JPS63223101A - Production of alloy powder - Google Patents

Production of alloy powder

Info

Publication number
JPS63223101A
JPS63223101A JP62054990A JP5499087A JPS63223101A JP S63223101 A JPS63223101 A JP S63223101A JP 62054990 A JP62054990 A JP 62054990A JP 5499087 A JP5499087 A JP 5499087A JP S63223101 A JPS63223101 A JP S63223101A
Authority
JP
Japan
Prior art keywords
powder
alloy powder
alloy
phase
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62054990A
Other languages
Japanese (ja)
Other versions
JPH0791562B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Hisamichi Kimura
久道 木村
Kanenori Matsuki
謙典 松木
Nobuyoshi Yano
矢野 暢芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP62054990A priority Critical patent/JPH0791562B2/en
Publication of JPS63223101A publication Critical patent/JPS63223101A/en
Publication of JPH0791562B2 publication Critical patent/JPH0791562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce Cu alloy powder essentially consisting of an amorphous phase by mixing specific elements alone with Cu powder or mixing the same in the state of an alloy with Cu or powder of the mutal alloys and treating the powder with a mechanical alloy method or further annealing the powder or mixing the same with oxide or nitride powder. CONSTITUTION:The elements N of >=one kinds selected from Al, Si, Sn, Ge, B, P, and C are added to the fine powder of Cu in the form of the alloy powder with Cu or alone and further the powder of the metal element M such as Nb, Ta, V, W, Cr, Mo, Co, Fe, etc., is mixed alone or at the ratio expressed by the formula with the form of the powder of the compd. with the elements N. Such powder mixture is ground and kneaded by a grinding mill made of a high-hardness metal or ceramics. Or further, the power mixture is annealed at the temp. below the crystallizing temp. or is mixed with the fine powder of oxides such as MgO, ZrO2, Al2O3 or nitrides such as ZrN, TiN, AlN. The Cu alloy powder which consists of the amorphous single phase or the alloy powder of the crystalline Cu phase and deposit or the amorphous phase as well as oxides and nitrides and has various excellent characteristics is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、非晶質相、非晶質相と析出物、結晶質相と析
出物又は非晶質相と酸化物又は窒化物からなる合金粉末
の製造法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides an amorphous phase, an amorphous phase and a precipitate, a crystalline phase and a precipitate, or an amorphous phase and an oxide or nitride. This invention relates to a method for producing alloy powder.

(従来の技術) 従来より、非晶質合金、金属粒子分散型合金を作製する
最も一般的な方法として、液体急冷法があげられる(「
アモルファス合金その物性と応用」■アグネ、第6〜1
1頁参照)、この方法では。
(Prior art) Liquid quenching has traditionally been the most common method for producing amorphous alloys and metal particle dispersed alloys ("
"Amorphous alloys, their physical properties and applications" ■Agne, Volumes 6-1
(see page 1), in this method.

金属を溶融状態から104〜b 冷却速度で金属ロール又は水中に噴出することにより、
薄帯、細線、粉末状材料を容易に作製できる。中でも、
この方法により作製された粉末は。
By ejecting the metal from a molten state into a metal roll or water at a cooling rate of 104~b,
Thin strips, thin wires, and powder materials can be easily produced. Among them,
The powder made by this method is.

その後の成型により所望の形状にできるという点で、広
い分野での応用が考えられている。
Since it can be formed into a desired shape by subsequent molding, it is considered to have applications in a wide range of fields.

一方、最近、非晶質合金粉末を作製する新しい方法とし
て、特開昭61−250122号公報記載の拡散反応に
よる製造法がある。
On the other hand, recently, as a new method for producing amorphous alloy powder, there is a production method using a diffusion reaction described in JP-A-61-250122.

(発明が解決しようとする問題点) 前記した液体急冷法で非晶質合金粉末を得るには、状態
図において共晶組成近傍や化合物組成近傍に限られてい
ることから、その合金成分には自ずと制約がある。
(Problems to be Solved by the Invention) In order to obtain an amorphous alloy powder by the liquid quenching method described above, since the phase diagram is limited to the vicinity of the eutectic composition or the vicinity of the compound composition, the alloy composition must be Naturally, there are restrictions.

一方、拡散反応による製造法も、液体急冷法と同じ組成
範囲のものしか得られず、新しい合金組成での非晶質化
は見い出されていない。
On the other hand, the production method using diffusion reaction can only produce products in the same composition range as the liquid quenching method, and amorphousization with a new alloy composition has not been found.

したがって、この液体急冷法や拡散反応で得ることので
きない合金組成で非晶質相が得られれば。
Therefore, if an amorphous phase can be obtained with an alloy composition that cannot be obtained by this liquid quenching method or diffusion reaction.

ユニークな性質を発揮し、用途拡大に結びつくものと考
えられ、今まで得ることができなかった合金組成で、し
かも簡単な方法で得ることができる非晶質合金粉末が強
く望まれている。
There is a strong desire for an amorphous alloy powder that exhibits unique properties and is thought to lead to expanded applications, has an alloy composition that has not been available until now, and can be obtained by a simple method.

