JP3053238B2 - Method for producing Bi-based oxide superconductor - Google Patents

Method for producing Bi-based oxide superconductor

Info

Publication number
JP3053238B2
JP3053238B2 JP3062130A JP6213091A JP3053238B2 JP 3053238 B2 JP3053238 B2 JP 3053238B2 JP 3062130 A JP3062130 A JP 3062130A JP 6213091 A JP6213091 A JP 6213091A JP 3053238 B2 JP3053238 B2 JP 3053238B2
Authority
JP
Japan
Prior art keywords
metal
superconductor
based oxide
heat treatment
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3062130A
Other languages
Japanese (ja)
Other versions
JPH04295079A (en
Inventor
隆代 長谷川
祐 北村
Original Assignee
昭和電線電纜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線電纜株式会社 filed Critical 昭和電線電纜株式会社
Priority to JP3062130A priority Critical patent/JP3053238B2/en
Publication of JPH04295079A publication Critical patent/JPH04295079A/en
Application granted granted Critical
Publication of JP3053238B2 publication Critical patent/JP3053238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超電導体の製造方法に係
り、特に長尺化が容易で、かつ特性の優れたBi系酸化
物超電導体の製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superconductor, and more particularly to an improvement in a method for manufacturing a Bi-based oxide superconductor which can be easily lengthened and has excellent characteristics.

【0002】[0002]

【従来の技術】Bi−Sr−Ca−Cu−O系(Bi
系)の超電導体は、その臨界温度(Tc)が高く、Y−
Ba−Cu−O系(Y系)の超電導体に比較して安定性
および加工性に優れ、また非希土類系の組成からなるた
め、その素材の供給や取扱いに有利である上、Tl−B
a−Ca−Cu−O系(Tl系)の超電導体のように毒
性もないことから酸化物超電導体の実用材料として期待
されている。このBi系の超電導体には、その組成によ
り3種のTcを有する相が存在するが、特に80K級の
(2212)相(Bi:Sr:Ca:Cuのモル比=
2:2:1:2、以下同じ。)と110K級の(222
3)相は、そのTcが液体窒素温度より高く、かつ機械
加工により結晶粒方向が制御し得る等の点から長尺の線
材の製造等に適した材料として知られている。従来、こ
のような超電導体により線材を製造する方法として、
(イ)仮焼した原料粉末を金属パイプ中にして加工後、
熱処理を施す方法や、(ロ)有機バインダと原料粉末を
混合してキャスティングした後、熱処理を施す方法、あ
るいは(ハ)超電導体の構成元素を含む金属有機酸塩を
基材上に塗布した後、熱処理を施す方法等が検討されて
いる。
2. Description of the Related Art Bi-Sr-Ca-Cu-O (Bi-Sr-Ca-Cu-O)
System) has a high critical temperature (Tc),
It is superior in stability and workability as compared with a Ba-Cu-O (Y-based) superconductor, and is composed of a non-rare earth composition, which is advantageous in supply and handling of the material and Tl-B.
Since it does not have toxicity like a-Ca-Cu-O-based (Tl-based) superconductors, it is expected as a practical material for oxide superconductors. The Bi-based superconductor has three types of phases having Tc depending on its composition. In particular, a (2212) phase of 80K class (Bi: Sr: Ca: Cu molar ratio =
