JPS63298921A - Manufacture of superconductive wire material - Google Patents

Manufacture of superconductive wire material

Info

Publication number
JPS63298921A
JPS63298921A JP62133145A JP13314587A JPS63298921A JP S63298921 A JPS63298921 A JP S63298921A JP 62133145 A JP62133145 A JP 62133145A JP 13314587 A JP13314587 A JP 13314587A JP S63298921 A JPS63298921 A JP S63298921A
Authority
JP
Japan
Prior art keywords
oxide superconductor
superconducting wire
wire
manufacturing
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62133145A
Other languages
Japanese (ja)
Inventor
Hiromi Nibu
丹生 ひろみ
Shin Fukushima
福島 伸
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62133145A priority Critical patent/JPS63298921A/en
Publication of JPS63298921A publication Critical patent/JPS63298921A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemically Coating (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make the thickness and the composition of a membrane uniform easily by spreading a solution including the metallic salts of elements which compose a perovskite structure oxide superconductor at a specific ratio, and baking up to form a membrane of an oxide superconductor. CONSTITUTION:A water solution or an organic solution including metallic silts of elements which compose an oxide superconductor in a specific ratio is made. As the oxide superconductor, a perovskite structure oxide superconductor including rare earth elements, or the like is used. Then, the solution including the metallic salts is spread on a metallic wire. After that, the membrane formed in such a way is heated and pyrolized, and oxides of elements which compose the oxide superconductor are formed. Then, by the heat-treatment in the ambiance including oxygen at 700 to 1000 deg.C, the membrane including the mixture of oxides of elements which compose the oxide superconductor is crystallized, and a membrane of the oxide superconductor with the uniform thickness and composition is obtained. And by using a metallic wire if the rate of linear expansion, 5 X 10<-6>/K to 25 X 10<-6>/K, is the metallic wire, the adhesion can be improved.

Description

【発明の詳細な説明】 [発明の1]的] (産業上の利用分野) 本発明は、ペロブスカイト型の酸化物超電導体被膜を用
いた超電導線材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention 1] (Industrial Application Field) The present invention relates to a method for manufacturing a superconducting wire using a perovskite-type oxide superconductor coating.

(従来の技術) 近年、Ba−La−C0−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われテ
ィる(Z、Phys、B Condensed Mat
ter64、189−193(1986))。その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ペロブスカイト型(ABa2Cu30□−δ型(δ
は酸素欠陥を表わし通常は1以下の数、Aは、Y、 Y
b、 tlo、 Dy、 Eu、 [r、 1mおよび
1.uから選ばれた元素)の酸化物超電導体は、臨界温
度■ が90に以上と液体窒素以、ヒの高い温度を示す
ため、非常に有望な月利として注目されている(Phy
s、Rev、Lett、vol、 58 No、9.9
08−910) 。
(Prior Art) In recent years, since it was announced that Ba-La-C0-0 layered perovskite oxides may have a high critical temperature, research on oxide superconductors has been carried out in various places. Tiru (Z, Phys, B Condensed Mat
ter64, 189-193 (1986)). Among them, defective perovskite type (ABa2Cu30□-δ type (δ
represents an oxygen defect and is usually a number of 1 or less, A is Y, Y
b, tlo, Dy, Eu, [r, 1m and 1. Oxide superconductors (elements selected from
s, Rev, Lett, vol, 58 No, 9.9
08-910).

このような酸化物超電導体を、例えば導線として使用す
る場合には、金属管に封入して線材化したり、金属線上
に被膜をパターン状に形成して使用することが考えられ
る。
When such an oxide superconductor is used, for example, as a conductive wire, it may be sealed in a metal tube and made into a wire, or it may be used by forming a coating on the metal wire in a pattern.

(発明が解決しようとする問題点) ところで、上述した酸化物超電導体の使用方法のうち、
金属線上に酸化物超電導体からなる被膜を形成して使用
する方法では、蒸着法ヤスバッタリング法により被膜を
形成することが考えられるが真空装置等の特別の装置を
必要とし、製造コストが高くなるという難点がある。
(Problems to be solved by the invention) By the way, among the methods of using the oxide superconductor mentioned above,
In the method of forming and using a film made of oxide superconductor on a metal wire, it is possible to form the film by vapor deposition method or Yasbuttering method, but this requires special equipment such as a vacuum device and the manufacturing cost is high. There is a problem with that.

