JPS63196321A - Finishing method by electro-chemical machining and device therefore - Google Patents

Finishing method by electro-chemical machining and device therefore

Info

Publication number
JPS63196321A
JPS63196321A JP62027616A JP2761687A JPS63196321A JP S63196321 A JPS63196321 A JP S63196321A JP 62027616 A JP62027616 A JP 62027616A JP 2761687 A JP2761687 A JP 2761687A JP S63196321 A JPS63196321 A JP S63196321A
Authority
JP
Japan
Prior art keywords
machining
electrode
finishing
workpiece
msec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62027616A
Other languages
Japanese (ja)
Other versions
JPH07108486B2 (en
Inventor
Yohei Kuwabara
桑原 陽平
Teruo Asaoka
浅岡 輝雄
Masayoshi Moriya
森谷 政好
Yasuhiro Iwasaki
康宏 岩崎
Haruki Sugiyama
治樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP62027616A priority Critical patent/JPH07108486B2/en
Priority to US07/111,237 priority patent/US4800006A/en
Priority to EP87309502A priority patent/EP0266180B1/en
Priority to CA000550499A priority patent/CA1321978C/en
Priority to DE8787309502T priority patent/DE3783013T2/en
Priority to KR1019870012019A priority patent/KR910000511B1/en
Publication of JPS63196321A publication Critical patent/JPS63196321A/en
Publication of JPH07108486B2 publication Critical patent/JPH07108486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To make it possible to obtain a mirror-surfaced glossy surface having a high degree of accuracy and a fine surface roughness by setting the pulse width of pulse current between a workpiece and a machining electrode so that it is narrow during initial machining for a finishing process while it is wide during final machining for a finishing process. CONSTITUTION:During machining in a finishing process, new machining liquid is filled between a surface 2a to be machined and an electrode 4 which are opposed to each other with a predetermined gap 18 therebetween, and a predetermined current such as a pulse current having a pulse width of less than 5 msec or the like is fed between the workpiece 2 and the electrode 4 so that the material of the surface 2a to be cut is eluted into the machining liquid 41 so as to remove electrolytic products. Further, such a series of steps that the electrode surface 4a is again contacted with the surface 2a to be machined to measure the machining depth per machining cycle, and thus obtained value is accumulated, is repeated in accordance with a signal from a control device 12. The accumulated value of the machining depths is compared with a set value from a control section 10, and when a predetermined difference is obtained, the pulse width of the pulse current is changed over from a predetermined value of less than 5 msec into a wide value of more than 10 msec but less than 60 msec while the current density is changed over into a value of more than 30 A/m<2> but less than 70 A/m<2>.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解加工による仕上げ加工方法及び装置に
係り、特に難削金属等からなる被加工物の三次元形状の
被加工面を短時間かつ高精度に仕上げて鏡面状の光沢面
を得ることができる電解加工による仕上げ加工方法及び
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a finishing method and apparatus by electrolytic machining, and in particular, to a three-dimensionally shaped work surface of a workpiece made of difficult-to-cut metal, etc., in a short time. The present invention also relates to a finishing method and apparatus using electrolytic machining that can be finished with high precision to obtain a mirror-like glossy surface.

[従来の技術] 従来の金属加工方法としては、電解加工方法及び放電加
工方法が知られている。前者の電解加工方法としては、
被加工物と加工電極との間隙に硝酸ナトリウムや塩化ナ
トリウム等の電解液を満たし、この電解液を高速で流す
とともに、安定した電解作用を阻害する電解生成物、す
なわち溶出した金属化合物や金属イオン及び水素ガス等
を除去しながら、直流電流を被加工物から加工電極に流
して加工するものが、例えば特開昭61−71921号
公報及び特開昭60−44228号公報に開示されてい
る。
[Prior Art] As conventional metal processing methods, electrolytic machining methods and electric discharge machining methods are known. The former electrolytic processing method is
The gap between the workpiece and the processing electrode is filled with an electrolytic solution such as sodium nitrate or sodium chloride, and this electrolytic solution is flowed at high speed to remove electrolytic products that inhibit stable electrolytic action, such as eluted metal compounds and metal ions. For example, JP-A-61-71921 and JP-A-60-44228 disclose a method in which a DC current is passed from a workpiece to a processing electrode while removing hydrogen gas and the like.

また、後者の放電加工方法としては、被加工物と加工電
極とを水、ケロシン等の加工液中で微小間隙をもって対
向させ、かつこれらを適宜の電源に接続して、前記間隙
に瞬発する火花放電や過渡アーク放電を発生させ、該放
電エネルギーにより被加工物を加工するものが、例えば
特公昭60−26646号公報及び特開昭60−177
819号公報に開示されている。
In the latter electric discharge machining method, the workpiece and the machining electrode are opposed to each other with a small gap in a machining liquid such as water or kerosene, and they are connected to an appropriate power source, and sparks are generated instantaneously in the gap. For example, Japanese Patent Publication No. 60-26646 and Japanese Unexamined Patent Application Publication No. 60-177 disclose methods that generate electrical discharge or transient arc discharge and process a workpiece using the electrical discharge energy.
It is disclosed in Publication No. 819.

[発明力(解決しようとする問題点] しかしながら、前者の電解加工方法にあっては、機械加
工手段として致命的な欠陥がある。すなわち、特に三次
元形状の底付き加工(凹窩状に形成された三次元構造の
ものに対する加工をいう)において、複雑な輪郭形状を
有する被加工物と加工電極の間隙に電解液を一様な流速
で流すのが不可能であり、また、前記間隙に高い液圧を
作用させても電解液の流入口と排出口とでは電解生成物
の濃度がかわる。そのため、一様な密度の電流を与えて
も、前記間隙の各部分で加工条件が変わり、被加工物に
加工電極の精密な転写を行うことが困難で、高精度の表
面品質を得られないという不都合があった。
[Inventive power (problem to be solved)] However, the former electrolytic machining method has a fatal flaw as a machining method.In other words, it is particularly difficult to process a three-dimensional shape with a bottom (formed in a concave shape). (3D structure), it is impossible to flow the electrolyte at a uniform flow rate into the gap between the workpiece and the processing electrode, which has a complex contour, and Even when a high liquid pressure is applied, the concentration of electrolytic products changes between the inlet and the outlet of the electrolyte.Therefore, even if a current with a uniform density is applied, the processing conditions change in each part of the gap. This method has the disadvantage that it is difficult to precisely transfer the processing electrode onto the workpiece, and high-precision surface quality cannot be obtained.

また、素材形状から全ての加工を電解加工で行うと、電
解生成物を含む多量の電解液が発生してその汚水処理に
時間とコストを要するという不都合があり、特にクロム
を含むステンレス鋼の加工では、有害な6価クロムが生
じて前記不都合は一層顕著であった。
In addition, if all machining from the shape of the material is done by electrolytic machining, a large amount of electrolytic solution containing electrolytic products is generated, which requires time and cost to dispose of the waste water, which is particularly inconvenient when machining stainless steel containing chromium. In this case, harmful hexavalent chromium was produced, and the above-mentioned disadvantages were even more remarkable.