(問題点を解決するための手段) 本発明者らは、これらの事情に鑑み、今まで液体急冷法
や拡散反応で得ることのできない合金組成で、しかも簡
単な方法で合金粉末を得ることのできる製造法を提供す
ることを目的として鋭意研究した結果、特定金属又は合
金粉末を特定の混合比で混合して機械的合金法により製
造すると、非晶質相の合金粉末が得られ、この非晶質相
の合金粉末を焼なまし処理することによって、非晶質相
と均一に分散した析出物又は結晶質Cu相と均一に分散
した析出物を有する合金粉末が、また、この非晶質相の
合金粉末と酸化物又は窒化物粉末とを混合して機械的合
金法により製造することによって、非晶質相と酸化物又
は窒化物を有する合金粉末が得られることを見い出し、
さらに、これらの粉末が超伝導性1機械的特性、耐食性
、磁気的特性等のユニークな特性を有していることを見
い出して本発明を完成した。
(Means for Solving the Problems) In view of these circumstances, the present inventors have devised a method to obtain an alloy powder with an alloy composition that could not be obtained by the liquid quenching method or diffusion reaction by a simple method. As a result of intensive research aimed at providing a manufacturing method that can produce By annealing the crystalline phase alloy powder, an alloy powder having an amorphous phase and uniformly dispersed precipitates or a crystalline Cu phase and uniformly dispersed precipitates can be produced. It has been discovered that an alloy powder having an amorphous phase and an oxide or nitride can be obtained by mixing phase alloy powder and oxide or nitride powder and producing it by a mechanical alloying method,
Furthermore, the present invention was completed by discovering that these powders have unique properties such as superconductivity, mechanical properties, corrosion resistance, and magnetic properties.

すなわち9本発明は2機械的合金法により合金粉末を製
造するに際し、Cu粉末、Cu−N(NはAj!、Si
、Sn、Go、B、P、Cからなる群より選ばれる一種
又は二種以上の元素)粉末。
In other words, 9 the present invention produces alloy powder by 2 mechanical alloying method, Cu powder, Cu-N (N is Aj!, Si
, Sn, Go, B, P, and C) powder.

M (MはNb、 V、 Ta、 W、 Cr、 Mo
、 Co。
M (M is Nb, V, Ta, W, Cr, Mo
, Co.

Feからなる群より選ばれる一種又は二種以上の元素)
粉末、M−N粉末及びN粉末からなる群より選ばれる少
なくとも二種の粉末を下記式Cur*o−<トv>  
MX  −NY(Xは20〜60原子%、Yは10〜3
0原子%である。)で示される割合で混合して9組織が
非晶質相である合金粉末を得ることを特徴とする合金粉
末の製造法1機械的合金法により合金粉末を製造するに
際し、Cu粉末、Cu−N(NはAl。
one or more elements selected from the group consisting of Fe)
At least two types of powder selected from the group consisting of powder, M-N powder, and N powder are represented by the following formula Cur*o-<tv>
MX -NY (X is 20 to 60 atom%, Y is 10 to 3
It is 0 atom%. ) A manufacturing method of alloy powder characterized by obtaining an alloy powder in which nine microstructures are amorphous phases 1 When manufacturing an alloy powder by the mechanical alloying method, Cu powder, Cu- N (N is Al.

St、Sn、Ge、B、P、Cからなる群より選ばれる
一種又は二種以上の元素)粉末、 M (MはNb、 
V、 Ta、 W、 Cr、 Mo、 Go、 Feか
らなる群より選ばれる一種又は二種以上の元素)粉末、
M−N粉末及びN粉末からなる群より選ばれる少なくと
も二種の粉末を下記式 Cu 1110− (X*VI   Mx  −NY(
Xは20〜60原子%、Yは10〜30原子%である。
one or more elements selected from the group consisting of St, Sn, Ge, B, P, and C) powder, M (M is Nb,
one or more elements selected from the group consisting of V, Ta, W, Cr, Mo, Go, Fe) powder;
At least two types of powder selected from the group consisting of M-N powder and N powder are expressed by the following formula Cu 1110- (X*VI Mx -NY(
X is 20 to 60 atomic %, and Y is 10 to 30 atomic %.

)で示される割合で混合して2組織が非晶質相である合
金粉末を得9次いで、この粉末を焼なまし処理して2組
織が非晶質相と析出物又は結晶質Cu相と析出物である
合金粉末を得ることを特徴とする合金粉末の製造法及び
機械的合金法により合金粉末を製造するに際し、Cu粉
末。
) to obtain an alloy powder in which the two structures are an amorphous phase.9 Then, this powder is annealed to form an amorphous phase and a precipitate or a crystalline Cu phase in the two structures. Cu powder when producing alloy powder by a mechanical alloying method and a method for producing alloy powder characterized by obtaining alloy powder as a precipitate.

Cu−N(NはAl、 s i、 Sn、 G e、 
B、 p。
Cu-N (N is Al, si, Sn, Ge,
B, p.