また、前述した酸化物超電導体は、線膨脹係数が16X
10−’/Kと、通常の金属のそれに比べて1桁程度大
きいため、臨界温度までの冷熱サイクルを繰り返した場
合、金属線上から剥離してしまうおそれがあり、密着性
に乏しいという難点もある。
Furthermore, the aforementioned oxide superconductor has a linear expansion coefficient of 16X.
10-'/K, which is about an order of magnitude higher than that of ordinary metals, so if repeated heating and cooling cycles up to the critical temperature are carried out, there is a risk of it peeling off from the metal wire, and there is also the problem of poor adhesion. .

本発明はこのような従来の難点を解消すべくなされたも
ので、金属線上へのペロブスカイト型酸化物超電導体被
膜の形成が容易で、かつ得られる被膜の膜厚および組成
が均一で、冷熱サイクルによっても被膜剥離のおそれの
ない超・:1導線材を製造する方法を提供することを目
的とする。
The present invention has been made to solve these conventional difficulties, and it is easy to form a perovskite oxide superconductor film on a metal wire, and the resulting film has a uniform thickness and composition, and is suitable for heating and cooling cycles. It is an object of the present invention to provide a method for manufacturing a super-1 conductive wire material without fear of film peeling even when the film is peeled off.

[発明の構成] (問題点を解決するための手段) 本発明の超電導線材の製造方法は、金属線上にペロブス
カイト型の酸化物超電導体の被膜を形成してなる超電導
線材を製造するにあたり、前記酸化物超電導体を構成す
る各元素の金属塩を所定の比率で含有する溶液を、前記
金属線上に塗布し、この塗膜を加熱することにより眞記
各元素の金属塩を熱分解し、次いで、酸素含有雰囲気中
で100℃〜1000℃の温度で熱処理して前記酸化物
超電導体の被膜を形成することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a superconducting wire of the present invention includes the steps described above in manufacturing a superconducting wire formed by forming a film of a perovskite-type oxide superconductor on a metal wire. A solution containing metal salts of each element constituting the oxide superconductor in a predetermined ratio is applied onto the metal wire, the coating film is heated to thermally decompose the metal salts of each element, and then The method is characterized in that the film of the oxide superconductor is formed by heat treatment at a temperature of 100° C. to 1000° C. in an oxygen-containing atmosphere.

本発明における酸化物超電導体は、希土類元素を含有し
ベロアスカイト型構造を有する酸化物超電導体であって
、超電導状態を実現できればよく、へBa2Cu30□
−δ系(δは酸素欠陥を表し通常1以下、Aは、Y、 
Sc、 Nd、 Gd、 Sm、 Yb、 La、 N
o、 Dy、 Eu、 Er。
The oxide superconductor in the present invention is an oxide superconductor that contains a rare earth element and has a velorskite structure, and can realize a superconducting state.
-δ system (δ represents oxygen defect and is usually 1 or less, A is Y,
Sc, Nd, Gd, Sm, Yb, La, N
o, Dy, Eu, Er.