一方、後者の放電加工方法においては、面粗度をRma
x : 20μm程度にまで仕上げるのには比較的高能
率であるが、それ以上の仕上げ面粗度に到達させるには
IA以下の微小電流での加工となり、特に表面積の大き
な被加工物では、仕上げ時間がかかり非能率であるとと
もに、表面積が大きいと被加工物の被加工面と加工電極
間の静電容量が大きくなり、放電電流を微小に紋りきれ
ずに良好な面粗度を得ることが困難であるという不都合
があった。
On the other hand, in the latter electric discharge machining method, the surface roughness is Rma
x: Relatively high efficiency for finishing to about 20 μm, but to achieve a finished surface roughness higher than that, a microcurrent of less than IA is required, especially for workpieces with a large surface area. In addition to being time consuming and inefficient, if the surface area is large, the capacitance between the surface of the workpiece and the machining electrode will be large, making it difficult to obtain good surface roughness without cutting down the discharge current. The disadvantage was that it was difficult.

また、加工された表面は、絶縁油を用いた通常の放電加
工では、硬化した変質層が生じるとともに熱応力による
微細亀裂が深く侵入し、また純水を用いたワイヤー放電
加工では軟化層が生じるなど、両放電加工とも表面品質
が好ましくなく、そのため、表面品質に高精度や長寿命
を要求する使用条件にあっては、形状精度が損なわれる
のを承知で、例えば、粒径4θ〜25μ程度の遊離ダイ
ヤモンドペーストで荒ラッピングを行い、次に粒径16
〜6μ程度の遊離ダイヤモンドペーストで仕上げラッピ
ングを行う等の表面研摩工程を必要とし、表面仕上げに
多くの時間と労力を要するという不都合があワた。
In addition, in normal electric discharge machining using insulating oil, a hardened altered layer is created and micro-cracks due to thermal stress penetrate deeply into the machined surface, and in wire electric discharge machining using pure water, a softened layer is created. The surface quality of both types of electrical discharge machining is unfavorable, and therefore, under conditions of use that require high precision and long service life in surface quality, we are aware that the shape accuracy will be impaired. Rough lapping with free diamond paste of
This requires a surface polishing process such as finishing lapping with a free diamond paste of about 6 microns, which is disadvantageous in that it takes a lot of time and effort to finish the surface.

[発明の目的コ そこでこの発明は、上記不都合を除去し、特に難削金属
等の被加工物の三次元形状の被加工面を短時間かつ高精
度に仕上げて鏡面状の光沢面を得ることができる電解加
工による仕上げ加工方法及び装置を実現するにある。
[Purpose of the Invention] Therefore, the present invention is to eliminate the above-mentioned disadvantages and to obtain a mirror-like glossy surface by finishing the three-dimensionally shaped work surface of a workpiece such as a difficult-to-cut metal in a short time and with high precision. The object of the present invention is to realize a finishing processing method and apparatus using electrolytic processing that can perform the following steps.

[問題点を解決するための手段] この目的を達成するためにこの発明の第1発明は、加工
液を介して対設した被加工物と加工電極間にパルス電流
を供給するとともに、前記被加工物と加工電極間に生成
した電解生成物を間欠的に除去しながら仕上げ加工する
仕上げ加工方法において、前記パルス電流のパルス幅を
、仕上げ加工初期には5msec以下とし、仕上げ加工
後期には10msec以上60msec以下としたこと
を特徴とし、また第2発明は、加工液を介して対設した
被加工物と加工電極間にパルス電流を供給して被加工物
を仕上げ加工するものにおいて、(イ)前記加工電極を
被加工物に対し接離させる電極駆動手段と、(ロ)前記
被加工物と加工電極間に電流密度が70A/cm2以下
のパルス電流を供給する電流供給手段と、(ハ)前記被
加工物と加工電極間に生成した電解生成物を間欠的に除
去する加工液濾過手段と、(ニ)前記パルス電流のパル
ス幅を、仕上げ加工初期には5 msec以下とし、仕
上げ加工後期には10msec以上60msec以下と
する制御手段とを具備したことを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the first invention of the present invention supplies a pulse current between a workpiece and a machining electrode that are disposed opposite to each other via a machining fluid, and In a finishing method in which finishing processing is performed while intermittently removing electrolytic products generated between a workpiece and a processing electrode, the pulse width of the pulse current is set to 5 msec or less in the early stage of finishing processing, and 10 msec in the latter stage of finishing processing. The second invention is characterized in that the processing time is 60 msec or less, and the second invention provides a method for finishing a workpiece by supplying a pulse current between the workpiece and a machining electrode that are disposed opposite to each other via a machining fluid. ) an electrode driving means for moving the machining electrode toward and away from the workpiece; (b) a current supply means for supplying a pulse current with a current density of 70 A/cm2 or less between the workpiece and the machining electrode; ) machining fluid filtration means for intermittently removing electrolytic products generated between the workpiece and the machining electrode; (d) the pulse width of the pulse current is set to 5 msec or less in the initial stage of finishing machining; The later stage is characterized by having a control means for controlling the time to 10 msec or more and 60 msec or less.

[作用] この発明の構成によれば、仕上げ加工初期の短パルスの
パルス電流により高精度かつ微小面粗度の表面品質を得
ることができ、仕上げ加工後期の長パルスのパルス電流
ζζより面粗度を変えることなく鏡面状の光沢面を得る
ことができる。
[Function] According to the configuration of the present invention, it is possible to obtain surface quality with high accuracy and minute surface roughness using the short pulse current in the early stage of finishing, and the surface quality can be improved by the long pulse current ζζ in the latter stage of finishing. A mirror-like glossy surface can be obtained without changing the degree of use.

[実施例] 以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.

第1〜5図は、この発明の一実施例を示す。第1〜3図
において、仕上げ加工装置1は、被加工物2を固定する
被加工物固定装置3、電極4を固定する電極固定装置5
、電極駆動部60回転運動を往復運動に変換する駆動変
換部7、パルス電流を発生する電源装置8、モータ駆動
制御部9と加工条件制御部lOと加工液流制御部11と
からなる制御装置12、加工条件を人力する入力装置1
3、加工液濾過装置14、加工液飛散防止カバー15等
からなる。
1 to 5 show an embodiment of the present invention. In FIGS. 1 to 3, a finishing device 1 includes a workpiece fixing device 3 that fixes a workpiece 2 and an electrode fixing device 5 that fixes an electrode 4.
, a control device consisting of a drive conversion section 7 that converts the rotational motion of the electrode drive section 60 into reciprocating motion, a power supply device 8 that generates a pulse current, a motor drive control section 9, a machining condition control section IO, and a machining fluid flow control section 11. 12. Input device 1 for manually inputting processing conditions
3. Consists of a machining fluid filtration device 14, a machining fluid scattering prevention cover 15, and the like.