Cからなる群より選ばれる一種又は二種以上の元素)粉
末、 M (MはNb、V、Ta、W、Cr。
one or more elements selected from the group consisting of C) powder, M (M is Nb, V, Ta, W, Cr.

Mo、Co、Feからなる群より選ばれる一種又は二種
以上の元素)粉末、M−N粉末及びN粉末からなる群よ
り選ばれる少なくとも二種の粉末を下記式 %式% (Xは20〜60原子%、Yは10〜30原子%である
。)で示される割合で混合して1組織が非晶質相である
合金粉末を得2次いで、この粉末と酸化物又は窒化物粉
末とを混合して2組織が非晶質相と酸化物又は窒化物で
ある合金粉末を得ることを特徴とする合金粉末の製造法
を要旨とするものである。
One or more elements selected from the group consisting of Mo, Co, and Fe) powder, at least two types of powder selected from the group consisting of M-N powder and N powder in the following formula % formula % (X is 20 to 60 atomic % and Y is 10 to 30 atomic %) to obtain an alloy powder in which one structure is an amorphous phase.2 Next, this powder and an oxide or nitride powder are mixed. The gist of this invention is a method for producing an alloy powder, which is characterized by mixing to obtain an alloy powder whose two structures are an amorphous phase and an oxide or nitride.

まず1本発明の第1発明について説明すると。First, the first aspect of the present invention will be explained.

原料としてCu粉末、Cu−N(NはAl、Si。Raw materials include Cu powder and Cu-N (N is Al and Si.

Sn、Ge、B、P、Cからなる群より選ばれる一種又
は二種以上の元素)粉末、 M (MはNb。
one or more elements selected from the group consisting of Sn, Ge, B, P, and C) powder, M (M is Nb).

V* T a * W*  C’ r 1M o 、C
o 、F eからなる群より選ばれる一種又は二種以上
の元素)粉末。
V* T a * W* C' r 1M o ,C
one or more elements selected from the group consisting of o, Fe, e) powder.

M−N粉末及びN粉末からなる群より選ばれる少なくと
も二種の粉末を用い2式(Cu、。。−(X*IMX 
 N?)(Xは20〜60原子%、Yは10〜30原子
%である。)で示される割合で混合して1機械的合金法
で製造することが必要である。
Using at least two types of powder selected from the group consisting of M-N powder and N powder, 2 formulas (Cu,...-(X*IMX
N? ) (X is 20 to 60 atomic %, Y is 10 to 30 atomic %.) It is necessary to manufacture them by a mechanical alloying method by mixing them in the proportions shown.

この機械的合金法は9例えば、「軽金属J VOL。This mechanical alloying method is used in 9, for example, "Light Metals J VOL.

32、磁12.P688〜695 (1982)の文献
に記載されているごとく、上記粉末を高硬度の金属製あ
るいはセラミック製のボールとともに、ボールの材質と
同じ円筒の容器に入れて粉砕混練するもので、このとき
の粉砕混練する時間としては。
32, magnetic 12. As described in the document P688-695 (1982), the above powder is crushed and kneaded together with high-hardness metal or ceramic balls in a cylindrical container made of the same material as the balls. As for the time for crushing and kneading.

10〜40時間であることが好ましく、特に15〜30
時間が好ましい、また、原料として用いる粉末の大きさ
としては、200μm以下が適当であり、100μm以
下が好ましい。
The time period is preferably 10 to 40 hours, particularly 15 to 30 hours.
The time is preferable, and the size of the powder used as a raw material is suitably 200 μm or less, preferably 100 μm or less.

本発明において、上記した原料として用いる粉末を、上
記の式を満足させるように混合することが必要で、Xが
20原子%未満又は60原子%を超えると、まったく非
晶質化しないか、あるいは一部結晶化して、非晶質相の
合金粉末を得ることができない。また、Yが10原子%
未満又は30原子%を超えると、これもまったく非晶質
化しないか、あるいは一部結晶化して、非晶質相の合金
粉末を得ることができない。
In the present invention, it is necessary to mix the powders used as the raw materials described above so as to satisfy the above formula. Partial crystallization occurs, making it impossible to obtain an amorphous phase alloy powder. In addition, Y is 10 atomic%
If the amount is less than 30 atomic %, it will not become amorphous at all or will be partially crystallized, making it impossible to obtain an alloy powder in an amorphous phase.

このとき、上記原料に酸化物又は窒化物の合金粉末を混
合することもできる。これを混合すると。
At this time, an oxide or nitride alloy powder can also be mixed with the above raw material. When you mix this.

組織が非晶質相と酸化物又は窒化物である合金粉末を得
ることができる。この酸化物としては1例えば、MgO
,ZrO,Alzoi、Y2O2ZnO等があげられ、
窒化物としては1例えば、ZrN。
An alloy powder whose structure is an amorphous phase and an oxide or nitride can be obtained. This oxide is 1, for example, MgO
, ZrO, Alzoi, Y2O2ZnO, etc.
Examples of nitrides include ZrN.

TtN、Aj!N等があげられ、これらを体積率で7%
以下になるように混合することが好ましい。
TtN, Aj! N, etc. are mentioned, and the volume percentage of these is 7%.
It is preferable to mix as follows.

