JPS63279528A - Manufacture of superconductor device - Google Patents

Manufacture of superconductor device

Info

Publication number
JPS63279528A
JPS63279528A JP62114323A JP11432387A JPS63279528A JP S63279528 A JPS63279528 A JP S63279528A JP 62114323 A JP62114323 A JP 62114323A JP 11432387 A JP11432387 A JP 11432387A JP S63279528 A JPS63279528 A JP S63279528A
Authority
JP
Japan
Prior art keywords
superconductor
oxide superconductor
film
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62114323A
Other languages
Japanese (ja)
Inventor
Hiromi Nibu
丹生 ひろみ
Shin Fukushima
福島 伸
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62114323A priority Critical patent/JPS63279528A/en
Publication of JPS63279528A publication Critical patent/JPS63279528A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To unify the thickness and composition of a film and prevent the peeling of the film due to the cooling and heating cycle by coating and baking the solution containing many organic metal compounds including each element constituting a perovskite type oxide superconductor at the preset ratio to form the film. CONSTITUTION:An organic solution containing multiple organic metal compounds including each element constituting an oxide superconductor at the preset ratio is coated on a substrate, this paint film is heated to heat- decompose the multiple organic compounds including each element, it is then heat-treated at the temperature of 700 deg.C-1000 deg.C in the oxygen-containing atmosphere to form the oxide superconductor. The standard composition of the ratio of each element is Y 1mol, Ba 2mol, Cu 3mol for the Y-Ba-Cu-O system, for example. A film with uniform thickness and composition can be thereby formed easily, the stress on the connection interface between the substrate and the film due to the cooling and heating cycle is reduced, and the good characteristic can be maintained for a long time.

Description

【発明の詳細な説明】 [発明の目的] 〈産業上の利用分野)    ′ 本発明は、ペロブスカイト型の酸化物超電導体被膜を用
いた超半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] <Industrial Application Fields> The present invention relates to a method for manufacturing a supersemiconductor device using a perovskite-type oxide superconductor film.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(2.Phys、B Condensed Mat
ter64、189−193(1986))、その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥へロブスカイト型(ABa2Cu3O7− δ型(
Aは、Y、 Wb、 Ilo、 Dy、 Eu。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (2. Phys, B Condensed Mat
ter64, 189-193 (1986)), among which the lovskite type (ABa2Cu3O7-δ type (
A is Y, Wb, Ilo, Dy, Eu.

Er、TmおよびLuから選ばれた元素、))の酸化物
超電導体は、臨界温度■。が9OK以上と液体窒素以上
の高い温度を示すため非常に有望な材料として注目され
ている(Phys、 Rev、 Lett、vol。5
8 No、9゜908−910) 。
The oxide superconductor of elements selected from Er, Tm and Lu) has a critical temperature ■. It is attracting attention as a very promising material because it shows a temperature higher than 9OK, which is higher than liquid nitrogen (Phys, Rev. Lett, vol. 5).
8 No. 9°908-910).

このような酸化物超電導体を、例えば導線として使用す
る場合には、金属管に封入して線材化したり、基板上に
被膜をパターン状に形成して使用することが考えられる
When such an oxide superconductor is used as a conducting wire, for example, it may be sealed in a metal tube to form a wire, or it may be used by forming a film on a substrate in a pattern.

(発明が解決しようとする問題点) ところで、上述した酸化物超電導体の使用方法のうち、
後者の基板上に酸化物超電導体からなる被膜を形成して
使用する場合には、蒸着法やスパッタリング法により被
膜を形成することが考えられるが真空装置等の特別の装
置を必要とし、製造コストが高くなるという難点がある
(Problems to be solved by the invention) By the way, among the methods of using the oxide superconductor mentioned above,
In the case of forming and using a film made of an oxide superconductor on the latter substrate, it is possible to form the film by vapor deposition or sputtering, but this requires special equipment such as a vacuum device, and the manufacturing cost is high. The problem is that it becomes high.

