JPH01219019A - Production of oxide superconductor film - Google Patents

Production of oxide superconductor film

Info

Publication number
JPH01219019A
JPH01219019A JP63047723A JP4772388A JPH01219019A JP H01219019 A JPH01219019 A JP H01219019A JP 63047723 A JP63047723 A JP 63047723A JP 4772388 A JP4772388 A JP 4772388A JP H01219019 A JPH01219019 A JP H01219019A
Authority
JP
Japan
Prior art keywords
oxide superconductor
film
superconductor film
copper
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047723A
Other languages
Japanese (ja)
Inventor
Hisanao Tsuge
久尚 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63047723A priority Critical patent/JPH01219019A/en
Publication of JPH01219019A publication Critical patent/JPH01219019A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce the crystallization temp. of an oxide superconductor film contg. copper by depositing the film so that an excess of copper over the stoichiometric amt. is contained and by allowing copper oxide from the copper to act as a flux in a subsequent heat treating stage. CONSTITUTION:An oxide superconductor film 12 is formed on a substrate 11 by sputtering or other method with an oxide superconductor contg. copper as a constituent element, e.g., a Y-Ba-Cu-O superconductor as a target so that <=50 atomic% excess of copper over the stoichiometric amt. is contained on the average. The film 12 is then made superconductive at high temp. by heat treatment in an atmosphere contg. oxygen to obtain an oxide superconductor film 13. The crystallization temp. of the oxide superconductor film 12 can be reduced, the material of the substrate used is more freely selected and the thermal counter diffusion between the film 12 and other film kept in contact with the film 12 can be suppressed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超伝導体膜の製造方法に関し、特にエレ
クトロニクスへの応用に有用な結晶成長温度の低温化を
図った酸化物超伝導体膜の製造方法に関するものである
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing an oxide superconductor film, and in particular to an oxide superconductor film with a low crystal growth temperature that is useful for electronics applications. The present invention relates to a method for manufacturing a membrane.

(従来の技術) 液体窒素温度(77K)以上の高い超伝導転移温度をも
つYBa2Cu3O7−xで代表される酸化物超伝導体
膜を形成するためには、高温超伝導性の結晶相を成長さ
せる必要があり、成膜時または成膜後における高温加熱
処理が不可欠である。特に、従来からよく用いられてい
る成膜後の熱処理の温度は900°C前後と非常に高い
。酸化物超伝導体膜をエレクトロニクス分野へ応用する
場合には、基板やデバイスを構成する他の接触する膜と
の熱的相互拡散を防ぐために結晶成長温度の低温化が重
要となる。
(Prior art) In order to form an oxide superconductor film represented by YBa2Cu3O7-x, which has a high superconducting transition temperature higher than the liquid nitrogen temperature (77 K), a high-temperature superconducting crystal phase must be grown. Therefore, high-temperature heat treatment during or after film formation is essential. In particular, the temperature of heat treatment after film formation, which has been commonly used in the past, is extremely high at around 900°C. When applying oxide superconductor films to the electronics field, it is important to lower the crystal growth temperature to prevent thermal interdiffusion with other contacting films that make up the substrate or device.