前記被加工物固定装置3は、絶縁性の高いグラナイトも
しくはセラミックス製のテーブルで、被加工物2をボル
ト16等により固定する。また、前記電極固定装置5は
、その下部に設けたロッド17の下端に、例えば純銅も
しくはグラファイトからなる電極4を、その電極面4a
と前記被加工物2の被加工面2aとが三次元方向に一様
な間隙18を保つように固定する。そして、前記電極固
定装置6は、電極駆動手段を構成する前記電極駆動部6
と駆動変換部7とにより前記間隙18を所定値に設定す
べく上下動する。すなわち、電極駆動部60ロータリー
エンコーダ20とタコジェネレータ21からの信号によ
り前記制御装置12のモータ駆動制御部9から出力され
る制御信号により、モータ19を回転制御し、このモー
タ19の回転運動を駆動変換部7により往復運動に変換
して、前記電極固定装置5を上下動させ、電極面4aと
被加工面2aとを所定の間隙18に設定する。
The workpiece fixing device 3 is a table made of highly insulating granite or ceramics, and fixes the workpiece 2 with bolts 16 or the like. Further, the electrode fixing device 5 has an electrode 4 made of pure copper or graphite, for example, on the lower end of the rod 17 provided at the lower part of the electrode fixing device 5.
and the workpiece surface 2a of the workpiece 2 are fixed so that a uniform gap 18 is maintained in the three-dimensional direction. The electrode fixing device 6 includes the electrode driving section 6 constituting an electrode driving means.
and the drive converter 7 move up and down to set the gap 18 to a predetermined value. That is, the rotation of the motor 19 is controlled by control signals output from the motor drive control section 9 of the control device 12 based on signals from the electrode drive section 60, the rotary encoder 20, and the tacho generator 21, and the rotational movement of the motor 19 is driven. The conversion unit 7 converts the motion into a reciprocating motion, moves the electrode fixing device 5 up and down, and sets a predetermined gap 18 between the electrode surface 4a and the surface to be processed 2a.

前記被加工物2と電極4間に電流密度が70A/Cm2
以下のパルス電流を供給する電流供給手段としての電源
装置8は、加工条件制御部10からの制御信号により、
被加工物2の表面積に従って計算した電流値を任意のパ
ルス幅で発生するもので、直流電源部22と充放電部2
3とを有し、例えば第4図に示す如く構成する。第4図
において、充放電部23は、放電部24と充電部25と
を有し、放電部24は、加工液を介して対設した被加工
物2と電極4との間隙18に電荷を放電する蓄電器26
−1〜26−nを複数個並列に接続し、これら各蓄電器
26−1〜26−nに直流電源側への電荷の逆流を阻止
するダイオード27−1〜27−nと放電側への電荷を
放電させるべく開閉される放電スイッチ28−1〜28
−nとをそれぞれ接続する。
The current density between the workpiece 2 and the electrode 4 is 70A/Cm2.
The power supply device 8, which serves as a current supply means for supplying the following pulse current, operates according to a control signal from the processing condition control section 10.
It generates a current value calculated according to the surface area of the workpiece 2 with an arbitrary pulse width.
3, and is configured, for example, as shown in FIG. In FIG. 4, the charging/discharging section 23 has a discharging section 24 and a charging section 25, and the discharging section 24 supplies an electric charge to the gap 18 between the workpiece 2 and the electrode 4, which are disposed opposite each other, via the machining fluid. Discharging capacitor 26
-1 to 26-n are connected in parallel, and each of these capacitors 26-1 to 26-n has diodes 27-1 to 27-n to prevent backflow of charges to the DC power supply side and charges to the discharge side. Discharge switches 28-1 to 28 that are opened and closed to discharge
-n respectively.

また充電部25は、蓄電器26−1〜26−nへ供給す
る充電電圧値を検出する電圧検出器29と、前記加工条
件制御部10の充電電圧設定器30で設定した設定充電
電圧値と前記電圧検出器29で検出した検出充電電圧値
とを比較する電圧比較器31と、この電圧比較器31か
らの信号により前記各蓄電器26−1〜26−〇を所定
に充電すべく前記直流電源部22からの電源を給断する
充電スイッチ32とからなる。
The charging unit 25 also includes a voltage detector 29 that detects the charging voltage value supplied to the capacitors 26-1 to 26-n, a set charging voltage value set by the charging voltage setting device 30 of the processing condition control unit 10, and the charging voltage value set by the charging voltage setting device 30 of the processing condition control unit 10. A voltage comparator 31 that compares the detected charging voltage value detected by the voltage detector 29, and a DC power supply unit that charges each of the capacitors 26-1 to 26-0 to a predetermined value using a signal from the voltage comparator 31. and a charging switch 32 for supplying and disconnecting power from 22.

前記直流電源部22は、変圧器33と整流器34とから
なり、変圧器33により電圧を所定に降下させ整流器3
4により整流して直流電流を得て、前記蓄電器26−1
〜26−nに供給する。
The DC power supply section 22 includes a transformer 33 and a rectifier 34, and the transformer 33 lowers the voltage to a predetermined value.
4 to obtain a direct current, which is then rectified by the capacitor 26-1.
~26-n.

また、この電源装置8を制御する加工条件制御部10は
、前記蓄電器26−1〜26−nの充電電圧を設定する
充電電圧設定器30と、前記加工液を介して対設した被
加工物2と電極4との間隙18に放電する電荷の電流波
形を設定する電流波形設定器35と、放電する電荷の所
定時間幅のパルスを発生するパルス発生器36°と、前
記電流波形設定器35と前記パルス発生器36とからの
入力により前記各蓄電器26−1〜26−nの電荷を放
電側に所望に放電させるべく前記放電スイッチ28−1
〜28−nに開閉信号を出力するゲート回路37とから
なる。なお、第4図中符号38は放電スイッチ28−1
〜28−〇の開時に逆起電力によって各放電スイッチ2
8−1〜28−nが破壊するのを防止するダイオードで
ある。
Further, a machining condition control unit 10 that controls the power supply device 8 is connected to a charging voltage setting device 30 that sets the charging voltage of the capacitors 26-1 to 26-n, and a workpiece that is disposed opposite to each other via the machining fluid. a current waveform setting device 35 that sets the current waveform of the charge discharged in the gap 18 between the electrode 2 and the electrode 4; a pulse generator 36° that generates a pulse of a predetermined time width of the discharged charge; and the current waveform setting device 35 and the pulse generator 36, the discharge switch 28-1 is configured to discharge the charge of each of the capacitors 26-1 to 26-n to the discharge side as desired.
~28-n, and a gate circuit 37 that outputs an opening/closing signal. In addition, the reference numeral 38 in FIG. 4 indicates the discharge switch 28-1.
~ Each discharge switch 2 is activated by the back electromotive force when 28-〇 is opened.
This is a diode that prevents 8-1 to 28-n from being destroyed.

前記入力装置13は、被加工物の材質と表面積、仕上げ
加工しろと寸法精度の等級、仕上げ面粗度及び初期電極
間隙等を入力し、これらの各信号を制御装置12のモー
タ駆動制御部9及び加工条件制御部10に出力する。
The input device 13 inputs the material and surface area of the workpiece, the finishing margin and dimensional accuracy grade, the finished surface roughness, the initial electrode gap, etc., and sends these signals to the motor drive control section 9 of the control device 12. and output to the processing condition control section 10.