また、前述した酸化物超電導体は、線膨脹係数が16X
 104/にと、通常の金属のそれに比べて1桁程度大
きいため、臨界温度までの冷熱サイクルを繰り返した場
合、基板上から剥離してしまうおそれがあり、密着性に
乏しいという難点もある。
Furthermore, the aforementioned oxide superconductor has a linear expansion coefficient of 16X.
104/, which is about an order of magnitude larger than that of ordinary metals, so when repeated heating and cooling cycles up to a critical temperature, there is a risk of it peeling off from the substrate, and there is also the problem of poor adhesion.

本発明はこのような従来の難点を解消すべくなされたも
ので、基板上へのペロブスカイト型の酸化物超電導体被
膜の形成が容易で、かつ得られる被膜の膜厚および組成
が均一で、冷熱サイクルによっても被膜剥離のおそれの
ない超半導体装置を製造する方法を提供することを目的
とする。
The present invention has been made to solve these conventional difficulties, and it is easy to form a perovskite-type oxide superconductor film on a substrate, the thickness and composition of the resulting film are uniform, and it is possible to It is an object of the present invention to provide a method for manufacturing a super semiconductor device without fear of film peeling even during cycles.

[発明の構成] (問題点を解決するための手段) 本発明の超半導体装置の製造方法は、基板上にペロブス
カイト型の酸化物超電導体の被膜を形成してなる超半導
体装置を製造するにあたり、前記酸化物超電導体の被膜
を、この酸化物超電導体を構成する各元素を含む複数の
有機金属化合物を所定の比率で含有する有機溶液を前記
基板上に塗布し、この塗膜を加熱することにより前記各
元素を含む複数の有機金属化合物を熱分解し、次いで酸
素含有雰囲気中で700℃〜1000℃の温度で熱処理
することにより形成することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a super-semiconductor device of the present invention includes steps for manufacturing a super-semiconductor device in which a film of a perovskite-type oxide superconductor is formed on a substrate. , applying an organic solution containing a predetermined ratio of a plurality of organometallic compounds containing each element constituting the oxide superconductor onto the substrate, and heating the coating film. Accordingly, it is characterized in that it is formed by thermally decomposing a plurality of organometallic compounds containing each of the above-mentioned elements, and then heat-treating it at a temperature of 700° C. to 1000° C. in an oxygen-containing atmosphere.

本発明における酸化物超電導体は、希土類元素を含有し
ペロブスカイト型構造を有する酸化物超電導体であって
、超電導状態を実現できればよく、ABa  Cu  
O系(δは酸素欠陥を表し通常1237−δ 以下、Aは、Y、 Yb、 llo、 Dy、 Eu、
 Er、 Tn、 Lu ; Baの一部はS「等で置
換可能)等の酸素欠陥を有する欠陥へロブスカイト型、
5r−La−Cu−0系等の層状へロブスカイト型等の
広義にペロブスカイト構造を有する酸化物とする。また
希土類元素も広義の定義とし、Sc、Yおよびランタン
系を含むものとする0代表的な系としてY−Ba−Cu
−0系のほかに、5c−Ba−Cu−0系、5r−La
−Cu−0系、さらにSrをBa、Ca ″C′置換し
た系等が挙げられる。ペロブスカイト型酸化物超電導体
を構成する元素は、基本的に化学量論比の組成となるよ
うに混合するが、多少製造条件等との関係等でずれてい
ても構わない0例えばY−Ba−Cu−0系ではY 1
11G+に対しBa 2nol 、 Cu 3nolが
標準組成であるが、実用上はY O,6〜1.4 no
1%、Ba1.5〜3.0 no1%、Cu 2.0〜
4.0 llol%程度のずれは問題ない。
The oxide superconductor in the present invention only needs to be an oxide superconductor containing a rare earth element and having a perovskite structure, and can realize a superconducting state.
O-based (δ represents oxygen defect, usually 1237-δ or less, A is Y, Yb, llo, Dy, Eu,
Er, Tn, Lu; A part of Ba can be replaced with S (etc.);
The oxide is an oxide having a perovskite structure in a broad sense, such as a layered herovskite type such as a 5r-La-Cu-0 system. Rare earth elements are also broadly defined to include Sc, Y, and lanthanum. A representative system is Y-Ba-Cu.
-0 series, 5c-Ba-Cu-0 series, 5r-La
Examples include -Cu-0 system, and systems in which Sr is replaced with Ba and Ca ``C'.The elements constituting the perovskite oxide superconductor are basically mixed to have a stoichiometric composition. However, it does not matter if it deviates slightly due to the manufacturing conditions etc. For example, in the Y-Ba-Cu-0 system, Y 1
The standard composition for 11G+ is Ba 2nol and Cu 3nol, but in practice YO, 6 to 1.4 no
1%, Ba1.5~3.0 no1%, Cu 2.0~
A deviation of about 4.0 llol% is not a problem.