従来の代表的な酸化物超伝導体膜の結晶成長の手段とし
て、ピー・チャウダリ(P、 Chaudhari)ら
によって1987年にフィジカル・レビュ、レターズ(
Physical Review Letters)第
58巻、2684〜2686ページで提案された方法が
ある。この方法を第2図(a)〜(b)を用いて工程順
に説明する。まず、チタン酸ストロンチウム(SrTi
O3X100)単結晶からなる基板21上に、10−’
〜1O−3Torrの酸素雰囲気中で3連真空蒸着装置
を用いてイツトリウム(Y)、バリウム(Ba)、銅(
Cu)を同時蒸着し、YBa2Cu3O7−xからなる
酸化物超伝導体膜22を形成する(第2図(a))。蒸
着時の基板温度は約400°Cである。引き続き、この
酸化物超伝導体膜22を酸素雰囲気巾約900°Cで熱
処理して結晶化し、高温超伝導性の酸化物超伝導体膜2
3を形成する(第2図(b))。
As a conventional means of crystal growth for typical oxide superconductor films, P. Chaudhari et al. published Physical Review Letters (1987).
There is a method proposed in Physical Review Letters, Vol. 58, pp. 2684-2686. This method will be explained step by step using FIGS. 2(a) to 2(b). First, strontium titanate (SrTi
10-' on a substrate 21 made of a single crystal O3
Yttrium (Y), barium (Ba), copper (
Cu) is simultaneously vapor-deposited to form an oxide superconductor film 22 made of YBa2Cu3O7-x (FIG. 2(a)). The substrate temperature during vapor deposition is approximately 400°C. Subsequently, this oxide superconductor film 22 is heat-treated in an oxygen atmosphere width of approximately 900°C to crystallize it, thereby forming a high-temperature superconducting oxide superconductor film 2.
3 (Fig. 2(b)).

(発明が解決しようとする課題)゛ この方法に代表される従来技術では、イツトリウム系酸
化物超伝導体膜の被着時における構成金属の組成比は化
学量論比(例えば、 Y:Ba:Cu量1:2:3)に近い値が用いられてい
た。こうした組成の酸化物超伝導体膜を結晶化して高温
超伝導性を有する膜にするためには、成膜後約・900
°Cという高い温度で熱処理しなければならなかった。
(Problems to be Solved by the Invention) In the conventional technology represented by this method, the composition ratio of the constituent metals at the time of depositing the yttrium-based oxide superconductor film is a stoichiometric ratio (for example, Y:Ba: A value close to Cu amount of 1:2:3) was used. In order to crystallize an oxide superconductor film with such a composition into a film having high temperature superconductivity, it is necessary to
It had to be heat treated at a high temperature of °C.

その結果、基板はこうした高温でも酸化物超伝導体膜と
相互拡散の少ない5rTio3やマグネシア(MgO)
などの特殊材料に限られていた。さらに、酸化物超伝導
体膜を実際のエレクトロニクスデバイスに応用する場合
には他の膜との多層構造となることが多いが、高温熱処
理によって両者の膜との間で相互拡散を生じて超伝導特
性が劣化するといった問題があった。他の金属膜や半導
体膜とのコンタクト部分では、これらの膜が酸化物超伝
導体膜の酸素と反応して絶縁体層を形成し、コンタクト
不良の問題を発生させるということも考えられる。
As a result, the substrate is made of 5rTio3 or magnesia (MgO), which has low interdiffusion with the oxide superconductor film even at such high temperatures.
It was limited to special materials such as Furthermore, when oxide superconductor films are applied to actual electronic devices, they often have a multilayer structure with other films, but high-temperature heat treatment causes interdiffusion between the two films, resulting in superconductivity. There was a problem that the characteristics deteriorated. It is also conceivable that in contact areas with other metal films or semiconductor films, these films react with oxygen in the oxide superconductor film to form an insulator layer, causing contact failure problems.

本発明の目的は、このような従来技術の欠点を改善した
酸化物超伝導体膜の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing an oxide superconductor film that overcomes the drawbacks of the prior art.

(課題を解決するための手段) 本発明は、構成元素として銅を有する酸化物超伝導体膜
の製造方法において、この酸化物超伝導体膜の被着時に
おける平均的な銅の組成が化学量論的組成よりも50a
t%以内で過剰となるように前記酸化物超伝導体膜を形
成した後、酸素を含む雰囲気中で熱処理して高温超伝導
化することを特徴とする酸化物超伝導体膜の製造方法で
ある。
(Means for Solving the Problems) The present invention provides a method for manufacturing an oxide superconductor film having copper as a constituent element, in which the average copper composition at the time of deposition of the oxide superconductor film is chemically 50a than stoichiometric composition
A method for producing an oxide superconductor film, characterized in that the oxide superconductor film is formed to have an excess of t% or less, and then heat-treated in an oxygen-containing atmosphere to make it a high-temperature superconductor. be.

