JPH01205919A - Finishing work through electrolytic working - Google Patents

Finishing work through electrolytic working

Info

Publication number
JPH01205919A
JPH01205919A JP3149888A JP3149888A JPH01205919A JP H01205919 A JPH01205919 A JP H01205919A JP 3149888 A JP3149888 A JP 3149888A JP 3149888 A JP3149888 A JP 3149888A JP H01205919 A JPH01205919 A JP H01205919A
Authority
JP
Japan
Prior art keywords
gap
pulse
electrode
electrolyte
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3149888A
Other languages
Japanese (ja)
Inventor
Yohei Kuwabara
桑原 陽平
Haruki Sugiyama
治樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP3149888A priority Critical patent/JPH01205919A/en
Publication of JPH01205919A publication Critical patent/JPH01205919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To surely discharge the working chips and electrolytic liquid from a gap between a work and an electrode by continuously suppling the jet stream of the electrolytic liquid into the gap through a hole on the work or the electrode for a prescribed time during the feed of the pulse or OFF-operation of the pulse and spreading the gap during the feed of the electrolytic liquid after the OFF-operation of the pulse. CONSTITUTION:A single pulse is supplied between an electrode 2 and a work 4 which are set oppositely, keeping a prescribed gap 19, through an electrolytic liquid. During the feed of the pulse into the gap 17 or at least for a prescribed time from the OFF-operation of the pulse, the jet stream of the electrolytic liquid is continuously supplied into the gap 17 through a hole 15 formed on the work 4. After the pulse is set OFF and during the feed of the jet stream of the electrolytic liquid, the gap 17 is spread. Therefore, the cut chips such as the electrolytic products in the gap 17 which are eluded because of the feed of the pulse is discharged outside the gap 17 by the eddy current of the electrolytic liquid, and the electrolytic liquid between the work 4 and the electrode 2 is exchanged with the fresh electrolytic liquid, and the working condition for all the worked surface is made uniform.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解加工による仕上げ加工方法に係り、特
に型彫放電加工によって加工された三次元形状の大面積
の被加工面を、短時間かつ高精度に仕上げる電解加工に
よる仕上げ加工方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a finishing method using electrolytic machining, and in particular, a large-area workpiece surface of a three-dimensional shape machined by die-sinking electric discharge machining can be processed in a short time. The present invention also relates to a finishing method using electrolytic processing for finishing with high precision.

[従来の技術] 従来の金属加工方法として知られている電解加工方法は
、例えば特開昭62−255013号公報に開示されて
いる。この電解加工方法は、電極とワークとを所定間隙
で対設し、この電極とワーク間への直流電流の供給と、
間隙への電解液噴出とを交互に繰り返して被加工物を加
工するものである。
[Prior Art] An electrolytic processing method known as a conventional metal processing method is disclosed in, for example, Japanese Patent Laid-Open No. 62-255013. This electrolytic processing method involves arranging an electrode and a workpiece facing each other with a predetermined gap, supplying a direct current between the electrode and the workpiece, and
The workpiece is machined by alternately repeating spouting of electrolyte into the gap.

[発明が解決しようとする課題] しかしながら、この電解加工方法にあっては、電解液が
静止した状態で直流電流を供給し、その後、電極の上昇
と同時に電極に設けた孔から電解液を噴出して、極間に
生成した電解生成物を排除するため、次のような不都合
がある。
[Problems to be Solved by the Invention] However, in this electrolytic processing method, a direct current is supplied while the electrolyte is stationary, and then, at the same time as the electrode rises, the electrolyte is spouted from a hole provided in the electrode. In order to remove the electrolytic products generated between the electrodes, the following disadvantages arise.

即ち、型彫放電加工によって電極又はワークに電解液の
噴出孔を設けて加工する場合、ワークの加工面積は一般
的に大きいが、上記のように直流電流供給後の電解液噴
出だけでは、大面積で複雑な形状をしたワークと電極と
の間隙の電解液を新鮮な電解液に入れ替えるのが困難で
ある。したがって、汚染された電解液が極間に部分的に
残存することになり、加工条件に差異が生じてこの部分
の加工の進行が遅れ、寸法のバラツキが発生するととも
に、面粗度の向上が遅れて、高精度な表面品質が短時間
に得られないという不都合がある。
In other words, when machining an electrode or a workpiece by providing an electrolyte jet hole in the die-sinking electrical discharge machining, the workpiece area is generally large, but as described above, just spouting the electrolyte after supplying a DC current is not enough. It is difficult to replace the electrolyte in the gap between the electrode and the workpiece, which has a complex shape in area, with fresh electrolyte. Therefore, the contaminated electrolyte remains partially between the electrodes, causing a difference in processing conditions and delaying the progress of processing in this area, causing dimensional variations and improving surface roughness. Due to the delay, there is a disadvantage that highly accurate surface quality cannot be obtained in a short time.