2: 2: 1: 2, and so on. ) And 110K class (222
3) The phase is known as a material suitable for production of a long wire or the like because its Tc is higher than the temperature of liquid nitrogen and the crystal grain direction can be controlled by machining. Conventionally, as a method of manufacturing a wire using such a superconductor,
(B) After processing the calcined raw material powder in a metal pipe,
A method of performing a heat treatment, (b) a method of mixing and casting an organic binder and a raw material powder, and then performing a heat treatment, or (c) a method of applying a metal organic acid salt containing a constituent element of a superconductor on a substrate. For example, a method of performing heat treatment is being studied.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、酸化物
は多結晶の粉末であることから上記(イ)、(ロ)の方
法では均一な特性を有する長尺の超電導体、即ち線材化
が困難であり、また(ハ)の方法では臨界電流密度(J
c)等の特性の向上が難かしいという問題がある。 本
発明は上記(ハ)の方法を改良したもので、長尺化のみ
ならず、大面積で、かつ超電導特性の優れたBi系酸化
物超電導体を容易に製造する方法を提供することをその
目的とする。
However, since the oxide is a polycrystalline powder, it is difficult to form a long superconductor having uniform characteristics, that is, a wire, by the above methods (a) and (b). In the method (c), the critical current density (J
There is a problem that it is difficult to improve characteristics such as c). The present invention is an improvement of the above method (c), which provides a method for easily manufacturing a Bi-based oxide superconductor having not only a longer size but also a large area and excellent superconductivity. Aim.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、Bi、Sr、CaおよびCuを含む金属
有機酸塩または有機金属化合物を有機溶媒中に溶解した
溶液を基材上に塗布した後、熱処理を施すことによりB
i系酸化物超電導体を製造する方法において、前記溶液
中の金属モル比をBi:Sr:Ca:Cu=(1.8〜
2.5):(1.9〜2.1):(0.9〜1.1):
(1.9〜2.1)に配合するとともに、部分溶融域か
ら結晶化温度まで1〜50℃/hrの冷却速度を有する
徐冷工程を含む熱処理を施すものである。
Means for Solving the Problems To achieve the above object, the present invention provides a method for dissolving a metal organic acid salt or an organic metal compound containing Bi, Sr, Ca and Cu in an organic solvent on a substrate. And then heat-treated to obtain B
In the method for producing an i-based oxide superconductor, the metal molar ratio in the solution may be Bi: Sr: Ca: Cu = (1.8 to 1.8).
2.5): (1.9-2.1): (0.9-1.1):
(1.9 to 2.1) and heat treatment including a slow cooling step having a cooling rate of 1 to 50 ° C / hr from the partial melting zone to the crystallization temperature.