また、本発明は、構成元素として銅を有する酸化物超伝
導体膜の製造方法において、この酸化物超伝導体膜の被
着時における平均的な銅の組成を化学量論的組成よりも
50at%以内で過剰にするとともに、前記酸化物超伝
導体膜の被着時に結晶化に充分な基板加熱を行なうこと
を特徴とする酸化物超伝導体膜の製造方法である。
The present invention also provides a method for producing an oxide superconductor film having copper as a constituent element, in which the average copper composition at the time of deposition of the oxide superconductor film is 50 atm lower than the stoichiometric composition. % or less, and heating the substrate sufficiently for crystallization during deposition of the oxide superconductor film.

(作用) 本発明では、Cuを含む酸化物超伝導体膜を形成する際
に、被着時の膜組成を化学量論的組成に比較してCu過
剰とすることにより、成膜後の熱処理工程でこめCuに
基づく酸化銅(Cub)をフラックスとして作用させ、
酸化物超伝導体膜の結晶化温度を低下させることができ
る。膜中に含まれる過剰Cu量の増加により結晶化温度
は減少するが、このCu量が10at%以下ではその変
化は小さく、約50at%を越えるとCuOの結晶化が
優先的に起こる。
(Function) In the present invention, when forming an oxide superconductor film containing Cu, the film composition at the time of deposition is made to have an excess of Cu compared to the stoichiometric composition. In the process, copper oxide (Cub) based on copper is used as a flux,
The crystallization temperature of the oxide superconductor film can be lowered. Although the crystallization temperature decreases as the amount of excess Cu contained in the film increases, the change is small when the amount of Cu is less than 10 at%, and when it exceeds about 50 at%, crystallization of CuO occurs preferentially.

従って、過剰Cu量は10〜50at%の範囲であるこ
とが好ましい。この方法では、酸化物超伝導体膜の被着
時におけるCu量を制御することだけで結晶化温度の低
下を図ることができる。その結果、基板材料の選択の余
地も増え、しかも接触する他の膜との熱的相互拡散も軽
減されるため、エレクトロニクスデバイスへの応用の可
能性も増大する。
Therefore, the amount of excess Cu is preferably in the range of 10 to 50 at%. In this method, the crystallization temperature can be lowered simply by controlling the amount of Cu during deposition of the oxide superconductor film. As a result, there is more room for selection of substrate materials, and thermal interdiffusion with other films in contact is also reduced, increasing the possibility of application to electronic devices.

また、酸化物超伝導体膜の被着時における基板加熱処理
は成膜後の熱処理よりも効果的に結晶化温度の低下に寄
与する。そのため、上記と同様な理由で酸化物超伝導体
膜のエレクトロニクスデバイスへの応用の可能性はさら
に増すことが期待できる。
Further, substrate heat treatment during deposition of the oxide superconductor film contributes to lowering the crystallization temperature more effectively than heat treatment after film formation. Therefore, for the same reason as mentioned above, it is expected that the possibility of application of oxide superconductor films to electronic devices will further increase.

(実施例I) まず、Y−Ba−Cu−0系ターゲツトを用いたスパッ
タ法により、サファイヤ(R−Al□03)基板11上
に、YBa2Cu3O7−xよりCuが約40at%過
剰な酸化物超伝導体膜12を厚さ0.8pm被着する(
第1図(a))。
(Example I) First, by a sputtering method using a Y-Ba-Cu-0 based target, an oxide containing approximately 40 at% more Cu than YBa2Cu3O7-x was deposited on a sapphire (R-Al□03) substrate 11. Conductor film 12 is deposited to a thickness of 0.8 pm (
Figure 1(a)).

YBa2Cu3O7−xは液体窒素温度以上の高温超伝
導性を示す結晶相の組成である。スパッタはアルゴン(
Ar)と酸素(02)との混合ガス雰囲気中で行なう。
YBa2Cu3O7-x has a composition of a crystalline phase that exhibits high-temperature superconductivity above the liquid nitrogen temperature. Sputtering is done using argon (
The process is carried out in a mixed gas atmosphere of Ar) and oxygen (02).