そこで、この発明の目的は、ワークの加工面積が大きく
ても寸法のバラツキを押えることができるとともに、被
加工面の面粗度を向上させ得て、高精度な表面品質を短
時間に安定して得ることができる電解加工による仕上げ
加工方法を実現するにある。
Therefore, the purpose of this invention is to suppress dimensional variations even if the workpiece has a large processing area, improve the surface roughness of the workpiece surface, and stabilize high-precision surface quality in a short time. The purpose of this invention is to realize a finishing method using electrolytic machining that can be obtained by using the same method.

[課題を解決するための手段] この目的を達成するために、この発明は、電解液を介し
て所定間隙で対設した電極とワークとの極間に単一のパ
ルスを供給するステップと、前記極間にパルスを供給し
ている間及び少なくとも前記パルスがオフしてからの所
定時間、前記ワーク又は電極に設けた孔を介して前記間
隙に電解液の噴流を連続して供給するステップと、前記
パルスがオフした後で前記電解液の噴流が供給されてい
る開に前記間隙を拡大するステップ、とを有することを
特徴とする。
[Means for Solving the Problems] In order to achieve this object, the present invention includes the steps of supplying a single pulse between an electrode and a workpiece that are disposed opposite to each other at a predetermined gap via an electrolyte; Continuously supplying a jet of electrolytic solution to the gap through a hole provided in the workpiece or electrode while the pulse is being supplied between the electrodes and at least for a predetermined period of time after the pulse is turned off; and expanding the gap to the point where the electrolyte jet is supplied after the pulse is turned off.

[作 用コ この発明の構成によれば、パルスの供給により溶出する
間隙の電解生成物を、パルス供給中にワーク又は電極の
孔を介して供給される電解液の噴流により排除するとと
もに、パルスオフ後も所定時間連続して電解液の噴流が
供給されるため、この噴流と電極の上昇動作等による間
隙拡大時の電解液の渦流とにより確実に排除し、電極と
ワーク間の電解液を新鮮な電解液に入れ替えることがで
き、ワークの被加工面全域に亘り加工条件を均一にし得
る。
[Function] According to the configuration of the present invention, the electrolytic products in the gaps eluted by the pulse supply are removed by the jet of electrolyte supplied through the holes of the workpiece or electrode during the pulse supply, and the pulse-off After that, a jet of electrolyte is continuously supplied for a predetermined period of time, so this jet and the vortex of the electrolyte when the gap expands due to the upward movement of the electrode, etc., are used to reliably remove the electrolyte and freshen the electrolyte between the electrode and the workpiece. The electrolyte can be replaced with a suitable electrolyte, and the machining conditions can be made uniform over the entire surface of the workpiece.

[実施例コ 以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.

第1〜4図は、この発明の一実施例を示すものである。1 to 4 show an embodiment of the present invention.

第1図において、この発明を実施し得る電解仕上げ加工
装置1は、電極2を固定する電極固定装置3、ワーク4
を固定するワーク固定装置5、サーボモータ6の回転運
動を往復運動に変換する駆動変換部7、パルス電流を発
生する電源装置8、モータ駆動制御部9と加工条件制御
部lOと電解液流制御部11等からなる制御装置12、
ワーク4に関する各種データ等を入力する人力装置13
、電解液を濾過する電解液濾過装置14、濾過した新鮮
な電解液をワーク4に設けた孔15から電極2とワーク
4の間隙に噴出する電解液供給装置16、及び加工槽1
7等からなる。
In FIG. 1, an electrolytic finishing device 1 capable of carrying out the present invention includes an electrode fixing device 3 for fixing an electrode 2, a workpiece 4, and an electrode fixing device 3 for fixing an electrode 2.
A workpiece fixing device 5 that fixes the servo motor 6, a drive conversion section 7 that converts the rotational motion of the servo motor 6 into reciprocating motion, a power supply device 8 that generates a pulse current, a motor drive control section 9, a machining condition control section 1O, and an electrolyte flow control section. A control device 12 consisting of a section 11 and the like;
A human-powered device 13 for inputting various data regarding the workpiece 4
, an electrolyte filtration device 14 that filters the electrolyte, an electrolyte supply device 16 that spouts filtered fresh electrolyte from a hole 15 provided in the workpiece 4 into the gap between the electrode 2 and the workpiece 4, and a processing tank 1.
Consists of 7th magnitude.