前記加工液濾過装置14は、加工で生じた電解生成物を
含む加工液41を濾過するもので、例えば第5図の如く
構成する。すなわち、加工液濾過装置14は、加工液槽
40からの電解生成物を多く含んだ戻り加工液を貯留す
るダーティタンク42と、このダーティタンク42の加
工液を電磁ポンプ43で汲み上げフィルター44を通し
てから遠心分離する遠心分離機45と、この遠心分離機
45によって分離した電解生成物を含まない加工液を貯
留するクリーンタンク46と、このクリーンタンク46
の加工液を汲み上げる電磁ポンプ47と、加工液槽40
への液圧を調整するための絞り弁48.49と、クリー
ンタンク46からの加工液を被加工物2と電極4の間隙
に噴出させることにより、該間隙に生成した電解生成物
等を排除する電磁弁50と、加工液槽40へ供給する加
工液の液圧を測定指示する液圧計51等からなる。なお
、図中52.53はダーティタンク42の液面を検出す
る上限フロートスイッチ及び下限フロートスイッチ、5
4は遠心分離機45を駆動するモータである。
The machining fluid filtration device 14 filters the machining fluid 41 containing electrolytic products generated during machining, and is configured as shown in FIG. 5, for example. That is, the machining fluid filtration device 14 includes a dirty tank 42 that stores the returned machining fluid containing a large amount of electrolytic products from the machining fluid tank 40, and a machining fluid from the dirty tank 42 that is pumped up by an electromagnetic pump 43 and passed through a filter 44. A centrifugal separator 45 that performs centrifugal separation, a clean tank 46 that stores processing liquid that does not contain electrolytic products separated by the centrifuge 45, and this clean tank 46.
An electromagnetic pump 47 that pumps up the machining fluid, and a machining fluid tank 40
By spouting the machining fluid from the clean tank 46 and the throttling valves 48, 49 for adjusting the fluid pressure to the workpiece 2 and the electrode 4, electrolytic products generated in the gap are eliminated. It consists of an electromagnetic valve 50 that operates, a hydraulic pressure gauge 51 that measures and instructs the hydraulic pressure of the machining fluid supplied to the machining fluid tank 40, and the like. In addition, 52 and 53 in the figure are an upper limit float switch and a lower limit float switch for detecting the liquid level of the dirty tank 42;
4 is a motor that drives the centrifugal separator 45.

この加工液濾過装置14を制御する加工液流制御部11
は、加工条件制御部lOからの指令に基づいて、紋り弁
48.49等を制御して加工液槽40へ加工液を一定の
液圧で供給するとともに、加工中に被加工面2aと電極
面4a問に生成した電解生成物等を排除するために、1
パルスまたは数パルス毎に上昇動作する電極4と同期し
て被加工物2と電極4間に新鮮な加工液を噴出する如く
電磁弁50等を制御する。
Processing fluid flow control section 11 that controls this processing fluid filtration device 14
Based on commands from the machining condition control unit 1O, the control valves 48, 49, etc. are controlled to supply machining fluid to the machining fluid tank 40 at a constant hydraulic pressure, and also to control the workpiece surface 2a and the machining surface 2a during machining. In order to eliminate electrolytic products etc. generated on the electrode surface 4a,
The electromagnetic valve 50 and the like are controlled so as to spout fresh machining fluid between the workpiece 2 and the electrode 4 in synchronization with the electrode 4 which moves upward every pulse or every few pulses.

次に、この装置による仕上げ加工方法について説明する
Next, a finishing method using this apparatus will be explained.

仕上げ加工に際しては、電極固定装置5のロッド17の
下端に電極4を取付け、電極面4aを、電解加工あるい
は放電加工により所望形状に加工された、例えば熱処理
を行った特殊鋼等からなる被加工物2の被加工面2aに
対向接触させて、電極4を被加工物2とともに加工液槽
40の加工液41内に浸漬する。そしてこの位置を原点
Aとし、加工液を被加工面2aと電極面4a間に満たし
たら、初期電極間隙に保つ位置に電極4を上昇し、そこ
を加工原点として仕上げ加工を開始する。
During finishing, the electrode 4 is attached to the lower end of the rod 17 of the electrode fixing device 5, and the electrode surface 4a is machined into a desired shape by electrolytic machining or electrical discharge machining, for example, a workpiece made of heat-treated special steel. The electrode 4 is immersed together with the workpiece 2 in the machining liquid 41 of the machining liquid tank 40 while facing and in contact with the workpiece surface 2 a of the workpiece 2 . Then, this position is set as the origin A, and once the machining liquid is filled between the surface to be processed 2a and the electrode surface 4a, the electrode 4 is raised to a position where the initial electrode gap is maintained, and finishing machining is started using this position as the machining origin.

仕上げ加工初期は、加工条件制御部100制御信号によ
り、電源装置8から電流密度がIOA/cm2〜70A
/cm2(例えば17A/ c m2)でパルス幅が5
 msec (1msecは1/1000秒)以下の短
パルスのパルス電流を被加工物2と電極4間に供給する
。これにより、被加工面2a素材が溶出する。
In the initial stage of finishing processing, the current density is set from IOA/cm2 to 70A from the power supply device 8 according to the control signal of the processing condition control unit 100.
/cm2 (e.g. 17A/cm2) with a pulse width of 5
A short pulse current of less than msec (1 msec is 1/1000 second) is supplied between the workpiece 2 and the electrode 4. As a result, the material of the processed surface 2a is eluted.

所定電流を1回ないし数回供給した後、モータ駆動制御
部9の信号によりモータ19を駆動して電極4を上昇さ
せ、電極面4aを被加工面2aから離間させる。この離
間により、被加工面2aと電極面4a間の電解生成物を
加工液とともに後述する加工液濾過装置14の電磁弁5
0等の動作により排除する。
After supplying a predetermined current once or several times, the motor 19 is driven by a signal from the motor drive control section 9 to raise the electrode 4 and separate the electrode surface 4a from the surface to be processed 2a. Due to this separation, the electrolytic products between the processed surface 2a and the electrode surface 4a are removed together with the processing fluid by the electromagnetic valve 5 of the processing fluid filtration device 14, which will be described later.
Eliminate by action such as 0.

電解生成物を排除した後は、電極4が下降し、電極面4
aが被加工面2aに接触する。これにより、前記原点A
と現位置とを制御装置12で比較して加工1回(1パル
スまたは数パルス毎の加工)当りの加工深さを測定する
。その後、前記被加工面2aと電極面4aが所定の間隙
を保つように電極4が再び上昇し、加工液層40の新た
な加工液を被加工面2aと電極面4a間に満たす。なお
、この場合、加工液Fi40には1回ないし数回の電解
加工で生成した電解生成物とともに排除する加工液を補
うように、加工液濾過装置14のクリーンタンり46か
ら紋り弁48を介して加工液が供給される。
After removing the electrolytic products, the electrode 4 is lowered and the electrode surface 4
a contacts the processed surface 2a. As a result, the origin A
and the current position are compared by the control device 12 to measure the machining depth per machining (machining every one pulse or several pulses). Thereafter, the electrode 4 rises again so that a predetermined gap is maintained between the surface to be processed 2a and the electrode surface 4a, and new machining liquid in the machining liquid layer 40 is filled between the surface to be processed 2a and the electrode surface 4a. In this case, a filter valve 48 is installed from the clean tongue 46 of the machining fluid filtration device 14 so as to supplement the machining fluid Fi 40 with the machining fluid that is to be removed together with the electrolytic products generated in one or several electrolytic machining operations. The machining fluid is supplied through.