この段階では酸化物超伝導体膜工2は通常アモルファス
かアモルファスに近い多結晶体で超伝導性は示さない。
At this stage, the oxide superconductor membrane 2 is usually amorphous or a polycrystalline material close to amorphous, and does not exhibit superconductivity.

そこで引き続き、酸化物超伝導体膜12を酸素フロー中
800°C〜900°Cで数時間熱処理し、さらに徐冷
して高温超伝導性の酸化物超伝導体膜13を形成する(
第1図(b))。結晶化したダレインはYBa2Cu3
0□−エの化学量論的組成をもつ斜方晶系である。ダレ
インサイズは熱処理温度の増加に伴ない増加するが、9
00°Cでは30pm程度まで達する。
Therefore, the oxide superconductor film 12 is subsequently heat-treated at 800°C to 900°C in an oxygen flow for several hours, and then slowly cooled to form a high-temperature superconducting oxide superconductor film 13 (
Figure 1(b)). Crystallized dalein is YBa2Cu3
It is an orthorhombic system with a stoichiometric composition of 0□-E. The dalein size increases with increasing heat treatment temperature, but 9
At 00°C, it reaches about 30pm.

この値は、成膜時に化学量論的組成をもつ膜を同じ条件
で熱処理した場合の111m以下の値に比べて著しく大
きい。これは、酸化物超伝導体膜12中の過剰なCuが
フラックスとして作用し、 YBa2Cu30□−8の結晶化温度を減少させている
ためと考えられる。
This value is significantly larger than the value of 111 m or less when a film having a stoichiometric composition is heat-treated under the same conditions during film formation. This is considered to be because the excess Cu in the oxide superconductor film 12 acts as a flux and reduces the crystallization temperature of YBa2Cu30□-8.

また、本実験の酸化物超伝導体膜13の転移温度は82
0°Cの熱処理でも液体窒素温度以上であるが、成膜時
に化学量論的組成の膜では同じ転移温度を得るのに92
0°Cの熱処理が必要である。こうした結晶化温度の低
下は基板材料の選択の幅を拡げる。
In addition, the transition temperature of the oxide superconductor film 13 in this experiment was 82
Even with heat treatment at 0°C, the temperature is higher than the liquid nitrogen temperature, but with a film with a stoichiometric composition during film formation, it takes 92°C to obtain the same transition temperature.
Heat treatment at 0°C is required. Such a reduction in crystallization temperature expands the range of choices for substrate materials.

900°C以上の熱処理を必要とする膜では熱拡散の問
題を生じるためサファイヤ基板は使用できないが、本発
明による方法ではこれが可能となる。さらに、過剰Cu
量の最適化により、結晶化温度を一層低下させることに
より、他の多くの基板材料の使用が期待できる。
A sapphire substrate cannot be used in a film that requires heat treatment at 900° C. or higher due to the problem of thermal diffusion, but this becomes possible with the method of the present invention. Furthermore, excess Cu
Through quantity optimization, the use of many other substrate materials can be anticipated by further lowering the crystallization temperature.

(実施例II) 実施例工と同様の方法及び条件で酸化物超伝導体膜を被
着す−るが、本実施例の基板温度は600°C〜700
°Cである。成膜後、酸素雰囲気中で徐冷し、高温超伝
導性の酸化物超伝導体膜を形成する。本実施例の温度範
囲ではダレインサイズは実施例工の熱処理した場合と比
べ小さいが、転移温度はほぼ同等である。このように、
膜中の全Cu量が過剰となる条件で、しかも基板を高温
で加熱しながら被着した酸化物超伝導体膜は実施例工よ
りもさらに低い温度で良好な超伝導特性が得られる。従
って、基板材料の選択においても自由度が増し、接触す
る他の膜との熱拡散による特性劣化の問題も軽減される
ため、エレクトロニクスデバイスへの応用の可能性が高
まる。
(Example II) An oxide superconductor film was deposited using the same method and conditions as in the example, but the substrate temperature in this example was 600°C to 700°C.
It is °C. After the film is formed, it is slowly cooled in an oxygen atmosphere to form a high-temperature superconducting oxide superconductor film. In the temperature range of this example, the dalein size is smaller than that of the heat treated case of the example, but the transition temperature is almost the same. in this way,
The oxide superconductor film deposited under conditions where the total amount of Cu in the film is excessive and while heating the substrate at a high temperature can obtain good superconducting properties at a lower temperature than that of the example. Therefore, the degree of freedom is increased in the selection of substrate materials, and the problem of property deterioration due to thermal diffusion with other films in contact is alleviated, increasing the possibility of application to electronic devices.