前記電極固定装置3は、その下部に設けたロッド18の
下端に、例えば純銅もしくはグラファイトからなる電極
2を、その電極面2aとワーク4の被加工面4aとが三
次元方向に−様な間隙19を保つように固定する。この
電極固定装置3は、前記モータ駆動制御部90制御信号
によるサーボモータ6の回転により上下動し、電極面2
aと被加工面4aとを所定の間隙19に設定する。
The electrode fixing device 3 has an electrode 2 made of, for example, pure copper or graphite attached to the lower end of a rod 18 provided at its lower part, with a gap such that the electrode surface 2a and the workpiece surface 4a of the workpiece 4 are spaced in a three-dimensional direction. Fix it so that it stays at 19. This electrode fixing device 3 is moved up and down by the rotation of the servo motor 6 according to the control signal of the motor drive control section 90, and the electrode surface 2
A and the processed surface 4a are set at a predetermined gap 19.

前記ワーク固定装置5は、絶縁性の高いグラナイトもし
くはセラミックス製のテーブルで、その上面には型彫放
電加工され電解液唱出用の孔15を有するワーク4を図
示しないセット治具、ネジ等により固定する。なお、ワ
ーク固定装置5には前記孔15と連通ずる孔20を設け
る。
The workpiece fixing device 5 is a table made of highly insulating granite or ceramics, and the workpiece 4, which has a hole 15 for pouring out an electrolytic solution by die-carving electrical discharge machining on its upper surface, is fixed using a setting jig, screws, etc. (not shown). Fix it. Note that the workpiece fixing device 5 is provided with a slotted hole 20 that communicates with the hole 15.

前記電極2とワーク4との極間に、所定のパルス電流を
供給する電源装置8と、この電源装置8を制御する前記
加工条件制御部lOは、例えば第2図に示す如く構成す
る。
A power supply device 8 that supplies a predetermined pulse current between the electrode 2 and the workpiece 4, and the processing condition control unit 1O that controls the power supply device 8 are configured as shown in FIG. 2, for example.

即ち、電源装置8は直流電源部21と充放電部22とで
構成され、直流電源部21は、変圧器23と整流器24
とからなり、変圧器23により電圧を所定値に降下させ
整流器24により整流して直流電流を得て、後述する蓄
電器25−1〜25−nに供給する。
That is, the power supply device 8 includes a DC power supply section 21 and a charging/discharging section 22, and the DC power supply section 21 includes a transformer 23 and a rectifier 24.
The voltage is lowered to a predetermined value by a transformer 23 and rectified by a rectifier 24 to obtain a direct current, which is supplied to power storage units 25-1 to 25-n, which will be described later.

また、充放電部22は、極間に電荷を放電する複数個の
蓄電器25−1〜25−nと、これらの各蓄電器25−
1〜25−nに接続し直流電源部21側への電荷の逆流
を阻止するダイオード26−1〜26−nと、放電側へ
電荷を放電させるべく開閉される放電スイッチ27−1
〜27−nと、前記各蓄電器25−1〜25−nを所定
に充電すべく前記直流電源部21からの電源を給断する
充電スイッチ28とからなる。
The charging/discharging unit 22 also includes a plurality of capacitors 25-1 to 25-n that discharge charges between electrodes, and each of these capacitors 25-
Diodes 26-1 to 26-n connected to diodes 1 to 25-n to prevent backflow of charges to the DC power supply section 21 side, and a discharge switch 27-1 that is opened and closed to discharge charges to the discharge side.
27-n, and a charging switch 28 that supplies and disconnects power from the DC power supply section 21 to charge each of the capacitors 25-1 to 25-n to a predetermined value.