【0005】本発明における出発原料としては、例えば
オクチル酸、ネオデカン酸、ナフテン酸等の金属有機酸
塩あるいは金属アルコキシド、金属アセチルアセトナー
ト等の有機金属化合物で溶媒に可溶であるものが用いら
れる。溶媒としては、炭化水素系、エーテル系、アルコ
ール系等の有機溶剤や水等の原料の溶解が可能であるも
のを単独あるいは混合して用いる。本発明において、金
属有機酸塩または有機金属化合物を溶解した原料溶液に
含有される金属分の比率を上記のように規定したのは、
Biの比率が2.5を越えるか、あるいはその他の元素
の比率が上記の範囲未満であると20K級の超電導相が
生成し、一方Biの比率が1.8未満か、あるいはその
他の元素の比率が上記の範囲を越えるとCa−Sr−C
u−O系の非超電導相の析出が起こり、いずれの場合に
もJcが低下するためである。また、基材としてはA
g、Au、Ptまたはこれ等の合金やSTO、YSZ等
のセラミックス等で熱処理温度範囲内において耐酸化性
に優れ、かつ超電導体との反応を生じないもの、あるい
は超電導体との反応を生じても超電導性を低下させない
ものが好ましい。この基材を長尺あるいは異形状等とす
ることにより、所望の形状の超電導体を得ることができ
る。出発原料を溶解した溶液の基材上への塗布方法は、
一般に塗料のコーティングに用いられている方法を使用
することができ、例えばフェルトコーティング、ディッ
プコーティング、スピンコーティング、スプレーコーテ
ィング等をあげることができる。基材上への原料溶液の
塗布後、有機分を熱分解させるために熱処理が施され
る。この熱処理は400〜700℃の温度範囲で施すこ
とが好ましく、熱処理温度が400℃未満であると原料
の熱分解が十分に行われず、逆に700℃を越えると熱
分解が急速に起こり、基材から膜が剥離し易くなる。こ
の熱分解後、部分溶融域の温度まで加熱し、この温度か
ら結晶化温度以下ま酸化性雰囲気中でで冷却する。この
冷却は、冷却速度1〜50℃/hr、好ましくは3〜2
0℃/hrの範囲の徐冷によって行う。冷却速度が1℃
/hr未満であると膜厚の減少および膜表面の分解を生
じて電気的特性が低下し、一方冷却速度が50℃/hr
を越える急冷を施すと結晶化および結晶配向が不十分と
なり、同様に特性の低下を生ずる。上記の部分溶融温度
および結晶化温度は、原料溶液の組成に依存するため、
熱分析等の手段を用いてこれを決定することが望まし
い。
[0005] As a starting material in the present invention, for example, a metal organic acid salt such as octylic acid, neodecanoic acid or naphthenic acid or an organic metal compound such as metal alkoxide or metal acetylacetonate which is soluble in a solvent is used. . As the solvent, an organic solvent such as a hydrocarbon-based, ether-based, or alcohol-based solvent or a solvent capable of dissolving a raw material such as water is used alone or in combination. In the present invention, the ratio of the metal component contained in the raw material solution in which the metal organic acid salt or the organic metal compound is dissolved is defined as described above,
When the ratio of Bi exceeds 2.5 or the ratio of other elements is less than the above range, a superconducting phase of 20K class is generated, while the ratio of Bi is less than 1.8 or other elements. If the ratio exceeds the above range, Ca-Sr-C
This is because a u-O-based non-superconducting phase is precipitated, and in any case, Jc is reduced. The base material is A
g, Au, Pt or alloys thereof, or ceramics such as STO, YSZ, etc., which have excellent oxidation resistance within the heat treatment temperature range and do not react with the superconductor, or react with the superconductor. Also, those which do not lower the superconductivity are preferable. The superconductor having a desired shape can be obtained by forming the base material into a long shape or a different shape. The method of applying the solution in which the starting materials are dissolved onto the substrate is as follows:
A method generally used for coating a paint can be used, and examples thereof include felt coating, dip coating, spin coating, and spray coating. After the application of the raw material solution on the base material, a heat treatment is performed to thermally decompose organic components. This heat treatment is preferably performed at a temperature in the range of 400 to 700 ° C. If the heat treatment temperature is lower than 400 ° C., the thermal decomposition of the raw material is not sufficiently performed. The film is easily peeled from the material. After this thermal decomposition, the material is heated to the temperature of the partial melting zone, and cooled from this temperature to a temperature lower than the crystallization temperature in an oxidizing atmosphere. This cooling is performed at a cooling rate of 1 to 50 ° C./hr, preferably 3 to 2 ° C.
This is performed by slow cooling in the range of 0 ° C./hr. Cooling rate is 1 ℃
If the cooling rate is less than 50 ° C./hr, the film thickness and the surface of the film are decomposed to lower the electrical characteristics.
If the quenching is performed in excess of the above, crystallization and crystal orientation become insufficient, and similarly, the characteristics are deteriorated. Since the above partial melting temperature and crystallization temperature depend on the composition of the raw material solution,
It is desirable to determine this using means such as thermal analysis.