本実施例では、被着時におけるCuの組成が化学量論的
組成よりも約40at%過剰なY−Ba−Cu−0薄膜
に関して説明したが、50at%以内であれば過剰なC
uによる結晶化温度の低減効果が認められた。また、Y
の代わりにEu、 Gd、 Dy、 Er、 Ybなと
他の希土類元素を構成元素とする酸化物超伝導体やLa
−8r−Cu−0系など他の酸化物超伝導体の薄膜に適
用することができる。基板にはサファイヤを使用したが
、SrTiO3やMgOはもとより表面をSiO□で被
覆したSiウェーハなと半導体のプロセスで一般的に用
いられる基板も使用できる。本実施例ではスパッタ法に
より酸化物超伝導体膜を被着したが、蒸着法やCVD法
など他の成膜技術で被着することもできる。
In this example, a Y-Ba-Cu-0 thin film was explained in which the Cu composition at the time of deposition was about 40 at% excess than the stoichiometric composition.
The effect of reducing the crystallization temperature by u was observed. Also, Y
Oxide superconductors containing other rare earth elements such as Eu, Gd, Dy, Er, Yb and La
It can be applied to thin films of other oxide superconductors such as -8r-Cu-0 series. Although sapphire was used as the substrate, substrates commonly used in semiconductor processes such as SrTiO3, MgO, or Si wafers whose surfaces are coated with SiO□ can also be used. In this example, the oxide superconductor film was deposited by sputtering, but it can also be deposited by other film forming techniques such as vapor deposition or CVD.

(発明の効果) 本発明によれば、簡単な方法で酸化物超伝導体膜の結晶
化温度を低減できる。その結果、基板材料の選択の自由
度が増すとともに、接触する他の膜との熱的相互拡散が
軽減されるため、エレクトロニクスデバイスへの応用の
可能性が高まる。
(Effects of the Invention) According to the present invention, the crystallization temperature of an oxide superconductor film can be reduced by a simple method. As a result, the degree of freedom in selecting the substrate material increases and thermal interdiffusion with other films in contact is reduced, increasing the possibility of application to electronic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(b)は本発明の酸化物超伝導体膜の製
造方法を工程順に示す断面図、第2図(a)〜(b)は
従来の酸化物超伝導体膜の製造方法を示す断面図である
。 図において、11.21は基板、12.22は酸化物超
伝導体膜、13.23は高温超伝導性の酸化物超伝導体
膜である。
FIGS. 1(a) to (b) are cross-sectional views showing the manufacturing method of the oxide superconductor film of the present invention in order of steps, and FIGS. 2(a) to (b) are cross-sectional views of the conventional oxide superconductor film. It is a sectional view showing a manufacturing method. In the figure, 11.21 is a substrate, 12.22 is an oxide superconductor film, and 13.23 is a high temperature superconducting oxide superconductor film.