前記加工条件制御部lOは、蓄電器25−1〜25−n
の充電電圧値を検出する電圧検出器29と、この電圧検
出器29で検出した充電電圧値とD/A変換器30から
の出力値とを比較する電圧比較器31と、この電圧比較
器31からの出力信号により前記蓄電器25−i〜25
−nの充電の完了及び開始を検出する充電検出器32と
、極間に放電される電荷の電流値を検出する電流検出器
33と、この電流検出器33で検出した電流値のピーク
値をホールドするピークホールド回路34と、このピー
クホールド回路34でホールドしたピーク電流値とD/
A変換器35の出力値とを比較する電流比較器36と、
所定時間幅のパルスを発生するパルス発生器39と極間
に放電する電荷の電流波形を設定する電流波形設定器4
0からの入力信号により前記各放電スイッチ27−1〜
27−nに開閉駆動信号を出力するゲート回路37と、
前記各蓄電器25−1〜25−nへ供給する充電電圧値
を設定しその信号を前記D/A変換器30に出力する充
電電圧設定器38と、極間に流れる電流値を設定しその
信号を前記D/A変換器35に出力する電流設定器41
と、前記入力装置13の人力データ等に基づき加工条件
等を演算・処理するCPU42と、電極2とワーク4の
接触を検知する接触検知器43等からなる。
The processing condition control unit IO controls the capacitors 25-1 to 25-n.
a voltage detector 29 that detects the charging voltage value of the voltage detector 29; a voltage comparator 31 that compares the charging voltage value detected by the voltage detector 29 with the output value from the D/A converter 30; The output signal from the capacitors 25-i to 25
A charge detector 32 detects the completion and start of charging of -n, a current detector 33 detects the current value of the charge discharged between the electrodes, and a peak value of the current value detected by this current detector 33. The peak hold circuit 34 to hold, and the peak current value held by this peak hold circuit 34 and D/
a current comparator 36 that compares the output value of the A converter 35;
A pulse generator 39 that generates a pulse with a predetermined time width and a current waveform setting device 4 that sets the current waveform of the charge discharged between the poles.
0, each of the discharge switches 27-1 to 27-1.
a gate circuit 37 that outputs an opening/closing drive signal to 27-n;
a charging voltage setter 38 that sets a charging voltage value to be supplied to each of the capacitors 25-1 to 25-n and outputs the signal to the D/A converter 30; and a charging voltage setting device 38 that sets a current value flowing between the electrodes and outputs the signal. a current setting device 41 that outputs the current to the D/A converter 35;
, a CPU 42 that calculates and processes machining conditions based on human power data etc. from the input device 13, and a contact detector 43 that detects contact between the electrode 2 and the workpiece 4.

なお、図中符号44は逆起電力によって各放電スイッチ
27−1〜27−nが破壊するのを防止するダイオード
である。
Note that the reference numeral 44 in the figure is a diode that prevents each of the discharge switches 27-1 to 27-n from being destroyed by back electromotive force.

前記人力装置13は、加工面積S、仕上げ加工しろ等の
ワーク4に関する各種データ、及び加工条件等を入力す
る。また、前記電解液濾過装置14は、例えば図示しな
い遠心分離器、液温調整器、フィルタ等を有し、加工で
生じた電解生成物を含む電解液を濾過するものであり、
電解液供給装置1Gは、電解液濾過装置14で濾過した
新鮮な電解液を、電解液流制御部11の制御信号により
、例えば電磁弁等を作動させて前記ワーク4に設けた孔
15から間隙19内に噴出する。
The human power device 13 inputs various data regarding the workpiece 4 such as the machining area S, finishing machining margin, machining conditions, and the like. Further, the electrolytic solution filtration device 14 includes, for example, a centrifugal separator, a liquid temperature regulator, a filter, etc. (not shown), and filters an electrolytic solution containing electrolytic products generated during processing.
The electrolytic solution supply device 1G operates, for example, a solenoid valve or the like in response to a control signal from the electrolytic solution flow control unit 11 to supply the fresh electrolytic solution filtered by the electrolytic solution filtering device 14 through the hole 15 provided in the workpiece 4 through the gap. It erupts within 19 minutes.

次に、この電解仕上げ加工装置1による仕上げ加工動作
の一例について第3図のフローチャートにより説明する
Next, an example of the finishing operation by this electrolytic finishing apparatus 1 will be explained with reference to the flowchart of FIG. 3.

仕上げ加工に際しては、電極固定装置3のロッド18の
下端に、例えばワーク4を型彫放電加工する際に使用し
−た電極2を固定するとともに、ワーク固定装置5にワ
ーク4をそれぞれ固定し、電解仕上げ加工装置1の電源
を投入(50)する。そして前記入力装置13により、
電極間隙δ、加工面!1’(S 、加工深さ(加工取り
代)、ワーク4の加工前面粗度等のパラメータと、電極
2の駆動方法、電解液噴流の与え方(例えば供給タイミ
ング)等の加工条件を人力(51)する。
During finishing, the electrode 2 used, for example, when performing die-sinking electric discharge machining on the workpiece 4 is fixed to the lower end of the rod 18 of the electrode fixing device 3, and the workpiece 4 is fixed to the workpiece fixing device 5, respectively. The electrolytic finishing device 1 is powered on (50). Then, by the input device 13,
Electrode gap δ, machined surface! 1'(S), machining depth (machining allowance), machining front surface roughness of the workpiece 4, and other parameters, as well as machining conditions such as the driving method of the electrode 2 and the method of applying the electrolyte jet (e.g. supply timing), etc. manually ( 51) Do.