このように、所定の間隙18を設けて対向した被加工面
2aと電極面4aとの間に新たな加工液を満たし、被加
工物2と電極4との間に所定電流、即ちパルス幅5ms
ec以下のパルス電流を供給して、被加工面2a素材を
加工液41内に溶出させ、被加工面2aと電極面4a間
に生成した電解生成物を排除し、再び電極面4aを被加
工面2aに接触させることにより、加工1回当りの加工
深さを測定し、その値を累積するという一連の工程を制
御装置12の信号により繰り返す。
In this way, a new machining liquid is filled between the workpiece surface 2a and the electrode surface 4a, which face each other with a predetermined gap 18, and a predetermined current, that is, a pulse width of 5 ms, is applied between the workpiece 2 and the electrode 4.
By supplying a pulse current of less than ec, the material of the surface 2a to be machined is eluted into the machining liquid 41, the electrolytic products generated between the surface 2a to be machined and the electrode surface 4a are removed, and the electrode surface 4a is returned to the surface to be machined again. The series of steps of measuring the machining depth per machining by bringing it into contact with the surface 2a and accumulating the values is repeated according to a signal from the control device 12.

前記加工深さの累積値が、入力装置13で入力された入
力データに基づいて加工条件制御部10で計算された加
工深さの設定値と比較し、加工深さ累積値が加工深さ設
定値に対し、所定の差(例えば1μm)以内になった時
に、加工条件制御部lOの制御信号により電源装置8の
パルス電流のパルス幅を゛5msec以下の所定値から
10msec以上で60msec以下の長パルスに切換
えるとともに、このパルス電流の電流密度を30A/c
m2以上70A/cm2以下に切換える。なお、この場
合仕上げ加工初期と後期の電流密度の切換えは必要に応
じて行えばよく、例えば初期と後期の電流密度を同一に
設定して仕上げ加工する場合は、切換えが不要であるこ
とはいうまでもない。
The cumulative value of the machining depth is compared with the set value of the machining depth calculated by the machining condition control unit 10 based on the input data input by the input device 13, and the cumulative value of the machining depth is determined as the machining depth setting. When the difference is within a predetermined value (for example, 1 μm), the pulse width of the pulse current of the power supply device 8 is changed from a predetermined value of 5 msec or less to a length of 10 msec or more and 60 msec or less using a control signal from the processing condition control unit IO. At the same time as switching to pulse current, the current density of this pulse current is increased to 30A/c.
Switch to 70A/cm2 or more between m2 and 70A/cm2. In this case, the current density at the initial stage and the latter stage of finishing machining can be switched as needed.For example, if the current density at the early stage and the latter stage are set to the same value for finishing machining, switching is not necessary. Not even.

そして、この長パルスで1回ないし数回の電解加工を行
った後に、前述したと同様、被加工面2aと電極面4a
との間の電解生成物を加工液濾過装置14により排除す
る。この場合、電解生成物を排除するサイクルは、印加
するパルス幅に応じて変化することになる。なお、短パ
ルスから長パルスへ切換えるタイミングの検出は、上記
の加工深さの累積値と加工深さ設定値との比較による検
出に限らず、例えば加工しろから加工終了するまでのク
ーロン量を計算してこの値により検出制御することもで
きる。
After electrolytic machining is performed once or several times using this long pulse, the processed surface 2a and the electrode surface 4a are processed in the same manner as described above.
The electrolytic products between the two are removed by the processing liquid filtration device 14. In this case, the cycle for eliminating electrolysis products will vary depending on the applied pulse width. Note that detection of the timing to switch from short pulses to long pulses is not limited to detection by comparing the cumulative value of the machining depth and the machining depth setting value described above, but also by calculating the coulomb amount from the machining allowance to the end of machining, for example. Detection can also be controlled using the lever value.

ここで、加工液濾過装置14の動作について説明する。Here, the operation of the machining fluid filtration device 14 will be explained.

加工液槽40から戻る電解生成物を含んだ加工液は、ダ
ーティタンク42に貯留され、その液面レベルは、上・
下のフロートスイッチ52.53で検出されて加工液流
制御部11に入力される。加工液流制御部11は、ダー
ティタンク42内の液面レベルが所定値に達したら、即
ち液面レベルが上・下のフロートスイッチ52.53間
にある時、電磁ポンプ43に駆動信号を出力し、ダーテ
ィタンク42内の加工液を汲み上げ、フィルタ44を通
して遠心分離8145に送出する。
The machining fluid containing electrolytic products returned from the machining fluid tank 40 is stored in a dirty tank 42, and its liquid level is above and below.
It is detected by the lower float switches 52 and 53 and input to the machining fluid flow control section 11. The processing liquid flow control unit 11 outputs a drive signal to the electromagnetic pump 43 when the liquid level in the dirty tank 42 reaches a predetermined value, that is, when the liquid level is between the upper and lower float switches 52 and 53. Then, the processing fluid in the dirty tank 42 is pumped up and sent to the centrifugal separator 8145 through the filter 44.

遠心分離機45は、加工液流制御部11の制御信号によ
りモータ54が回転し、加工液を分離する。そして、分
離され電解生成物を含まない加工液は、クリーンタンク
46に貯留され、加工条件制御部10からの信号により
、加工液流制御部11が電磁ポンプ47、絞り弁48.
49、電磁弁50に制御信号を送り、加工液がクリーン
タンクから汲み上げられて加工液槽40に流入する。
In the centrifugal separator 45, a motor 54 rotates in response to a control signal from the machining fluid flow control section 11 to separate the machining fluid. The separated machining fluid that does not contain electrolytic products is stored in a clean tank 46 , and the machining fluid flow control section 11 controls the electromagnetic pump 47 , the throttle valve 48 .
49. Send a control signal to the solenoid valve 50, and the machining fluid is pumped up from the clean tank and flows into the machining fluid tank 40.