次に、第2発明について説明すると、第1発明で得られ
た非晶質相の合金粉末を焼なまし処理すると、非晶質相
に分散した析出物又は結晶質Cu相に分散した析出物の
合金粉末が得られ、この非晶質相に分散した析出物を得
るためには、結晶化温度以下、特に700℃未満で焼な
ましすることが望まれ、そのときの時間としては、2〜
10時間が好ましく、特に3〜7時間が好ましい。また
Next, to explain the second invention, when the alloy powder of the amorphous phase obtained in the first invention is annealed, precipitates dispersed in the amorphous phase or precipitates dispersed in the crystalline Cu phase are formed. In order to obtain alloy powder of ~
Preferably 10 hours, particularly preferably 3 to 7 hours. Also.

結晶質Cu相に分散した析出物を得るためには。In order to obtain precipitates dispersed in the crystalline Cu phase.

700〜900℃の温度で焼なましすることが望まれ、
そのときの時間としては、5〜20時間が好ましい。
It is desirable to anneal at a temperature of 700 to 900°C,
The time at that time is preferably 5 to 20 hours.

さらに、第3発明について説明すると、第1発明で得ら
れた合金粉末と、上記の酸化物又は窒化物とを混合して
機械的合金法により粉砕混練すると、非晶質相と酸化物
又は窒化物の合金粉末が得られ、これらを前記した体積
率が7%以下になるように混合することが好ましい。
Furthermore, to explain the third invention, when the alloy powder obtained in the first invention and the above oxide or nitride are mixed and pulverized and kneaded by a mechanical alloying method, an amorphous phase and an oxide or nitride are formed. It is preferable that alloy powders of the above-mentioned materials are obtained, and these are mixed so that the above-mentioned volume fraction becomes 7% or less.

本発明の第1発明では9通常の凝固法は勿論のこと、液
体急冷法でさえも均一な合金にできなかったものを、非
晶質相という極めて均一な組成の合金粉末が得られ1例
えば、Cu−(Nb、V。
In the first aspect of the present invention, an alloy powder with an extremely uniform composition called an amorphous phase can be obtained from an alloy that could not be made into a uniform alloy by ordinary solidification methods or even liquid quenching methods. , Cu-(Nb, V.

Ta)  (Sn、AI!、S i、Ge)合金組成か
らなる非晶質単相の粉末は超伝導材料の原料として。
Ta) (Sn, AI!, Si, Ge) Amorphous single-phase powder consisting of an alloy composition is used as a raw material for superconducting materials.

Cu−(Cr、 Mo、 W)  (S t、 p、 
c、 B)合金組成からなる非晶質単相の粉末は高強度
、高耐食の導電材料の原料として、Cu−(Co、Fe
)−(Si、Al、P、C,B)合金組成からなる非晶
質単相の粉末は各種電気、電子部品材料の原料として特
に優れている。
Cu-(Cr, Mo, W) (S t, p,
c, B) Amorphous single-phase powder consisting of an alloy composition is used as a raw material for conductive materials with high strength and high corrosion resistance.
)-(Si, Al, P, C, B) alloy composition, the amorphous single-phase powder is particularly excellent as a raw material for various electrical and electronic component materials.

本発明の第2発明では、第1発明の合金粉末を焼なまし
処理することにより、非晶質相と析出物又は結晶1iC
u相と析出物の合金粉末が得られ。
In the second invention of the present invention, by annealing the alloy powder of the first invention, an amorphous phase and a precipitate or crystal 1iC
An alloy powder of the u phase and precipitates was obtained.

非晶質相と析出物合金粉末では、非晶質単相よりも超伝
導性1機械的特性、磁気的特性に優れた合金粉末となる
。また、結晶質Cu相と析出物の合金粉末では、導電性
を有し、かつ超伝導性あるいは機械的特性の優れた合金
粉末となる。
The amorphous phase and precipitate alloy powder results in an alloy powder with superior superconductivity, mechanical properties, and magnetic properties compared to an amorphous single phase. Further, an alloy powder of the crystalline Cu phase and the precipitates has electrical conductivity and has excellent superconductivity or mechanical properties.

本発明の第3発明では、非晶質相と酸化物あるいは窒化
物の合金粉末であることから、特に機械的特性に優れた
合金粉末になる。
In the third aspect of the present invention, since it is an alloy powder of an amorphous phase and an oxide or nitride, the alloy powder has particularly excellent mechanical properties.

さらに9本発明における合金粉末は、加工性に優れてい
るため1組織を変えることなく、所望の形状に成型でき
、バルク材として多方面に利用できることから、各種工
業用材料、複合材料、超伝導材料、触媒等に広く用いる
ことのできる材料である。
Furthermore, the alloy powder of the present invention has excellent workability, so it can be molded into a desired shape without changing one structure, and can be used in a variety of fields as a bulk material, so it can be used in various industrial materials, composite materials, superconducting It is a material that can be widely used for materials, catalysts, etc.

(実施例) 以下2本発明を実施例により具体的に説明する。(Example) The present invention will be specifically explained below with reference to two examples.

実施例1〜21.比較例1〜9 表1.2に示す合金組成になるように2粒径約50μm
のCu、Nb、V、Ta、Mo、Cr。
Examples 1-21. Comparative Examples 1 to 9 Two grains with a diameter of approximately 50 μm were prepared so as to have the alloy composition shown in Table 1.2.
Cu, Nb, V, Ta, Mo, Cr.

W、Co、Fe、Sn、St、Ge、AI、B。W, Co, Fe, Sn, St, Ge, AI, B.

C及びPの粉末を直径10鰭のWC製のボールとともに
WC製の円筒容器に入れ、17時間粉砕混練して合金粉
末を作製した。
C and P powders were placed in a WC cylindrical container together with a WC ball having a diameter of 10 fins, and the mixture was crushed and kneaded for 17 hours to produce an alloy powder.

このようにして得た合金粉末の組織を、X線回折により
判定した。
The structure of the alloy powder thus obtained was determined by X-ray diffraction.

その結果を表1,2に示す。The results are shown in Tables 1 and 2.

表   1 表   2 表1,2より明らかなごとく、実施例1〜21は2本発
明により得られた合金粉末で、非晶質単相となっている
。また、比較例1〜9においては。
Table 1 Table 2 As is clear from Tables 1 and 2, Examples 1 to 21 are alloy powders obtained according to the present invention, and have an amorphous single phase. Moreover, in Comparative Examples 1 to 9.

非晶質相と結晶相の混合あるいは結晶相のみとなり、非
晶質単相は得られなかった。
A mixture of an amorphous phase and a crystalline phase or only a crystalline phase was obtained, and an amorphous single phase was not obtained.

次に、上記で得た実施例1 (CussNb3ts n
 13(原子%)〕の非非晶質相の合金粉末を、プレス
成型機により2幅5龍、厚さ1龍の材料を作製した。
Next, Example 1 (CussNb3ts n
13 (atomic %)] was used to produce a material with a width of 2 mm and a thickness of 1 mm using a press molding machine.

この材料の超伝導性を、タライオスタットを用いて直流
四端子法で電気抵抗の測定により行ったところ、超伝導
遷移温度(Tc)が4.4にで、超伝導から常伝導への
遷移幅(ΔTc)が0.03 Kという非常にせまい、
良好な超伝導特性を示した。
The superconductivity of this material was determined by measuring the electrical resistance using a taliostat using the DC four-probe method, and the superconducting transition temperature (Tc) was found to be 4.4, indicating a transition from superconductivity to normal conductivity. Very narrow width (ΔTc) of 0.03K,
It showed good superconducting properties.

また、実施例15 CCusoc r 4SP +s(
原子%)〕の非非晶質相の合金粉末を、IN  HC1
中30℃で8時間浸漬したところ、まったく腐食されな
いという良好な耐食性を示した。
In addition, Example 15 CCusoc r 4SP +s (
atomic%)] of amorphous phase alloy powder, IN HC1
When immersed for 8 hours at 30°C, it showed good corrosion resistance with no corrosion at all.

実施例22 実施例1  (Cus5N b3zs n’s(原子%
)〕により得た非晶質単相の合金粉末を、300℃で5
時間焼なまし処理して合金粉末を得た。この合金粉末を
X線回折により組織を調べたところ、非晶質相と析出物
(NbsSn)相であった。
Example 22 Example 1 (Cus5N b3zs n's (atomic%
)] The amorphous single-phase alloy powder obtained by
An alloy powder was obtained by time annealing treatment. When the structure of this alloy powder was examined by X-ray diffraction, it was found to be an amorphous phase and a precipitate (NbsSn) phase.

次に、この粉末をプレス成型機により2幅5龍。Next, this powder is molded into 2 widths and 5 dragons using a press molding machine.

厚さ1mmの材料にし、実施例1と同様の方法で超伝導
性を測定したところ、超伝導から常伝導への遷移幅(Δ
Tc=0.03K)を広げることなく。
When we measured the superconductivity using a material with a thickness of 1 mm in the same manner as in Example 1, we found that the transition width from superconductivity to normal conduction (Δ
Tc=0.03K) without widening.

超伝導遷移温度(Tc)が8.9にという、非晶質単相
よりさらに優れた特性を示した。
The superconducting transition temperature (Tc) was 8.9, which showed even better characteristics than the amorphous single phase.

実施例23 実施例1  (CussN bstS n’ff(原子
%)〕により得た非晶質単相の合金粉末を、800℃で
10時間焼なまし処理して合金粉末を得た。この合金粉
末をX線回折により組織を調べたところ、結晶質Cu相
と析出物(N b、S n)相であった。
Example 23 The amorphous single-phase alloy powder obtained in Example 1 (CussN bstS n'ff (atomic %)) was annealed at 800° C. for 10 hours to obtain an alloy powder. This alloy powder When the structure was examined by X-ray diffraction, it was found to be a crystalline Cu phase and a precipitate (Nb, Sn) phase.

次に、この粉末をプレス成型機により2幅5B。Next, this powder is molded into two widths of 5B using a press molding machine.

厚さ1fiの材料にし、実施例1と同様の方法で超伝導
性を測定したところ、超伝導遷移温度(Tc)が16.
8にと飛躍的に向上した。
When a material with a thickness of 1fi was used and its superconductivity was measured in the same manner as in Example 1, the superconducting transition temperature (Tc) was 16.
It improved dramatically to 8.

実施例24 実施例1  (CussNbszSn+3(原子%)〕
で得た非晶質単相の合金粉末95%(体積率)と。
Example 24 Example 1 (CussNbszSn+3 (atomic %))
95% (volume percentage) of the amorphous single-phase alloy powder obtained.

A l z Os粉末5%(体積率)とを、直径10鶴
の礪逼製のボールとともに瑞逼製の円筒容器内に入れ、
23時間粉砕混練して合金粉末を作製した。
5% (volume percentage) of A l z Os powder was placed in a cylindrical container made from Zuitai along with a ball made of 10 cranes in diameter, and
The mixture was crushed and kneaded for 23 hours to prepare an alloy powder.

このようにして得た合金粉末の組織をX線回折により判
定したところ、非晶質相とA 1 z Osとからなる
組織であった。
When the structure of the alloy powder thus obtained was determined by X-ray diffraction, it was found to be a structure consisting of an amorphous phase and A 1 z Os.

次に、この粉末をプレス成型機により2幅5n+。Next, this powder was molded into two widths of 5n+ using a press molding machine.

厚さ1龍の材料にし、実施例1と同様の方法で超伝導性
を測定したところ、実施例1と同じ超伝導性を示した。
When the superconductivity was measured in the same manner as in Example 1 using a material with a thickness of 1 mm, it showed the same superconductivity as in Example 1.

さらに、この合金粉末の硬度をビッカース硬度計で室温
で測定したところ、非晶質単相では5600PNであっ
たものが、非晶質相とAltosの合金粉末では640
DPNにまで上昇した。
Furthermore, when the hardness of this alloy powder was measured using a Vickers hardness tester at room temperature, the hardness of the amorphous single phase was 5600 PN, but the hardness of the amorphous phase and Altos alloy powder was 640 PN.
It rose to DPN.

実施例25 実施例1  (CussN b3zs n+i(原子%
)〕で得た非晶質単相の合金粉末97%(体積率)と。
Example 25 Example 1 (CussN b3zs n+i (atomic %
)] with 97% (volume fraction) of the amorphous single-phase alloy powder obtained.

AIN粉末3%(体積率)とを、直径20amのWC製
のボールとともにWC製の円筒容器内に入れ。
3% (volume percentage) of AIN powder was placed in a WC cylindrical container along with a WC ball having a diameter of 20 am.

14時間粉砕混練して合金粉末を作製した。The mixture was crushed and kneaded for 14 hours to prepare an alloy powder.

このようにして得た合金粉末の組織をX線回折により判
定したところ、非晶質相と/INとからなる組織であっ
た。
When the structure of the alloy powder thus obtained was determined by X-ray diffraction, it was found to be a structure consisting of an amorphous phase and /IN.

次に、この粉末をプレス成型機により1幅5龍。Next, this powder is molded into 1 width and 5 dragons using a press molding machine.

厚さl■lの材料にし、実施例1と同様の方法で超伝導
性を測定したところ、実施例1と同じ超伝導性を示した
When the material was made into a material having a thickness of 1.1 cm and its superconductivity was measured in the same manner as in Example 1, it showed the same superconductivity as in Example 1.

さらに、この合金粉末の硬度をビッカース硬度計で室温
で測定したところ、非晶質単相では560DPNであっ
たものが、非晶質相とAINの合金粉末では620DP
Nにまで上昇した。
Furthermore, when the hardness of this alloy powder was measured using a Vickers hardness tester at room temperature, it was 560DPN for the amorphous single phase, but 620DPN for the alloy powder of amorphous phase and AIN.
It rose to N.

(発明の効果) 本発明によれば、簡単な方法で非晶質単相、非晶質相に
均一に分散した析出物、結晶質Cu相に均一に分散した
析出物、非晶質相と均一に分散した酸化物又は窒化物の
組織を有している合金粉末が得られ、この合金粉末は2
機械的性質、電気的。
(Effects of the Invention) According to the present invention, a single amorphous phase, a precipitate uniformly dispersed in an amorphous phase, a precipitate uniformly dispersed in a crystalline Cu phase, and an amorphous phase can be easily formed. An alloy powder having a uniformly dispersed oxide or nitride structure is obtained, and this alloy powder has 2
Mechanical properties, electrical.

磁気的性質、超伝導性、耐食性、耐摩耗性に優れている
Excellent magnetic properties, superconductivity, corrosion resistance, and wear resistance.

また2本発明によって得られた合金粉末は、加工性に優
れていることから、所望の形状に成型することができる
Furthermore, the alloy powder obtained by the present invention has excellent workability and can be molded into a desired shape.

さらに2本発明によれば、数千人程度の微細粉末にもす
ることが可能である。
Furthermore, according to the present invention, it is possible to make a fine powder of several thousand particles.

特許出願人  増  本      健ユニ亭力株vc
R社
Patent applicant Masumoto Kenyunitei Rikisha VC
Company R

Claims (3)

【特許請求の範囲】[Claims] (1)機械的合金法により合金粉末を製造するに際し、
Cu粉末、Cu−N(NはAl、Si、Sn、Ge、B
、P、Cからなる群より選ばれる一種又は二種以上の元
素)粉末、M(MはNb、V、Ta、W、Cr、Mo、
Co、Feからなる群より選ばれる一種又は二種以上の
元素)粉末、M−N粉末及びN粉末からなる群より選ば
れる少なくとも二種の粉末を式〔CU_1_0_0_−
_(_X_+_Y_)−M_X−N_Y〕(Xは20〜
60原子%、Yは10〜30原子%である。)で示され
る割合で混合して、組織が非晶質相である合金粉末を得
ることを特徴とする合金粉末の製造法。
(1) When producing alloy powder by mechanical alloying method,
Cu powder, Cu-N (N is Al, Si, Sn, Ge, B
, P, one or more elements selected from the group consisting of C) powder, M (M is Nb, V, Ta, W, Cr, Mo,
One or more elements selected from the group consisting of Co, Fe) powder, at least two powders selected from the group consisting of M-N powder and N powder with the formula [CU_1_0_0_-
_(_X_+_Y_)−M_X−N_Y〕(X is from 20 to
60 atom %, and Y is 10 to 30 atom %. ) A method for producing an alloy powder, which is characterized in that the alloy powder is mixed in the proportions shown in (a) to obtain an alloy powder whose structure is an amorphous phase.
(2)機械的合金法により合金粉末を製造するに際し、
Cu粉末、Cu−N(NはAl、Si、Sn、Ge、B
、P、Cからなる群より選ばれる一種又は二種以上の元
素)粉末、M(MはNb、V、Ta、W、Cr、Mo、
Co、Feからなる群より選ばれる一種又は二種以上の
元素)粉末、M−N粉末及びN粉末からなる群より選ば
れる少なくとも二種の粉末を式〔Cu_1_0_0_−
_(_X_+_Y_)−M_X−N_Y〕(Xは20〜
60原子%、Yは10〜30原子%である。)で示され
る割合で混合して、組織が非晶質相である合金粉末を得
、次いで、この粉末を焼なまし処理して、組織が非晶質
相と析出物又は結晶質Cu相と析出物である合金粉末を
得ることを特徴とする合金粉末の製造法。
(2) When producing alloy powder by mechanical alloying method,
Cu powder, Cu-N (N is Al, Si, Sn, Ge, B
, P, one or more elements selected from the group consisting of C) powder, M (M is Nb, V, Ta, W, Cr, Mo,
One or more elements selected from the group consisting of Co, Fe) powder, at least two powders selected from the group consisting of M-N powder and N powder with the formula [Cu_1_0_0_-
_(_X_+_Y_)−M_X−N_Y〕(X is from 20 to
60 atom %, and Y is 10 to 30 atom %. ) to obtain an alloy powder whose structure is an amorphous phase, and then this powder is annealed so that its structure consists of an amorphous phase and a precipitate or a crystalline Cu phase. A method for producing alloy powder, characterized by obtaining alloy powder as a precipitate.
(3)機械的合金法により合金粉末を製造するに際し、
Cu粉末、Cu−N(NはAl、Si、Sn、Ge、B
、P、Cからなる群より選ばれる一種又は二種以上の元
素)粉末、M(MはNb、V、Ta、W、Cr、Mo、
Co、Feからなる群より選ばれる一種又は二種以上の
元素)粉末、M−N粉末及びN粉末からなる群より選ば
れる少なくとも二種の粉末を式〔Cu_1_0_0_−
_(_X_+_Y_)−M_X−N_Y〕(Xは20〜
60原子%、Yは10〜30原子%である。)で示され
る割合で混合して、組織が非晶質相である合金粉末を得
、次いで、この粉末と酸化物又は窒化物粉末とを混合し
て、組織が非晶質相と酸化物又は窒化物である合金粉末
を得ることを特徴とする合金粉末の製造法。
(3) When producing alloy powder by mechanical alloying method,
Cu powder, Cu-N (N is Al, Si, Sn, Ge, B
, P, one or more elements selected from the group consisting of C) powder, M (M is Nb, V, Ta, W, Cr, Mo,
One or more elements selected from the group consisting of Co, Fe) powder, at least two powders selected from the group consisting of M-N powder and N powder with the formula [Cu_1_0_0_-
_(_X_+_Y_)−M_X−N_Y〕(X is from 20 to
60 atom %, and Y is 10 to 30 atom %. ) to obtain an alloy powder whose structure is an amorphous phase, and then this powder and an oxide or nitride powder are mixed to form an amorphous phase and an oxide or nitride powder. A method for producing an alloy powder, characterized by obtaining an alloy powder that is a nitride.
JP62054990A 1987-03-10 1987-03-10 Alloy powder manufacturing method Expired - Lifetime JPH0791562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054990A JPH0791562B2 (en) 1987-03-10 1987-03-10 Alloy powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054990A JPH0791562B2 (en) 1987-03-10 1987-03-10 Alloy powder manufacturing method