パラメータ等の人力後、前記電解液濾過装置14及び電
解液供給装置16を作動させて、加工槽17内に電解液
を供給(52) L/、加工槽17内に設けた液面検出
器(図示せず)が作動すると、電極2がワーク4に接触
するまで下降する。この接触を前記接触検知器43が検
出すると、CPU42は、この点を加工原点Aとして記
憶する。また、CPU42は入力装置13によフて入力
されたワーク4の加工面積Sに基づき、極間に供給する
パルス電流のピーク電流密度を予め記憶装置に記憶した
特性表により算出するとともに、このピーク電流密度を
得るに必要な蓄電器25−1〜25−nの充電電圧値、
パルス幅(単一パルス電流のオンタイム)、パルス供給
回数等を換算表等により算出(53)する。
After manual input such as parameters, the electrolyte filtration device 14 and the electrolyte supply device 16 are operated to supply the electrolyte into the machining tank 17 (52) L/, the liquid level detector provided in the machining tank 17 ( (not shown) is activated, the electrode 2 descends until it comes into contact with the workpiece 4. When the contact detector 43 detects this contact, the CPU 42 stores this point as the machining origin A. Further, the CPU 42 calculates the peak current density of the pulsed current to be supplied between the electrodes based on the machining area S of the workpiece 4 inputted through the input device 13, using a characteristic table stored in advance in the storage device, and The charging voltage value of the capacitors 25-1 to 25-n necessary to obtain the current density,
The pulse width (on time of a single pulse current), the number of pulses to be supplied, etc. are calculated using a conversion table or the like (53).

そして、電極2を上昇させ、入力装置13で入力した電
極間隙δを維持する位置に電極を設定(54)したら、
電解液供給装置16等を作動基せて、ワーク固定装置5
及びワーク4に設けた孔20.15がら電解液を噴出(
55)する。電解液を噴出してがら所定時間後、電源装
置8から面粗度向上用の所定のピーク電流密度jP1の
単一のパルス電流を所定時間(パルスオン時間t1)、
前記極間に供給(56)シ、極間に供給するパルス電流
がオフしたら、これと略同時に電極2を上昇(57)さ
せて極間の間隙を拡大する。
Then, after raising the electrode 2 and setting the electrode at a position that maintains the electrode gap δ inputted by the input device 13 (54),
With the electrolyte supply device 16 etc. in operation, the workpiece fixing device 5
And the electrolyte is spouted from the hole 20.15 provided in the workpiece 4 (
55) Do. After a predetermined time while ejecting the electrolyte, a single pulse current of a predetermined peak current density jP1 for improving surface roughness is applied from the power supply device 8 for a predetermined time (pulse on time t1).
When the pulse current supplied between the electrodes (56) is turned off, the electrode 2 is raised (57) at approximately the same time to enlarge the gap between the electrodes.

前記ステップ(56)でパルス電流を供給すると、間隙
に電解生成物が溶出するが、この電解生成物は、パルス
電流供給中に供給される電解液の噴流により排除される
とともに、パルス電流オフ後の連続噴流と電極2の上昇
動作時に発生する電解液の渦流とにより間隙外に完全に
排除(58)され、間隙の電解液が新鮮な電解液に入れ
替わる。間隙の電解生成物を排除(58)すると、電解
液の噴出を停止(59)するとともに、電極2を下降(
60)させる。
When the pulse current is supplied in step (56), electrolytic products are eluted into the gap, but these electrolytic products are removed by the jet of electrolyte supplied during the pulse current supply, and after the pulse current is turned off. The electrolyte is completely removed from the gap (58) by the continuous jet of water and the vortex of the electrolyte generated during the upward movement of the electrode 2, and the electrolyte in the gap is replaced with fresh electrolyte. After removing the electrolytic products in the gap (58), the ejection of the electrolyte is stopped (59) and the electrode 2 is lowered (
60) Let.

なお、パルス電流の供給と、電解液の噴出及び電極2の
上昇・下降のタイミングは、制御装置12の制御信号に
より、例えば第4図の如く行う。即ち、電解液の噴出は
パルス電流の供給前t2時間からパルス電流オフ後のt
3時間まで連続して噴出し、電極2はパルス電流オフと
同時に上昇し、電解液の噴出が停止してからt4時間後
に下降する。
The timing of supplying the pulse current, ejecting the electrolytic solution, and raising and lowering the electrode 2 is controlled by a control signal from the control device 12, for example, as shown in FIG. 4. That is, the electrolyte ejects from t2 hours before the pulse current is supplied to t after the pulse current is turned off.
The electrolyte ejects continuously for up to 3 hours, and the electrode 2 rises at the same time as the pulse current is turned off, and descends t4 hours after the electrolyte stops ejecting.