【0006】[0006]

【実施例】以下本発明の実施例および比較例について説
明する。 実施例1〜3 Bi、Sr、CaおよびCuの各オクチル酸塩を、その
金属分がBi:Sr:Ca:Cu=2:2:1:2のモ
ル比を有するようにキシレン中に所定の濃度で溶解し、
この溶液を幅2mm、厚さ100μmのAgテープ上に
塗布した後、加熱炉内を通過させて500℃で5〜10
分間の熱処理を施し、この塗布〜熱処理の工程を複数回
繰り返すことにより、塗布膜を熱分解させてAgテープ
上に厚さ20μmの仮焼膜を形成した。一方、上記組成
の部分溶融温度および結晶化温度をDTAにより測定し
た結果、部分溶融の開始温度は875℃、結晶化の開始
温度は850℃の値を示した。次いで、この仮焼膜の形
成されたAgテープを大気中で加熱した後、所定の冷却
速度で徐冷して超電導テープを製造した。このようにし
て得られた超電導テープの臨界電流密度(Jc)および
C軸配向率を、最高加熱温度および冷却速度の値ととも
もに表1に示す。
EXAMPLES Examples and comparative examples of the present invention will be described below. Examples 1 to 3 Each octylate of Bi, Sr, Ca and Cu was prepared in xylene so that its metal content had a molar ratio of Bi: Sr: Ca: Cu = 2: 2: 1: 2. Dissolved in concentration,
This solution was applied on an Ag tape having a width of 2 mm and a thickness of 100 μm, and then passed through a heating furnace at 500 ° C. for 5 to 10 μm.
By performing the heat treatment for several minutes and repeating the steps of coating to heat treatment a plurality of times, the coated film was thermally decomposed to form a calcined film having a thickness of 20 μm on the Ag tape. On the other hand, as a result of measuring the partial melting temperature and the crystallization temperature of the above composition by DTA, the starting temperature of the partial melting was 875 ° C, and the starting temperature of the crystallization was 850 ° C. Next, the Ag tape on which the calcined film was formed was heated in the atmosphere, and then gradually cooled at a predetermined cooling rate to produce a superconducting tape. Table 1 shows the critical current density (Jc) and the C-axis orientation ratio of the superconducting tape thus obtained, together with the values of the maximum heating temperature and the cooling rate.

【0007】[0007]

【表1】 [Table 1]

【0008】比較例1〜3 最高加熱温度および冷却速度を表1に示す条件に設定し
た他は、実施例と同様の方法により製造した超電導テー
プのJcおよびC軸配向率を表1に示した。
Comparative Examples 1 to 3 Table 1 shows the Jc and C-axis orientation ratios of the superconducting tapes manufactured by the same method as in the example except that the maximum heating temperature and the cooling rate were set to the conditions shown in Table 1. .

【0009】[0009]

【発明の効果】以上述べたように本発明のBi系酸化物
超電導体の製造方法によれば、出発原料である金属有機
酸塩または有機金属化合物を溶解した原料溶液に含有さ
れる金属分のモル比を所定の範囲に規定するとともに、
部分溶融域から結晶化温度まで所定の冷却速度で徐冷す
ることにより、低Tc相の生成や非超電導相の析出を抑
制して、C軸配向率が高く、かつJc値の大きいBi系
酸化物超電導体を製造することができ、その長尺化も容
易である利点を有する。
As described above, according to the method for producing a Bi-based oxide superconductor of the present invention, the content of metal contained in a raw material solution in which a metal organic acid salt or an organic metal compound as a starting material is dissolved is reduced. While defining the molar ratio in a predetermined range,
By slow cooling from the partial melting region to the crystallization temperature at a predetermined cooling rate, the generation of a low Tc phase and the precipitation of a non-superconducting phase are suppressed, and the Bi-based oxidation having a high C-axis orientation rate and a large Jc value This has the advantage that a superconductor can be manufactured and its length can be easily increased.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−235103(JP,A) 特開 平2−64023(JP,A) 特開 平2−14827(JP,A) 特開 平3−8721(JP,A) 特開 平3−215320(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 ZAA C01G 29/00 ZAA C04B 41/87 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-235103 (JP, A) JP-A-2-64023 (JP, A) JP-A-2-14827 (JP, A) JP-A-3- 8721 (JP, A) JP-A-3-215320 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 1/00 ZAA C01G 29/00 ZAA C04B 41/87