この場合、クリーンタンク46と加工液槽40との間に
液圧を測定指示する液圧計51と、紋り弁48.49を
設け、液圧計の液圧が加工液流制御部11の設定値に対
し低い場合は、加工液槽40側の絞り弁48の開閉度を
大きくするとともに、クリーンタンク46側の紋り弁4
9の開閉度を小さくして、加工液が加工液槽40に多く
流入するようにし、液圧計51の液圧が前記設定値に対
し高い場合は、紋り弁49の開閉度を大きくするととも
に、絞り弁48の開閉度を小さくして、加工液がクリー
ンタンク46に多く戻るようにする。また、クリーンタ
ンク46と加工液槽40閏に設けられる電磁弁50は、
電極4の上昇動作と同期した加工液流制御部11からの
制御信号により、クリーンタンク46からの加工液を被
加工¥lJ2と電極4の間隙に噴出し、該間隙の電解生
成物を含む加工液を排除する如く動作する。
In this case, between the clean tank 46 and the machining liquid tank 40, a hydraulic pressure gauge 51 for instructing to measure the hydraulic pressure and a crest valve 48, 49 are provided, and the hydraulic pressure of the hydraulic pressure gauge is set to the setting value of the machining fluid flow control unit 11. If it is lower than that, increase the opening/closing degree of the throttle valve 48 on the processing liquid tank 40 side, and
9 is made smaller so that more machining fluid flows into the machining liquid tank 40, and if the hydraulic pressure in the hydraulic pressure gauge 51 is higher than the set value, the opening and closing degree of the crest valve 49 is increased. , the degree of opening and closing of the throttle valve 48 is reduced so that more machining fluid returns to the clean tank 46. In addition, the solenoid valve 50 provided in the clean tank 46 and the processing liquid tank 40 is
In response to a control signal from the machining fluid flow control unit 11 that is synchronized with the upward movement of the electrode 4, machining fluid from the clean tank 46 is spouted into the gap between the workpiece ¥1J2 and the electrode 4, and the machining fluid containing electrolytic products in the gap is ejected. It works to remove liquid.

このように、加工液流制御部11は、クリーンタンク4
6から加工液槽40に流入する加工液の液圧が常に一定
になる如く制御するとともに、電極4の。
In this way, the machining fluid flow control section 11 controls the clean tank 4
The pressure of the machining fluid flowing into the machining fluid tank 40 from the electrode 4 is controlled to be constant at all times.

上昇動作と同期して、被加工物2と電極4間の電解生成
物を含む加工液を排除する如く制御する。
In synchronization with the ascending operation, control is performed to remove the machining fluid containing electrolytic products between the workpiece 2 and the electrode 4.

次に、この発明に係る電解加工における仕上げ加工装置
による加工例を示す。
Next, an example of processing by the finishing apparatus in electrolytic processing according to the present invention will be shown.

く加工例1〉 電 極      純銅 被加工物材質   工具鋼(面粗度20μm)電解液 
     硝酸ナトリウム溶液(1度40%) 加工初期パルス幅 3msec 〃  電流密度 40A / c m2加工後期パルス
幅 30msec 〃  電流密度 40A/ c m2 仕上げ面粗度   Rmax:1μm以下仕上げ面  
   鏡面状の光沢面 〈加工例2〉 電極       純銅 被加工物材質   工具&l1l(面粗度23μm)電
解液      硝酸ナトリウム溶液(濃度30%) 加工初期パルス幅 5msec 〃  電流密度 17A/cm2 加工後期パルス幅 10msec 〃  電流密度 50A/cm2 仕上げ面粗度   3μm以゛下 仕上げ面     鏡面状の光沢面 なお、仕上げ初期加工パルス幅は、被加工物の材質によ
りある程度変化させ得るが、上記加工例2に示すように
、仕上げ面粗度Rmax:1μmを必要としない場合は
、作業能率の面から5msec以下のより長いパルス幅
を用いるのが好ましい。
Machining example 1> Electrode Pure copper Workpiece material Tool steel (surface roughness 20μm) Electrolyte
Sodium nitrate solution (1 degree 40%) Initial machining pulse width 3msec Current density 40A/cm2 Late machining pulse width 30msec Current density 40A/cm2 Finished surface roughness Rmax: 1μm or less Finished surface
Mirror-like glossy surface <Processing example 2> Electrode Pure copper Workpiece material Tool & l1l (surface roughness 23μm) Electrolyte Sodium nitrate solution (concentration 30%) Initial processing pulse width 5msec Current density 17A/cm2 Late processing pulse width 10msec 〃 Current density 50A/cm2 Finished surface roughness 3 μm or less Finished surface Mirror-like glossy surface Note that the initial finishing pulse width can be changed to some extent depending on the material of the workpiece, but as shown in Processing Example 2 above, , when finished surface roughness Rmax: 1 μm is not required, it is preferable to use a longer pulse width of 5 msec or less in terms of work efficiency.

また、電極を被加工面から離間させ、電極面と被加工面
間の電解生成物を排除するサイクルも、1パルス毎に行
うのが被加工面の全面にわたって最も安定しているが、
例えば仕上げ加工初期のパルス幅が1 msecという
短い場合は、1パルスの加工で発生する電解生成物が少
ないので、数回毎に排除することもできる。
In addition, the cycle of separating the electrode from the surface to be machined and eliminating electrolytic products between the electrode surface and the surface to be machined is performed every pulse, which is most stable over the entire surface to be machined.
For example, if the pulse width at the initial stage of finishing processing is as short as 1 msec, few electrolytic products are generated in one pulse of processing, so that they can be removed every few times.

なお、上記実施例においては、パルス幅を、仕上げ加工
初期には5msec以下の所定値(例えば3msec)
に設定し、仕上げ加工後期には10rnsec以上60
msec以下の所定値(例えば40msec)に設定し
たが、この発明はこれに何ら限定されず、仕上げ加工初
期または後期のパルス幅を複数種類に設定してもよい。
In the above embodiment, the pulse width is set to a predetermined value of 5 msec or less (for example, 3 msec) at the initial stage of finishing processing.
10 rnsec or more at 60 ns in the latter half of finishing processing
Although the pulse width is set to a predetermined value of msec or less (for example, 40 msec), the present invention is not limited thereto, and the pulse width may be set to a plurality of types in the early or late stages of finishing.

すなわち、例えば仕上げ加工の初期には5msecのパ
ルス電流を供給し、後期には10msecのパルス電流
を所定時間供給した後に40msecのパノしスミ流を
供給したり、あるいは、仕上げ加工の初期には3mse
cと5msecのパルス電流を供給し、後期には20m
secと40msecと60msecのパルス電流を仕
上げ状態に応じて適宜供給して加工するようにしてもよ
い。また、電流密度についても同様に設定し得る。
That is, for example, at the beginning of finishing machining, a pulse current of 5 msec is supplied, and at the latter stage, a pulse current of 10 msec is supplied for a predetermined time and then a panning current of 40 msec is supplied, or at the beginning of finishing machining, a pulse current of 3 msec is supplied.
c and 5 msec pulse current, and in the latter half 20 msec.
Processing may be performed by appropriately supplying pulse currents of 20 msec, 40 msec, and 60 msec depending on the finishing state. Further, the current density can also be set in the same way.