ステップ(60)で電極2が下降して電極面2aが被加
工面4aに接触し、接触検知器43でその位置を検出す
ると、CPU42がこの位置と前記原点Aとを比較して
加工1回当りの加工深さを測定(61)する。そして、
この加工深さと入力具fit13によって予め設定した
設定値とを比較(62)シ、加工深さが設定値に達して
いない場合は、ステップ(54)に戻り、ステップ(6
2)でYESになるまて繰り返す。
In step (60), when the electrode 2 is lowered and the electrode surface 2a comes into contact with the surface to be machined 4a, and the contact detector 43 detects the position, the CPU 42 compares this position with the origin A and performs one machining process. The machining depth per hit is measured (61). and,
Compare (62) this machining depth with the preset value set by input tool fit13, and if the machining depth has not reached the set value, return to step (54) and step (62).
Repeat until 2) becomes YES.

ステップ(62)でYESになると、加工条件制御部1
0の制御信号により電源袋@8から供給されるパルス電
流を加工面積Sに応じた光沢面形成用の所定の、例えば
前記パルス電流より高いピーク電流密度ip2てパルス
幅t on2を有する単一のパルス電流に切換(63)
える。そして、このパルス電流で前述したステップ(5
4)〜(59)と同様の加工を所定回数繰り返しく64
)〜(70) 、全ての仕上げ加工を終了(71)する
If YES in step (62), processing condition control unit 1
0 control signal, the pulse current supplied from the power supply bag@8 is set to a predetermined value for forming a glossy surface according to the processing area S, for example, a single pulse current having a peak current density ip2 higher than the pulse current and a pulse width ton2. Switch to pulse current (63)
I can do it. Then, with this pulse current, step (5) described above is performed.
4) Repeat the same processing as in (59) a predetermined number of times64
) to (70), all finishing operations are completed (71).

このように、この発明に係る電解加工による仕上げ加工
方法にあっては、極間にパルス電流を供給する所定時間
t2前から、パルス電流がオフしてから所定時間t3経
過後まで、ワーク4に設けたイい5から連続して電解液
を噴出させるとともに、パルス電流オフと略同時に電極
を上昇させるため、間隙に溶出する電解生成物及びパル
ス供給後に間隙に残存する汚染された電解液等を、パル
ス電流供給中の電解液の噴出流及び噴出流と電極上昇時
の渦流とにより、確実に排除することができ、ワーク4
の加工面積が大面積で複雑な形状であっても間隙の電解
液を新鮮な電解液に容易に入れ替えることができる。ま
た、電解液の噴流が間欠的に供給されるため、常時連続
噴流を供給する場合に比べ、電解液濾過装置14及び電
解液供給装置16の構成を簡略化することができる。
As described above, in the finishing method by electrolytic machining according to the present invention, the workpiece 4 is coated from before the predetermined time t2 when the pulse current is supplied between the electrodes until after the predetermined time t3 after the pulse current is turned off. The electrolytic solution is continuously ejected from the provided hole 5, and the electrode is raised almost simultaneously when the pulse current is turned off, so that electrolytic products eluted into the gap and contaminated electrolyte remaining in the gap after the pulse supply are removed. , the ejection flow and ejection flow of the electrolyte during pulse current supply and the vortex flow when the electrode rises can reliably eliminate the workpiece 4.
Even if the processing area is large and has a complex shape, the electrolyte in the gap can be easily replaced with fresh electrolyte. Further, since the electrolytic solution jet is intermittently supplied, the configurations of the electrolytic solution filtration device 14 and the electrolytic solution supply device 16 can be simplified compared to the case where a continuous jet is supplied all the time.

なお、パルス電流の供給と、電解液の噴出及び電極2の
上昇・下降のタイミングは、上記実施例に何ら限定され
ず、例えば第5図に示すように構成してもよい。即ち、
電解液の噴出を、パルス電流の供給と同時に開始し、パ
ルス電流がオフしてから15時間後に停止させるととも
に、電極2の下降を電解液の噴出停止ど略同時にしたも
のである。また、電極2の上昇を、パルス電流がオフし
てから所定時間経過後(但し電解液が噴出している間)
に行うようにしてもよい。
Note that the timings of supplying the pulse current, ejecting the electrolytic solution, and raising and lowering the electrode 2 are not limited to those in the above embodiment, and may be configured as shown in FIG. 5, for example. That is,
The ejection of the electrolytic solution is started at the same time as the supply of the pulsed current, and is stopped 15 hours after the pulsed current is turned off, and the electrode 2 is lowered almost at the same time as the ejection of the electrolytic solution is stopped. In addition, the electrode 2 is raised after a predetermined period of time has passed after the pulse current is turned off (while the electrolyte is spouting).
You may also do so.