Publications (2)

Publication Number Publication Date
JPS63223101A true JPS63223101A (en) 1988-09-16
JPH0791562B2 JPH0791562B2 (en) 1995-10-04

Family

ID=12986086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054990A Expired - Lifetime JPH0791562B2 (en) 1987-03-10 1987-03-10 Alloy powder manufacturing method

Country Status (1)

Country Link
JP (1) JPH0791562B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039568A1 (en) * 1998-09-18 2000-09-27 Canon Kabushiki Kaisha Electrode material for negative pole of lithium secondary cell, electrode structure using said electrode material, lithium secondary cell using said electrode structure, and method for manufacturing said electrode structure and said lithium secondary cell
KR20030006564A (en) * 2001-07-13 2003-01-23 (주)나인디지트 Manufacturing method of W-Cu alloy
WO2006034054A1 (en) * 2004-09-16 2006-03-30 Belashchenko Vladimir E Deposition system, method and materials for composite coatings
CN104801708A (en) * 2015-05-15 2015-07-29 福建农林大学 Full metal component iron-based amorphous alloy powder for powder metallurgy and preparation method thereof
CN114974722A (en) * 2022-07-04 2022-08-30 中山大学 Intermetallic compound superconductor and preparation method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039568A1 (en) * 1998-09-18 2000-09-27 Canon Kabushiki Kaisha Electrode material for negative pole of lithium secondary cell, electrode structure using said electrode material, lithium secondary cell using said electrode structure, and method for manufacturing said electrode structure and said lithium secondary cell
EP1039568A4 (en) * 1998-09-18 2004-09-01 Canon Kk Electrode material for negative pole of lithium secondary cell, electrode structure using said electrode material, lithium secondary cell using said electrode structure, and method for manufacturing said electrode structure and said lithium secondary cell
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7183018B2 (en) 1998-09-18 2007-02-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7534528B2 (en) 1998-09-18 2009-05-19 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
EP1921699A3 (en) * 1998-09-18 2010-12-22 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
KR20030006564A (en) * 2001-07-13 2003-01-23 (주)나인디지트 Manufacturing method of W-Cu alloy
WO2006034054A1 (en) * 2004-09-16 2006-03-30 Belashchenko Vladimir E Deposition system, method and materials for composite coatings
US7670406B2 (en) 2004-09-16 2010-03-02 Belashchenko Vladimir E Deposition system, method and materials for composite coatings
CN104801708A (en) * 2015-05-15 2015-07-29 福建农林大学 Full metal component iron-based amorphous alloy powder for powder metallurgy and preparation method thereof
CN114974722A (en) * 2022-07-04 2022-08-30 中山大学 Intermetallic compound superconductor and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0791562B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
JP3805601B2 (en) High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy
WO1980002159A1 (en) Amorphous alloy containing iron family element and zirconium,and articles obtained therefrom
KR900006194B1 (en) Permanent magnet materials and making method of it
US5279642A (en) Process for producing high strength aluminum-based alloy powder
JPS63223101A (en) Production of alloy powder
JP4515548B2 (en) Bulk amorphous alloy and high strength member using the same
US8163109B1 (en) High-density hafnium-based metallic glass alloys that include six or more elements
Eckert et al. Bulk nanostructured multicomponent alloys
JPH03219037A (en) Ni base shape memory alloy and its manufacture
CN108504969B (en) Corrosion-resistant zirconium-based amorphous alloy and preparation method thereof
CN108330413B (en) High-compression-resistance zirconium-based amorphous alloy and preparation method thereof
CN108504970B (en) Low-brittleness zirconium-based amorphous alloy and preparation method thereof
DE4120244C2 (en) Sliding material for a magnetic head
JPH10265917A (en) High hardness glassy alloy, and high hardness tool using same
JPS62199743A (en) High strength copper alloy and its manufacture
KR100699411B1 (en) Cu-based amorphous alloy composition in Cu-Ni-Zr-Hf-Ti-Nb system
KR100463578B1 (en) Cu-based amorphous alloy composition
JP2000345309A (en) HIGH STRENGTH AND HIGH CORROSION RESISTANCE Ni BASE AMORPHOUS ALLOY
JP2631791B2 (en) High corrosion resistance, high strength hard sintered alloy
JPS6317210A (en) Production of aluminum nitride powder
KR960012726B1 (en) Dielectric composition for high frequencies
US5916363A (en) Oriented molybdenum or tungsten single crystal and manufacturing method thereof
Tarighati et al. The Effects of B Addition on the Structure and Magnetic Properties of AlCrFeNiMnSi High Entropy Alloy
JP2003089857A (en) Negative magnetostrictive material and its manufacturing method
JPH0558736A (en) Production of titanium carbide nitride sintered body with high toughness and high strength