このように、この発明に係る電解加工による仕上げ加工
方法及び装置にあっては、仕上げ加工装置に、所望形状
に加工された例えば熱処理を行った特殊鋼等からなる被
加工物と電極とを取付け、仕上げ条件等を入力装置によ
り入力して起動すれば、仕上げ加工初期のパルス幅が5
msec以下のパルス電流で高精度かつ微小面粗度の表
面品質が得られ、仕上げ加工後期のパルス幅が10ms
ec以上60msec以下のパルス電流で面粗度を損な
うことなく鏡面状光沢を呈した三次元金属曲面が無人で
短時間に得られる。また、その表面は、内部応力の蓄積
や金属組織の変化もないし、機械的亀裂の侵入といった
変質も全く見られず、加工前の熱処理品質も損なわれる
ことがない等、現在の金型加工で最も着力化が遅れてい
る仕上げ加工分野で、品質向上と機械化に大きな効果が
得られる。また、加工液濾過装置により、電解生成物を
多く含んだ加工液を簡単かつ安価に処理することができ
る。
As described above, in the finishing method and apparatus by electrolytic machining according to the present invention, a workpiece made of heat-treated special steel or the like that has been processed into a desired shape and an electrode are attached to the finishing apparatus. , by inputting finishing conditions etc. using the input device and starting the process, the pulse width at the initial stage of finishing process can be set to 5.
High precision and surface quality with minute surface roughness can be obtained with a pulse current of less than msec, and the pulse width in the latter half of finishing is 10ms.
A three-dimensional metal curved surface exhibiting mirror-like luster can be obtained unattended and in a short time without impairing surface roughness with a pulse current of ec or more and 60 msec or less. In addition, the surface does not accumulate internal stress or change its metallographic structure, and there is no deterioration such as the penetration of mechanical cracks, and the quality of heat treatment before processing is not impaired, so current mold processing can be done. This will have a significant effect on quality improvement and mechanization in the field of finishing processing, which has been the slowest to gain strength. Furthermore, the machining fluid filtration device allows processing fluid containing a large amount of electrolytic products to be easily and inexpensively processed.

なお、この発明は、金型加工分野に限らず、半導体生産
のシリコン単結晶やガリウムヒソ基材の仕上げ加工、及
び磁気記憶装置のアルミニュウム・ディスクの単結晶ダ
イヤモンドによる鏡面加工等のように、機械的加工によ
る表面の僅かな内部応力が問題となっている分野での仕
上げ加工にも応用することができる。また、自動搬送装
置と組み合せて、量産されるハイポイド・ギヤー等の熱
処理後の仕上げ加工に用いることも勿論可能である。
This invention is applicable not only to the field of mold processing, but also to mechanical applications such as the finishing of silicon single crystals and gallium histobase materials in semiconductor production, and the mirror finishing of aluminum disks in magnetic storage devices using single crystal diamond. It can also be applied to finishing machining in fields where slight internal stress on the surface due to machining is a problem. In addition, it is of course possible to use it in combination with an automatic conveyance device for finishing processing of mass-produced hypoid gears and the like after heat treatment.

[発明の効果コ 以上詳細に説明したように、この発明に係る電解加工に
よる仕上げ加工方法及び装置にあっては、加工液を介し
て対設した被加工物と加工電極間にパルス電流を供給す
るとともに、前記被加工物と加工電極間に生成した電解
生成物を間欠的に除去しながら仕上げ加工を行うに際し
、前記パルス電流のパルス幅を、加工初期には5mse
c以下とし、加工後期には10msec以上60mse
c以下としたので、高精度かつ微小面粗度の鏡面状光沢
を呈した三次元金属曲面が短時間に得られるとともに、
内部応力の蓄積や金属組織の変化がなく機械的亀裂の侵
入等の変質が全く見られず、加工前の熱処理品質も損な
わない表面を得ることができ、省力化が遅れている金型
加工分野での品質向上と機械化を達成することができる
。また電解生成物を多量に含んだ汚水処理が簡単かつ安
価にできる等の効果を奏する。
[Effects of the Invention] As explained in detail above, in the finishing method and apparatus by electrolytic machining according to the present invention, a pulse current is supplied between the workpiece and the machining electrode which are disposed opposite to each other via the machining fluid. At the same time, when performing finishing machining while intermittently removing electrolytic products generated between the workpiece and the machining electrode, the pulse width of the pulse current is set to 5 msec at the initial stage of machining.
c or less, and at least 10 msec or 60 msec in the latter stage of processing.
c or less, a three-dimensional metal curved surface with high precision and mirror-like luster with minute surface roughness can be obtained in a short time, and
It is possible to obtain a surface that does not accumulate internal stress or change the metallographic structure, shows no deterioration such as the penetration of mechanical cracks, and does not impair the quality of heat treatment before processing, and is used in the mold processing field, where labor saving is lagging behind. quality improvement and mechanization can be achieved. Further, it has the advantage that wastewater containing a large amount of electrolyzed products can be treated easily and inexpensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る仕上げ加工装置を示す正面図、
第2図は同装置の側面図、第3図は同装置      
置の概略構成図、第4図は電流供給手段、を示すブロッ
ク図、第5図は加工液濾過手段を示す概略構成図である
。 1・・・仕上げ加工装置、2・・・被加工物、2a・・
・被加工面、3・・・被加工物固定装置、4・・・電極
、5・・・電極固楚装置、6・・・電極駆動部、7・・
・駆動変換部、8・・・電源装置、9・・・モータ駆動
制御部、10・・・加工条件制御部、ll・・・加工液
流制御部、12・・・制御装置、13・・・入力装置、
14・・・加工液濾過装置。 特許出願人  静岡製機株式会社 代表者鈴木重夫 第5図 手続補正書く自発) 昭和62年4月23日 遣
FIG. 1 is a front view showing a finishing device according to the present invention;
Figure 2 is a side view of the device, and Figure 3 is the same device.
FIG. 4 is a block diagram showing the current supply means, and FIG. 5 is a schematic diagram showing the processing liquid filtration means. 1... Finishing device, 2... Workpiece, 2a...
- Workpiece surface, 3... Workpiece fixing device, 4... Electrode, 5... Electrode fixing device, 6... Electrode drive unit, 7...
- Drive conversion unit, 8... Power supply device, 9... Motor drive control unit, 10... Processing condition control unit, ll... Processing liquid flow control unit, 12... Control device, 13...・Input device,
14... Processing liquid filtration device. Patent applicant: Shigeo Suzuki, representative of Shizuoka Seiki Co., Ltd. (Volunteer to write amendments to Figure 5 procedures) Sent on April 23, 1986

Claims (4)