第6.7図はこの発明の他の実施例を示すものであり、
上記実施例と同一箇所には同一符号を付してその説明を
省略する。第6図は、電極2に電解液噴出用の孔45を
設けるとともに、ロッド18にこの孔45と連通する孔
46を設けたものである。この実施例においては、電解
液濾過装置14で濾過した新鮮な電解液を電解液供給装
置16によって、前記孔46及び45から電極2とワー
ク4の間隙に噴出するものである。
Figure 6.7 shows another embodiment of the invention,
The same parts as in the above embodiment are given the same reference numerals, and the explanation thereof will be omitted. In FIG. 6, the electrode 2 is provided with a hole 45 for ejecting the electrolyte, and the rod 18 is provided with a hole 46 that communicates with this hole 45. In this embodiment, a fresh electrolyte filtered by an electrolyte filtration device 14 is spouted into the gap between the electrode 2 and the workpiece 4 from the holes 46 and 45 by an electrolyte supply device 16.

また、第7図は、電極2とワーク4の間隙に指向する如
く複数の噴出ノズル48を設け、電解液供給・濾過装置
47によって新鮮な電解液を前記噴出ノズル48から噴
出すると同時に、電解液供給・濾過装置47に設けた吸
引装置(図示せず)によって、電極2及びロッド18の
孔45.4Gから間隙の電解液を吸引・回収するように
したものである。このような実施例においても、上記実
施例と同様な効果が得られることはもぢろんである。
Further, FIG. 7 shows that a plurality of jet nozzles 48 are provided so as to be directed toward the gap between the electrode 2 and the workpiece 4, and fresh electrolyte is jetted out from the jet nozzles 48 by an electrolyte supply/filtration device 47, and at the same time, the electrolyte is A suction device (not shown) provided in the supply/filtration device 47 sucks and collects the electrolyte in the gap from the electrode 2 and the hole 45.4G of the rod 18. It goes without saying that even in such an embodiment, the same effects as in the above embodiment can be obtained.

なお、上記各実施例においては、間隙の拡大を電極の上
昇により行フたが、ワークの下降、あるいは、ワークと
電極を相対的に移動させて間隙を拡大することもできる
In each of the above embodiments, the gap is enlarged by raising the electrode, but it is also possible to enlarge the gap by lowering the workpiece or moving the workpiece and the electrode relatively.