丁mおよびLuから選ばれた元素;88の−・部はsr
等の他のアルカリ土類金属元素で置換可能)等の酸素欠
陥を有する欠陥ぺ11ブスカイト型、5r−La−Cu
−0系等の層状ペロブスカイト型等の広義にペロブスカ
イト構造を右する酸化物とする。また希土類元素も広義
の定義とし、Sc、Yおよびランタン系をaむものとす
る。代表的な系としてY−Ba−Cu−0系のほかに、
5c−Ba−Cu−0系、5r−La−Cu−0系、さ
らにSrをBa、Caで置換した系等が挙げられる。ベ
ロアスカイト型酸化物超電導体を構成する元素は、基本
的に化学量論比の組成となるように混合するが、多少製
造条件等との関係等でずれていても構わない。例えばY
−Ba−Cu−0系ではY 1molに対しBa 2m
ol 、 Cu 3molが標準組成であるが、実用上
はYo、6〜1.4 mo1%、Ba  1.5〜3.
0 lllol%、Cu2.0〜4.0 mo1%程度
のずれは問題ない。
Element selected from Dingm and Lu; - part of 88 is sr
5r-La-Cu
It is an oxide having a perovskite structure in a broad sense, such as a layered perovskite type such as -0 type. Rare earth elements are also broadly defined to include Sc, Y, and lanthanum-based elements. In addition to the Y-Ba-Cu-0 system as a representative system,
Examples include 5c-Ba-Cu-0 system, 5r-La-Cu-0 system, and systems in which Sr is replaced with Ba or Ca. The elements constituting the velorskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there may be a slight deviation depending on the manufacturing conditions, etc. For example, Y
-Ba-Cu-0 system: 2m of Ba per 1mol of Y
The standard composition is 3 mol of Yo, 6 to 1.4 mol of Cu, and 1.5 to 3 mol of Ba.
A deviation of about 0 llol% and Cu2.0 to 4.0 mo1% is not a problem.

本発明の超電導線材の製造方法についてさらに詳述する
と、まず上述した酸化物超電導体を構成する各元素の金
属塩を所定の比率で含有Jる水溶液または有機溶液を作
製する。この溶液に使用づる金属塩としては、容易に熱
分解可能なハロゲン化物や硝酸塩等が好ましい。この溶
液は、例えばY−Ba−Cu−0系の酸化物超電導体で
あれば、これらの元素を含む各金属塩をこれらの元素量
として面述した一般式に対して化学量論比の組成となる
ように水またはアルコールのような有機溶剤に溶解する
ことにより得られる。
To explain in more detail the method for manufacturing the superconducting wire of the present invention, first, an aqueous solution or an organic solution containing metal salts of each element constituting the above-mentioned oxide superconductor in a predetermined ratio is prepared. The metal salt used in this solution is preferably a halide or nitrate that can be easily thermally decomposed. For example, in the case of a Y-Ba-Cu-0 based oxide superconductor, this solution has a composition in a stoichiometric ratio with respect to a general formula in which each metal salt containing these elements is listed as the amount of these elements. It can be obtained by dissolving it in water or an organic solvent such as alcohol.

次いで、このようにして作製した各金属塩を含む溶液を
金属線上に塗布する。この金属線としては、線膨脹係数
が5X10−6/K〜25X 10−’ /Kのものが
好ましい。金属線の線flr!A係数が5X10−6/
K〜25X 10−6/Kの範囲外になると酸化物超電
導体との線膨脹係数の差が大きくなりすぎ、被膜が金属
線から剥離し易くなる。
Next, a solution containing each of the metal salts prepared in this manner is applied onto the metal wire. The metal wire preferably has a linear expansion coefficient of 5X10-6/K to 25X10-'/K. Metal wire line flr! A coefficient is 5X10-6/
If it is outside the range of K to 25X 10-6/K, the difference in linear expansion coefficient with the oxide superconductor will become too large, and the coating will easily peel off from the metal wire.

このような金属線の素材としては、例えば、A(](線
膨脹係数19.3X 10−’ /K)があげられる。
An example of the material for such a metal wire is A(] (linear expansion coefficient: 19.3X 10-' /K).

次に、このようにして形成した被膜を加熱することによ
り熱分解し、酸化物超電導体を構成する各元素の酸化物
を形成する。この熱分解は、例えば被膜を形成した金属
線をホットプレートのような間接加熱器上で加熱するこ
とにより行うことができる。また、予め所定の温度に加
熱した金属線上に前述した各元素の金属塩を含む溶液を
直接塗布することによっても同様に行える。
Next, the film thus formed is thermally decomposed by heating to form oxides of each element constituting the oxide superconductor. This thermal decomposition can be performed, for example, by heating the coated metal wire on an indirect heater such as a hot plate. Alternatively, the same method can be performed by directly applying a solution containing the metal salts of the aforementioned elements onto a metal wire that has been heated to a predetermined temperature in advance.