本発明の超半導体装置の製造方法についてさらに詳述す
ると、まず上述した酸化物超電導体を構成する各元素を
含む複数の有機金属化合物を所定の比率で含有する有機
溶液を作製する。この溶液に使用する有機金属化合物と
しては、例えばオクチル酸塩やナフテン酸塩等のカルボ
ン酸塩が挙げられる。この溶液は、例えば’/−Ba−
Cu−0系の酸化物超電導体であれば、これらの元素を
含む各有機金属化合物をこれらの元素量として前述した
一般式に対して化学量論比の組成となるようにアルコー
ルやキシレン等の有機溶剤に溶解することにより得られ
る。なお、上記の各有機金属化合物の混合比は、多少製
造条件等との関係で変えることもでき、例えばY−Ba
−Cu−0系では、Y 1101に対してBa2tmo
 I、Cu3no IがI準組成であるが、実用上はY
を基準として他の成分が±3OX程度ずれても問題は生
じない。
To explain in more detail the method for manufacturing a supersemiconductor device of the present invention, first, an organic solution containing a predetermined ratio of a plurality of organometallic compounds containing the respective elements constituting the oxide superconductor described above is prepared. Examples of the organometallic compound used in this solution include carboxylates such as octylate and naphthenate. This solution is, for example, '/-Ba-
In the case of a Cu-0-based oxide superconductor, each organometallic compound containing these elements is mixed with alcohol, xylene, etc. so that the amount of these elements is stoichiometric with respect to the general formula described above. Obtained by dissolving in an organic solvent. The mixing ratio of each of the above-mentioned organometallic compounds can be changed depending on the manufacturing conditions, for example, Y-Ba
-Cu-0 system, Ba2tmo for Y1101
I, Cu3no I is I quasi-composition, but in practice it is Y
No problem will occur even if the other components deviate by about ±3OX based on the reference value.

次いで、このようにして作製した各有機金属化合物を含
む溶液を基板上に塗布する。この基板としては、面方向
の線膨脹係数が5X10−’/に〜25×10−’/に
のものが好ましい、基板の面方向のi膨張係数が5xl
O−’/に〜25X10−’/にの範囲外になると酸化
物超電導体との線膨脹係数の差が大きくなりすぎ、被膜
が基板から剥離し易くなる。このような基板の素材とし
ては、例えば次のようなものがあげられる。
Next, a solution containing each of the organometallic compounds prepared in this manner is applied onto the substrate. This substrate preferably has a linear expansion coefficient of 5x10-'/ to 25x10-'/, and an i-expansion coefficient of 5xl in the planar direction.
If it is outside the range of O-'/ to 25X10-'/, the difference in coefficient of linear expansion with the oxide superconductor will become too large, and the coating will easily peel off from the substrate. Examples of materials for such a substrate include the following:

(基板)      (線膨脹係数) LiNb0.      15.4x 1G−’ /K
LiTa03          ie、IX 10−
’ /にZrO2ax 1G−’ n Al20 3          8x 10−’ l
lAg                    19
.3X  10−’  ノIPd          
           12X10−’  11次に、
このようにして形成した被膜を加熱することにより熱分
解し、酸化物B電導体を構成する各元素の酸化物を形成
する。この熱分解は、例えば被膜を形成しな基板をホッ
トプレートのような間接加熱器上で加熱することにより
行える。また、予め所定の温度に加熱した基板上に前述
した各元素の有機金属化合物を含む溶液を直接塗布する
ことによっても同様に行える。
(Substrate) (Linear expansion coefficient) LiNb0. 15.4x 1G-' /K
LiTa03 ie, IX 10-
' / ZrO2ax 1G-' n Al20 3 8x 10-' l
lAg 19
.. 3X 10-' IPd
12X10-' 11th,
The film thus formed is thermally decomposed by heating to form oxides of each element constituting the oxide B conductor. This thermal decomposition can be carried out, for example, by heating the substrate on which the coating is not formed on an indirect heater such as a hot plate. Alternatively, the same method can be performed by directly applying a solution containing the organometallic compound of each element described above onto a substrate that has been heated to a predetermined temperature in advance.

そして、前述した各元素を含む複数の有機金属化合物を
含む溶液の塗布と熱分解を繰返し行い所望の膜厚にする
Then, application of a solution containing a plurality of organometallic compounds containing the aforementioned elements and thermal decomposition are repeated to obtain a desired film thickness.

この後、700℃〜1000℃の酸素含有雰囲気中で熱
処理することにより酸化物超電導体を構成する各元素の
酸化物の混在した被膜を結晶化させ、酸化物超電導体の
被膜を得る。
Thereafter, heat treatment is performed in an oxygen-containing atmosphere at 700° C. to 1000° C. to crystallize the film in which oxides of various elements constituting the oxide superconductor are mixed, thereby obtaining a film of the oxide superconductor.

二の酸化物超電導体の被膜の厚さは、100人〜lX1
G6人の範囲が好ましく、被膜の厚さが100人未満で
あると磁場浸透により所定の超電導特性が得られなくな
り、また1×106人を越えてもそれ以上の超電導特性
の向上が得られなくなる上に、脆くなり基板から剥離し
たり、クラックが生じ易くなる。
The thickness of the film of the second oxide superconductor is 100 to 1×1
A range of G6 people is preferable; if the thickness of the coating is less than 100 people, it will not be possible to obtain the desired superconducting properties due to magnetic field penetration, and if it exceeds 1 x 106 people, no further improvement in superconducting properties will be obtained. Moreover, it becomes brittle and easily peels off from the substrate or cracks occur.

(作 用) 本発明の超半導体装置の製造方法では、ペロブスカイト
型の酸化物超電導体を構成する各元素を含む複数の有機
金属化合物を所定の比率で含有する溶液の塗布、焼成に
より酸化物超電導体の被膜を形成しているので、容易に
膜厚および組成の均一な被膜を形成することができる。
(Function) In the method for manufacturing a super-semiconductor device of the present invention, oxide superconductivity is achieved by applying and baking a solution containing a plurality of organometallic compounds containing each element constituting a perovskite-type oxide superconductor in a predetermined ratio. Since a film is formed on the body, a film with uniform thickness and composition can be easily formed.

また、面方向の線膨脹係数が5X 1G−’ /に〜2
5x 10−’ /Hの基板を使用することにより、得
られる酸化物超電導体被膜との線膨脹係数が近似し、こ
れにより基板と被膜との接合界面の冷熱サイクルによる
ストレスが小さくなり、密着性に優れたものとなる。
In addition, the coefficient of linear expansion in the plane direction is 5X 1G-'/~2
By using a substrate of 5x 10-'/H, the coefficient of linear expansion is similar to that of the resulting oxide superconductor coating, which reduces the stress caused by thermal cycles at the bonding interface between the substrate and the coating, and improves the adhesion. Becomes excellent.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例 まず、(C7fhs Coo) 3Y粉末、(Cr  
lhs C(IQ) 2Ba粉末および(C7H15C
OO)2 Cu粉末を、Y:Ba;Cu=1:2:3の
モル比となるように混合し、この混合粉をキシレン中に
溶解させる。
Example First, (C7fhs Coo) 3Y powder, (Cr
lhs C(IQ) 2Ba powder and (C7H15C
OO)2 Cu powder is mixed in a molar ratio of Y:Ba;Cu=1:2:3, and this mixed powder is dissolved in xylene.

