JPS63272066A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63272066A
JPS63272066A JP62104736A JP10473687A JPS63272066A JP S63272066 A JPS63272066 A JP S63272066A JP 62104736 A JP62104736 A JP 62104736A JP 10473687 A JP10473687 A JP 10473687A JP S63272066 A JPS63272066 A JP S63272066A
Authority
JP
Japan
Prior art keywords
conductivity type
element region
forming
type element
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62104736A
Other languages
Japanese (ja)
Inventor
Junji Tajima
田島 淳司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62104736A priority Critical patent/JPS63272066A/en
Publication of JPS63272066A publication Critical patent/JPS63272066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To simplify processes and to reduce cost, by forming a gate electrode, source and drain regions in a first conductivity type element region and next by coating the first conductivity type element region with a photoresist or the like and by forming a gate electrode, source and drain regions in a second conductivity type and element region and by suchlike. CONSTITUTION:One conductivity type semiconductor substrate 11 is partitioned into first conductivity type and second conductivity type regions, and a gate insulating film 14 is formed on the respective regions, and a polycrystalline semiconductor film 15 is formed on the film 14. In succession, the polycrystalline semiconductor film 15 is made to remain as it is in the second conductivity type element region and it is formed into a gate electrode 15N in the first conductivity type element region, and next first conductivity type impurities are introduced into said first conductivity type element region to form source and drain regions 17N. In succession, said first conductivity type element region is coated with a photoresist 16 or the like, and a gate electrode 15P is formed of said polycrystalline semiconductor film 15 in the second conductivity type element region, and thereafter second conductivity type impurities are introduced into said second conductivity element region to form source and drain regions 17P.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に相補型MO
3半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.
3. This invention relates to a method for manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

一部に、相補型MO3(以下、C−MOSと称する)半
導体装置は、消費電力が小さいという利点を有している
が、Pチャネル、Nチャネルの各MO3)ランジスタを
形成しなければならないため、製造工程が煩雑であると
いう欠点がある。
In part, complementary MO3 (hereinafter referred to as C-MOS) semiconductor devices have the advantage of low power consumption, but because they require the formation of P-channel and N-channel MO3) transistors, However, it has the disadvantage that the manufacturing process is complicated.

例えば、従来のC−MOSの製造方法を第3図(a)乃
至(d)に示す。
For example, a conventional C-MOS manufacturing method is shown in FIGS. 3(a) to 3(d).

先ず、同図(a)のように、例えばP型シリコン基板3
1の一部に選択的にN型ウェル領域32を形成した後、
フィールド酸化膜33を形成して活性化領域を画成する
。そして、この上にゲート酸化膜34を形成し、更に全
面に多結晶シリコンを成長した上で、これを写真蝕刻技
術を用いてパターニングすることによりゲート電極35
N、35Pを形成する。
First, as shown in the same figure (a), for example, a P-type silicon substrate 3 is
After selectively forming an N-type well region 32 in a part of 1,
A field oxide film 33 is formed to define an active region. Then, a gate oxide film 34 is formed on this, polycrystalline silicon is further grown on the entire surface, and this is patterned using photolithography to form a gate electrode 35.
N, forming 35P.

次いで、同図(b)のように、PMO3形成領域をレジ
スト36で覆い、砒素(As)をイオン注入で導入し、
NチャネルMO3I−ランジスタのソース・ドレイン領
域37Nを形成する。
Next, as shown in FIG. 3(b), the PMO3 formation region is covered with a resist 36, and arsenic (As) is introduced by ion implantation.
Source/drain regions 37N of an N-channel MO3I-transistor are formed.

続いて、第3図(C)のように、今度はNMO3形成領
域をレジスト38で覆い、ボロン(B)をイオン注入で
導入し、PチャネルMOSトランジスタのソース・ドレ
イン領域37Pを形成する。
Subsequently, as shown in FIG. 3C, the NMO3 formation region is covered with a resist 38, and boron (B) is ion-implanted to form the source/drain region 37P of the P-channel MOS transistor.

以下、通常の工程に従って眉間絶縁膜39の堆積、コン
タクトホール39aの開孔、配線40の形成を行なうこ
とにより、同図(d)のように、C−MO3半導体装置
が完成される。
Thereafter, a glabellar insulating film 39 is deposited, a contact hole 39a is formed, and a wiring 40 is formed according to the usual steps, thereby completing a C-MO3 semiconductor device as shown in FIG. 2D.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のC−MOSの形成方法では、上述
したように写真蝕刻技術がゲート電極35N、35Pの
形成からソース・ドレイン領域37N、37Pの形成ま
で3回あり、工程が複雑でコストが高くなるという問題
が生じている。
However, in the conventional C-MOS formation method, as mentioned above, the photolithography process is performed three times from the formation of the gate electrodes 35N and 35P to the formation of the source/drain regions 37N and 37P, resulting in a complicated process and high cost. This problem has arisen.

また、最近MO3)ランジスタのゲート実効長が短くな
るにつれて、ホットエレクトロンによるトランジスタの
劣化等の対策のため、ソース・ドレイン領域に低濃度不
純物領域を形成したLDD(Lightly Dope
d Drain )構造のトランジスタが採用されてい
るが、この種のトランジスタの製造方法では、LDDを
形成するために写真蝕刻工程を更に増加させる必要があ
る。
In addition, as the effective gate length of MO3) transistors has recently become shorter, LDDs (Lightly Dope
d Drain ) structure has been adopted, but in the method of manufacturing this type of transistor, it is necessary to further increase the number of photolithographic processes to form an LDD.

本発明は工程の簡略化及び低コスト化を可能にした半導
体装置の製造方法を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that enables simplified steps and lower costs.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、一の導電型の半導体
基板に第1導電型素子及び第2導電型素子の各領域を画
成しかつ各領域にゲート絶縁膜を形成する工程と、半導
体基板上に多結晶半導体膜を形成する工程と、この多結
晶半導体膜を第2導電型素子領域でそのまま残し、第1
導電型素子領域でゲート電極に形成する工程と、前記第
1導電型素子領域に第1導電型不純物を導入してソース
・ドレイン領域を形成する工程と、前記第1導電型素子
領域をフォトレジスト等で被覆した上で、第2導電型素
子領域に前記多結晶半導体膜でゲート電極を形成する工
程と、前記第2導電型素子領域に第2導電型不純物を導
入してソース・ドレイン領域を形成する工程を含んでい
る。
A method for manufacturing a semiconductor device according to the present invention includes the steps of defining regions of a first conductivity type element and a second conductivity type element on a semiconductor substrate of one conductivity type and forming a gate insulating film in each region; A step of forming a polycrystalline semiconductor film on the substrate, leaving this polycrystalline semiconductor film as it is in the second conductivity type element region, and forming the polycrystalline semiconductor film on the substrate.
a step of forming a gate electrode in a conductive type element region, a step of introducing a first conductive type impurity into the first conductive type element region to form a source/drain region, and a step of forming a photoresist on the first conductive type element region. and forming a gate electrode using the polycrystalline semiconductor film in the second conductivity type element region, and introducing a second conductivity type impurity into the second conductivity type element region to form source/drain regions. It includes a step of forming.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)乃至(d)は本発明の第1実施例を製造工
程順に示す断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views showing a first embodiment of the present invention in the order of manufacturing steps.

先ず、第1図(a)のようにP型シリコン基板11の一
部にN型ウェル領域12を形成した後、選択酸化力によ
りフィールド酸化膜13を1.czmの厚さに形成する
。また、活性化領域にはゲート酸化膜14を厚さ500
人で形成する。そして、全面に多結晶シリコン15を堆
積する。
First, as shown in FIG. 1(a), after forming an N-type well region 12 in a part of a P-type silicon substrate 11, a field oxide film 13 is oxidized by selective oxidation. Formed to a thickness of czm. In addition, a gate oxide film 14 is formed in the active region to a thickness of 500 mm.
Formed by people. Then, polycrystalline silicon 15 is deposited on the entire surface.

続いて、同図(b)のように、フォトレジスト16を利
用した写真蝕刻技術を用いてNMO3形成領域の多結晶
シリコン15のみをパターニングしてNチャネルMOS
トランジスタのゲート電極15Nを形成する。そして、
形成後に砒素のイオン注入を行い、NチャネルMoSト
ランジスタのソース・ドレイン領域17Nを形成する。
Subsequently, as shown in FIG. 3B, only the polycrystalline silicon 15 in the NMO3 formation region is patterned using photolithography using a photoresist 16 to form an N-channel MOS.
A gate electrode 15N of the transistor is formed. and,
After the formation, arsenic ions are implanted to form source/drain regions 17N of an N-channel MoS transistor.

次に、同図(C)のように、前記フォトレジスト16を
除去した後、改めてフォトレジスト18を利用した写真
蝕刻技術によりPMOS形成領域に残された多結晶シリ
コン15をパターニングしてPチャネルMO3I−ラン
ジスタのゲート電極15Pを形成する。このとき、N 
M OS 領域は前記フォトレジスト18で覆っておく
。そして、この状態でボロンのイオン注入を行い、Pチ
ャネルMOSトランジスタのソース・ドレイン領域17
pを形成する。
Next, as shown in FIG. 3C, after removing the photoresist 16, the polycrystalline silicon 15 remaining in the PMOS formation region is patterned again by photolithography using the photoresist 18 to form a P-channel MO3I. - Form the gate electrode 15P of the transistor. At this time, N
The MOS region is covered with the photoresist 18. In this state, boron ions are implanted into the source/drain regions 17 of the P-channel MOS transistor.
form p.

以下、同図(d)のようにフォトレジスト18を除去後
、通常の工程に従い、層間絶縁膜19の堆積、コンタク
トホール19aの開孔、配線20を形成することにより
、C−MO3半導体装置を完成する。
After removing the photoresist 18, as shown in FIG. 2D, the C-MO3 semiconductor device is manufactured by depositing an interlayer insulating film 19, forming contact holes 19a, and forming interconnections 20 in accordance with the usual process. Complete.

以上の工程では、ゲート電極15N、15Pの形成から
ソース・ドレイン領域17N、17Pの形成まで2回の
写真蝕刻工程で形成でき、工程の簡略化を達成できる。
In the above steps, the steps from forming the gate electrodes 15N and 15P to forming the source/drain regions 17N and 17P can be formed in two photolithography steps, thereby simplifying the steps.

第2図(a)及び(b)は本発明の第2実施例の主要工
程を示す断面図であり、この実施例ではLDD構造のト
ランジスタに本発明を適用した例を示している。
FIGS. 2(a) and 2(b) are cross-sectional views showing the main steps of a second embodiment of the present invention, and this embodiment shows an example in which the present invention is applied to a transistor having an LDD structure.

先ず、第2図(a)のように、第1実施例と同様にP型
シリコン基板21にN型ウェル22.フィールド酸化M
、23.ゲート酸化膜24を順次形成し、更に多結晶シ
リコン25を形成してこれをフォトレジスト26により
パターニングしてNチャネルMO3)ランジスタの電極
25Nを形成する。そして、砒素を低ドーズ量でイオン
注入して浅い拡散層27N′を形成する。
First, as shown in FIG. 2(a), an N-type well 22. is formed in a P-type silicon substrate 21 as in the first embodiment. field oxidation M
, 23. A gate oxide film 24 is sequentially formed, and then polycrystalline silicon 25 is formed and patterned using a photoresist 26 to form an electrode 25N of an N-channel MO3) transistor. Then, arsenic is ion-implanted at a low dose to form a shallow diffusion layer 27N'.

続いて、同図(b)に示すように、シリコン酸化膜等の
絶縁膜を堆積させた上で、これを異方性エツチング法に
よりエッチバックして、前記ゲート電極25Nの側壁に
サイドウオール25′を形成し、この状態で砒素を高ド
ーズ量でイオン注入して深い拡散層27N#を形成する
。これにより、LDD構造のソース・ドレイン領域27
Nが形成され、NチャネルMO3)ランジスタが形成さ
れる。
Subsequently, as shown in FIG. 2B, an insulating film such as a silicon oxide film is deposited and then etched back by an anisotropic etching method to form a side wall 25 on the side wall of the gate electrode 25N. ' is formed, and in this state, arsenic is ion-implanted at a high dose to form a deep diffusion layer 27N#. As a result, the source/drain region 27 of the LDD structure
N is formed, and an N-channel MO3) transistor is formed.

以下、説明は省略するが、第1実施例の第1図(C)及
び(d)の工程を実行することにより、LDD構造のN
チャネルMOSトランジスタと、通常のPチャネルMO
3)ランジスタとで構成されるC−MO3半導体装置が
完成される。
Although the explanation will be omitted below, by carrying out the steps shown in FIGS. 1(C) and (d) of the first embodiment, the N
Channel MOS transistor and normal P channel MO
3) A C-MO3 semiconductor device composed of transistors is completed.

この実施例においても、ゲート電極からソース・ドレイ
ン領域の形成まで、2回の写真蝕刻技術で製造できる。
In this embodiment as well, the steps from the gate electrode to the formation of the source/drain regions can be manufactured by two photolithography steps.

なお、前記実施例はNチャネルMOSトランジスタにつ
いて説明したが、PチャネルMO3I−ランジスタにお
いても同様に適用できる。
It should be noted that, although the above embodiment has been described with respect to an N-channel MOS transistor, it can be similarly applied to a P-channel MO3I-transistor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板上に形成した
多結晶半導体膜を第2導電型素子領域でそのまま残し、
第1導電型素子領域でゲート電極に形成するとともにソ
ース・ドレイン領域を形成し、次いで第1導電型素子領
域をフォトレジスト等で被覆した上で、第2導電型素子
領域に前記多結晶半導体膜でゲート電極を形成するとと
もにソース・ドレイン領域を形成しているので、ゲート
電極形成からC−MO3完成までにおける写真蝕刻工程
数を低減でき、工程の簡略及び低コスト化を実現で・き
る。また、これはLDD構造のトランジスタを製造する
場合でも同様である。
As explained above, the present invention leaves a polycrystalline semiconductor film formed on a semiconductor substrate as it is in the second conductivity type element region,
A gate electrode is formed in the first conductivity type element region, and a source/drain region is formed, and then the first conductivity type element region is covered with a photoresist or the like, and then the polycrystalline semiconductor film is formed in the second conductivity type element region. Since the gate electrode is formed and the source/drain regions are also formed, the number of photolithography steps from gate electrode formation to completion of C-MO3 can be reduced, and process simplification and cost reduction can be realized. Further, this also applies when manufacturing a transistor having an LDD structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至第1図(d)は本発明の第1実施例を
工程順に示す断面図、第2図(a)及び第2図(b)は
第2実施例の主要工程を示す断面図、第3図(a)乃至
第3図(d)は従来の製造方法を工程順に示す断面図で
ある。 11.21.31・・・P型シリコン基板、12,22
.32・・・N型ウェル、13,23.33・・・フィ
ールド酸化膜、14,24.34・・・ゲート酸化膜、
15.25・・・多結晶シリコン、15N、25N。 35N・・・NMOSゲート電極、15P、25P。 35P・・・PMOSゲート電極、16,26.36・
・・フォトレジスト、17N、27N、37N・・・N
MOSソース・ドレイン領域、17P、27P。 37P・・・PMOSソニス・ドレイン領域、27N’
・・・低ドーズ量浅い拡散層、27N″・・・高ドーズ
領域深い拡散層、18.38・・・フォトレジスト、1
9.39・・・層間絶縁膜、20.40・・・配線。 第1図 第1図 1/N 第3図 第3図
FIGS. 1(a) to 1(d) are cross-sectional views showing the first embodiment of the present invention in the order of steps, and FIGS. 2(a) and 2(b) are sectional views showing the main steps of the second embodiment. The cross-sectional views shown in FIGS. 3(a) to 3(d) are cross-sectional views showing the conventional manufacturing method in the order of steps. 11.21.31...P-type silicon substrate, 12,22
.. 32...N-type well, 13,23.33...Field oxide film, 14,24.34...Gate oxide film,
15.25...Polycrystalline silicon, 15N, 25N. 35N...NMOS gate electrode, 15P, 25P. 35P...PMOS gate electrode, 16,26.36.
...Photoresist, 17N, 27N, 37N...N
MOS source/drain region, 17P, 27P. 37P...PMOS sonis drain region, 27N'
...Low dose shallow diffusion layer, 27N''...High dose region deep diffusion layer, 18.38...Photoresist, 1
9.39...Interlayer insulating film, 20.40...Wiring. Figure 1 Figure 1 1/N Figure 3 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)一の導電型の半導体基板に第1導電型素子及び第
2導電型素子の各領域を画成しかつ各領域にゲート絶縁
膜を形成する工程と、前記半導体基板上に多結晶半導体
膜を形成する工程と、この多結晶半導体膜を第2導電型
素子領域でそのまま残し、第1導電型素子領域でゲート
電極に形成する工程と、前記第1導電型素子領域に第1
導電型不純物を導入してソース・ドレイン領域を形成す
る工程と、前記第1導電型素子領域をフォトレジスト等
で被覆した上で、第2導電型素子領域に前記多結晶半導
体膜でゲート電極を形成する工程と、前記第2導電型素
子領域に第2導電型不純物を導入してソース・ドレイン
領域を形成する工程を含むことを特徴とする半導体装置
の製造方法。
(1) A step of defining each region of a first conductivity type element and a second conductivity type element on a semiconductor substrate of one conductivity type and forming a gate insulating film in each region, and forming a polycrystalline semiconductor on the semiconductor substrate. forming a polycrystalline semiconductor film, leaving the polycrystalline semiconductor film as it is in the second conductivity type element region and forming a gate electrode in the first conductivity type element region, and forming a first conductivity type film in the first conductivity type element region.
A step of introducing conductivity type impurities to form source/drain regions, and coating the first conductivity type element region with a photoresist or the like, and forming a gate electrode using the polycrystalline semiconductor film in the second conductivity type element region. A method of manufacturing a semiconductor device, comprising the steps of: forming a source/drain region; and introducing a second conductivity type impurity into the second conductivity type element region to form a source/drain region.
(2)ゲート電極形成後に、低ドーズ量で不純物を導入
して浅い拡散層を形成する工程と、その後絶縁膜を堆積
しかつこれを異方性エッチングしてゲート電極の側面に
絶縁膜を残す工程と、高ドーズ量で不純物を導入して深
い拡散層を形成する工程を含む特許請求の範囲第1項記
載の半導体装置の製造方法。
(2) After forming the gate electrode, a process of introducing impurities at a low dose to form a shallow diffusion layer, followed by depositing an insulating film and etching it anisotropically to leave the insulating film on the sides of the gate electrode. 2. The method of manufacturing a semiconductor device according to claim 1, comprising the step of forming a deep diffusion layer by introducing impurities at a high dose.
JP62104736A 1987-04-30 1987-04-30 Manufacture of semiconductor device Pending JPS63272066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104736A JPS63272066A (en) 1987-04-30 1987-04-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104736A JPS63272066A (en) 1987-04-30 1987-04-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63272066A true JPS63272066A (en) 1988-11-09

Family

ID=14388781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104736A Pending JPS63272066A (en) 1987-04-30 1987-04-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63272066A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786423A (en) * 1993-09-14 1995-03-31 Nec Corp Manufacture of mis type semiconductor integrated circuit device
JP2002368123A (en) * 2001-06-07 2002-12-20 Nec Corp Production method for mos-type semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843556A (en) * 1981-09-08 1983-03-14 Toshiba Corp Manufacture of complementary semiconductor device
JPS61183967A (en) * 1985-02-08 1986-08-16 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843556A (en) * 1981-09-08 1983-03-14 Toshiba Corp Manufacture of complementary semiconductor device
JPS61183967A (en) * 1985-02-08 1986-08-16 Toshiba Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786423A (en) * 1993-09-14 1995-03-31 Nec Corp Manufacture of mis type semiconductor integrated circuit device
JP2002368123A (en) * 2001-06-07 2002-12-20 Nec Corp Production method for mos-type semiconductor device

Similar Documents

Publication Publication Date Title
US4562638A (en) Method for the simultaneous manufacture of fast short channel and voltage-stable MOS transistors in VLSI circuits
JPH05308128A (en) Semiconductor device and its manufacture
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
KR100209750B1 (en) Structure of cmos device and method of manufacturing the same
JPS63272066A (en) Manufacture of semiconductor device
JP2748896B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH07169850A (en) Semiconductor device and manufacture of it
KR100554201B1 (en) Manufacturing method of CDMOS
JPH0432260A (en) Semiconductor device and method for forming its wiring
JPH09321233A (en) Manufacturing semiconductor device
JPS63128626A (en) Method of forming contact of semiconductor integrated circuit device
JP2605757B2 (en) Method for manufacturing semiconductor device
JPS61270859A (en) Manufacture of cmos semiconductor device
JPS633447A (en) Manufacture of cmos semiconductor integrated circuit
JPH098238A (en) Semiconductor memory and its preparation
KR100215872B1 (en) Method for fabricating cmos
JP2633525B2 (en) Method for manufacturing semiconductor device
JPH0974143A (en) Semiconductor device and manufacture
JP3186713B2 (en) Method for manufacturing semiconductor device
KR100268928B1 (en) Method for fabricating semiconductor device
KR930008534B1 (en) Manufacturing method of dual-gate transistor
JPH02162769A (en) Manufacture of complementary thin film transistor
JPH01110761A (en) Manufacture of semiconductor device
JPH1131814A (en) Manufacture of semiconductor device
JP2982393B2 (en) Method for manufacturing semiconductor device