そして、前述した各元素の金属塩を含む溶液の塗布と熱
分解とを、必要に応じて繰返し行い所望の膜厚にする。
Then, the application of the solution containing the metal salt of each element described above and the thermal decomposition are repeated as necessary to obtain a desired film thickness.

この後、700℃〜1000℃の酸素含有雰囲気中で熱
処理することにより酸化物超電導体を構成する各元素の
酸化物の混在した被膜を結晶化させ、酸化物超電導体の
被膜を得る。
Thereafter, heat treatment is performed in an oxygen-containing atmosphere at 700° C. to 1000° C. to crystallize the film in which oxides of various elements constituting the oxide superconductor are mixed, thereby obtaining a film of the oxide superconductor.

この酸化物超電導体の被膜の厚さは、100人〜IX 
10’入の範囲が好ましい。被膜のI7ざが 100人
未満であると磁場浸透により所定の超電導特性が得にく
くなり、また IX 10’人を越えてもそれ以上の超
電導特性の向上が得られなくなる一Lに、脆くなり金属
線から剥離したり、クラックが生じ易くなる。
The thickness of the film of this oxide superconductor is 100~IX
A range of 10' is preferable. If the I7 of the coating is less than 100, it will be difficult to obtain the desired superconducting properties due to magnetic field penetration, and even if the IX of the coating exceeds 10, no further improvement in superconducting properties will be obtained. It is likely to peel off from the wire or cause cracks.

(作 用) 本発明の超電導線材の製造方法では、ペロブスカイト型
の酸化物足111f 1体を構成する各元素の金属塩を
所定の比率で含有する溶液の塗布、焼成により酸化物超
電導体の被膜を形成しているので、容易に膜厚J3よび
組成の均一な被膜を形成することができる。また、面方
向の線膨脹係数が5×104/K〜25x10−’/K
の金属線を使用することにより、得られる酸化物超電導
体被膜との線Il!脹係数が近似し、これにより金属線
と被膜との接合界面の冷熱サイクルによるストレスが小
さくなり、密着性に優れたものとなる。
(Function) In the method for producing a superconducting wire of the present invention, a coating of an oxide superconductor is formed by applying a solution containing a predetermined ratio of metal salts of each element constituting the perovskite-type oxide legs 111f and firing. Therefore, a film having a uniform thickness J3 and a uniform composition can be easily formed. In addition, the linear expansion coefficient in the plane direction is 5 x 104/K ~ 25 x 10-'/K
By using the metal wire of Il! with the obtained oxide superconductor coating, The expansion coefficients are similar, which reduces the stress caused by thermal cycles at the bonding interface between the metal wire and the coating, resulting in excellent adhesion.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例 まずY(NO3) 3 ・6th O粉末、Ba (N
O3) 2粉末およびCu (NO3) 2 ・311
20粉末を、’+’:Ba:cu=1:2:3のモル比
となるように混合し、この混合粉を水中に溶解させた。
Example First, Y(NO3) 3 .6th O powder, Ba(N
O3) 2 powder and Cu (NO3) 2 ・311
20 powders were mixed at a molar ratio of '+':Ba:cu=1:2:3, and this mixed powder was dissolved in water.

次に、この溶液をスプレー法により直径1+nのへ〇線
上に塗布し、次いでこのAg線をホットプレート上に載
置し、約650℃の温度で塗膜を加熱して熱分解させた
。この溶液の塗布と熱分解とを、結晶化侵の被膜の厚さ
が1XIO’人となるように、繰返し行い、最少に、こ
の熱分解による被膜を形成したAg線を酸素中で約90
0℃の温喰により24時間熱処理して、 一般式 %式% で示されるべし】ブスカイト型の酸化物超電導体からな
る被膜を有する超電導線材を得た。
Next, this solution was applied onto a circle wire having a diameter of 1+n by a spray method, and then this Ag wire was placed on a hot plate, and the coating film was heated at a temperature of about 650° C. to thermally decompose it. Application of this solution and thermal decomposition are repeated so that the thickness of the crystallized film becomes 1XIO', and at a minimum, the Ag wire with the film formed by this thermal decomposition is heated in oxygen for about 90°C.
A superconducting wire having a film made of a buskyte-type oxide superconductor was obtained by heat treatment for 24 hours in a warm oven at 0° C., as expressed by the general formula %.

このようにして得た超電導線材の超電導特性を測定した
ところ、臨界温度は90にであった。
When the superconducting properties of the superconducting wire thus obtained were measured, the critical temperature was 90°C.

次に、この超電導線材を曲率半径3000 uに曲げ被
膜にストレスを加えた状態で、液体窒素中への浸漬と常
温への復帰の冷熱サイクルを10回加えたが、超電導体
被膜面にクラックの発生は認められなかった。
Next, this superconducting wire was bent to a radius of curvature of 3000 u, stress was applied to the coating, and a cooling/heating cycle of immersion in liquid nitrogen and return to room temperature was applied 10 times, but no cracks appeared on the surface of the superconducting coating. No occurrence was observed.

[発明の効果] 以上の実施例からも明らかなように、本発明の超電導線
材の製造方法によれば、ペロブスカイト型の酸化物超電
導体を構成する各元素の金属塩を所定の比率で含有する
溶液の塗布、焼成により被膜を形成しているので、容易
に膜厚および組成の均一な酸化物超電導体被膜を有する
超電導線材が得られる。
[Effects of the Invention] As is clear from the above examples, according to the method for producing a superconducting wire of the present invention, metal salts of each element constituting a perovskite-type oxide superconductor are contained in a predetermined ratio. Since the coating is formed by applying a solution and firing, a superconducting wire having an oxide superconductor coating with a uniform thickness and composition can be easily obtained.

また、実施例に示したように、金属線として線膨脹係数
が5X106/K〜25X 106/Kの素材を使用す
るようにずれば、得られる酸化物超電導体被膜との線膨
脹係数が近似し、これにより金属線と被膜との接合界面
の冷熱サイクルによるひずみの発生が小さく、剥離やク
ラックの発生のおそれがなく、長期にわたって良好な特
性を維持することができる超電導線材が得られる。
Furthermore, as shown in the example, if a material with a linear expansion coefficient of 5X106/K to 25X106/K is used as the metal wire, the linear expansion coefficient will be similar to that of the obtained oxide superconductor coating. As a result, a superconducting wire can be obtained in which the strain caused by thermal cycles at the bonding interface between the metal wire and the coating is small, and there is no risk of peeling or cracking, and which can maintain good properties over a long period of time.

Claims (7)

【特許請求の範囲】[Claims] (1)金属線上にペロブスカイト型の酸化物超電導体の
被膜を形成してなる超電導線材を製造するにあたり、 前記酸化物超電導体を構成する各元素の金属塩を所定の
比率で含有する溶液を前記金属線上に塗布し、この塗膜
を加熱することにより前記各元素の金属塩を熱分解し、
次いで酸素含有雰囲気中で700℃〜1000℃の温度
で熱処理して前記酸化物超電導体の被膜を形成すること
を特徴とする超電導線材の製造方法。
(1) In manufacturing a superconducting wire material formed by forming a film of a perovskite-type oxide superconductor on a metal wire, a solution containing metal salts of each element constituting the oxide superconductor in a predetermined ratio is added to the above-mentioned solution. The metal salts of each of the above elements are thermally decomposed by coating on a metal wire and heating this coating film,
A method for manufacturing a superconducting wire, comprising: then heat-treating at a temperature of 700°C to 1000°C in an oxygen-containing atmosphere to form a coating of the oxide superconductor.
(2)前記酸化物超電導体は、希土類元素を含有するペ
ロブスカイト型の酸化物超電導体であることを特徴とす
る特許請求の範囲第1項記載の超電導線材の製造方法。
(2) The method for manufacturing a superconducting wire according to claim 1, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
(3)前記酸化物超電導体は、ABa_2Cu_3O_
7_−_8系の酸化物超電導体(Aは、Y、Sc、Nd
、Gd、Sm、Yb、La、Ho、Dy、Eu、Er、
TmおよびLuから選ばれた元素)であることを特徴と
する特許請求の範囲1項または第2項記載の超電導線材
の製造方法。
(3) The oxide superconductor is ABa_2Cu_3O_
7_-_8-based oxide superconductor (A is Y, Sc, Nd
, Gd, Sm, Yb, La, Ho, Dy, Eu, Er,
3. The method for producing a superconducting wire according to claim 1 or 2, wherein the superconducting wire is an element selected from Tm and Lu.
(4)前記酸化物超電導体は、Y−Ba−Cu−O系で
あることを特徴とする特許請求の範囲第3項記載の超電
導線材の製造方法。
(4) The method for manufacturing a superconducting wire according to claim 3, wherein the oxide superconductor is Y-Ba-Cu-O based.
(5)前記金属線の線膨脹係数が、5×10^−^6/
K〜25×10^−^6/Kであることを特徴とする特
許請求の範囲第1項ないし第4項のいずれか1項記載の
超電導線材の製造方法。
(5) The linear expansion coefficient of the metal wire is 5×10^-^6/
The method for manufacturing a superconducting wire according to any one of claims 1 to 4, characterized in that K~25×10^-^6/K.
(6)前記金属線が、Ag線からなることを特徴とする
特許請求の範囲第5項記載の超電導線材の製造方法。
(6) The method for manufacturing a superconducting wire according to claim 5, wherein the metal wire is made of Ag wire.
(7)前記酸化物超電導体を構成する各元素の金属塩が
、ハロゲン化物または硝酸塩であることを特徴とする特
許請求の範囲第1項ないし第6項のいずれか1項記載の
超電導線材の製造方法。
(7) The superconducting wire according to any one of claims 1 to 6, wherein the metal salt of each element constituting the oxide superconductor is a halide or a nitrate. Production method.
JP62133145A 1987-05-28 1987-05-28 Manufacture of superconductive wire material Pending JPS63298921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62133145A JPS63298921A (en) 1987-05-28 1987-05-28 Manufacture of superconductive wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62133145A JPS63298921A (en) 1987-05-28 1987-05-28 Manufacture of superconductive wire material

Publications (1)

Publication Number Publication Date
JPS63298921A true JPS63298921A (en) 1988-12-06

Family

ID=15097783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62133145A Pending JPS63298921A (en) 1987-05-28 1987-05-28 Manufacture of superconductive wire material

Country Status (1)

Country Link
JP (1) JPS63298921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101177A (en) * 1989-09-13 1991-04-25 Sumitomo Cement Co Ltd Formation of thin film superconductor pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101177A (en) * 1989-09-13 1991-04-25 Sumitomo Cement Co Ltd Formation of thin film superconductor pattern

Similar Documents

Publication Publication Date Title
JP3548801B2 (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
US20060246216A1 (en) Method for manufacturing a metal organic deposition precursor solution using super-conduction oxide and film superconductor
KR880014017A (en) Method of manufacturing thin film superconducting oxide film
US5021399A (en) Spray pyrolysis process for preparing superconductive films
CA2029789A1 (en) Flexible superconductor coated zirconia fibers
JPS63279527A (en) Manufacture of superconductor device
JPS63298921A (en) Manufacture of superconductive wire material
JPS63279528A (en) Manufacture of superconductor device
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
JPS63298922A (en) Manufacture of superconductive wire material
AU592943B2 (en) Formation of superconducting metal oxide film by pyrolysis
JP2603688B2 (en) Superconducting material reforming method
JPS63279521A (en) Superconductor device
JPH03109204A (en) Production of superconducting thin film
US5646097A (en) Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor
JP2822328B2 (en) Superconductor manufacturing method
JPS63240005A (en) Manufacture of superconducting material
JPS63274017A (en) Superconductive wire material
JPH01138129A (en) Production of oxide superconductor thin film
JPH01203258A (en) Production of oxide superconducting sintered body
JPH01126208A (en) Production of superconducting thin film
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer
JPH01186510A (en) Superconducting material
KR20090093618A (en) Method of forming a precursor solution for metal organic deposition and mothod of forming a superconducting thick film using thereof
Wang et al. Synthesis of TlBaCaCuO superconductive films with Tl diffusion into BaCaCu precursors