次に、この溶液をスプレー法により肉厚0.Inのジル
コニアからなる基板上に塗布し、次いでこの基板をホッ
トプレート上に載置し、約200℃の温度で塗膜の熱分
解を行う、そして、結晶化後の被膜の厚さがlX1G’
人とな4ように、この溶液の塗布と熱分解を繰返し行う
Next, this solution was sprayed to a thickness of 0. In is coated on a substrate made of zirconia, then this substrate is placed on a hot plate, and the coating is thermally decomposed at a temperature of about 200°C, and the thickness of the coating after crystallization is 1×1G'.
The application and thermal decomposition of this solution are repeated, just as humans do.

この後、この熱分解による。被膜を形成した基板を酸素
中で約900°Cの温度により24時間熱処理し、一般
式 %式% で示されるペロブスカイト型の酸化物超電導体からなる
被膜を有する超半導体装置を得た。
This is followed by this thermal decomposition. The substrate on which the film was formed was heat treated in oxygen at a temperature of about 900° C. for 24 hours to obtain a supersemiconductor device having a film made of a perovskite-type oxide superconductor represented by the general formula %.

このようにして得た超半導体装置の超電導特性を測定し
たところ、臨界温度は90にであった。
When the superconducting properties of the supersemiconductor device thus obtained were measured, the critical temperature was found to be 90°C.

次に、この超半導体装置を超電導体被膜の形成されてい
る面を外側にして曲率半径3O00 mi+に曲げ被膜
にストレスを加えた状態で、液体窒素中への浸漬と常温
への復帰の冷熱サイクルを10回加えたが、超電導体被
膜面にクラックの発生は認められなかった。
Next, this super-semiconductor device was bent to a radius of curvature of 3000 mi+ with the surface on which the superconductor coating was formed outward, and with stress applied to the coating, it was subjected to a cooling cycle of immersion in liquid nitrogen and return to room temperature. was applied 10 times, but no cracks were observed on the surface of the superconductor coating.

[発明の効果] 以上の実施例からも明らかなように、本発明の超半導体
装置の製造方法によれば、ペロブスカイト型の酸化物超
電導体を構成する各元素を含む複数の有機金属化合物を
所定の比率で含有する溶液の塗布、焼成により被膜を形
成しているので、容易に膜厚および組成の均一な酸化物
超電導体被膜を有する超半導体装置が得られる。
[Effects of the Invention] As is clear from the above examples, according to the method for manufacturing a supersemiconductor device of the present invention, a plurality of organometallic compounds containing each element constituting a perovskite-type oxide superconductor are prepared in a predetermined manner. Since the film is formed by coating and baking a solution containing the oxide at a ratio of 1 to 2, it is easy to obtain a supersemiconductor device having an oxide superconductor film with a uniform thickness and composition.

また、基板として面方向の線膨脹係数が5×10−’/
に〜25x 1G−’ /にの素材を使用することによ
り、得られる酸化物超電導体被膜とのvA!m脹係数が
近似し、これにより基板と被膜との接合界面の冷熱サイ
クルによるひずみの発生が小さく、剥離やクラックの発
生のおそれがなく、長期にわたって良好な特性を維持す
ることができる超半導体装置が得られる。
In addition, the linear expansion coefficient in the plane direction of the substrate is 5 × 10-'/
vA with the oxide superconductor film obtained by using a material of ~25x 1G-'/2! A super-semiconductor device with similar expansion coefficients, which causes less strain due to cooling and heating cycles at the bonding interface between the substrate and the film, eliminates the risk of peeling or cracking, and maintains good characteristics over a long period of time. is obtained.

Claims (1)

【特許請求の範囲】 (1)基板上にペロブスカイト型の酸化物超電導体の被
膜を形成してなる超電導体装置を製造するにあたり、 前記酸化物超電導体の被膜を、この酸化物超電導体を構
成する各元素を含む複数の有機金属化合物を所定の比率
で含有する有機溶液を前記基板上に塗布し、この塗膜を
加熱することにより前記各元素を含む複数の有機金属化
合物を熱分解し、次いで酸素含有雰囲気中で700℃〜
1000℃の温度で熱処理することにより形成すること
を特徴とする超電導体装置の製造方法。 (2)前記酸化物超電導体は、希土類元素を含有するペ
ロブスカイト型の酸化物超電導体であることを特徴とす
る特許請求の範囲第1項記載の超電導体装置の製造方法
。 (3)前記酸化物超電導体は、ABa_2Cu_3O_
7_−_δ系の酸化物超電導体(Aは、Y、Yb、Ho
、Dy、Eu、Er、Tm、およびLuから選ばれた元
素。)であることを特徴とする特許請求の範囲第1項ま
たは第2項記載の超半導体装置の製造方法。(4)前記
酸化物超電導体は、Y−Ba−Cu−O系であることを
特徴とする特許請求の範囲第3項記載の超電導体装置の
製造方法。 (5)前記基板の面方向の線膨脹係数が、5×10_−
_6/K〜25×10_−_6/Kであることを特徴と
する特許請求の範囲第1項ないし第4項のいずれか1項
記載の超電導体装置の製造方法。 (6)前記基板が、LiNbO_3、LiTaO_3、
ジルコニア、安定化ジルコニア、AgおよびPdから選
ばれたものからなることを特徴とする特許請求の範囲第
5項記載の超電導体装置の製造方法。 (7)前記酸化物超電導体を構成する各元素を含む有機
金属化合物が、カルボン酸塩であることを特徴とする特
許請求の範囲第1項ないし第6項のいずれか1項記載の
超電導体装置の製造方法。
[Claims] (1) In manufacturing a superconductor device formed by forming a film of a perovskite-type oxide superconductor on a substrate, the film of the oxide superconductor constitutes the oxide superconductor. Coating an organic solution containing a predetermined ratio of a plurality of organometallic compounds containing each element on the substrate, and thermally decomposing the plurality of organometallic compounds containing each of the elements by heating this coating film, Then at 700°C in an oxygen-containing atmosphere
A method for manufacturing a superconductor device, characterized in that the superconductor device is formed by heat treatment at a temperature of 1000°C. (2) The method for manufacturing a superconductor device according to claim 1, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element. (3) The oxide superconductor is ABa_2Cu_3O_
7_-_δ-based oxide superconductor (A is Y, Yb, Ho
, Dy, Eu, Er, Tm, and Lu. ) The method for manufacturing a super semiconductor device according to claim 1 or 2, characterized in that: (4) The method for manufacturing a superconductor device according to claim 3, wherein the oxide superconductor is Y-Ba-Cu-O based. (5) The linear expansion coefficient in the plane direction of the substrate is 5×10_-
The method for manufacturing a superconductor device according to any one of claims 1 to 4, characterized in that the temperature is _6/K to 25×10_−_6/K. (6) The substrate is LiNbO_3, LiTaO_3,
6. The method for manufacturing a superconductor device according to claim 5, wherein the material is selected from zirconia, stabilized zirconia, Ag, and Pd. (7) The superconductor according to any one of claims 1 to 6, wherein the organometallic compound containing each element constituting the oxide superconductor is a carboxylate. Method of manufacturing the device.
JP62114323A 1987-05-11 1987-05-11 Manufacture of superconductor device Pending JPS63279528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114323A JPS63279528A (en) 1987-05-11 1987-05-11 Manufacture of superconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114323A JPS63279528A (en) 1987-05-11 1987-05-11 Manufacture of superconductor device