【特許請求の範囲】[Claims] (1)加工液を介して対設した被加工物と加工電極間に
パルス電流を供給するとともに、前記被加工物と加工電
極間に生成した電解生成物を間欠的に除去しながら仕上
げ加工する仕上げ加工方法において、前記パルス電流の
パルス幅を、仕上げ加工初期には5msec以下とし、
仕上げ加工後期には10msec以上60msec以下
としたことを特徴とする電解加工による仕上げ加工方法
(1) Finishing is performed by supplying a pulse current between the workpiece and the machining electrode that are placed opposite each other via the machining fluid, and intermittently removing electrolytic products generated between the workpiece and the machining electrode. In the finishing processing method, the pulse width of the pulse current is set to 5 msec or less at the initial stage of finishing processing,
A finishing processing method by electrolytic processing, characterized in that the finishing processing time is 10 msec or more and 60 msec or less in the latter half of the finishing processing.
(2)前記仕上げ加工後期におけるパルス電流の電流密
度を30A/cm^2以上70A/cm^2以下とした
特許請求の範囲第1項記載の電解加工による仕上げ加工
方法。
(2) The finishing method by electrolytic machining according to claim 1, wherein the current density of the pulse current in the latter half of the finishing process is 30 A/cm^2 or more and 70 A/cm^2 or less.
(3)加工液を介して対設した被加工物と加工電極間に
パルス電流を供給して被加工物を仕上げ加工するものに
おいて、 (イ)前記加工電極を被加工物に対し接離させる電極駆
動手段と、 (ロ)前記被加工物と加工電極間に電流密度が70A/
cm^2以下のパルス電流を供給する電流供給手段と、 (ハ)前記被加工物と加工電極間に生成した電解生成物
を間欠的に除去する加工液濾過手段と、(ニ)前記パル
ス電流のパルス幅を、仕上げ加工初期には5msec以
下とし、仕上げ加工後期には10msec以上60ms
ec以下とする制御手段とを具備したことを特徴とする
電解加工による仕上げ加工装置。
(3) In a device that finishes machining a workpiece by supplying a pulse current between the workpiece and a machining electrode that are placed opposite to each other via a machining fluid, (a) the machining electrode is brought into contact with and separated from the workpiece; (b) a current density of 70 A/2 between the workpiece and the processing electrode;
(c) a machining fluid filtration means for intermittently removing electrolytic products generated between the workpiece and the machining electrode; (d) the pulse current; The pulse width should be 5 msec or less in the early stages of finishing, and 10 msec or more and 60 ms in the latter stages of finishing.
1. A finishing machine using electrolytic machining, characterized in that it is equipped with a control means for controlling ec or less.
(4)前記制御手段が、前記パルス電流の電流密度を仕
上げ加工初期と仕上げ加工後期とで変化させる特許請求
の範囲第3項記載の電解加工による仕上げ加工装置。
(4) The finishing apparatus by electrolytic machining according to claim 3, wherein the control means changes the current density of the pulsed current between the initial stage of finishing process and the latter stage of finishing process.
JP62027616A 1986-10-30 1987-02-09 Finishing method and device by electrolytic processing Expired - Lifetime JPH07108486B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62027616A JPH07108486B2 (en) 1987-02-09 1987-02-09 Finishing method and device by electrolytic processing
US07/111,237 US4800006A (en) 1986-10-30 1987-10-22 Electrolytic finishing system and method
EP87309502A EP0266180B1 (en) 1986-10-30 1987-10-28 Electrolytic finishing method
CA000550499A CA1321978C (en) 1986-10-30 1987-10-28 Electrolytic finishing system
DE8787309502T DE3783013T2 (en) 1986-10-30 1987-10-28 ELECTROLYTIC FINISHING PROCESS.
KR1019870012019A KR910000511B1 (en) 1986-10-30 1987-10-29 Electrolytic finishing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62027616A JPH07108486B2 (en) 1987-02-09 1987-02-09 Finishing method and device by electrolytic processing

Publications (2)

Publication Number Publication Date
JPS63196321A true JPS63196321A (en) 1988-08-15
JPH07108486B2 JPH07108486B2 (en) 1995-11-22

Family

ID=12225872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62027616A Expired - Lifetime JPH07108486B2 (en) 1986-10-30 1987-02-09 Finishing method and device by electrolytic processing

Country Status (1)

Country Link
JP (1) JPH07108486B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106223A (en) * 1988-10-13 1990-04-18 Shizuoka Seiki Co Ltd Method of electrolytic finishing work
JPH02106222A (en) * 1988-10-13 1990-04-18 Shizuoka Seiki Co Ltd Method of electrolytic finishing work
JPH02109637A (en) * 1988-10-20 1990-04-23 Shizuoka Seiki Co Ltd Electrolytic finishing method
JPH02109636A (en) * 1988-10-20 1990-04-23 Shizuoka Seiki Co Ltd Electrolytic finishing method
JPH0349826A (en) * 1989-07-18 1991-03-04 Shizuoka Seiki Co Ltd Electrifying device for electrolytic finishing machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814647U (en) * 1971-06-25 1973-02-19
JPS4844613A (en) * 1971-10-04 1973-06-27
JPS505139A (en) * 1973-05-17 1975-01-20

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814647U (en) * 1971-06-25 1973-02-19
JPS4844613A (en) * 1971-10-04 1973-06-27
JPS505139A (en) * 1973-05-17 1975-01-20

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106223A (en) * 1988-10-13 1990-04-18 Shizuoka Seiki Co Ltd Method of electrolytic finishing work
JPH02106222A (en) * 1988-10-13 1990-04-18 Shizuoka Seiki Co Ltd Method of electrolytic finishing work
JPH02109637A (en) * 1988-10-20 1990-04-23 Shizuoka Seiki Co Ltd Electrolytic finishing method
JPH02109636A (en) * 1988-10-20 1990-04-23 Shizuoka Seiki Co Ltd Electrolytic finishing method
JPH0349826A (en) * 1989-07-18 1991-03-04 Shizuoka Seiki Co Ltd Electrifying device for electrolytic finishing machine

Also Published As

Publication number Publication date
JPH07108486B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
GB2081632A (en) Electrical discharge machining machine tool and method of operation
US3385947A (en) Apparatus for combined electrical dischargemachining and electrochemical machining
JPS63196321A (en) Finishing method by electro-chemical machining and device therefore
EP0266180B1 (en) Electrolytic finishing method
US4880516A (en) Electro-chemical machine
US4956060A (en) Finishing method employing electro-chemical machining, and an electro-chemical finishing machine
US3475312A (en) Electrolytic lathe and grinding apparatus employing a homogeneous carbon electrode-tool
US3371022A (en) Low-electrolyte-pressure electro-chemical machining
JPS63267120A (en) Finishing method by electrochemical machining
JPS63283818A (en) Finishing method by electro-chemical machining
KR910006553B1 (en) Electrolytic finishing method
CA1325403C (en) Method for finishing a work
US4883568A (en) Finishing method employing electro-chemical process
JPS63267118A (en) Finishing method by electrochemical machining
JPS63306824A (en) Finish machining method by electro-chemical machining
JPH07100259B2 (en) Finishing method by electrolytic processing
JPH01188230A (en) Finishing method based on electrochemical machining and its device
JPS63283817A (en) Finishing method by electro-chemical machining
JPS63306825A (en) Machining gap control device for electro-chemical machine
JPH0626764B2 (en) Machining fluid supply device for electrical discharge machining
JPH01135418A (en) Finishing method by electrochemical machining
JPH01316129A (en) Finishing work through electrolytic working
SU841887A1 (en) Method and apparatus for electroerosion treatment of metals
JPH01121123A (en) Finishing erosion method by electro-chemical machining
JPH012819A (en) Processing tank of electrolytic processing equipment