[発明の効果コ 以上詳細に説明したように、この発明に係る電前加工に
よる仕上げ加工方法にあっては、パルス供給中及び少な
くともパルスオフ後の所定時間、ワーク又は電極に設け
た孔を介して極間へ電解液の噴流を連続して供給すると
ともに、パルスオフ後で前記電解液の噴流が供給されて
いる間に電極とワークの間隙を拡大させるようにしての
で、パルスの供給により溶出する電解生成物、及びパル
ス供給後に間隙に残存する汚染された電解液を、噴流及
びこの噴流と間隙拡大時の渦流とにより確実に排除する
ことができ、間隙の電解液を新鮮な電解液に容易に入れ
替えることができる。したがって、大面積で複雑な形状
のワークの加工条件を均一にし得て、鏡面状等の高精度
な表面品質が短時間に得られ、省力化が遅れている金型
加工分野での品質向上と機械化を達成することができる
等の効果を奏する。
[Effects of the Invention] As explained in detail above, in the finishing method by electrostatic machining according to the present invention, during pulse supply and at least for a predetermined time after pulse off, through the hole provided in the workpiece or electrode, In addition to continuously supplying a jet of electrolyte between the electrodes, the gap between the electrode and the workpiece is expanded after the pulse is turned off while the jet of electrolyte is being supplied, so that the electrolyte eluted by the supply of pulses is reduced. Products and contaminated electrolyte remaining in the gap after pulse supply can be reliably removed by the jet and the vortex flow when the gap widens, and the electrolyte in the gap can be easily replaced with fresh electrolyte. Can be replaced. Therefore, it is possible to uniformize the machining conditions for large-area, complex-shaped workpieces, and to obtain high-precision surface quality such as a mirror finish in a short time. It has effects such as being able to achieve mechanization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の電解仕上げ加工装置のブロック図、
第2図は要部のブロック図、第3図は仕上げ加工動作の
一例を示すフローチャート、第4図は加工動作の一例を
示すタイミングチャート、第5図は他の実施例を示す加
工動作のタイミングチャート、第6図、第7図は他の実
施例を示す電解仕上げ加工装置のブロック図である。 l・・・電解仕上げ加工装置、2・・・電極、4・・・
ワーク、      8・・・電源装置、9・・・モー
タ駆動制御部、10・・・加工条件制御部11・・・電
解液流制御部、 12・・・制御装置、13・・・人力
装置、 14・・・電解液濾過装置、16・・・電解液
供給H置、 15.45・・・孔、190・間隙、  
 42φ番・CPU。 47・・・電解液供給・濾過装置 特許出願人  静岡r!Al1株式会社代表者鈴木重夫 第1図 第3図 第4図 第5図 第6図
FIG. 1 is a block diagram of the electrolytic finishing apparatus of this invention.
Fig. 2 is a block diagram of the main parts, Fig. 3 is a flowchart showing an example of finishing machining operation, Fig. 4 is a timing chart showing an example of machining operation, and Fig. 5 is a timing chart of machining operation showing another example. The chart, FIGS. 6 and 7 are block diagrams of an electrolytic finishing apparatus showing other embodiments. l... Electrolytic finishing processing device, 2... Electrode, 4...
Workpiece, 8... Power supply device, 9... Motor drive control unit, 10... Machining condition control unit 11... Electrolyte flow control unit, 12... Control device, 13... Human power device, 14... Electrolyte filtration device, 16... Electrolyte supply H position, 15.45... Hole, 190 Gap,
42φ number/CPU. 47... Electrolyte supply/filtration device patent applicant Shizuoka r! Al1 Co., Ltd. Representative Shigeo Suzuki Figure 1 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)電解液を介して所定間隙で対設した電極とワーク
との極間に単一のパルスを供給するステップと、前記極
間にパルスを供給している間及び少なくとも前記パルス
がオフしてからの所定時間、前記ワーク又は電極に設け
た孔を介して前記間隙に電解液の噴流を連続して供給す
るステップと、前記パルスがオフした後で前記電解液の
噴流が供給されている間に前記間隙を拡大するステップ
、とを有する電解加工による仕上げ加工方法。
(1) A step of supplying a single pulse between the electrodes and the workpiece, which are disposed opposite to each other with a predetermined gap through an electrolytic solution, and at least the pulse is turned off while the pulse is being supplied between the poles. continuously supplying a jet of electrolyte to the gap through a hole provided in the workpiece or electrode for a predetermined period of time after the pulse is turned off, and the jet of electrolyte is supplied after the pulse is turned off. and a step of enlarging the gap in between.
JP3149888A 1988-02-13 1988-02-13 Finishing work through electrolytic working Pending JPH01205919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3149888A JPH01205919A (en) 1988-02-13 1988-02-13 Finishing work through electrolytic working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3149888A JPH01205919A (en) 1988-02-13 1988-02-13 Finishing work through electrolytic working

Publications (1)

Publication Number Publication Date
JPH01205919A true JPH01205919A (en) 1989-08-18

Family

ID=12332902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3149888A Pending JPH01205919A (en) 1988-02-13 1988-02-13 Finishing work through electrolytic working

Country Status (1)

Country Link
JP (1) JPH01205919A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255013A (en) * 1986-04-28 1987-11-06 Toyota Motor Corp Electro-chemical machining device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255013A (en) * 1986-04-28 1987-11-06 Toyota Motor Corp Electro-chemical machining device

Similar Documents

Publication Publication Date Title
EP0266180B1 (en) Electrolytic finishing method
JPH01205918A (en) Finishing work through electrolytic working
KR930007253B1 (en) Finishing method and machine employing electro-chemical machining
JPH01205919A (en) Finishing work through electrolytic working
JPH02109636A (en) Electrolytic finishing method
KR920007643B1 (en) Method for finishing work
JPH02109637A (en) Electrolytic finishing method
JPH02106222A (en) Method of electrolytic finishing work
JPH02109635A (en) Electrolytic finishing method for sintered hard metal
JPH0373221A (en) Electrolytic finishing
JPH07108486B2 (en) Finishing method and device by electrolytic processing
JPH01240218A (en) Method for finishing by electro-chemical machining
EP0314498A2 (en) electrolytic finishing method
JPH0265921A (en) Finishing working through electrolytic working
JPS63283818A (en) Finishing method by electro-chemical machining
JP2887635B2 (en) Wire cut electric discharge machining method
JPH01188230A (en) Finishing method based on electrochemical machining and its device
JPH02139124A (en) Electolytic finishing method
JPH02152722A (en) Short-circuit foreseeing method in electrolytic finishing
JPH02106223A (en) Method of electrolytic finishing work
JPH01228725A (en) Working method of electrolytic finish
JPH0332519A (en) Electrolytic finishing process
JPH01252317A (en) Electrolytic finish-machining method
JPH02139123A (en) Short circuit foreseeing method in electrolytic finishing
JPS63283817A (en) Finishing method by electro-chemical machining