Publications (1)

Publication Number Publication Date
JPS63279528A true JPS63279528A (en) 1988-11-16

Family

ID=14634960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114323A Pending JPS63279528A (en) 1987-05-11 1987-05-11 Manufacture of superconductor device

Country Status (1)

Country Link
JP (1) JPS63279528A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299018A (en) * 1987-05-29 1988-12-06 Sumitomo Electric Ind Ltd Manufacture of superconductive material
JPS64615A (en) * 1987-06-23 1989-01-05 Agency Of Ind Science & Technol Manufacture of oxide superconducting wire material
JPS6419783A (en) * 1987-06-26 1989-01-23 Hewlett Packard Yokogawa Manufacture of superconductor film
JPH03101177A (en) * 1989-09-13 1991-04-25 Sumitomo Cement Co Ltd Formation of thin film superconductor pattern
JP2012003966A (en) * 2010-06-17 2012-01-05 Sumitomo Electric Ind Ltd Manufacturing method of oxide superconducting thin film
JP2012003961A (en) * 2010-06-17 2012-01-05 Sumitomo Electric Ind Ltd Manufacturing method of oxide superconducting thin film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299018A (en) * 1987-05-29 1988-12-06 Sumitomo Electric Ind Ltd Manufacture of superconductive material
JPS64615A (en) * 1987-06-23 1989-01-05 Agency Of Ind Science & Technol Manufacture of oxide superconducting wire material
JPS6419783A (en) * 1987-06-26 1989-01-23 Hewlett Packard Yokogawa Manufacture of superconductor film
JPH03101177A (en) * 1989-09-13 1991-04-25 Sumitomo Cement Co Ltd Formation of thin film superconductor pattern
JP2012003966A (en) * 2010-06-17 2012-01-05 Sumitomo Electric Ind Ltd Manufacturing method of oxide superconducting thin film
JP2012003961A (en) * 2010-06-17 2012-01-05 Sumitomo Electric Ind Ltd Manufacturing method of oxide superconducting thin film

Similar Documents

Publication Publication Date Title
US7625843B2 (en) Method for manufacturing a metal organic deposition precursor solution using super-conduction oxide and film superconductor
JPS63279528A (en) Manufacture of superconductor device
JPS63279527A (en) Manufacture of superconductor device
JPS63298921A (en) Manufacture of superconductive wire material
JPS63298922A (en) Manufacture of superconductive wire material
JP3061634B2 (en) Oxide superconducting tape conductor
Matsubara et al. Preparation of textured YBCO films using all-iodide precursors
JPH03109204A (en) Production of superconducting thin film
JPH02217306A (en) Production of oxide superconductor
JP3053238B2 (en) Method for producing Bi-based oxide superconductor
JPS63239740A (en) Manufacture for superconductive compound thin film
Araki et al. Dip-coated YBa2Cu3O7− x film by metalorganic deposition using trifluoroacetate
JPS63279519A (en) Superconductor device
Sathyamurthy et al. Processing of Y123 coated conductors using metal organic decomposition
JPH01215702A (en) Production of superconducting thin film
JPH02102123A (en) Production of superconductor
JP2847769B2 (en) Method for producing Bi-based superconductor thin film
JPH01203258A (en) Production of oxide superconducting sintered body
JP3668510B2 (en) Method for producing Bi-based oxide superconductor
EP0335310A2 (en) Formation of superconducting metal oxide film by pyrolysis
JPH01126208A (en) Production of superconducting thin film
JPH01138129A (en) Production of oxide superconductor thin film
JPH01219019A (en) Production of oxide superconductor film
JPH0477347A (en) Oxide superconducting laminate and its production
JPS63303810A (en) Ceramic superconductor