Claims (1)

【特許請求の範囲】 1、構成元素として銅を有する酸化物超伝導体膜の製造
方法において、この酸化物超伝導体膜の被着時における
平均的な銅の組成が化学量論的組成よりも50at%以
内で過剰となるように前記酸化物超伝導体膜を形成した
後、酸素を含む雰囲気中で熱処理して高温超伝導化する
ことを特徴とする酸化物超伝導体膜の製造方法。 2、構成元素として銅を有する酸化物超伝導体膜の製造
方法において、この酸化物超伝導体膜の被着時における
平均的な銅の組成を化学量論的組成よりも50at%以
内で過剰にするとともに、前記酸化物超伝導体膜の被着
時に結晶化に充分な基板加熱を行なうことを特徴とする
酸化物超伝導体膜の製造方法。
[Claims] 1. In a method for producing an oxide superconductor film having copper as a constituent element, the average copper composition at the time of deposition of the oxide superconductor film is lower than the stoichiometric composition. A method for producing an oxide superconductor film, characterized in that the oxide superconductor film is formed so that the amount of the oxide superconductor film is in excess of 50 at% or less, and then heat-treated in an oxygen-containing atmosphere to make it a high-temperature superconductor. . 2. In a method for producing an oxide superconductor film having copper as a constituent element, the average copper composition at the time of deposition of the oxide superconductor film is in excess of the stoichiometric composition by within 50 at%. and heating the substrate sufficiently for crystallization during deposition of the oxide superconductor film.
JP63047723A 1988-02-29 1988-02-29 Production of oxide superconductor film Pending JPH01219019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047723A JPH01219019A (en) 1988-02-29 1988-02-29 Production of oxide superconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047723A JPH01219019A (en) 1988-02-29 1988-02-29 Production of oxide superconductor film

Publications (1)

Publication Number Publication Date
JPH01219019A true JPH01219019A (en) 1989-09-01

Family

ID=12783244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047723A Pending JPH01219019A (en) 1988-02-29 1988-02-29 Production of oxide superconductor film

Country Status (1)

Country Link
JP (1) JPH01219019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851957A (en) * 1992-05-12 1998-12-22 American Superconductor Corporation Oxide superconductor precursors
JP2003124534A (en) * 2001-10-12 2003-04-25 Fujitsu Ltd High-temperature superconductor film and its forming method, and superconducting element
JP2008514545A (en) * 2004-10-01 2008-05-08 アメリカン・スーパーコンダクター・コーポレーション Thick film superconducting film with improved functions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851957A (en) * 1992-05-12 1998-12-22 American Superconductor Corporation Oxide superconductor precursors
US6219901B1 (en) 1992-05-12 2001-04-24 American Superconductor Corporation Oxide superconductor precursors
JP2003124534A (en) * 2001-10-12 2003-04-25 Fujitsu Ltd High-temperature superconductor film and its forming method, and superconducting element
JP2008514545A (en) * 2004-10-01 2008-05-08 アメリカン・スーパーコンダクター・コーポレーション Thick film superconducting film with improved functions

Similar Documents

Publication Publication Date Title
Lathrop et al. Production of YBa2Cu3O7− y superconducting thin films in situ by high‐pressure reactive evaporation and rapid thermal annealing
US6235402B1 (en) Buffer layers on biaxially textured metal substrates
JP2567460B2 (en) Superconducting thin film and its manufacturing method
JP2664066B2 (en) Superconducting thin film and method for producing the same
US5712227A (en) Substrate having a superconductor layer
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
JPH01219019A (en) Production of oxide superconductor film
JPH0286014A (en) Composite oxide superconducting thin film and film forming method
JPH01167221A (en) Production of superconducting thin film
JP2517085B2 (en) Superconducting thin film
JP2544759B2 (en) How to make a superconducting thin film
Clem et al. Process for forming epitaxial perovskite thin film layers using halide precursors
JP2781331B2 (en) Manufacturing method of thin film superconductor
JP2670554B2 (en) Method for producing oxide superconducting material
JPH02237082A (en) Semiconductor substrate provided with superconductor thin film and manufacture thereof
JP2544761B2 (en) Preparation method of superconducting thin film
JPH02311396A (en) Thin-film superconductor and its production
JP2544760B2 (en) Preparation method of superconducting thin film
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JPH01220876A (en) Wiring of oxide superconductor film
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH01115899A (en) Production of oxide superconductor film
JP2004207482A (en) Oxide superconductive thin film
JPH01167218A (en) Production of superconducting thin film
JPH01100096A (en) Production of oxide superconductor thin film