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Bi、Sr、CaおよびCuを含む金属有
機酸塩または有機金属化合物を有機溶媒中に溶解した溶
液を基材上に塗布した後、熱処理を施すことにより超電
導体を製造する方法において、前記溶液中の金属モル比
をBi:Sr:Ca:Cu=(1.8〜2.5):
(1.9〜2.1):(0.9〜1.1):(1.9〜
2.1)に配合するとともに、前記熱処理中に部分溶融
域から結晶化温度まで1〜50℃/hrの冷却速度を有
する徐冷工程を含むことを特徴とするBi系酸化物超電
導体の製造方法。
1. A method for producing a superconductor by applying a solution obtained by dissolving a metal organic acid salt or an organic metal compound containing Bi, Sr, Ca and Cu in an organic solvent onto a substrate and then subjecting the substrate to a heat treatment. In the above, the metal molar ratio in the solution is set to Bi: Sr: Ca: Cu = (1.8 to 2.5):
(1.9-2.1): (0.9-1.1): (1.9-
Production of a Bi-based oxide superconductor, which comprises a slow cooling step having a cooling rate of 1 to 50 ° C./hr from the partial melting zone to the crystallization temperature during the heat treatment, in addition to the step 2.1). Method.
【請求項2】基材は、金属またはセラミックスの線状体
あるいはフィルムである請求項1記載のBi系酸化物超
電導体の製造方法。
2. The method for producing a Bi-based oxide superconductor according to claim 1, wherein the substrate is a metal or ceramic linear body or film.
JP3062130A 1991-03-26 1991-03-26 Method for producing Bi-based oxide superconductor Expired - Fee Related JP3053238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062130A JP3053238B2 (en) 1991-03-26 1991-03-26 Method for producing Bi-based oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062130A JP3053238B2 (en) 1991-03-26 1991-03-26 Method for producing Bi-based oxide superconductor

Publications (2)

Publication Number Publication Date
JPH04295079A JPH04295079A (en) 1992-10-20
JP3053238B2 true JP3053238B2 (en) 2000-06-19

Family

ID=13191188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062130A Expired - Fee Related JP3053238B2 (en) 1991-03-26 1991-03-26 Method for producing Bi-based oxide superconductor

Country Status (1)

Country Link
JP (1) JP3053238B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173609A (en) * 1993-04-06 1995-07-11 Sadaji Umemoto Method for laminating two or more kinds of raw materials or object formed by utilizing thermal expansion difference

Also Published As

Publication number Publication date
JPH04295079A (en) 1992-10-20

Similar Documents

Publication Publication Date Title
DE60128253T2 (en) PRECURSOR SOLUTIONS AND METHOD FOR THEIR USE
JP5415696B2 (en) Thick film superconducting film with improved functions
JP2008514545A5 (en)
KR920005516B1 (en) Method of making a body with superconductive oxide body
JP4203606B2 (en) Oxide superconducting thick film composition and thick film tape-shaped oxide superconductor
JP3053238B2 (en) Method for producing Bi-based oxide superconductor
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
Chu et al. Processing effects on high T c properties of YBa 2 Cu 3 O 7− x films from carboxylate solution precursors
Langhorn et al. Nucleation and growth of YBa2Cu3O7− x thick films processed on YSZ, Al2O3, MgO and BaZrO3 substrates
JPH04295080A (en) Production of bi-containing oxide superconductor
JP3668510B2 (en) Method for producing Bi-based oxide superconductor
JPH06115940A (en) Production of bi-based oxide superconductor
JPH01252533A (en) Laminate of superconducting ceramics and production thereof
Bellingeri et al. Electrodeposition of biaxially aligned Tl-based superconductors on Ag tapes
EP0310245A2 (en) Formation of film superconductors by metallo-organic deposition
JP3856852B2 (en) Manufacturing method of oxide superconducting film using oriented substrate
JP2822328B2 (en) Superconductor manufacturing method
JP4011130B2 (en) Manufacturing method of oxide superconducting wire
JP2822329B2 (en) Superconductor manufacturing method
JP3394297B2 (en) Method for producing superconductive composition
JPH04295082A (en) Bi-containing oxide superconductor and its production
JPH06223652A (en) Manufacture of bi oxide superconducting film
JP3224578B2 (en) Manufacturing method of oxide superconductor
JPH03112810A (en) Production of oxide superconducting film
JPH06219742A (en) Production of bi oxide superconductor membrane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000307

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees