JPS63223210A - Formation of water-impermeable layer - Google Patents

Formation of water-impermeable layer

Info

Publication number
JPS63223210A
JPS63223210A JP5469787A JP5469787A JPS63223210A JP S63223210 A JPS63223210 A JP S63223210A JP 5469787 A JP5469787 A JP 5469787A JP 5469787 A JP5469787 A JP 5469787A JP S63223210 A JPS63223210 A JP S63223210A
Authority
JP
Japan
Prior art keywords
asphalt emulsion
water
mixture
impermeable layer
asphalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5469787A
Other languages
Japanese (ja)
Other versions
JPH0531603B2 (en
Inventor
Hironao Isogai
磯貝 洋尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Corp Ltd
Eneos Corp
Nippon Giken Co Ltd
Hazama Ando Corp
Original Assignee
Nippon Hodo Co Ltd
Hazama Gumi Ltd
Nippon Petrochemicals Co Ltd
Nippon Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hodo Co Ltd, Hazama Gumi Ltd, Nippon Petrochemicals Co Ltd, Nippon Giken Co Ltd filed Critical Nippon Hodo Co Ltd
Priority to JP5469787A priority Critical patent/JPS63223210A/en
Publication of JPS63223210A publication Critical patent/JPS63223210A/en
Publication of JPH0531603B2 publication Critical patent/JPH0531603B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PURPOSE:To form a water-impermeable layer having good durability by a method in which a number of holes are bored in the ground and a mixture of asphalt emulsion and cement milk is injected into the bored holes. CONSTITUTION:A number of preceding holes are excavated at a given interval in given places of the foundation 1, and a consolidation grouting work is made to raise injection effects in portions deeper than the upper layer 2 of a water- impermeable layer. The preceding holes are further dug down to form a number of bored holes 11 of a given depth. A mixture of asphalt emulsion and cement milk is injected into the holes 11 by a mixing plant according to the soil quality of each layer. By selecting the mixing rate of asphalt emulsion and cement milk, the mixture can be injected and permeated into the ground according to the soil quality.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、ダム、トンネル等の基礎地盤中にアスファ
ルト微粒子を水中に分散させた乳剤な圧入し、地盤中で
アスファルトを分解させて地盤中に不透水層を形成する
不透水層形成法に関する。
[Detailed Description of the Invention] <Industrial Application Field> This invention involves injecting an emulsion in which asphalt fine particles are dispersed in water into the foundation ground of dams, tunnels, etc., and decomposing the asphalt in the ground. This invention relates to an impermeable layer forming method for forming an impermeable layer.

〈従来の技術〉 一般に、コンクリートダム、ロックフィルダム等の基礎
となる地盤には、ダムの上流側水圧によるダム下流への
浸透水を遮断するため、河川幅全域に亘って深度30〜
60m、幅員2〜3mの不透水層が成形されていた。
<Conventional technology> In general, the foundation of concrete dams, rockfill dams, etc. is built with a depth of 30 to 30 mm over the entire width of the river in order to block water that seeps into the downstream of the dam due to water pressure on the upstream side of the dam.
An impermeable layer measuring 60 m and a width of 2 to 3 m had been formed.

このような不透水層の形成は、例えば、第1図のように
ダム堤体りの基礎部となる基礎面1に略1.5m間隔で
ボーリング孔11が掘削され、このボーリング孔11に
地中注入パイプを挿入して、ポルトランドセメントに水
を加えた液状のセメントミルクか、またはこのセメント
ミルクに粒子径3mm以下の微砂を加えたセメントモル
タル、あるいはときによりペンナイト等の混合物がグラ
ウトポンプで注入され、その浸透注入により不透水層の
形成が行われていた。
The formation of such an impermeable layer can be achieved, for example, by drilling boreholes 11 at approximately 1.5 m intervals in the foundation surface 1, which is the foundation of the dam embankment, as shown in Figure 1. By inserting a medium injection pipe, a grout pump is used to pour liquid cement milk, which is made by adding water to Portland cement, or cement mortar, which is made by adding fine sand with a particle size of 3 mm or less to this cement milk, or sometimes a mixture such as pennite. The impermeable layer was formed by the infiltration injection.

一方、基礎となる地盤中には、粘土や粒子の細いシルト
等からなる断層4や、粒子の粗い粗砂を主体とし土粒子
間隙の粗い粗砂層6や、破砕帯7等が複雑に混在してい
る。この断層4はセメント粒子の注入を遮えぎって、断
層4より下方の領域10へのセメントミルクの浸透を阻
害し、破砕帯7では、セメントミルクが破砕帯7層を通
って遠方へ漏洩し、ボーリング孔周辺域へのセメントミ
ルク浸透を阻害する要因となっていた。また、基礎地盤
が岩盤の場合は、岩盤内には小空洞や大間陣があり、更
に水や有機物の滞溜および粘土や砂れきの堆積に至るま
で不確定な要素が内在しており、そのためセメントミル
クの注入も不確定なものであった。
On the other hand, the underlying ground contains a complex mixture of faults 4 made of clay, fine-grained silt, etc., coarse sand layers 6 consisting mainly of coarse-grained coarse sand with coarse gaps between soil particles, and fracture zones 7. ing. This fault 4 blocks the injection of cement particles and prevents the cement milk from penetrating into the region 10 below the fault 4, and in the fracture zone 7, the cement milk leaks far away through the 7 layers of the fracture zone. This was a factor that inhibited the penetration of cement milk into the area around the borehole. In addition, when the foundation ground is bedrock, there are small cavities and large spaces within the bedrock, and there are also uncertain elements such as retention of water and organic matter, and accumulation of clay and gravel, so cement Milk injection was also uncertain.

従って、このような地盤、岩盤へのセメントミルクの注
入効果は透水係数に値により判断され、この透水係数に
値は建設省ルジオンテスト施工指針に下式によって示さ
れている。
Therefore, the effect of injecting cement milk into such ground and rock is determined by the value of the hydraulic conductivity, and the value of the hydraulic conductivity is shown in the Ministry of Construction's Lugeon Test Construction Guidelines using the following formula.

Q:注入量(af/s) r:ボーリング孔の半径(cmン 1:注入区間(cm) p:注入圧(kgf/Cffl1) この算式によりに冨n X 10’ co+/sを基準
としてセメントミルクの注入効果の判定が行われていた
Q: Injection amount (af/s) r: Radius of borehole (cm) P: Injection pressure (kgf/Cffl1) Based on this formula, cement The effectiveness of milk injection was being evaluated.

〈発明が解決しようとする問題点〉 しかし、このような従来の不透水層形成法においては、
一般にポルトランドセメントは、その粒子径が平均20
μm(第2図の太線棒グラフで示す粒子分布を有する)
で水を加えると、まず−酸化カルシウムが水酸化カルシ
ウムとなる水和反応を起すが、石灰石を粉砕した鉱物で
あるため短時間に溶解したりして粒子径が細分化される
量が少なく、そのため上記断層4等の粘土や粒子の細い
シルトの土粒子の小間隙を透過できず、断層4より下方
の領域10の地盤改良を行なうことが困難であった。
<Problems to be solved by the invention> However, in such conventional methods of forming an impermeable layer,
Generally, Portland cement has an average particle size of 20
μm (has the particle distribution shown in the thick bar graph in Figure 2)
When water is added, first a hydration reaction occurs in which calcium oxide becomes calcium hydroxide, but since it is a mineral made from crushed limestone, it dissolves in a short time and the particle size is small. Therefore, it is difficult to penetrate the small gaps between clay and fine silt soil particles in the fault 4, etc., and it is difficult to improve the ground in the area 10 below the fault 4.

また、地盤構成が多様なため、注入されたセメントミル
クは土粒子間隙が粗い粗砂層6のような浸透し易い方へ
浸入して、均買に地盤改良を行なうことができず、破砕
帯フにおいては、セメントミルクが漏洩して注入予定域
の地盤改良を行なうことができなかった(第4図のCで
、第1図E−E断面でのセメントミルクの各地層への浸
透注入効果を示す)。
In addition, due to the diverse ground composition, the injected cement milk penetrates into areas where it is easy to penetrate, such as the coarse sand layer 6, where the gaps between soil particles are coarse, making it impossible to uniformly improve the ground. (C in Figure 4 shows the effect of infiltration of cement milk into each stratum at the E-E cross section in Figure 1) due to leakage of cement milk. show).

更に、セメント買は硬化時間が長く、セメントミルクで
は混練り後凝結終りまでに約6時間かかり、また強度1
00kgf /CI’となる時間は28日程度を要し、
トンネル漏水等の急結を要する場合では使用できないと
いう問題があった。そのため、このような場合には水ガ
ラス等の薬液注入処理が行われているが、薬液が極めて
高価であること、およびこのような薬液は水に対して溶
解性のものが多く耐久性にとぼしいという問題があった
Furthermore, cement milk takes a long time to set, and cement milk takes about 6 hours to finish setting after kneading, and the strength is 1.
It takes about 28 days to reach 00kgf/CI'.
There was a problem in that it could not be used in cases such as tunnel leaks that required quick fixing. Therefore, in such cases, chemical liquid injection treatment such as water glass is carried out, but the chemical liquid is extremely expensive, and many of these chemical liquids are soluble in water, resulting in poor durability. There was a problem.

しかも、ダムでは均一にに−nX10″4c■八以下を
必要とし、ダム決壊を起さないよう極めて重要な使命を
もつ不透水層の形成が義務づけられている。
Moreover, in dams, it is required to uniformly be less than -nX10''4c8, and it is mandatory to form an impermeable layer, which has an extremely important mission to prevent dam collapse.

く問題点を解決するための手段〉 この発明は上記問題点を解決するためになされたもので
あり、 地盤に適宜間隔をおいて複数個のボーリング孔を所望深
さまで掘削し、粒径が3μm以下のアスファルト微粒子
を水中に分散させたアスファルト乳剤を、あるいは粒径
が20μm以下のアスファルト微粒子を水中に分散させ
たアスファルト乳剤とセメントミルク、ベントナイト等
の混合物を、上記複数個のボーリング孔に圧入すること
により、上記複数個のボーリング孔間の地盤に、連続し
た不透水層を形成することを特徴とする不透水層形成法
である。
Means for Solving the Problems> This invention was made to solve the above problems, and involves drilling a plurality of boreholes in the ground at appropriate intervals to a desired depth, and boring holes with a grain size of 3 μm. An asphalt emulsion in which the following fine asphalt particles are dispersed in water, or a mixture of an asphalt emulsion in which fine asphalt particles with a particle size of 20 μm or less are dispersed in water, cement milk, bentonite, etc. are press-fitted into the plurality of boreholes. This is an impermeable layer forming method characterized by forming a continuous impermeable layer in the ground between the plurality of boreholes.

〈実施例〉 以下この発明の一実施例を第1図ないし′s5図に基づ
いて説明する。
<Embodiment> An embodiment of the present invention will be described below with reference to FIGS. 1 to 5'.

、第1図はダム堤体りに不透水層を築造した状態を示す
立面図であり、ダム堤体りの堤頂Dtの一端Daから他
端Dbに至る河川全幅において、基礎面1から所要深さ
の底面3に至る間の地盤が、地盤改良されてなる不透水
層である。
, Fig. 1 is an elevational view showing a state in which an impermeable layer has been constructed on the dam body, and in the entire width of the river from one end Da of the dam crest Dt to the other end Db, from the foundation surface 1. The ground up to the bottom 3 of the required depth is an impermeable layer formed by ground improvement.

このような不透水層を築造するには、先ずダム堤体pの
基礎面1の所定位置に、所定間隔をおいて多数の先行孔
(図示せず)を5mの深さに掘削して、不透水層の上層
部2より深い部分の注入効果を上げるためのコンソリデ
ージョングラウチングが行われる。このコンソリデージ
ョングラウチングは、各先行孔内に地中注入バイブ91
を挿入し、地上に設置したミキシングプラントにおいて
、粒子径が3μm以下のアスファルト微粒子を水中に分
散させてなるアスファルト乳剤、または粒子径が20μ
m以下のアスファルト微粒子を水中に分散させたアスフ
ァルト乳剤と凝結剤としてのセメントミルク混合物を、
夫々の先行孔の地質に合せて圧力と注入量とを調整しな
がら、圧入が行われる。この圧入によりアスファルト乳
剤またはアスファルト乳剤とセメントミルクとの混合物
が、各先行孔から地盤中に浸透注入され、不透水層の上
層部2が形成される。
To construct such an impermeable layer, first, a number of preliminary holes (not shown) are excavated to a depth of 5 m at predetermined intervals at predetermined positions on the foundation surface 1 of the dam body p. Consolidation grouting is performed to improve the injection effect in a portion deeper than the upper layer 2 of the impermeable layer. This consolidation grouting requires underground injection vibrator 91 in each preliminary hole.
An asphalt emulsion made by dispersing fine asphalt particles with a particle size of 3 μm or less in water, or a particle size of 20 μm, is produced in a mixing plant installed on the ground.
A mixture of asphalt emulsion in which fine asphalt particles of 100 m or less are dispersed in water and cement milk as a coagulant,
Injection is performed while adjusting the pressure and injection amount according to the geology of each preliminary hole. By this press-fitting, asphalt emulsion or a mixture of asphalt emulsion and cement milk is infiltrated into the ground through each preceding hole, and the upper layer 2 of the impermeable layer is formed.

続いて、各先行孔を更に掘り下げ、所要の深さ、例えば
深さ35mの多数のボーリング孔11を掘削する。この
ボーリング孔11は、深さ約5m毎に注入区分され、不
透水層の中心部のE−E断面を例にとると、堤頂Dtよ
りの深さbとCとの間即ちb−c層、同じ(c−d層、
d−e層、e−fll、f−g層へと順次サンプル採取
と水圧テストにより各層毎の地質が確認されて掘削され
る、そして、各ボーリング孔11毎に、各層毎の地質に
対応してアスファルト乳剤またはアスファルト乳剤とセ
メントミルクとの混合物がミキシングプラントより圧入
される。この圧入により上記アスファルト乳剤またはア
スファルト乳剤とセメントミルクとの混合物は、ボーリ
ング孔11から地盤中に浸透注入され、ボーリング孔1
1の周辺域に注入完了域95が形成される。そして、隣
接注入域96のボーリング孔11に順次上述の工程を繰
返して注入し、注入完了域95と隣接注入域96とを重
複、連続させて不透水層が築造される。
Subsequently, each preliminary hole is further dug to drill a large number of boreholes 11 to a required depth, for example, 35 m deep. This borehole 11 is divided into injection sections at approximately 5 m depth intervals, and if we take the E-E cross section of the center of the impermeable layer as an example, it is between the depths b and C from the bank top Dt, that is, b-c. Layer, same (c-d layer,
The geology of each layer is confirmed through sample collection and hydraulic tests in the d-e layer, e-full, and f-g layer, and then the geology of each layer is confirmed for each borehole 11. Asphalt emulsion or a mixture of asphalt emulsion and cement milk is then forced into the mixing plant. Through this press-fitting, the asphalt emulsion or the mixture of asphalt emulsion and cement milk is infiltrated into the ground through the borehole 11, and is injected into the ground through the borehole 11.
An implantation completion area 95 is formed in the peripheral area of 1. Then, the above-described steps are sequentially repeated to inject into the borehole 11 of the adjacent injection region 96, and the completed injection region 95 and the adjacent injection region 96 are made to overlap and continue, thereby constructing an impermeable layer.

尚、92は注入時にボーリング孔11の深さ5m毎に設
けられるバツカである。
Incidentally, reference numeral 92 denotes a backer provided at every 5 m depth of the borehole 11 during injection.

各地質に合せたアスファルト乳剤またはアスファルト乳
剤とセメントミルクとの混合物の調整は、例えば注入地
盤の地質が、粒子径10μm以下の細砂、微粒子を主体
とし、土粒子の間隙が比較的密な場合や、粘度や粒子の
細いシルトまじりの断層4が内在するときに注入剤とし
てアスファルト乳剤20aを使用する場合について説明
する。
Adjustment of asphalt emulsion or a mixture of asphalt emulsion and cement milk according to each geology can be made, for example, when the geology of the injection ground is mainly composed of fine sand and fine particles with a particle size of 10 μm or less, and the gaps between the soil particles are relatively dense. The case where the asphalt emulsion 20a is used as an injection agent when there is a fault 4 mixed with silt with a thin viscosity and particles will be described.

このアスファルト乳剤20aの形成は、先ず、平均粒子
径10μm最大粒子径20μmのアニオン系アスファル
ト粒子と水とを、前者55%、後者45%の比率で混合
するとともに、若干のアルキルスルホン酸塩からなる乳
化剤およびアルギン酸ソーダ、ゼラチン等からなる安定
剤を添加して混合剤を作成する。この混合剤を、高速回
転するロータの遠心力によって固定されたステータ面に
叩きつけると同時に、ロータとステータとの小間隙を通
過するときのせん新作用により、アスファルト粒子は平
均粒子径2μm最大粒子径3μmの略球形をなした粒子
に細分化されアスファルト微粒子20mが形成される。
The asphalt emulsion 20a is formed by first mixing anionic asphalt particles with an average particle diameter of 10 μm and a maximum particle diameter of 20 μm and water in a ratio of 55% of the former and 45% of the latter, and a small amount of alkyl sulfonate. A mixture is prepared by adding an emulsifier and a stabilizer consisting of sodium alginate, gelatin, etc. This mixture is struck against the fixed stator surface by the centrifugal force of the high-speed rotating rotor, and at the same time, due to the shearing action when passing through the small gap between the rotor and stator, the asphalt particles are reduced to an average particle size of 2 μm and a maximum particle size. It is subdivided into approximately spherical particles of 3 μm to form 20 m of asphalt fine particles.

そしてアスファルト微粒子20mがアルキルスルフォン
酸塩、ソーダ石けん等“負“の電化を呈するアニオン活
性剤が液解されている水の中に分散されて浮遊している
“疎水コロイド″の構造のアスファルト乳剤20が形成
される。更にこのアスファルト乳剤20を水30で薄め
て前者30%、後者70%の比率で混合してアニオン系
のアスファルト乳剤20aの注入剤が形成される。
An asphalt emulsion 20 with a "hydrophobic colloid" structure in which 20 m of fine asphalt particles are dispersed and suspended in water in which a negatively charged anionic activator such as an alkyl sulfonate or soda soap is dissolved. is formed. Further, this asphalt emulsion 20 is diluted with water 30 and mixed in a ratio of 30% of the former and 70% of the latter to form an injection agent of the anionic asphalt emulsion 20a.

アスファルト乳剤20aの地盤内への浸透注入を第3図
に従って説明する。注入圧Pにより地下注入バイブ91
より押出されたアスファルト乳剤20aは、土粒子14
の小間隙に圧入される。このとき、アスファルト乳剤2
0aのアスファルト微粒子20mは、土粒子14の小間
隙内へ浸入するとともにアスファルト微粒子20mの有
する粘弾性により小間隙を通通し、小間隙内に存在して
いた水や空気等を押出して浸透注入される。
The infiltration and injection of the asphalt emulsion 20a into the ground will be explained with reference to FIG. Underground injection vibe 91 due to injection pressure P
The asphalt emulsion 20a extruded from the soil particles 14
is press-fitted into a small gap. At this time, asphalt emulsion 2
The asphalt fine particles 20m of 0a infiltrate into the small gaps of the soil particles 14, pass through the small gaps due to the viscoelasticity of the asphalt fine particles 20m, push out water, air, etc. that were present in the small gaps, and are infiltrated. Ru.

また、土粒子14を構成している粘度鉱物の結晶は、電
気的に不飽和な状態で土粒子14表面は負に帯電してい
る。そのため土粒子14は電気的に中和するように水の
分子の正電荷側を引きつけて水を吸着し、水の他にも各
種の電解賀陽イオンがあって吸着複合体をなしており、
更に土粒子14には吸着された陽イオンがあって、他の
陽イオンと交換する作用をし別の複合体に変化すること
がある。電荷の強さは半径の大きさによって限界がある
ので、吸着水腹で覆われた土粒子14の境界面は、不規
則な形状の土粒子14の形に略近似した状態になってお
り、このような土粒子14の集合している小間隙にアニ
オン系アスファルト乳剤20aが浸透注入される。
Furthermore, the clay mineral crystals constituting the soil particles 14 are electrically unsaturated, and the surface of the soil particles 14 is negatively charged. Therefore, the soil particles 14 adsorb water by attracting the positively charged side of water molecules so as to electrically neutralize them, and in addition to water, there are various electrolytic cations, forming an adsorption complex.
Furthermore, the soil particles 14 have adsorbed cations, which act to exchange with other cations and may change into another complex. Since the strength of the electric charge is limited by the size of the radius, the boundary surface of the soil particles 14 covered with the adsorbed water belly is in a state that approximately approximates the shape of the irregularly shaped soil particles 14, The anionic asphalt emulsion 20a is injected into the small gaps where the soil particles 14 are gathered.

そして、アスファルト乳剤20aは小間隙を通過すると
き、互に負の電荷により反発しながら浸透するが表面の
凹凸が著しい不規則な形状の土粒子14に付着し、注入
圧Pに応じて次第に小間隙を密閉して不透水層を形成し
、更に注入圧Pを増すことにより、小間隙内のアスファ
ルト微粒子20mを深部へ圧入し、流動性に冨むアスフ
ァルト乳剤20a中の水溶液が絞り出される現象を繰返
して不透水層の厚みを増し、また、断層4を通過して、
その下方領域10へ浸透注入して不透水層の形成が行わ
れる。
When the asphalt emulsion 20a passes through the small gap, it penetrates while repelling each other due to negative charges, but it adheres to the irregularly shaped soil particles 14 with a markedly uneven surface, and gradually becomes smaller depending on the injection pressure P. By sealing the gap to form an impermeable layer and further increasing the injection pressure P, 20 m of fine asphalt particles in the small gap are forced into the deep part, and the aqueous solution in the highly fluid asphalt emulsion 20a is squeezed out. Repeat this to increase the thickness of the impermeable layer, pass through fault 4,
An impermeable layer is formed by penetrating the lower region 10.

このアスファルト乳剤20の注入テストの結果、細、砂
、微粒子を主体とした比較的細い粒子の地盤改良におい
て、従来の超微粒子セメント(ブレーン値9,200 
cm’/g)用いたセメントミルクの注入量に対し約3
倍の量のアスファルト乳剤20aが注入され、透水係数
に値は、セメントミルク注入の場合に一3X10桶ct
a/sであったが、アスファルト乳剤20aの注入によ
ってに=5.OX 10′5cm/sと注入改良ができ
た。また、アスファルト乳剤20aは注入後次第に硬化
が進み、掘削テストの結果は地盤に均質に浸透充填され
ていることが確認された。尚、注入される上記細い粒子
の地質に対応するアスファルト乳剤20aの濃度は約3
0%の比率が最も改良効果があることも判明した。
As a result of the injection test of this asphalt emulsion 20, it was found that conventional ultrafine particle cement (Blane value 9,200
cm'/g) for the injection amount of cement milk used.
Double the amount of asphalt emulsion 20a is injected, and the value of hydraulic conductivity is -3x10 pail ct in case of cement milk injection.
a/s, but by injection of asphalt emulsion 20a, it became =5. The injection was improved to OX 10'5cm/s. In addition, the asphalt emulsion 20a gradually hardened after being poured, and the results of the excavation test confirmed that the asphalt emulsion 20a was uniformly infiltrated into the ground. The concentration of the asphalt emulsion 20a corresponding to the geology of the fine particles to be injected is approximately 3
It was also found that a ratio of 0% had the greatest improvement effect.

また、注入地盤の地質が、粒子径が数110At以上の
粗砂を主体とし、土粒子の間隙が比較的粗い粗砂層6や
破砕帯7への注入の場合は、注入剤としてアスファルト
乳剤とその凝結剤としてセメントミルクを混合した混合
物66が使用される。
In addition, if the geology of the injection ground is mainly coarse sand with a particle size of several 110 At or more, and if the injection is into the coarse sand layer 6 or fracture zone 7 where the gaps between the soil particles are relatively coarse, asphalt emulsion and asphalt emulsion are used as the injection agent. A mixture 66 with cement milk is used as a coagulant.

この混合物66は、平均粒子径10μm最大粒子径20
μmのノニオン系アスファルト微粒子と水70とを、前
者55%、後者45%の比率で混合し、若干のアルキル
スルホン酸塩からなる乳化剤およびアルギン酸ソーダ、
ゼラチン等からなる安定剤を添加して、最大粒子径20
μm以下のノニオン系アスファルト乳剤40nを形成す
る。一方、若干の骨材、混和材を含む平均粒子径20μ
mの普通セメント60と水70とを比率例えば50%、
50%の割合で混合してセメントミルク65を形成する
。このセメントミルク65とアスファルト乳剤40nと
を1対3の比率で混合して、アスファルト乳剤20aに
比し流動性の低い混合物66が形成される。
This mixture 66 has an average particle size of 10 μm and a maximum particle size of 20 μm.
Micron nonionic asphalt fine particles and water 70 are mixed in a ratio of 55% of the former and 45% of the latter, and an emulsifier consisting of some alkyl sulfonate and sodium alginate,
By adding a stabilizer such as gelatin, the maximum particle size is 20.
Form a nonionic asphalt emulsion 40n with a diameter of μm or less. On the other hand, the average particle size is 20μ, including some aggregate and admixtures.
For example, the ratio of 60 m of ordinary cement to 70 m of water is 50%,
Mix at a rate of 50% to form cement milk 65. This cement milk 65 and asphalt emulsion 40n are mixed at a ratio of 1:3 to form a mixture 66 having lower fluidity than asphalt emulsion 20a.

この混合物66は注入テストの結果、混合物66が粗砂
層6や破砕帯7へ注入されると、アスファルト乳剤40
nが先ず土粒子表面に付着し、これにより土粒子間隙が
小さくなるとともに、一部ではその間隙が埋められる。
As a result of the injection test, when the mixture 66 is injected into the coarse sand layer 6 or the fracture zone 7, the asphalt emulsion 40
n first adheres to the surface of the soil particles, thereby reducing the gaps between the soil particles and, in some cases, filling the gaps.

粗い土粒子間隙はセメントミルク65が浸透し、土粒子
間隙に残った水分とセメントとが反応して結晶構造とな
って土粒間隙が埋められる。また、硬化時間の長いセメ
ントミルク65の間にもアスファルト乳剤40nが侵入
する。一方、混合物66の時間当り注入量が異常に多い
場合は、セメントミルク65の水70の混合比率を少な
くして高濃度のセメントミルク65を形成して注入し、
ざらに水70に急結剤を混入して混合物の各粒子を早く
固化させる方法を採る。また、時間当り注入量が少ない
場合は、セメント60と水70の混合比率を多くして低
濃度のセメントミル砂65を形成した注入する。これに
より、破砕帯7より下方の領域9を含むボウリング孔1
1周辺域に、混合物66が浸透注入されて不透水層が形
成される。
The cement milk 65 penetrates into the gaps between the coarse soil particles, and the water remaining in the gaps between the soil particles reacts with the cement to form a crystal structure, which fills the gaps between the soil particles. Further, the asphalt emulsion 40n also enters between the cement milk 65 which takes a long hardening time. On the other hand, if the amount of mixture 66 injected per hour is abnormally large, the mixing ratio of water 70 to cement milk 65 is reduced to form highly concentrated cement milk 65 and injected;
A method is adopted in which a rapid setting agent is mixed into the water 70 to quickly solidify each particle of the mixture. In addition, when the amount of injection per hour is small, the mixing ratio of cement 60 and water 70 is increased to form cement mill sand 65 with a low concentration before injection. As a result, the bowling hole 1 including the area 9 below the fracture zone 7
The mixture 66 is infiltrated into the surrounding area to form an impermeable layer.

゛この混合物66は、アスファルト微粒子の可塑性を有
するとともに、混合したセメント60が水和作用を行な
って全体として凝固するので、セメント60の添加量を
変えることや、急結剤を添加することによって凝固性状
を変えることができる、従って、混合物66の硬化時間
は、30分から20数時間までの間に地盤の状態に応じ
て調整することができる。
゛This mixture 66 has the plasticity of fine asphalt particles, and the mixed cement 60 performs a hydration action and solidifies as a whole, so it can be solidified by changing the amount of cement 60 added or by adding an accelerating agent. The properties can be varied and therefore the curing time of the mixture 66 can be adjusted depending on the ground conditions between 30 minutes and over 20 hours.

尚、第4図のAで、第1図E−E断面でのアスファルト
乳剤20および混合物66の各地層への浸透効果を示し
、図中8は破砕帯7の上方領域であり、領域9,10と
略同質のシルト質土である第5図は、この不透水層形成
に用いられるミキシングプラントの一例を示すものであ
る。
Note that A in FIG. 4 shows the permeation effect of the asphalt emulsion 20 and mixture 66 into each layer in the E-E cross section of FIG. Fig. 5, which shows silty soil of substantially the same quality as No. 10, shows an example of a mixing plant used for forming this impermeable layer.

アスファルト乳剤20および水溶液30は夫々タンク2
1および31に貯溜され、夫々調節バルブ23および調
節バルブ33を有する輸送管22.32を介して2段式
グラウトミキサ50のミキサ51に投入されるように形
成されている。このとき調節バルブ23.33によりア
スファルト乳剤20の濃度が調節される。
Asphalt emulsion 20 and aqueous solution 30 are respectively stored in tank 2.
1 and 31, and is configured to be fed into the mixer 51 of the two-stage grout mixer 50 via transport pipes 22, 32 having regulating valves 23 and 33, respectively. At this time, the concentration of the asphalt emulsion 20 is adjusted by the control valves 23 and 33.

続いて、ミキサ51で攪拌され、更にアジテータ52で
均一濃度になるように攪拌されて、吸入管53を介して
グラウトポンプ54へ送られる。
Subsequently, it is stirred by a mixer 51, further stirred by an agitator 52 to obtain a uniform concentration, and then sent to a grout pump 54 via a suction pipe 53.

更にアスファルト乳剤20aは、グラウトポンプ54に
より圧送され、電磁流量計55.注入管57、ブルドン
管圧力計581合流管59を経てスパイラルミキサ90
へ到達し、スパイラルミキサ90により攪拌効果を高め
て地中注入パイプ91より地盤内へ注入されるように構
成されている。
Further, the asphalt emulsion 20a is pumped by a grout pump 54, and an electromagnetic flowmeter 55. Spiral mixer 90 via injection pipe 57, Bourdon tube pressure gauge 581 and confluence pipe 59
It is configured to reach the ground, enhance the stirring effect with a spiral mixer 90, and be injected into the ground through an underground injection pipe 91.

尚、電磁流量計55により流量圧力が計測、制御され、
剰余のアスファルト乳剤20aがリターンパイプ56を
介してアジテータ52へ戻され、またブルドン管圧力計
58により地質に応じて注入圧力が調整される。
Note that the flow pressure is measured and controlled by the electromagnetic flowmeter 55,
The surplus asphalt emulsion 20a is returned to the agitator 52 via a return pipe 56, and the injection pressure is adjusted by a Bourdon tube pressure gauge 58 depending on the geology.

また一方、ノニオン系のアスファルト乳剤40nおよび
セメント80.水70は、夫々タンク41およびタンク
61.タンク71に貯溜されており、アスファルト乳剤
40nは調節バルブ43を有する輸送管42を介して、
2段式グラウトミキサ80のミキサ81に投入されるよ
うに形成されている。またセメント60および水70は
、夫々フィーダ付バイブロ2および調節バルブ73を有
する輸送管72を介して2段式グラウトミキサ80のミ
キサ81に投入されるように形成されている。このとき
調節バルブ73の調節によりセメントミルク65の濃度
が調節される。
On the other hand, nonionic asphalt emulsion 40n and cement 80n. Water 70 is supplied to tank 41 and tank 61. The asphalt emulsion 40n is stored in a tank 71 and transported through a transport pipe 42 having a control valve 43.
It is formed so as to be thrown into a mixer 81 of a two-stage grout mixer 80. Further, the cement 60 and the water 70 are configured to be introduced into a mixer 81 of a two-stage grout mixer 80 via a transport pipe 72 having a vibro 2 with a feeder and a control valve 73, respectively. At this time, the concentration of cement milk 65 is adjusted by adjusting the control valve 73.

まず、セメント60と氷フ0とはグラフトミキサ81で
混合されてセメントミルク65を形成し、その後アスフ
ァルト乳剤40nと水70とをミキサ81へ投入して、
ミキシングを行い、ついでアジテータ82で更に均一濃
度になるように攪拌されて吸入管83を介してグラウト
ポンプ84へ送られる。更にこの混合物66は、グラウ
トポンプ84により圧送され、注入管87.調節バルブ
85、ブルドン管圧力計881合梳管59を経てスパイ
ラルミキサ90に到達する。スパイラルミキサ90によ
り攪拌効果を高めてアスファルトとセメントミルクとの
混合物66が地中注入パイプ91より地盤内へ注入され
るように構成されている。尚、混合物66は、調節バル
ブ43の調節によりアスファルト乳剤40nとセメント
ミルク65との混合比率が調整され、調節バルブ85の
調節により剰余の混合物66はリターンパイプ86を介
してアジテータ82へ戻される。また、ブルドン管圧力
計88により地質に応じて注入圧力が調整、される。
First, cement 60 and ice powder 0 are mixed in a graft mixer 81 to form cement milk 65, and then asphalt emulsion 40n and water 70 are put into the mixer 81.
The mixture is mixed and then further stirred by an agitator 82 to achieve a uniform concentration, and then sent to a grout pump 84 via a suction pipe 83. Further, this mixture 66 is pumped by a grout pump 84 and into an injection pipe 87 . It reaches the spiral mixer 90 via the control valve 85, the Bourdon tube pressure gauge 881, and the mixer tube 59. The mixture 66 of asphalt and cement milk is injected into the ground through an underground injection pipe 91 by increasing the stirring effect by a spiral mixer 90. The mixing ratio of the asphalt emulsion 40n and cement milk 65 in the mixture 66 is adjusted by adjusting the control valve 43, and the remaining mixture 66 is returned to the agitator 82 via the return pipe 86 by adjusting the control valve 85. In addition, the injection pressure is adjusted according to the geology by a Bourdon tube pressure gauge 88.

さらに、本例は2段式グラウトミキサ50を通過するア
ニオン系のアスファルト乳剤20aの注入法と2段式グ
ラウトミキサ80を通過するノニオン系のアスファルト
乳剤40nとセメント等の混合物66が通過する注入法
とは単独にも使用し得る。
Furthermore, this example includes an injection method in which anionic asphalt emulsion 20a passes through a two-stage grout mixer 50, and an injection method in which a mixture 66 of nonionic asphalt emulsion 40n and cement etc. passes through a two-stage grout mixer 80. can also be used alone.

〈発明の効果〉 以上説明したようにこの発明の不透水層形成法によれば
、アスファルト乳剤またはアスファルト乳剤とセメント
ミルクとの混合物を地質に応じて選択し、アスファルト
の極めて微細な粒子の注入浸透性と粘弾性と急結剤の性
質を利用して浸透注入を行なっているので、粘度や粒子
の細いシルトまじりの断層においては、アスファルト乳
剤が微細土粒子の間隙を浸透通過し、従来セメントでは
改良で台なかった当該断層の下部領域へ浸透注入して地
盤改良を行い、透水係数の小さい不透水層を築造するこ
とができる。また土粒子間隙の粗い粗砂層や破砕帯にお
いては、アスファルト乳剤とセメントミルクとの混合物
が浸透注入され、アスファルト微粒子が土粒子に付着し
て土粒子間隙を小さくシ、セメントミルクがその間を浸
透して間隙を埋め地盤改良が行われる。そのため、地盤
に粗砂層を含んでいても均質な不透水層の形成ができ、
破砕帯においては混合物の漏洩を制御して効率的に不透
水層を形成することができる。
<Effects of the Invention> As explained above, according to the impermeable layer forming method of the present invention, asphalt emulsion or a mixture of asphalt emulsion and cement milk is selected depending on the geology, and extremely fine particles of asphalt are injected and penetrated. The asphalt emulsion penetrates through the gaps between fine soil particles and passes through the gaps between fine soil particles, which is difficult to do with conventional cement. It is possible to improve the ground by infiltrating and injecting into the lower region of the fault that has not been destroyed by improvement, and to build an impermeable layer with a low permeability coefficient. In addition, in coarse sand layers and crushed zones where the gaps between soil particles are coarse, a mixture of asphalt emulsion and cement milk is injected, and fine asphalt particles adhere to the soil particles to reduce the gaps between the soil particles, and the cement milk infiltrates between them. The gaps will be filled and ground improvement will be carried out. Therefore, even if the ground contains a coarse sand layer, a homogeneous impermeable layer can be formed.
In the fracture zone, leakage of the mixture can be controlled to efficiently form an impermeable layer.

また、漏水等の急結を有する場所の注入においても、ア
スファルト乳剤は短時間で硬化し漏水対策ができる。こ
のアスファルト乳剤は、酸等の腐食性の地下水に対して
極めて安定した耐久性があり、且つ従来の薬液注入より
経済的に漏水対策を構することができる。
In addition, even when injecting into areas where water leaks or other problems occur, the asphalt emulsion hardens in a short period of time, making it possible to prevent water leaks. This asphalt emulsion has extremely stable durability against corrosive groundwater such as acid, and can provide a more economical measure against water leakage than conventional chemical injection.

更に、アスファルト乳剤が浸透注入された不透水層は、
改良地盤に地震等による変動圧が加わっても、アスファ
ルトのもつ可塑性によって、従来のセメントミルクによ
る改良地盤より高い耐久性を発揮することができる。ま
た、この発明方法によるアスファルト乳剤は常温で注入
することができるので、パイプなどを保温する高温注入
の必要がなく、寒冷地でも容易に実施できる効果がある
Furthermore, the impermeable layer into which the asphalt emulsion is infiltrated,
Even if the improved ground is subjected to fluctuating pressures due to earthquakes, etc., the plasticity of asphalt allows it to exhibit higher durability than conventional improved ground made with cement milk. In addition, since the asphalt emulsion produced by the method of this invention can be injected at room temperature, there is no need for high-temperature injection to keep pipes etc. warm, and it can be easily carried out even in cold regions.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施例を示すものであり、第1図はダ
ムに不透水層を築造した状態を示す立面図、第2図はセ
メント粒子とアスファルト微粒子との粒子径分布比較図
、第3図は土質地盤中にアスファルト乳剤が注入され土
粒子間隙を通過する原理を示す説明図、第4図は各地層
への浸透注入効果を比較説明する断面図、第5図は本不
透水層形成法に使用されるミキシングプラントの一例を
示す構成図である。 1・・・基礎面、 3・・・底面、 11・・・ボーリング孔、 20a・・・アニオン系アスファルト乳剤、30・・・
水溶液、 40n・・・ノニオン系アスファルト乳剤、60・・・
セメント、 65・・・セメントミルク、 66・・・アスファルト・セメント混合物、70・・・
水。 特  許  出  願  人 日本技研株式会社 日本鋪道株式会社 株式会社間組 第1図 第3図 第2図 第4図 第5図
The drawings show examples of the present invention, and Fig. 1 is an elevational view showing a state in which an impermeable layer has been constructed in a dam, Fig. 2 is a comparison diagram of particle size distribution of cement particles and asphalt fine particles, and Fig. Figure 3 is an explanatory diagram showing the principle that asphalt emulsion is injected into the soil ground and passes through the gaps between soil particles. Figure 4 is a cross-sectional diagram that compares and explains the effects of infiltration into each layer. Figure 5 is the main impermeable layer. It is a block diagram which shows an example of the mixing plant used for a formation method. DESCRIPTION OF SYMBOLS 1... Foundation surface, 3... Bottom surface, 11... Borehole, 20a... Anionic asphalt emulsion, 30...
Aqueous solution, 40n...Nonionic asphalt emulsion, 60n...
Cement, 65...Cement milk, 66...Asphalt/cement mixture, 70...
water. Patent application Nippon Giken Co., Ltd. Nippon Hodo Co., Ltd. Magumi Co., Ltd. Figure 1 Figure 3 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 地盤に適宜間隔をおいて複数個のボーリング孔を所望深
さまで掘削し、 粒径が3μm以下のアスファルト微粒子を水中に分散さ
せたアスファルト乳剤を、 あるいは粒径が20μm以下のアスファルト微粒子を水
中に分散させたアスファルト乳剤とセメントミルク、ベ
ントナイト等との混合物を、前記複数個のボーリング孔
に圧入することにより、 前記複数個のボーリング孔間の地盤に、連続した不透水
層を形成することを特徴とする不透水層形成法。
[Scope of Claims] A plurality of boreholes are drilled in the ground at appropriate intervals to a desired depth, and an asphalt emulsion is prepared by dispersing fine asphalt particles with a particle size of 3 μm or less in water, or an asphalt emulsion with a particle size of 20 μm or less. A continuous impermeable layer is formed in the ground between the plurality of boreholes by pressurizing a mixture of asphalt emulsion in which fine asphalt particles are dispersed in water, cement milk, bentonite, etc. into the plurality of boreholes. A method for forming an impermeable layer characterized by the formation of an impermeable layer.
JP5469787A 1987-03-10 1987-03-10 Formation of water-impermeable layer Granted JPS63223210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5469787A JPS63223210A (en) 1987-03-10 1987-03-10 Formation of water-impermeable layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5469787A JPS63223210A (en) 1987-03-10 1987-03-10 Formation of water-impermeable layer

Publications (2)

Publication Number Publication Date
JPS63223210A true JPS63223210A (en) 1988-09-16
JPH0531603B2 JPH0531603B2 (en) 1993-05-13

Family

ID=12977995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5469787A Granted JPS63223210A (en) 1987-03-10 1987-03-10 Formation of water-impermeable layer

Country Status (1)

Country Link
JP (1) JPS63223210A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059107A (en) * 2000-08-22 2002-02-26 Taisei Corp Method of constructing water hardly permeable layer
JP2017106210A (en) * 2015-12-09 2017-06-15 鹿島建設株式会社 Construction method of freezing pipe
JP6334784B1 (en) * 2017-06-05 2018-05-30 株式会社マルシン Backfill method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541910A (en) * 1977-06-07 1979-01-09 Taisei Corp Method of construction of underground continuous wall
JPS5528291A (en) * 1978-08-14 1980-02-28 Du Pont Diaphragm denaturing agent
JPS6085121A (en) * 1983-10-15 1985-05-14 Okumura Constr Co Ltd Building method of cut-off wall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541910A (en) * 1977-06-07 1979-01-09 Taisei Corp Method of construction of underground continuous wall
JPS5528291A (en) * 1978-08-14 1980-02-28 Du Pont Diaphragm denaturing agent
JPS6085121A (en) * 1983-10-15 1985-05-14 Okumura Constr Co Ltd Building method of cut-off wall

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059107A (en) * 2000-08-22 2002-02-26 Taisei Corp Method of constructing water hardly permeable layer
JP2017106210A (en) * 2015-12-09 2017-06-15 鹿島建設株式会社 Construction method of freezing pipe
JP6334784B1 (en) * 2017-06-05 2018-05-30 株式会社マルシン Backfill method
JP2018204316A (en) * 2017-06-05 2018-12-27 株式会社マルシン Back filling method

Also Published As

Publication number Publication date
JPH0531603B2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
Mitchell In-place treatment of foundation soils
CN105386433B (en) A kind of microorganism soil-fixing CFG pile composite foundations and construction method
CN100386484C (en) New type cement soil pile and its construction method
JPWO2006129884A1 (en) Plastic gel injection material and ground reinforcement method
CN105386436A (en) Composite foundation with discrete material pile restrained through microorganism soil solidification and construction method
CN105220681A (en) A kind of method of microorganism-electric field joint reinforcement Liquefaction Foundation
CN108708372B (en) One kind having pressure complex cement aeolian accumulation mortar mixing pile pile-formation process
CN107129221A (en) A kind of slurries suitable for low strength stratum shield duct piece grouting behind shaft or drift lining
CN106368214A (en) Pile forming operation method for protection barrel type cement soil mixing pile
Kazemian et al. Assessment of stabilization methods for soft soils by admixtures
JP4689556B2 (en) Ground consolidation method using plastic gel injection material
JP5390060B2 (en) Ground strengthening method
JP2006257281A (en) Plastic grouting material, method of toughening ground and method and device for controlling grouting to ground
Kazemain et al. Review of soft soils stabilization by grouting and
JP2006299741A (en) Low concentration grout method
JP2007231727A (en) Method of reinforcing ground
CN113445527A (en) Method for treating leakage of grouting waterproof curtain in underground platform of rail transit
CN107447754A (en) The new plant stake technique of prefabricated tubular pile and the pile body formed
CN104108919A (en) Environment-friendly water-stop curtain
JPS63223210A (en) Formation of water-impermeable layer
JP2007040096A (en) Ground reinforcing method, managing method of pressure injection into ground, and managing device used for pressure injection
Bruce et al. Glossary of grouting terminology
Argal Modern Technologies and Problems of Ground Stabilization by Injection.
King et al. Symposium on Grouting: Grouting of granular materials
US3799787A (en) Admixtures for filling natural and artificial subterranean voids

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees