method
KR1019880012006A KR910006552B1 (en) 1987-09-17 1988-09-16 Electrolytic finishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23351987A JPH07100259B2 (en) 1987-09-17 1987-09-17 Finishing method by electrolytic processing

Publications (2)

Publication Number Publication Date
JPS6478722A JPS6478722A (en) 1989-03-24
JPH07100259B2 true JPH07100259B2 (en) 1995-11-01

Family

ID=16956303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23351987A Expired - Lifetime JPH07100259B2 (en) 1987-09-17 1987-09-17 Finishing method by electrolytic processing

Country Status (1)

Country Link
JP (1) JPH07100259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115026362B (en) * 2022-05-10 2023-06-02 广东工业大学 Electrolysis device and method for micro-electrolytic machining of tungsten carbide hard alloy

Also Published As

Publication number Publication date
JPS6478722A (en) 1989-03-24

Similar Documents

Publication Publication Date Title
EP0266180B1 (en) Electrolytic finishing method
US4956060A (en) Finishing method employing electro-chemical machining, and an electro-chemical finishing machine
KR910006552B1 (en) Electrolytic finishing method
KR910008243B1 (en) Electro-chemical machine
JPH07100259B2 (en) Finishing method by electrolytic processing
JPH07108486B2 (en) Finishing method and device by electrolytic processing
US4883568A (en) Finishing method employing electro-chemical process
CA1325403C (en) Method for finishing a work
JPS63283818A (en) Finishing method by electro-chemical machining
EP0314498A2 (en) electrolytic finishing method
JPS63306825A (en) Machining gap control device for electro-chemical machine
JPH01188230A (en) Finishing method based on electrochemical machining and its device
JPH01316129A (en) Finishing work through electrolytic working
JPS63267120A (en) Finishing method by electrochemical machining
JPH01135418A (en) Finishing method by electrochemical machining
JPH01252317A (en) Electrolytic finish-machining method
WO1990002625A1 (en) Centering method in an electrolytic finishing apparatus
JPH02106222A (en) Method of electrolytic finishing work
JPS63283817A (en) Finishing method by electro-chemical machining
JPS63267118A (en) Finishing method by electrochemical machining
JPH01115516A (en) Electrochemical machine
JPH01216723A (en) Method for discharging electric charge of capacitor of electrolytic finishing machine
JPH01121123A (en) Finishing erosion method by electro-chemical machining
JPH01205919A (en) Finishing work through electrolytic working
JPH012819A (en) Processing tank of electrolytic processing equipment